On a functional equation arising from comparison of utility representations

Attila Gilányi
Institute of Mathematics, University of Debrecen, 4010 Debrecen, Pf. 12, Hungary

Che Tat Ng
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario Canada N2L 3G1

János Aczél

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario Canada N2L 3G1

Abstract

We solve the functional equation $F_{1}(t)-F_{1}(t+s)=F_{2}\left[F_{3}(t)+F_{4}(s)\right]$ for real functions defined on intervals, assuming that F_{2} is positive valued and strictly monotonic and that F_{3} is continuous. The equation arose from the equivalence problem of utility representations under assumptions of separability, homogeneity and segregation (e-distributivity).

Key words: Functional equation, utility representation, binary gamble, convexity.

[^0]
1 Background, introduction

Utility representations furnish background to the functional equation that we solve in this paper. With $f, g \in X$ (X a set of valued consequences) and Γ an event, $(f, \Gamma ; g)$ is an uncertain alternative (a binary gamble), in which the holder (gambler) receives f if Γ occurs and receives g if it does not. There exists in X a "no change" consequence e. A transitive and connected preference order (weak order) \succsim is assumed to exist between gambles. It is assumed that $(f, \Gamma ; f) \sim f$ (idempotence), in the sense that the gamble $(f, \Gamma ; f)$ is identified with the consequence f. So the weak order extends to the set X of consequences (it can also be extended to gambles with other gambles as consequences) and it makes sense to talk both about gambles and about consequences $\succsim e$. A"utility function" U maps the set of all such gambles and consequences onto the half-open real interval $[0, k[(k \in] 0, \infty])$, and a "weighting function" W maps the set of all events onto the closed interval $[0,1]$. They are strictly increasing in the sense that, for $f, g \succsim e$, we have $U(f) \geq U(g)$ if, and only if, $f \succsim g$ (in particular, $U(e)=0$) and, for $f \succ g \succsim e$, we have $W\left(\Gamma_{1}\right) \geq W\left(\Gamma_{2}\right)$ if, and only if, $\left(f, \Gamma_{1} ; g\right) \succsim\left(f, \Gamma_{2} ; g\right)$. We have a "utility representation" if $U[(f, \Gamma ; g)]$ is, for $f \succsim g \succsim e$, a function M of $U(f), U(g)$ and $W(\Gamma)$ alone: $U[(f, \Gamma ; g)]=$ $M[U(f), U(g), W(\Gamma)]$.

For consequences there is also a "joint receipt" operation \oplus, strictly increasing in the first term, meaning that, for $f, f^{\prime}, g \succsim e$, we have $f \oplus g \succsim f^{\prime} \oplus g$ if, and only if, $f \succsim f^{\prime}$. The "no change" consequence e is a left unit: $e \oplus g=g$ for all $g \succsim e$.

Under the further restrictions that, for $f, g \succsim e$, "e-distributivity" $(f, \Gamma ; e) \oplus g \sim(f \oplus$ $g, \Gamma ; g$) (called also "segregation") and "separability" $U[(f, \Gamma ; e)]=U(f) W(\Gamma)$ hold, and M is homogeneous in its first two variables, it was proved in [8, Theorem 4] that there exists a strictly increasing continuous function $\lambda:[1, \infty[\rightarrow[0, \infty[$, with $\lambda(1)=0$, such that the following utility representation holds for $f \succsim g \succ e$:

$$
\begin{equation*}
U(f, \Gamma ; g)=U(g) \lambda^{-1}\left[W(\Gamma) \lambda\left(\frac{U(f)}{U(g)}\right)\right] . \tag{1}
\end{equation*}
$$

Here we examine when two such representations, with λ and $\tilde{\lambda}$, are equivalent in the sense that there exist two order preserving homeomorphisms $G:] 0, k[\rightarrow] 0, \tilde{k}[(\tilde{k} \in] 0, \infty])$ and $H:[0,1] \rightarrow[0,1]$ such that $\widetilde{U}=G \circ U$ and $\widetilde{W}=H \circ W$. Thus

$$
\begin{equation*}
G[U(g)] \tilde{\lambda}^{-1}\left[H(W(\Gamma)) \tilde{\lambda}\left(\frac{G[U(f)]}{G[U(g)]}\right)\right]=G\left(U(g) \lambda^{-1}\left[W(\Gamma) \lambda\left(\frac{U(f)}{U(g)}\right)\right]\right) \tag{2}
\end{equation*}
$$

holds for $f \succsim g \succ e$. (The formulas for $\lambda, \tilde{\lambda}, G$ and H will be stated in the concluding

Section 4). Writing $p=U(f), q=U(g), w=W(\Gamma)$, we get

$$
G(q) \tilde{\lambda}^{-1}\left[H(w) \tilde{\lambda}\left(\frac{G(p)}{G(q)}\right)\right]=G\left(q \lambda^{-1}\left[w \lambda\left(\frac{p}{q}\right)\right]\right)
$$

for $k>p \geq q>0$ and $w \in[0,1]$. With $z=p / q \geq 1$, this equation goes over into

$$
G(q) \tilde{\lambda}^{-1}\left[H(w) \tilde{\lambda}\left(\frac{G(q z)}{G(q)}\right)\right]=G\left(q \lambda^{-1}[w \lambda(z)]\right)
$$

Treating q as a parameter, this is a Pexider equation in the variables w and z. Its general continuous, strictly increasing solution is of the form

$$
\begin{equation*}
\tilde{\lambda}\left(\frac{G(q z)}{G(q)}\right)=\mu(q) \lambda(z)^{\rho}, \quad H(w)=w^{\rho} \tag{3}
\end{equation*}
$$

for some "constants" $\mu(q)>0$ and $\rho>0$ (cf. [1, Section 3.1.1] and [2, Section 5]). The first equation is trivially satisfied if $z=1$, so we will assume $z>1$. We define

$$
\begin{equation*}
F_{1}(t)=-\ln G\left(e^{t}\right), F_{2}(u)=\ln \tilde{\lambda}^{-1}\left(e^{u}\right), F_{3}(t)=\ln \mu\left(e^{t}\right), F_{4}(s)=\rho \ln \lambda\left(e^{s}\right) \tag{4}
\end{equation*}
$$

with $s=\ln z, t=\ln q$, and arrive at the functional equation

$$
\begin{equation*}
F_{1}(t)-F_{1}(t+s)=F_{2}\left[F_{3}(t)+F_{4}(s)\right] \tag{5}
\end{equation*}
$$

This functional equation has been encountered before by A. Lundberg [7] and by J. Aczél, Gy. Maksa, C. T. Ng and Zs.Páles [3] under different conditions. It has been solved in [3] on a domain suitable for the current motivation. However, strict monotonicity was assumed for F_{3}. Here the continuity of F_{3} is assumed instead. In what follows we shall consider the equation on a more general domain.

For general background to the concepts underlying the formulation of decision making under uncertainty, that gives rise to our functional equation problem, see R. D. Luce [6].

2 The main functional equation and associated equations

Given $a, b \in[-\infty, \infty](a<b)$, the functional equation

$$
\begin{equation*}
F_{1}(t)-F_{1}(t+s)=F_{2}\left[F_{3}(t)+F_{4}(s)\right] \quad(t \in] a, b[, s \in] 0, b-t[) \tag{6}
\end{equation*}
$$

is considered under the following assumptions:
(A1) $\left.F_{1}:\right] a, b[\rightarrow \mathbb{R}$,
(A2) $\left.F_{3}:\right] a, b[\rightarrow \mathbb{R}$ is continuous,
(A3) $\left.F_{4}:\right] 0, b-a[\rightarrow \mathbb{R}$,
(A4) $\left.F_{2}: I \rightarrow\right] 0, \infty[$ is strictly monotonic, where

$$
I=\left\{F_{3}(t)+F_{4}(s) \mid t \in\right] a, b[, s \in] 0, b-t[\}
$$

Here and later the following customary conventions are used to interprete the intervals $] 0, b-t[$ and $] 0, b-a[: b-(-\infty):=\infty$ for finite b, and $\infty-\omega:=\infty$ both for finite ω and for $\omega=-\infty$.

Lemma 1. Suppose (6) holds and the conditions (A1)-(A4) are satisfied. Then there exists $a c \in[a, b]$ such that F_{3} is strictly monotonic on $] a, c[$ and constant on $] c, b[$.

PROOF. If F_{3} is strictly monotonic on $] a, b[$, then the assertion holds with $c=b$. Now suppose that F_{3} is not strictly monotonic on $] a, b[$.

Let $t_{1}<t_{2}$ in $] a, b\left[\right.$ be such that $F_{3}\left(t_{1}\right)=F_{3}\left(t_{2}\right)$. Let t_{3} be a point in $] t_{1}, t_{2}\left[\right.$ where F_{3} has a maximum or minimum, say maximum, within $\left[t_{1}, t_{2}\right]$; if F_{3} is constantly maximum on an interval $\left[t_{3}^{\prime}, t_{3}^{\prime \prime}\right]$ then choose $t_{3}=\left(t_{3}^{\prime}+t_{3}^{\prime \prime}\right) / 2$. Thus $F_{3}\left(t_{3}\right) \geq F_{3}\left(t_{1}\right)=F_{3}\left(t_{2}\right)$. Then there exist arbitrarily close t_{4}, t_{5} such that $t_{1}<t_{4}<t_{3}<t_{5}<t_{2}$ and $F_{3}\left(t_{4}\right)=F_{3}\left(t_{5}\right)$. Thus, by (6) we have

$$
F_{1}\left(t_{4}\right)-F_{1}\left(t_{4}+s\right)=F_{1}\left(t_{5}\right)-F_{1}\left(t_{5}+s\right) \quad(s \in] 0, b-t_{5}[)
$$

Fixing $\left.s=s_{0} \in\right] 0, b-t_{5}[$ we get

$$
F_{1}\left(t_{4}\right)-F_{1}\left(t_{4}+s_{0}\right)=F_{1}\left(t_{5}\right)-F_{1}\left(t_{5}+s_{0}\right),
$$

and replacing s by $s_{0}+s$ gives

$$
F_{1}\left(t_{4}\right)-F_{1}\left(t_{4}+s_{0}+s\right)=F_{1}\left(t_{5}\right)-F_{1}\left(t_{5}+s_{0}+s\right)
$$

Subtracting the former from the latter we obtain

$$
F_{1}\left(t_{4}+s_{0}\right)-F_{1}\left(t_{4}+s_{0}+s\right)=F_{1}\left(t_{5}+s_{0}\right)-F_{1}\left(t_{5}+s_{0}+s\right) \quad(s \in] 0, b-t_{5}-s_{0}[) .
$$

Putting this back into (6) results in

$$
F_{2}\left[F_{3}\left(t_{4}+s_{0}\right)+F_{4}(s)\right]=F_{2}\left[F_{3}\left(t_{5}+s_{0}\right)+F_{4}(s)\right] \quad(s \in] 0, b-t_{2}-s_{0}[) .
$$

Because F_{2} is injective, that gives

$$
\left.F_{3}\left(t_{4}+s_{0}\right)=F_{3}\left(t_{5}+s_{0}\right) \quad \text { for all } s_{0} \in\right] 0, b-t_{2}[.
$$

This fact can be rephrased as follows: If $F_{3}\left(t_{1}\right)=F_{3}\left(t_{2}\right)$ for fixed $t_{1}<t_{2}$ then F_{3}, continuous by (A2), is periodic with arbitrarily small period $t_{5}-t_{4}$ on the interval $\left[t_{3}, b\left[\right.\right.$ (while t_{4} depends on how small a period we want, t_{3} depends only upon $\left[t_{1}, t_{2}\right]$). So F_{3} is constant at least on $\left[t_{3}, b\left[\right.\right.$. Let $c \in\left[a, b\left[\right.\right.$ be the smallest number for which F_{3} is constant on $] c, b[$; then F_{3} is strictly monotonic on $] a, c[$.

In the following lemma we investigate (6) in the case when the function F_{3} is nonconstant.
Lemma 2. Suppose that (6) holds with (A1)-(A4) and that F_{3} is nonconstant. Then the following properties follow:
(SO) There exists a $c \in] a, b]$ such that F_{3} is strictly monotonic on $] a, c[$ and constant on $] c, b[$,
(S1) F_{1} is strictly decreasing,
(S2) F_{1} is convex or concave on $] a, b[$, strictly convex or strictly concave on $] a, c[$, and affine on $] c, b[$,
(S3) the left derivative F_{1-}^{\prime} exists, is negative and monotonic on $] a, b\left[\right.$, and satisfies $F_{1-}^{\prime}(t+$ $s) \neq F_{1-}^{\prime}(t)$ for all $\left.t \in\right] a, c[, s \in] 0, b-t[$,
(S4) $J=\left\{F_{1}(t)-F_{1}(t+s) \mid t \in\right] a, b[, s \in] 0, b-t[\}$ is an open interval,
(S5) F_{4} is differentiable,
(S6) F_{2}^{-1} is differentiable on J,
(S7) the left derivative F_{3-}^{\prime} exists on $] a, b[$,
(S8) the following differential-functional equation holds:

$$
F_{4}^{\prime}(s)\left[F_{1-}^{\prime}(t+s)-F_{1-}^{\prime}(t)\right]=F_{3-}^{\prime}(t) F_{1-}^{\prime}(t+s) \quad(t \in] a, b[, s \in] 0, b-t[)
$$

(S9) F_{3-}^{\prime} is everywhere positive or everywhere negative on $] a, c\left[\right.$ (for short, we say: F_{3-}^{\prime} is sign preserving on $] a, c[)$, and it vanishes on $] c, b[$,
(S10) F_{4}^{\prime} is sign preserving on $] 0, b-a[$.

PROOF. The first property (S 0) is due to Lemma 1. By assumption (A4), F_{2} is positive valued. This implies (S1).

By (A4), and by the monotonicity of F_{3} seen from (S0), the right hand side of equation (6), as function of t, is either increasing for all fixed s or decreasing for all fixed s. Thus, for $s \in] 0, b-a[$, the functions

$$
\begin{equation*}
t \mapsto F_{1}(t)-F_{1}(t+s) \quad(t \in] a, b-s[) \tag{7}
\end{equation*}
$$

are also monotonic. Suppose that they are decreasing. Then, for $s \in] 0,(b-a) / 2[$, we have $F_{1}(t)-F_{1}(t+s) \geq F_{1}(t+s)-F_{1}((t+s)+s)$, that is,

$$
\begin{equation*}
2 F_{1}(t+s) \leq F_{1}(t)+F_{1}(t+2 s) \quad(t \in] a, b-2 s[) \tag{8}
\end{equation*}
$$

Because s can be chosen arbitrarily in $] 0,(b-a) / 2\left[\right.$, this inequality means that F_{1} is Jensen-convex on $] a, b[$. Furthermore, by (S0), we see that inequality (8) holds in the strict form $2 F_{1}(t+s)<F_{1}(t)+F_{1}(t+2 s)$ for $\left.t, t+2 s \in\right] a, c\left[\right.$; and $2 F_{1}(t+s)=F_{1}(t)+F_{1}(t+2 s)$ for $t, t+2 s \in] c, b\left[\right.$. Thus, F_{1} is strictly Jensen-convex on $] a, c[$ and Jensen-affine on $] c, b[$. The monotonicity of F_{1} yields its local boundedness on $] a, b[$, so, by the Bernstein-Doetsch theorem ([4], [5, Chapter VI]), it is convex on $] a, b[$, strictly convex on $] a, c[$, and affine on $] c, b[$. Had we assumed that the function in (7) is increasing, we would have come to the same conclusion with convexity replaced by concavity. This proves (S2).

We shall restrict the arguments about (S3) to convex F_{1}, as the concave case is similar. Using well-known properties of convex functions (cf. e.g. [5, Chapter VII]), we get that (i) F_{1} is continuous on $] a, b\left[\right.$, (ii) its left derivative F_{1-}^{\prime} exists at every point of $] a, b[$, and is monotonic increasing (not yet strictly) on $] a, b\left[\right.$, (using e.g. Theorem B in $\left[9\right.$, p. 5]), (iii) F_{1-}^{\prime} is nonpositive on $] a, b\left[\right.$ in view of (S1), and (iv) F_{1} is differentiable everywhere except for at most countably many places in $] a, b[$. We now argue for the second assertion in (S3), that F_{1-}^{\prime} is indeed negative. Suppose, to the contrary, that $F_{1-}^{\prime}(d)=0$ at some $\left.d \in\right] a, b[$. Then, by (ii) and (iii), F_{1-}^{\prime} vanishes on $] d, b\left[\right.$. By [5, Chapter VII, Theorem 4.2], F_{1} is differentiable and constant on $] d, b[$. This contradicts (S1). To show the third assertion in (S3), suppose, to the contrary, that $F_{1-}^{\prime}\left(t_{0}+s_{0}\right)=F_{1-}^{\prime}\left(t_{0}\right)$ for some $\left.t_{0} \in\right] a, c\left[, s_{0} \in\right] 0, b-t_{0}[$. Then, by (ii), F_{1-}^{\prime} is constant on $] t_{0}, t_{0}+s_{0}\left[\right.$. This implies that F_{1} is affine on $] t_{0}, t_{0}+s_{0}[$: a contradiction to the strict convexity of F_{1} on $] a, c[$. This proves (S3).

The continuity of F_{1} yields that the set J defined in (S4) is an interval. The strict monotonicity of F_{1} implies that J is open.

Since F_{2} is strictly monotonic, (6) can be written in the form

$$
\begin{equation*}
F_{2}^{-1}\left[F_{1}(t)-F_{1}(t+s)\right]=F_{3}(t)+F_{4}(s) \quad(t \in] a, b[, s \in] 0, b-t[) \tag{9}
\end{equation*}
$$

The function F_{2}^{-1} is also strictly monotonic, therefore, by Lebesgue's theorem, it is differentiable almost everywhere on J. According to (S2), F_{1} is differentiable on $] a, b[$ except at at most countably many points. Furthermore, by the strict monotonicity of F_{3} on $] a, c[$, the function defined in (7) is strictly monotonic on the nonempty, open interval $] a, c[\cap] a, b-s_{0}\left[\right.$ for each fixed $\left.s_{0} \in\right] 0, b-a\left[\right.$. Thus there exists a $\left.t_{0} \in\right] a, c[\cap] a, b-s_{0}[$ such that F_{1} is differentiable at $t_{0}+s_{0}$ and F_{2}^{-1} is differentiable at $F_{1}\left(t_{0}\right)-F_{1}\left(t_{0}+s_{0}\right)$. That is, for $t=t_{0}$ the left hand side of (9) is differentiable with respect to s at s_{0}. Therefore, F_{4} is also differentiable at s_{0}. As s_{0} can be taken arbitrarily in $] a, b[$, this proves (S5).

Let $z_{0}=F_{1}\left(t_{0}\right)-F_{1}\left(t_{0}+s_{0}\right) \in J\left(t_{0} \in\right] a, b\left[, s_{0} \in\right] 0, b-t_{0}[)$ be given. Then $s_{0}=$ $F_{1}^{-1}\left[F_{1}\left(t_{0}\right)-z_{0}\right]-t_{0}$. By continuity, there exists a neighborhood $T_{0} \times Z_{0}$ of $\left(t_{0}, z_{0}\right)$ such that $F_{1}^{-1}\left[F_{1}(t)-z\right]-t>0$ and $F_{1}^{-1}\left[F_{1}(t)-z\right]<b$ for all $(t, z) \in T_{0} \times Z_{0}$. Taking an element $t_{1} \in T_{0}$ such that the strictly monotonic F_{1}^{-1} is differentiable at $F_{1}\left(t_{1}\right)-z_{0}$, and writing $t=t_{1}$ and $s=F_{1}^{-1}\left[F_{1}\left(t_{1}\right)-z\right]-t_{1}$ in (9), we get

$$
F_{2}^{-1}(z)=F_{3}\left(t_{1}\right)+F_{4}\left(F_{1}^{-1}\left[F_{1}\left(t_{1}\right)-z\right]-t_{1}\right) \quad\left(z \in Z_{0}\right) .
$$

By the differentiability of F_{4} and by the choice of t_{1}, the right hand side of this equation is differentiable with respect to z at z_{0} and that implies the differentiability of F_{2}^{-1} at z_{0}. Because z_{0} is arbitrary in J, this proves (S6).

The left derivative of F_{1} exists on $] a, b\left[\right.$ and F_{2} is differentiable on J, therefore the left derivative of F_{3} exists on $] a, b[$ by (9), and (S7) is proved.

Differentiating equation (9) with respect to t and s from the left, we get

$$
\left(F_{2}^{-1}\right)^{\prime}\left[F_{1}(t)-F_{1}(t+s)\right]\left[F_{1-}^{\prime}(t)-F_{1-}^{\prime}(t+s)\right]=F_{3-}^{\prime}(t)
$$

and

$$
-\left(F_{2}^{-1}\right)^{\prime}\left[F_{1}(t)-F_{1}(t+s)\right] F_{1-}^{\prime}(t+s)=F_{4}^{\prime}(s),
$$

repectively, for all $t \in] a, b[, s \in] 0, b-t\left[\right.$. Multiplying the first equation by $F_{1-}^{\prime}(t+s)$ and the second by $F_{1-}^{\prime}(t+s)-F_{1-}^{\prime}(t)$, and adding, we obtain the equation in (S8).

The function F_{3} is constant on $] c, b\left[\right.$, thus its derivative is 0 there; and as F_{3} is monotonic on $] a, b\left[, F_{3-}^{\prime}\right.$ is either nonnegative on $] a, b[$ or nonpositive on $] a, b[$. In order to prove the other part of (S9), suppose that there exists a $\left.t_{0} \in\right] a, c\left[\right.$ such that $F_{3-}^{\prime}\left(t_{0}\right)=0$. By (S3), we have $F_{1-}^{\prime}\left(t_{0}+s\right) \neq F_{1-}^{\prime}\left(t_{0}\right)$ for all $\left.s \in\right] 0, b-t_{0}$. So the equation in (S8) implies that $F_{4}^{\prime}(s)=0$ for all $\left.s \in\right] 0, b-t_{0}\left[\right.$. Since F_{3} is strictly monotonic on $] a, c[$, there exits a $\left.t_{1} \in\right] a, t_{0}\left[\right.$ such that $F_{3-}^{\prime}\left(t_{1}\right) \neq 0$. Thus, the equation in (S8) yields that $F_{1-}^{\prime}\left(t_{1}+s\right)=0$ for all $s \in] 0, b-t_{0}[$ which contradicts (S3). This proves (S9).

Finally, if F_{4}^{\prime} were not sign preserving then, by the intermediate value property of functions that are derivatives ([10, Theorem 5.12]), there would exist an $\left.s_{0} \in\right] 0, b-a[$ such that $F_{4}^{\prime}\left(s_{0}\right)=0$. Then, using (S8) and (S9), we would obtain $F_{1-}^{\prime}\left(t+s_{0}\right)=0$ for $\left.t \in\right] a, b-s_{0}[$. This contradiction to (S3) proves (S10).

Now we solve the functional equation (S8) in Lemma 2. Let

$$
\begin{equation*}
\psi:=F_{1-}^{\prime}, \quad \varphi:=F_{3-}^{\prime}, \quad \chi:=F_{4}^{\prime} . \tag{10}
\end{equation*}
$$

Then the equation becomes

$$
\begin{equation*}
\chi(s)[\psi(t+s)-\psi(t)]=\varphi(t) \psi(t+s) \quad(t \in] a, b[, s \in] 0, b-t[) \tag{11}
\end{equation*}
$$

where
(A5) $\psi:] a, b[\rightarrow]-\infty, 0[$,
(A6) $\varphi:] a, b[\rightarrow \mathbb{R}$ is sign preserving on $] a, c[$ and 0 on $] c, b[$, for a $c \in] a, b]$,
(A7) $\chi:] 0, b-a[\rightarrow \mathbb{R}$ is sign preserving.
The sign preserving solutions of (11) were determined in [3] for the case $b=c=\infty$. Here we solve it under the somewhat weaker conditions (A5)-(A7) and for arbitrary $a<c \leq b$. Our method is similar to that in [3]. In what follows we write $\Pi_{+}(] a, b[)$, and $\Pi_{-}(] a, b[)$ for the set of all pairs $(C, D) \in \mathbb{R} \times \mathbb{R}, C \neq 0$, for which the function $t \mapsto D+e^{C t}$ is everywhere positive on $] a, b[$, or everywhere negative on $] a, b[$, respectively. We define $\Pi(] a, b[)=\Pi_{-}(] a, b[) \cup \Pi_{+}(] a, b[)$ and

$$
\sigma(C, D)=\left\{\begin{aligned}
1, & \text { if }(C, D) \in \Pi_{+}(] a, b[) \\
-1, & \text { if }(C, D) \in \Pi_{-}(] a, b[) .
\end{aligned}\right.
$$

Theorem 1. Let $a<b$ in $[-\infty, \infty]$ be given. For $c=b$, the functions ψ, φ, χ with the properties (A5)-(A7) solve the functional equation (11) if, and only if, they are, for all $t \in] a, b[, s \in] 0, b-a[$, either of the form

$$
\begin{equation*}
\psi(t)=\frac{A}{D+e^{C t}}, \quad \varphi(t)=\frac{B e^{C t}}{D+e^{C t}}, \quad \chi(s)=\frac{B}{1-e^{C s}}, \tag{12}
\end{equation*}
$$

where A, B, C and D are constants with $B C \neq 0,(C, D) \in \Pi(] a, b[)$ and $A \sigma(C, D)<0$; or, if $] a, b[\neq \mathbb{R}$, of the form

$$
\begin{equation*}
\psi(t)=\frac{P}{t+R}, \quad \varphi(t)=\frac{Q}{t+R}, \quad \chi(s)=-\frac{Q}{s} \tag{13}
\end{equation*}
$$

where P, Q and R are constants with $Q \neq 0$ and either $P>0, R \leq-b$, or $P<0, R \geq-a$. No function satisfies (11) and (A5)-(A7) if $c<b$ in (A6).

PROOF. It can be easily shown, that the functions in (12) and (13) satisfy (11) and fulfill the conditions (A5)-(A7) with $c=b$.

In order to prove that (11) has no other solutions with these properties, we define

$$
\begin{equation*}
\ell=\frac{1}{\psi}, \quad m=\frac{\varphi}{\psi}, \quad n=-\frac{1}{\chi} \tag{14}
\end{equation*}
$$

and write (11) in the form

$$
\begin{equation*}
\ell(t+s)=\ell(t)+m(t) n(s) \quad(t \in] a, b[, s \in] 0, b-t[), \tag{15}
\end{equation*}
$$

where ℓ and n are sign preserving on $] a, b[$ or $] 0, b-a[$, respectively, while m is sign preserving on $] a, c[$, and 0 on $] c, b[$. (Note that "sign preserving" includes that the function has no zero on that interval).

By the monotonicity of $\psi:=F_{1-}^{\prime}$ in (S3), the function ℓ is monotonic on]a,b[(though not necessarily strictly monotonic at this stage; when the theorem is proved we will have ℓ strictly monotonic and m sign preserving on all of $] a, b[$, that is, $c=b)$. Thus ℓ is integrable on all finite closed subintervals of $] a, b[$. Furthermore, $n(s) \neq 0$, so m is also locally integrable.

Fix $t_{1}<t_{2}$ in $] a, c\left[\right.$ and integrate (15) with respect to t from t_{1} to t_{2} to get

$$
\begin{equation*}
\int_{t_{1}+s}^{t_{2}+s} \ell=\int_{t_{1}}^{t_{2}} \ell+n(s) \int_{t_{1}}^{t_{2}} m \quad(s \in] 0, b-t_{2}[) \tag{16}
\end{equation*}
$$

Here $\int_{t_{1}}^{t_{2}} m \neq 0$ because m is sign preserving on $] a, c\left[\right.$ and $a<t_{1}<t_{2}<c$. The left hand side of (16) is continuous in s, so n is continuous on $] 0, b-t_{2}\left[\right.$. As t_{2} can be arbitrarily close to a, we get the continuity of n on its domain $] 0, b-a[$. With equation (15) this gives the continuity of ℓ on $] a, b[$. Since n is nowhere 0 , the continuity of m on $] a, b[$ also follows.

Hence we get the continuity of ℓ, m, n from local integrability. Now the left hand side of (16) is differentiable, so n is differentiable too and, by (15) so is ℓ. Repeated application of the same standard steps gives that all three functions are C^{∞}.

Differentiating equation (15) with respect to s we get

$$
\ell^{\prime}(t+s)=m(t) n^{\prime}(s) \quad(t \in] a, b[, s \in] 0, b-t[)
$$

The nonzero differentiable solutions of this Pexider equation are

$$
\ell^{\prime}(t)=a_{1} a_{2} e^{C t}, \quad m(t)=a_{1} e^{C t}, \quad n^{\prime}(s)=a_{2} e^{C s} \quad(t \in] a, b[, s \in] 0, b-a[),
$$

where $C, a_{1} \neq 0$ and $a_{2} \neq 0$ are constants (cf. e.g. [1, Sections 3.1.1 and 4.2.1]). Integrating ℓ^{\prime} and n^{\prime}, and using (15), we get in the case $C \neq 0$

$$
\ell(t)=\frac{a_{1} a_{2}}{C} e^{C t}+a_{3}, \quad m(t)=a_{1} e^{C t}, \quad n(s)=\frac{a_{2}}{C} e^{C s}-\frac{a_{2}}{C}
$$

with a constant a_{3}, and in the case $C=0$ we get

$$
\ell(t)=a_{1} a_{2} t+a_{4}, \quad m(t)=a_{1}, \quad n(s)=a_{2} s
$$

with a constant a_{4}. Taking (14) into consideration and defining

$$
A=\frac{C}{a_{1} a_{2}}, \quad B=\frac{C}{a_{2}}, \quad D=\frac{C a_{3}}{a_{1} a_{2}}, \quad P=\frac{1}{a_{1} a_{2}}, \quad Q=\frac{1}{a_{2}}, \quad R=\frac{a_{4}}{a_{1} a_{2}},
$$

we get that the solutions of (11) are of the forms (12) and (13). The assumptions (A5)(A7) yield the restrictions on the constants in the theorem. In particular, in order that ψ be negative, $A \sigma(C, D)<0$ and either $P>0, R \leq-b$ or $P<0, R \geq-a$ have to hold.

3 Solutions of equation (6)

Finally, we determine the solutions of our main equation (6).
(Throughout, $A_{1}, A_{2}, A_{3}, A, B, C, D, P, Q, R, C_{1}, C_{3}, C_{4}$ are constants).

Theorem 2. Let $a<b$ be in $[-\infty, \infty]$. Assume that the functions $F_{1}, F_{2}, F_{3}, F_{4}$ solve equation (6) and satisfy the properties (A1)-(A4). Then F_{3} is either constant or strictly monotonic. The general solution of (6) under the above assumptions are:
I. If F_{3} is constant then

$$
\begin{align*}
& F_{1}(t)=A_{1} t+A_{2} \quad(t \in] a, b[), \tag{17}\\
& F_{3}(t)=A_{3} \quad(t \in] a, b[), \tag{18}
\end{align*}
$$

F_{4} is strictly monotonic

$$
\begin{equation*}
F_{2}(u)=-A_{1} F_{4}^{-1}\left(u-A_{3}\right) \quad(u \in I) \tag{19}
\end{equation*}
$$

with $A_{1}<0$.
II. If F_{3} is strictly monotonic then either

$$
\begin{align*}
& F_{1}(t)=-\frac{A}{C D} \ln \left|D e^{-C t}+1\right|+C_{1} \quad(t \in] a, b[), \tag{21}\\
& F_{3}(t)=\frac{B}{C} \ln \left|D+e^{C t}\right|+C_{3} \quad(t \in] a, b[), \tag{22}
\end{align*}
$$

$$
\begin{align*}
& F_{4}(s)=-\frac{B}{C} \ln \left|1-e^{-C s}\right|+C_{4} \quad(s \in] 0, b-a[) \tag{23}\\
& F_{2}(u)=\frac{A}{C D} \ln \left(1-\sigma(C, D) D \operatorname{sign} C e^{-\frac{C}{B}\left(u-C_{3}-C_{4}\right)}\right) \quad(u \in I), \tag{24}
\end{align*}
$$

with $B C D \neq 0,(C, D) \in \Pi(] a, b[)$ and $A \sigma(C, D)<0$; or

$$
\begin{align*}
& F_{1}(t)=-\frac{A}{C} e^{-C t}+C_{1} \quad(t \in] a, b[), \tag{25}\\
& F_{3}(t)=B t+C_{3} \quad(t \in] a, b[), \tag{26}\\
& F_{4}(s)=-\frac{B}{C} \ln \left|1-e^{-C s}\right|+C_{4} \quad(s \in] 0, b-a[), \tag{27}\\
& F_{2}(u)=-\frac{A}{|C|} e^{-\frac{C}{B}\left(u-C_{3}-C_{4}\right)} \quad(u \in I), \tag{28}
\end{align*}
$$

with $B C \neq 0, A<0$; or, if $] a, b[\neq \mathbb{R}$,

$$
\begin{align*}
& F_{1}(t)=P \ln |t+R|+C_{1} \quad(t \in] a, b[), \tag{29}\\
& F_{3}(t)=Q \ln |t+R|+C_{3} \quad(t \in] a, b[), \tag{30}\\
& F_{4}(s)=-Q \ln s+C_{4} \quad(s \in] 0, b-a[), \tag{31}\\
& F_{2}(u)=-P \ln \left(1-\operatorname{sign} P e^{-\frac{u-C_{3}-C_{4}}{Q}}\right) \quad(u \in I), \tag{32}
\end{align*}
$$

with $Q \neq 0$ and either $P>0, R \leq-b$ or $P<0, R \geq-a$.

PROOF.

Let a, b be given and suppose that F_{1}, F_{2}, F_{3} and F_{4} satisfy equation (6) and conditions (A1)-(A4). According to Lemma 1, there exists a $c \in[a, b]$ such that F_{3} is strictly monotonic on $[a, c[$ and constant on $] c, b[$. The last statement in Theorem 1 implies (since, by (10), c in (A6) and in Theorem 1 is identical with c in Lemma 1) that, under the assumption that F_{3} is nonconstant, equation (6) has no solutions if $c<b$. Therefore, F_{3} is either constant or strictly monotonic, thus, the first statement of our theorem is proved.

Substitution shows that the functions listed above fulfill (A1)-(A4) and (6).
Now we prove that (6) has no other solutions under these assumptions.

In the case I, when F_{3} is constant, say $F_{3}=A_{3}$, equation (6) reduces to the Pexider equation

$$
\begin{equation*}
F_{1}(t)-F_{1}(t+s)=F_{2}\left[A_{3}+F_{4}(s)\right] . \tag{33}
\end{equation*}
$$

By (A4), F_{2} is positive valued and strictly monotonic. Therefore, F_{1} is strictly decreasing, so equation (33) implies (17) $F_{1}(t)=A_{1} t+A_{2}$ with $A_{1}<0$ and $F_{2}\left[A_{3}+F_{4}(s)\right]=A_{1} s$, that is, (20). Therefore (19) is also valid.

In the following we consider the case II, where F_{3} is strictly monotonic. By Lemma 2, the functions F_{1} and F_{3} are differentiable from the left on $] a, b\left[, F_{4}\right.$ is differentiable on $] 0, b-a[$, the functions ψ, φ, χ introduced in (10) fulfill the properties (A5)-(A7) and they satisfy (11). By Theorem 1 with (10), we have, for all $t \in] a, b[, s \in] 0, b-a[$, either

$$
\begin{equation*}
F_{1-}^{\prime}(t)=\frac{A}{D+e^{C t}}, \quad F_{3-}^{\prime}(t)=\frac{B e^{C t}}{D+e^{C t}}, \quad F_{4}^{\prime}(s)=\frac{B}{1-e^{C s}}, \tag{34}
\end{equation*}
$$

where $B C \neq 0,(C, D) \in \Pi(] a, b[)$, and $A \sigma(C, D)<0$; or, if $] a, b[\neq \mathbb{R}$,

$$
\begin{equation*}
F_{1-}^{\prime}(t)=\frac{P}{t+R}, \quad F_{3-}^{\prime}(t)=\frac{Q}{t+R}, \quad F_{4}^{\prime}(s)=-\frac{Q}{s} \tag{35}
\end{equation*}
$$

where $Q \neq 0$ and either $P>0, R \leq-b$ or $P<0, R \geq-a$. According to (S2) in Lemma $2, F_{1}$ is convex or concave and its one sided derivative F_{1-}^{\prime} is continuous by (34) and (35), thus it is differentiable on] a, b (cf. [5, Chapter VII, Theorem 4.2]).So, by (S6) and (9), F_{3} is also differentiable on $] a, b\left[\right.$. Therefore F_{1}, F_{3}, F_{4} can be obtained by integrating the corresponding functions in (34) and (35).

Integration in (34) gives (21), (22), (23) if $D \neq 0$, and (25), (26), (27) if $D=0$.
Taking $D \neq 0$ and substituting F_{1}, F_{3}, F_{4} into (6), we get

$$
\begin{equation*}
\frac{A}{C D} \ln \left|\frac{D e^{-C(t+s)}+1}{D e^{-C t}+1}\right|=F_{2}\left(-\frac{B}{C} \ln \left|\frac{1-e^{-C s}}{D+e^{C t}}\right|+C_{3}+C_{4}\right) \tag{36}
\end{equation*}
$$

for all $t \in] a, b[, s \in] 0, b-t[$. Observing

$$
\begin{gathered}
\frac{D e^{-C(t+s)}+1}{D e^{-C t}+1}=1-D \frac{1-e^{-C s}}{D+e^{C t}}, \quad \frac{D e^{-C(t+s)}+1}{D e^{-C t}+1}>0, \\
\left|\frac{1-e^{-C s}}{D+e^{C t}}\right|=\sigma(C, D) \operatorname{sign} C \frac{1-e^{-C s}}{D+e^{C t}} \quad(t \in] a, b[, s \in] 0, b-t[),
\end{gathered}
$$

we see that equation (36) yields (24) for $D \neq 0$.

If $D=0$, equation (6) yields

$$
\begin{equation*}
-\frac{A}{C} \frac{e^{C s}-1}{e^{C(t+s)}}=F_{2}\left(-\frac{B}{C} \ln \frac{\left|1-e^{C s}\right|}{e^{C t}}+C_{3}+C_{4}\right) \quad(t \in] a, b[, s \in] 0, b-t[) . \tag{37}
\end{equation*}
$$

Since $\operatorname{sign} C=\operatorname{sign}\left(e^{C s}-1\right)$, we can write (37) as

$$
-\frac{A}{|C|} \frac{\left|e^{C s}-1\right|}{e^{C(t+s)}}=F_{2}\left(-\frac{B}{C} \ln \frac{\left|1-e^{C s}\right|}{e^{C t}}+C_{3}+C_{4}\right)
$$

which yields that F_{2} is of the form (28). The positivity of F_{2} gives $A<0$.
Let us consider the functions in (35). By integration we get (29), (30) and (31). Substituting F_{1}, F_{3} and F_{4} into (6), we obtain

$$
P \ln \frac{|t+R|}{|t+R+s|}=P \ln \frac{|(t+R) / s|}{\mid(t+R) / s)+1 \mid}=F_{2}\left(Q \ln \left|\frac{t+R}{s}\right|+C_{3}+C_{4}\right)
$$

for $t \in] a, b[, s \in] 0, b-t\left[\right.$. Since F_{1-}^{\prime} is everywhere negative, we have $\operatorname{sign}(t+R)=-\operatorname{sign} P$ for all $t \in] a, b[$. Thus

$$
\frac{t+R}{t+R+s}>0 \quad(t \in] a, b[, s \in] 0, b-t[)
$$

and the absolute value signs can be omitted on the left hand side of the equation above. Using these properties, a simple calculation gives (32).

4 Conclusion

In section 1, equations (3), we found $H(w)=w^{\rho}(\rho>0)$ to be one of the homeomorphisms establishing the equivalence (2). We calculate now the other homeomorphism, G, first for $q \in] 0, k[$, and then determine those which can be continuously extended to $q \in[0, k[$. By (4),

$$
\begin{equation*}
G(q)=e^{-F_{1}(\ln q)}, \quad \mu(q)=e^{F_{3}(\ln q)}, \quad \lambda(z)=e^{\frac{1}{\rho} F_{4}(\ln z)}, \quad \tilde{\lambda}(v)=e^{F_{2}^{-1}(\ln v)} \tag{38}
\end{equation*}
$$

We assumed $\lambda(1)=0$ and continued with $z>1$. In order that λ, and also $\tilde{\lambda}$, be continuous at 1 we need the limit condition $\lim _{z \rightarrow 1+} \lambda(z)=\lim _{v \rightarrow 1+} \tilde{\lambda}(v)=0$.

Let first μ and thus F_{3} be constant. If, as in (2), λ and $\tilde{\lambda}$ are strictly increasing and continuous on $\left[1, \infty\left[\right.\right.$ and $\lambda(1)=\tilde{\lambda}(1)=0$, then F_{4} and F_{2} are continuous and strictly increasing on $] 0, \infty[$, so the assumptions in Theorem 2 , yielding solution I, are satisfied. Thus we have (17) $F_{1}(t)=A_{1} t+A_{2}\left(A_{1}<0\right)$. Therefore we get $G(q)=\gamma q^{1 / \beta}(\beta>$ $0, \gamma>0)$. Furthermore, by (4) and by $\lim _{z \rightarrow 1+} \lambda(z)=0$, we have $\lim _{s \rightarrow 0+} F_{4}(s)=-\infty$, otherwise the continuous and strictly increasing F_{4} and λ are arbitrary. Also, by (20) $F_{2}(u)=-A_{1} F_{4}^{-1}\left(u-A_{3}\right)$, that is,

$$
\begin{equation*}
\tilde{\lambda}(v)=\alpha \lambda\left(v^{\beta}\right)^{\rho} \quad(\alpha>0, \beta>0, \rho>0) \tag{39}
\end{equation*}
$$

which implies $\lim _{v \rightarrow 1+} \tilde{\lambda}(v)=0$. This shows that the pair of homeomorphisms

$$
\begin{equation*}
G(q)=\gamma q^{1 / \beta}, \quad H(w)=w^{\rho} \quad(\beta>0, \gamma>0, \rho>0) \tag{40}
\end{equation*}
$$

gives an equivalent in the sense (2) to any representation of the form (1).
By Theorem 2 and (38) there exist additional pairs of equivalent representations (2) whose connection differs from (39) or from (40). We identify the representations here by the $\lambda, \tilde{\lambda}$ and the homeomorphisms G (always $H(w)=w^{\rho}$) that establish the equivalence ($\alpha, \beta, \gamma, \delta, \varepsilon, \varepsilon^{\prime}$ and ρ are positive constants, A, B, C, D, P, Q, R are as in Theorem 2, II). They are the following, and only these:

$$
\begin{align*}
& \lambda(z)=\delta\left|1-z^{-C}\right|^{-\frac{B}{\rho C}}, \quad \tilde{\lambda}(v)=\varepsilon\left|1-v^{\frac{C D}{A}}\right|^{-\frac{B}{C}}, \quad G(q)=\gamma\left|D q^{-C}+1\right|^{\frac{A}{C D}} \tag{41}\\
& \lambda(z)=\delta\left|1-z^{-C}\right|^{-\frac{B}{\rho C}}, \quad \tilde{\lambda}(v)=\varepsilon^{\prime}(\ln v)^{-\frac{B}{C}}, \quad G(q)=\alpha e^{\frac{A}{C} q^{-C}} \tag{42}\\
& \lambda(z)=\delta(\ln z)^{-\frac{Q}{\rho}}, \quad \tilde{\lambda}(v)=\varepsilon\left|1-v^{-\frac{1}{P}}\right|^{-Q}, \quad G(q)=\beta|\ln q+R|^{-P} . \tag{43}
\end{align*}
$$

The restrictions in Theorem 2 (case II) and $\rho>0$ guarantee that G and H are strictly increasing. By (38), (42), (41), and (43), the limit condition holds if, and only if, in addition to $\rho>0$ and to the restrictions in Theorem 2 II also $Q<0$ in (43) and BC<0 in (42) and in (41).

Notice that (39) also holds for the pair $\lambda, \tilde{\lambda}$ in (41) but G differs there from (40). In (42) and (43), λ and $\tilde{\lambda}$ are not connected by (39). The pair in (43) is the mirror image of that in (42) while G and H are replaced by their inverses.

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, San Francisco, London, 1966.
[2] J. Aczél, A Short Course on Functional Equations Based Upon Recent Applications to the Social and Behavioral Sciences, Reidel/Kluwer, Dordrecht, Boston, New York, 1987.
[3] J. Aczél, Gy. Maksa, C. T. Ng, Zs. Páles, A functional equation arising from ranked additive and separable utility, Proc. Amer. Math. Soc. 129 (2000), 989-998.
[4] F. Bernstein, G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514-526.
[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Śla̧ski, Warszawa-Kraków-Katowice, 1985.
[6] R. D. Luce, Utility of Gains and Losses: Measurement-Theoretical and Experimental Approaches, Mahwah, NJ, Erlbaum, 2000.
[7] A. Lundberg, On the functional equation $f(\lambda(x)+g(y))=\mu(x)+h(x+y)$, Aequationes Math. 16 (1977), 21-30.
[8] C. T. Ng, R. D. Luce, J. Aczél, Functional characterization of basic properties of utility representations, Monatsh. Math. 135 (2002), 305-319.
[9] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New York, London, 1973.
[10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Inc, 1976.

[^0]: Email addresses: gilanyi@math.klte.hu (Attila Gilányi), ctng@math.uwaterloo.ca (Che Tat Ng), jdaczel@math.uwaterloo.ca (János Aczél).
 1 This research has been supported by the Natural Science and Engineering Research Council of Canada (NSERC) Grants OGP0002972 and OGP0008212, by the Hungarian Scientific Research Fund (OTKA) Grants T-030082 and F-038326, and by the Higher Education, Research and Development Fund (FKFP) Grant 0215/2001.
 ${ }^{2}$ Mathematics Subject Classification: primary 39B12, 39B22; secondary 26A48, 26A51, 91 B 16.

