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1 Background, introduction

Utility representations furnish background to the functional equation that we solve in
this paper. With f, g ∈ X (X a set of valued consequences) and Γ an event, (f, Γ; g) is
an uncertain alternative (a binary gamble), in which the holder (gambler) receives f if
Γ occurs and receives g if it does not. There exists in X a “no change” consequence e.
A transitive and connected preference order (weak order)

Â∼ is assumed to exist between
gambles. It is assumed that (f, Γ; f) ∼ f (idempotence), in the sense that the gamble
(f, Γ; f) is identified with the consequence f . So the weak order extends to the set X of
consequences (it can also be extended to gambles with other gambles as consequences)

and it makes sense to talk both about gambles and about consequences
Â∼ e. A “utility

function” U maps the set of all such gambles and consequences onto the half-open real
interval [0, k[ (k ∈]0,∞]), and a “weighting function” W maps the set of all events onto

the closed interval [0, 1]. They are strictly increasing in the sense that, for f, g
Â∼ e, we have

U(f) ≥ U(g) if, and only if, f
Â∼ g (in particular, U(e) = 0) and, for f Â g

Â∼ e, we have

W (Γ1) ≥ W (Γ2) if, and only if, (f, Γ1; g)
Â∼ (f, Γ2; g). We have a “utility representation”

if U [(f, Γ; g)] is, for f
Â∼ g

Â∼ e, a function M of U(f), U(g) and W (Γ) alone: U [(f, Γ; g)] =
M [U(f), U(g),W (Γ)].

For consequences there is also a “joint receipt” operation ⊕, strictly increasing in the first
term, meaning that, for f, f ′, g Â∼ e, we have f ⊕ g

Â∼ f ′ ⊕ g if, and only if, f
Â∼ f ′. The

“no change” consequence e is a left unit: e⊕ g = g for all g
Â∼ e.

Under the further restrictions that, for f, g
Â∼ e, “e-distributivity” (f, Γ; e) ⊕ g ∼ (f ⊕

g, Γ; g) (called also “segregation”) and “separability” U [(f, Γ; e)] = U(f)W (Γ) hold, and
M is homogeneous in its first two variables, it was proved in [8, Theorem 4] that there
exists a strictly increasing continuous function λ : [1,∞[→ [0,∞[, with λ(1) = 0, such

that the following utility representation holds for f
Â∼ g Â e:

U(f, Γ; g) = U(g)λ−1

[
W (Γ)λ

(
U(f)

U(g)

)]
. (1)

Here we examine when two such representations, with λ and λ̃, are equivalent in the sense
that there exist two order preserving homeomorphisms G : ]0, k[→]0, k̃[ (k̃ ∈]0,∞]) and
H : [0, 1] → [0, 1] such that Ũ = G ◦ U and W̃ = H ◦W. Thus

G[U(g)]λ̃−1

[
H(W (Γ))λ̃

(
G[U(f)]

G[U(g)]

)]
= G

(
U(g)λ−1

[
W (Γ)λ

(
U(f)

U(g)

)])
(2)

holds for f
Â∼ g Â e. (The formulas for λ, λ̃, G and H will be stated in the concluding
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Section 4). Writing p = U(f), q = U(g), w = W (Γ), we get

G(q)λ̃−1

[
H(w)λ̃

(
G(p)

G(q)

)]
= G

(
qλ−1

[
wλ

(
p

q

)])

for k > p ≥ q > 0 and w ∈ [0, 1]. With z = p/q ≥ 1, this equation goes over into

G(q)λ̃−1

[
H(w)λ̃

(
G(qz)

G(q)

)]
= G(qλ−1 [wλ (z)]).

Treating q as a parameter, this is a Pexider equation in the variables w and z. Its general
continuous, strictly increasing solution is of the form

λ̃

(
G(qz)

G(q)

)
= µ(q)λ(z)ρ, H(w) = wρ (3)

for some “constants” µ(q) > 0 and ρ > 0 (cf. [1, Section 3.1.1] and [2, Section 5]). The
first equation is trivially satisfied if z = 1, so we will assume z > 1. We define

F1(t) = − ln G(et), F2(u) = ln λ̃−1(eu), F3(t) = ln µ(et), F4(s) = ρ ln λ(es), (4)

with s = ln z, t = ln q, and arrive at the functional equation

F1(t)− F1(t + s) = F2[F3(t) + F4(s)]. (5)

This functional equation has been encountered before by A. Lundberg [7] and by J. Aczél,
Gy. Maksa, C. T. Ng and Zs.Páles [3] under different conditions. It has been solved in
[3] on a domain suitable for the current motivation. However, strict monotonicity was
assumed for F3. Here the continuity of F3 is assumed instead. In what follows we shall
consider the equation on a more general domain.

For general background to the concepts underlying the formulation of decision making
under uncertainty, that gives rise to our functional equation problem, see R. D. Luce [6].

2 The main functional equation and associated equations

Given a, b ∈ [−∞,∞] (a < b), the functional equation

F1(t)− F1(t + s) = F2[F3(t) + F4(s)] (t ∈ ]a, b[ , s ∈ ]0, b− t[ ) (6)
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is considered under the following assumptions:

(A1) F1 : ]a, b[→ R,
(A2) F3 : ]a, b[→ R is continuous,
(A3) F4 : ]0, b− a[→ R,
(A4) F2 : I → ]0,∞[ is strictly monotonic, where

I = {F3(t) + F4(s) | t ∈ ]a, b[ , s ∈ ]0, b− t[ }.

Here and later the following customary conventions are used to interprete the intervals
]0, b− t[ and ]0, b− a[: b− (−∞) := ∞ for finite b, and ∞−ω := ∞ both for finite ω and
for ω = −∞.

Lemma 1. Suppose (6) holds and the conditions (A1)–(A4) are satisfied. Then there exists
a c ∈ [a, b] such that F3 is strictly monotonic on ]a, c[ and constant on ]c, b[ .

PROOF. If F3 is strictly monotonic on ]a, b[ , then the assertion holds with c = b. Now
suppose that F3 is not strictly monotonic on ]a, b[ .

Let t1 < t2 in ]a, b[ be such that F3(t1) = F3(t2). Let t3 be a point in ]t1, t2[ where F3 has
a maximum or minimum, say maximum, within [t1, t2]; if F3 is constantly maximum on
an interval [t′3, t

′′
3] then choose t3 = (t′3 + t′′3)/2. Thus F3(t3) ≥ F3(t1) = F3(t2). Then there

exist arbitrarily close t4, t5 such that t1 < t4 < t3 < t5 < t2 and F3(t4) = F3(t5). Thus, by
(6) we have

F1(t4)− F1(t4 + s) = F1(t5)− F1(t5 + s) (s ∈ ]0, b− t5[).

Fixing s = s0 ∈ ]0, b− t5[ we get

F1(t4)− F1(t4 + s0) = F1(t5)− F1(t5 + s0),

and replacing s by s0 + s gives

F1(t4)− F1(t4 + s0 + s) = F1(t5)− F1(t5 + s0 + s).

Subtracting the former from the latter we obtain

F1(t4 + s0)− F1(t4 + s0 + s) = F1(t5 + s0)− F1(t5 + s0 + s) (s ∈ ]0, b− t5 − s0[).

Putting this back into (6) results in

F2[F3(t4 + s0) + F4(s)] = F2[F3(t5 + s0) + F4(s)] (s ∈ ]0, b− t2 − s0[ ).
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Because F2 is injective, that gives

F3(t4 + s0) = F3(t5 + s0) for all s0 ∈ ]0, b− t2[.

This fact can be rephrased as follows: If F3(t1) = F3(t2) for fixed t1 < t2 then F3, continu-
ous by (A2), is periodic with arbitrarily small period t5− t4 on the interval [t3, b[ (while t4
depends on how small a period we want, t3 depends only upon [t1, t2]). So F3 is constant
at least on [t3, b[. Let c ∈ [a, b[ be the smallest number for which F3 is constant on ]c, b[;
then F3 is strictly monotonic on ]a, c[.

In the following lemma we investigate (6) in the case when the function F3 is nonconstant.

Lemma 2. Suppose that (6) holds with (A1)–(A4) and that F3 is nonconstant. Then the
following properties follow:

(S0) There exists a c ∈ ]a, b] such that F3 is strictly monotonic on ]a, c[ and constant on
]c, b[ ,

(S1) F1 is strictly decreasing,
(S2) F1 is convex or concave on ]a, b[, strictly convex or strictly concave on ]a, c[, and

affine on ]c, b[,
(S3) the left derivative F ′

1− exists, is negative and monotonic on ]a, b[, and satisfies F ′
1−(t+

s) 6= F ′
1−(t) for all t ∈ ]a, c[ , s ∈ ]0, b− t[,

(S4) J = {F1(t)− F1(t + s) | t ∈ ]a, b[ , s ∈ ]0, b− t[ } is an open interval,
(S5) F4 is differentiable,
(S6) F−1

2 is differentiable on J ,
(S7) the left derivative F ′

3− exists on ]a, b[,
(S8) the following differential-functional equation holds:

F ′
4(s)[F

′
1−(t + s)− F ′

1−(t)] = F ′
3−(t)F ′

1−(t + s) (t ∈ ]a, b[ , s ∈ ]0, b− t[ ),

(S9) F ′
3− is everywhere positive or everywhere negative on ]a, c[ (for short, we say: F ′

3− is
sign preserving on ]a, c[) , and it vanishes on ]c, b[,

(S10) F ′
4 is sign preserving on ]0, b− a[.

PROOF. The first property (S0) is due to Lemma 1. By assumption (A4), F2 is positive
valued. This implies (S1).

By (A4), and by the monotonicity of F3 seen from (S0), the right hand side of equation
(6), as function of t, is either increasing for all fixed s or decreasing for all fixed s. Thus,
for s ∈ ]0, b− a[ , the functions

t 7→ F1(t)− F1(t + s) (t ∈ ]a, b− s[ ) (7)

5



are also monotonic. Suppose that they are decreasing. Then, for s ∈ ]0, (b−a)/2 [, we have
F1(t)− F1(t + s) ≥ F1(t + s)− F1((t + s) + s), that is,

2F1(t + s) ≤ F1(t) + F1(t + 2s) (t ∈ ]a, b− 2s[ ). (8)

Because s can be chosen arbitrarily in ] 0, (b − a)/2 [ , this inequality means that F1 is
Jensen-convex on ]a, b[. Furthermore, by (S0), we see that inequality (8) holds in the strict
form 2F1(t+s) < F1(t)+F1(t+2s) for t, t+2s ∈ ]a, c[; and 2F1(t+s) = F1(t)+F1(t+2s)
for t, t + 2s ∈ ]c, b[. Thus, F1 is strictly Jensen-convex on ]a, c[ and Jensen-affine on ]c, b[.
The monotonicity of F1 yields its local boundedness on ]a, b[, so, by the Bernstein-Doetsch
theorem ([4], [5, Chapter VI]), it is convex on ]a, b[, strictly convex on ]a, c[, and affine on
]c, b[. Had we assumed that the function in (7) is increasing, we would have come to the
same conclusion with convexity replaced by concavity. This proves (S2).

We shall restrict the arguments about (S3) to convex F1, as the concave case is similar.
Using well-known properties of convex functions (cf. e.g. [5, Chapter VII]), we get that (i)
F1 is continuous on ]a, b[, (ii) its left derivative F ′

1− exists at every point of ]a, b[, and is
monotonic increasing (not yet strictly) on ]a, b[, (using e.g. Theorem B in [9, p. 5]), (iii) F ′

1−
is nonpositive on ]a, b[ in view of (S1), and (iv) F1 is differentiable everywhere except for at
most countably many places in ]a, b[. We now argue for the second assertion in (S3), that
F ′

1− is indeed negative. Suppose, to the contrary, that F ′
1−(d) = 0 at some d ∈]a, b[. Then,

by (ii) and (iii), F ′
1− vanishes on ]d, b[. By [5, Chapter VII, Theorem 4.2], F1 is differentiable

and constant on ]d, b[. This contradicts (S1). To show the third assertion in (S3), suppose,
to the contrary, that F ′

1−(t0 + s0) = F ′
1−(t0) for some t0 ∈ ]a, c[ , s0 ∈ ]0, b − t0[. Then,

by (ii), F ′
1− is constant on ]t0, t0 + s0[. This implies that F1 is affine on ]t0, t0 + s0[: a

contradiction to the strict convexity of F1 on ]a, c[. This proves (S3).

The continuity of F1 yields that the set J defined in (S4) is an interval. The strict mono-
tonicity of F1 implies that J is open.

Since F2 is strictly monotonic, (6) can be written in the form

F−1
2 [F1(t)− F1(t + s)] = F3(t) + F4(s) (t ∈ ]a, b[ , s ∈ ]0, b− t[ ). (9)

The function F−1
2 is also strictly monotonic, therefore, by Lebesgue’s theorem, it is dif-

ferentiable almost everywhere on J . According to (S2), F1 is differentiable on ]a, b[ except
at at most countably many points. Furthermore, by the strict monotonicity of F3 on
]a, c[, the function defined in (7) is strictly monotonic on the nonempty, open interval
]a, c[∩ ]a, b−s0[ for each fixed s0 ∈ ]0, b−a[. Thus there exists a t0 ∈ ]a, c[∩ ]a, b−s0[ such
that F1 is differentiable at t0 + s0 and F−1

2 is differentiable at F1(t0)− F1(t0 + s0). That
is, for t = t0 the left hand side of (9) is differentiable with respect to s at s0. Therefore,
F4 is also differentiable at s0. As s0 can be taken arbitrarily in ]a, b[, this proves (S5).
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Let z0 = F1(t0) − F1(t0 + s0) ∈ J (t0 ∈ ]a, b[, s0 ∈ ]0, b − t0[ ) be given. Then s0 =
F−1

1 [F1(t0) − z0] − t0. By continuity, there exists a neighborhood T0 × Z0 of (t0, z0) such
that F−1

1 [F1(t) − z] − t > 0 and F−1
1 [F1(t) − z] < b for all (t, z) ∈ T0 × Z0. Taking an

element t1 ∈ T0 such that the strictly monotonic F−1
1 is differentiable at F1(t1)− z0, and

writing t = t1 and s = F−1
1 [F1(t1)− z]− t1 in (9), we get

F−1
2 (z) = F3(t1) + F4(F

−1
1 [F1(t1)− z]− t1) (z ∈ Z0).

By the differentiability of F4 and by the choice of t1, the right hand side of this equation
is differentiable with respect to z at z0 and that implies the differentiability of F−1

2 at z0.
Because z0 is arbitrary in J , this proves (S6).

The left derivative of F1 exists on ]a, b[ and F2 is differentiable on J , therefore the left
derivative of F3 exists on ]a, b[ by (9), and (S7) is proved.

Differentiating equation (9) with respect to t and s from the left, we get

(F−1
2 )

′
[F1(t)− F1(t + s)] [F ′

1−(t)− F ′
1−(t + s)] = F ′

3−(t)

and

−(F−1
2 )

′
[F1(t)− F1(t + s)] F ′

1−(t + s) = F ′
4(s),

repectively, for all t ∈ ]a, b[ , s ∈ ]0, b− t[ . Multiplying the first equation by F ′
1−(t+s) and

the second by F ′
1−(t + s)− F ′

1−(t), and adding, we obtain the equation in (S8).

The function F3 is constant on ]c, b[, thus its derivative is 0 there; and as F3 is monotonic
on ]a, b[, F ′

3− is either nonnegative on ]a, b[ or nonpositive on ]a, b[. In order to prove
the other part of (S9), suppose that there exists a t0 ∈ ]a, c[ such that F ′

3−(t0) = 0. By
(S3), we have F ′

1−(t0 + s) 6= F ′
1−(t0) for all s ∈ ]0, b− t0[. So the equation in (S8) implies

that F ′
4(s) = 0 for all s ∈ ]0, b − t0[. Since F3 is strictly monotonic on ]a, c[, there exits a

t1 ∈ ]a, t0[ such that F ′
3−(t1) 6= 0. Thus, the equation in (S8) yields that F ′

1−(t1 + s) = 0
for all s ∈ ]0, b− t0[ which contradicts (S3). This proves (S9).

Finally, if F ′
4 were not sign preserving then, by the intermediate value property of functions

that are derivatives ([10, Theorem 5.12]), there would exist an s0 ∈ ]0, b − a[ such that
F ′

4(s0) = 0. Then, using (S8) and (S9), we would obtain F ′
1−(t + s0) = 0 for t ∈ ]a, b− s0[.

This contradiction to (S3) proves (S10).

Now we solve the functional equation (S8) in Lemma 2. Let

ψ := F ′
1−, ϕ := F ′

3−, χ := F ′
4. (10)
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Then the equation becomes

χ(s)[ψ(t + s)− ψ(t)] = ϕ(t)ψ(t + s) (t ∈ ]a, b[ , s ∈ ]0, b− t[ ), (11)

where

(A5) ψ : ]a, b[→ ]−∞, 0[ ,
(A6) ϕ : ]a, b[→ R is sign preserving on ]a, c[ and 0 on ]c, b[, for a c ∈ ]a, b],
(A7) χ : ]0, b− a[→ R is sign preserving.

The sign preserving solutions of (11) were determined in [3] for the case b = c = ∞. Here
we solve it under the somewhat weaker conditions (A5)–(A7) and for arbitrary a < c ≤ b.
Our method is similar to that in [3]. In what follows we write Π+( ]a, b[), and Π−( ]a, b[ )
for the set of all pairs (C, D) ∈ R × R, C 6= 0, for which the function t 7→ D + eCt

is everywhere positive on ]a, b[, or everywhere negative on ]a, b[, respectively. We define
Π( ]a, b[ ) = Π−( ]a, b[ ) ∪ Π+( ]a, b[ ) and

σ(C,D) =
{

1, if (C,D) ∈ Π+( ]a, b[ )
−1, if (C,D) ∈ Π−( ]a, b[ ).

Theorem 1. Let a < b in [−∞,∞] be given. For c = b, the functions ψ, ϕ, χ with the
properties (A5)–(A7) solve the functional equation (11) if, and only if, they are, for all
t ∈ ]a, b[, s ∈ ]0, b− a[, either of the form

ψ(t) =
A

D + eCt
, ϕ(t) =

BeCt

D + eCt
, χ(s) =

B

1− eCs
, (12)

where A, B, C and D are constants with BC 6= 0, (C, D) ∈ Π( ]a, b[ ) and Aσ(C, D) < 0;
or, if ]a, b[6= R, of the form

ψ(t) =
P

t + R
, ϕ(t) =

Q

t + R
, χ(s) = −Q

s
, (13)

where P , Q and R are constants with Q 6= 0 and either P > 0, R ≤ −b, or P < 0, R ≥ −a.
No function satisfies (11) and (A5)–(A7) if c < b in (A6).

PROOF. It can be easily shown, that the functions in (12) and (13) satisfy (11) and
fulfill the conditions (A5)–(A7) with c = b.

In order to prove that (11) has no other solutions with these properties, we define

` =
1

ψ
, m =

ϕ

ψ
, n = − 1

χ
(14)
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and write (11) in the form

`(t + s) = `(t) + m(t)n(s) (t ∈ ]a, b[ , s ∈ ]0, b− t[ ), (15)

where ` and n are sign preserving on ]a, b[ or ]0, b − a[, respectively, while m is sign
preserving on ]a, c[, and 0 on ]c, b[. (Note that “sign preserving” includes that the function
has no zero on that interval).

By the monotonicity of ψ := F ′
1− in (S3), the function ` is monotonic on ]a, b[ (though

not necessarily strictly monotonic at this stage; when the theorem is proved we will have
` strictly monotonic and m sign preserving on all of ]a, b[, that is, c = b). Thus ` is
integrable on all finite closed subintervals of ]a, b[. Furthermore, n(s) 6= 0, so m is also
locally integrable.

Fix t1 < t2 in ]a, c[ and integrate (15) with respect to t from t1 to t2 to get

t2+s∫

t1+s

` =

t2∫

t1

` + n(s)

t2∫

t1

m (s ∈]0, b− t2[). (16)

Here
∫ t2
t1

m 6= 0 because m is sign preserving on ]a, c[ and a < t1 < t2 < c. The left hand
side of (16) is continuous in s, so n is continuous on ]0, b − t2[. As t2 can be arbitrarily
close to a, we get the continuity of n on its domain ]0, b − a[. With equation (15) this
gives the continuity of ` on ]a, b[. Since n is nowhere 0, the continuity of m on ]a, b[ also
follows.

Hence we get the continuity of `, m, n from local integrability. Now the left hand side of
(16) is differentiable, so n is differentiable too and, by (15) so is `. Repeated application
of the same standard steps gives that all three functions are C∞.

Differentiating equation (15) with respect to s we get

`′(t + s) = m(t)n′(s) (t ∈ ]a, b[ , s ∈ ]0, b− t[ ).

The nonzero differentiable solutions of this Pexider equation are

`′(t) = a1a2e
Ct, m(t) = a1e

Ct, n′(s) = a2e
Cs (t ∈ ]a, b[ , s ∈ ]0, b− a[ ),

where C, a1 6= 0 and a2 6= 0 are constants (cf. e.g. [1, Sections 3.1.1 and 4.2.1]). Integrating
`′ and n′, and using (15), we get in the case C 6= 0

`(t) =
a1a2

C
eCt + a3, m(t) = a1e

Ct, n(s) =
a2

C
eCs − a2

C

9



with a constant a3, and in the case C = 0 we get

`(t) = a1a2t + a4, m(t) = a1, n(s) = a2s

with a constant a4. Taking (14) into consideration and defining

A =
C

a1a2

, B =
C

a2

, D =
Ca3

a1a2

, P =
1

a1a2

, Q =
1

a2

, R =
a4

a1a2

,

we get that the solutions of (11) are of the forms (12) and (13). The assumptions (A5)–
(A7) yield the restrictions on the constants in the theorem. In particular, in order that ψ
be negative, Aσ(C, D) < 0 and either P > 0, R ≤ −b or P < 0, R ≥ −a have to hold.

3 Solutions of equation (6)

Finally, we determine the solutions of our main equation (6).

(Throughout, A1, A2, A3, A,B,C,D, P,Q, R, C1, C3, C4 are constants).

Theorem 2. Let a < b be in [−∞,∞]. Assume that the functions F1, F2, F3, F4 solve
equation (6) and satisfy the properties (A1)–(A4). Then F3 is either constant or strictly
monotonic. The general solution of (6) under the above assumptions are:

I. If F3 is constant then

F1(t) = A1t + A2 (t ∈ ]a, b[ ), (17)

F3(t) = A3 (t ∈ ]a, b[ ), (18)

F4 is strictly monotonic (19)

F2(u) = −A1F
−1
4 (u− A3) (u ∈ I) (20)

with A1 < 0.

II. If F3 is strictly monotonic then either

F1(t) = − A

CD
ln |De−Ct + 1|+ C1 (t ∈ ]a, b[ ), (21)

F3(t) =
B

C
ln |D + eCt|+ C3 (t ∈ ]a, b[ ), (22)
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F4(s) = −B

C
ln |1− e−Cs|+ C4 (s ∈ ]0, b− a[ ), (23)

F2(u) =
A

CD
ln

(
1− σ(C,D) D sign C e−

C
B

(u−C3−C4)
)

(u ∈ I), (24)

with BCD 6= 0, (C,D) ∈ Π( ]a, b[ ) and Aσ(C, D) < 0; or

F1(t) = −A

C
e−Ct + C1 (t ∈]a, b[), (25)

F3(t) = Bt + C3 (t ∈]a, b[), (26)

F4(s) = −B

C
ln |1− e−Cs|+ C4 (s ∈ ]0, b− a[ ), (27)

F2(u) = − A

|C|e
−C

B
(u−C3−C4) (u ∈ I), (28)

with BC 6= 0, A < 0; or, if ]a, b[6= R,

F1(t) = P ln |t + R|+ C1 (t ∈ ]a, b[ ), (29)

F3(t) = Q ln |t + R|+ C3 (t ∈ ]a, b[ ), (30)

F4(s) = −Q ln s + C4 (s ∈ ]0, b− a[ ), (31)

F2(u) = −P ln
(
1− sign P e−

u−C3−C4
Q

)
(u ∈ I), (32)

with Q 6= 0 and either P > 0, R ≤ −b or P < 0, R ≥ −a.

PROOF.

Let a, b be given and suppose that F1, F2, F3 and F4 satisfy equation (6) and conditions
(A1)–(A4). According to Lemma 1, there exists a c ∈ [a, b] such that F3 is strictly mono-
tonic on [a, c[ and constant on ]c, b[ . The last statement in Theorem 1 implies (since, by
(10), c in (A6) and in Theorem 1 is identical with c in Lemma 1) that, under the assump-
tion that F3 is nonconstant, equation (6) has no solutions if c < b. Therefore, F3 is either
constant or strictly monotonic, thus, the first statement of our theorem is proved.

Substitution shows that the functions listed above fulfill (A1)–(A4) and (6).

Now we prove that (6) has no other solutions under these assumptions.
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In the case I, when F3 is constant, say F3 = A3, equation (6) reduces to the Pexider
equation

F1(t)− F1(t + s) = F2[A3 + F4(s)]. (33)

By (A4), F2 is positive valued and strictly monotonic. Therefore, F1 is strictly decreasing,
so equation (33) implies (17) F1(t) = A1t + A2 with A1 < 0 and F2[A3 + F4(s)] = A1s,
that is, (20). Therefore (19) is also valid.

In the following we consider the case II, where F3 is strictly monotonic. By Lemma 2,
the functions F1 and F3 are differentiable from the left on ]a, b[, F4 is differentiable on
]0, b − a[, the functions ψ, ϕ, χ introduced in (10) fulfill the properties (A5)–(A7) and
they satisfy (11). By Theorem 1 with (10), we have, for all t ∈ ]a, b[, s ∈ ]0, b− a[, either

F ′
1−(t) =

A

D + eCt
, F ′

3−(t) =
BeCt

D + eCt
, F ′

4(s) =
B

1− eCs
, (34)

where BC 6= 0, (C, D) ∈ Π(]a, b[), and Aσ(C,D) < 0; or, if ]a, b[6= R,

F ′
1−(t) =

P

t + R
, F ′

3−(t) =
Q

t + R
, F ′

4(s) = −Q

s
, (35)

where Q 6= 0 and either P > 0, R ≤ −b or P < 0, R ≥ −a. According to (S2) in Lemma
2, F1 is convex or concave and its one sided derivative F ′

1− is continuous by (34) and (35),
thus it is differentiable on ]a, b[ (cf. [5, Chapter VII, Theorem 4.2]).So, by (S6) and (9),
F3 is also differentiable on ]a, b[. Therefore F1, F3, F4 can be obtained by integrating the
corresponding functions in (34) and (35).

Integration in (34) gives (21), (22), (23) if D 6= 0, and (25), (26), (27) if D = 0.

Taking D 6= 0 and substituting F1, F3, F4 into (6), we get

A

CD
ln

∣∣∣∣∣
De−C(t+s) + 1

De−Ct + 1

∣∣∣∣∣ = F2

(
−B

C
ln

∣∣∣∣∣
1− e−Cs

D + eCt

∣∣∣∣∣ + C3 + C4

)
(36)

for all t ∈]a, b[, s ∈]0, b− t[. Observing

De−C(t+s) + 1

De−Ct + 1
= 1−D

1− e−Cs

D + eCt
,

De−C(t+s) + 1

De−Ct + 1
> 0,

∣∣∣∣∣
1− e−Cs

D + eCt

∣∣∣∣∣ = σ(C, D) sign C
1− e−Cs

D + eCt
(t ∈ ]a, b[ , s ∈ ]0, b− t[ ),

we see that equation (36) yields (24) for D 6= 0.
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If D = 0, equation (6) yields

−A

C

eCs − 1

eC(t+s)
= F2

(
−B

C
ln
|1− eCs|

eCt
+ C3 + C4

)
(t ∈ ]a, b[ , s ∈ ]0, b− t[ ). (37)

Since sign C = sign(eCs − 1), we can write (37) as

− A

|C|
|eCs − 1|
eC(t+s)

= F2

(
−B

C
ln
|1− eCs|

eCt
+ C3 + C4

)

which yields that F2 is of the form (28). The positivity of F2 gives A < 0.

Let us consider the functions in (35). By integration we get (29), (30) and (31). Substi-
tuting F1, F3 and F4 into (6), we obtain

P ln
|t + R|

|t + R + s| = P ln
|(t + R)/s|

|(t + R)/s) + 1| = F2

(
Q ln

∣∣∣∣
t + R

s

∣∣∣∣ + C3 + C4

)

for t ∈]a, b[, s ∈]0, b− t[. Since F ′
1− is everywhere negative, we have sign(t+R) = −signP

for all t ∈ ]a, b[. Thus

t + R

t + R + s
> 0 (t ∈]a, b[ , s ∈]0, b− t[),

and the absolute value signs can be omitted on the left hand side of the equation above.
Using these properties, a simple calculation gives (32).

4 Conclusion

In section 1, equations (3), we found H(w) = wρ (ρ > 0) to be one of the homeomorphisms
establishing the equivalence (2). We calculate now the other homeomorphism, G, first for
q ∈]0, k[, and then determine those which can be continuously extended to q ∈ [0, k[. By
(4),

G(q) = e−F1(ln q), µ(q) = eF3(ln q), λ(z) = e
1
ρ
F4(ln z), λ̃(v) = eF−1

2 (ln v). (38)

We assumed λ(1) = 0 and continued with z > 1. In order that λ, and also λ̃, be continuous
at 1 we need the limit condition limz→1+ λ(z) = limv→1+ λ̃(v) = 0.
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Let first µ and thus F3 be constant. If, as in (2), λ and λ̃ are strictly increasing and
continuous on [1,∞[ and λ(1) = λ̃(1) = 0, then F4 and F2 are continuous and strictly
increasing on ]0,∞[, so the assumptions in Theorem 2, yielding solution I, are satisfied.
Thus we have (17) F1(t) = A1t + A2 (A1 < 0). Therefore we get G(q) = γq1/β (β >
0, γ > 0). Furthermore, by (4) and by limz→1+ λ(z) = 0, we have lims→0+ F4(s) = −∞,
otherwise the continuous and strictly increasing F4 and λ are arbitrary. Also, by (20)
F2(u) = −A1F

−1
4 (u− A3), that is,

λ̃(v) = α λ(vβ)ρ (α > 0, β > 0, ρ > 0) (39)

which implies limv→1+ λ̃(v) = 0. This shows that the pair of homeomorphisms

G(q) = γq1/β , H(w) = wρ (β > 0, γ > 0, ρ > 0) (40)

gives an equivalent in the sense (2) to any representation of the form (1).

By Theorem 2 and (38) there exist additional pairs of equivalent representations (2) whose
connection differs from (39) or from (40). We identify the representations here by the
λ , λ̃ and the homeomorphisms G (always H(w) = wρ) that establish the equivalence
(α, β, γ, δ, ε, ε′ and ρ are positive constants, A,B, C, D, P,Q, R are as in Theorem 2, II).
They are the following, and only these:

λ(z) = δ|1− z−C |− B
ρC , λ̃(v) = ε|1− v

CD
A |−B

C , G(q) = γ|Dq−C + 1| A
CD , (41)

λ(z) = δ|1− z−C |− B
ρC , λ̃(v) = ε′(ln v)−

B
C , G(q) = αe

A
C

q−C

, (42)

λ(z) = δ(ln z)−
Q
ρ , λ̃(v) = ε|1− v−

1
P |−Q, G(q) = β| ln q + R|−P . (43)

The restrictions in Theorem 2 (case II) and ρ > 0 guarantee that G and H are strictly
increasing. By (38), (42), (41), and (43), the limit condition holds if, and only if, in
addition to ρ > 0 and to the restrictions in Theorem 2 II also Q < 0 in (43) and BC < 0
in (42) and in (41).

Notice that (39) also holds for the pair λ, λ̃ in (41) but G differs there from (40). In (42)
and (43), λ and λ̃ are not connected by (39). The pair in (43) is the mirror image of that
in (42) while G and H are replaced by their inverses.
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