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Dedicated to Pál Dömösi on his 65th birthday
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Abstract. Pumping lemmas are created to prove that given languages
are not belong to certain language classes. There are several known pump-
ing lemmas for the whole class and some special classes of the context-free
languages. In this paper we prove new, interesting pumping lemmas for
special linear and context-free language classes. Some of them can be used
to pump regular languages in two place simultaneously. Other lemma can
be used to pump context-free languages in arbitrary many places.

1 Introduction

The formal language theory and generative grammars form one of the basics
of the field of theoretical computer science [5, 9]. Pumping lemmas play im-
portant role in formal language theory [3, 4]. One can prove that a language
does not belong to a given language class. There are well-known pumping lem-
mas, for example, for regular and context-free languages. The first and most
basic pumping lemma is introduced by Bar-Hillel, Perles, and Shamir in 1961
for context-free languages [3]. Since that time many pumping lemmas are in-
troduced for various language classes. Some of them are easy to use/prove,
some of them are more complicated. Sometimes a new pumping lemma is in-
troduced to prove that a special language does not belong to a given language
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class. Several subclasses of context-free languages are known, such as deter-
ministic context-free and linear languages. The linear language class is strictly
between the regular and the context-free ones. In linear grammars only the fol-
lowing types of rules can be used: A → w, A → uBv (A,B are non-terminals,
w,u, v ∈ V∗). In the sixties, Amar and Putzolu defined and analysed a special
subclass of linear languages, the so-called even-linear ones, in which the rules
has a kind of symmetric shape [1] (in a rule of shape A → uBv, i.e., with
non-terminal at the right hand side, the length of u must equal to the length
of v). The even-linear languages are intensively studied, for instance, they play
special importance in learning theory [10]. In [2] Amar and Putzolu extended
the definition to any fix-rated linear languages. They defined the k-rated linear
grammars and languages, in which the ratio of the lengths of v and u equals
to a fixed non-negative rational number k for all rules of the grammar contain-
ing non-terminal in the right-hand-side. They used the term k-linear for the
grammar class and k-regular for the generated language class. In the literature
the k-linear grammars and languages are frequently used for the metalinear
grammars and languages [5], as they are extensions of the linear ones (having
at most k nonterminals in the sentential forms). Therefore, for clarity, we pre-
fer the term fix-rated (k-rated) linear for those restricted linear grammars and
languages that are introduced in [2]. The classes k-rated linear languages are
strictly between the linear and regular ones for any rational value of k. More-
over their union the set of all fixed-linear languages is also strictly included in
the class of linear languages. In special case k = 1 the even-linear grammars
and languages are obtained; while the case k = 0 corresponds to the regular
grammars and languages. The derivation-trees of the k-rated linear grammars
form pine tree shapes. In this paper we investigate pumping lemmas for these
languages also. These new pumping lemmas work for regular languages as well,
since every regular language is k-rated linear for every non-negative rational
k. In this way the words of a regular language can be pumped in two places
in a parallel way. There are also extensions of linear grammars. A context-free
grammar is said to be k-linear if it has the form of a linear grammar plus one
additional rule of the form S → S1S2 . . . Sk, where none of the symbols Si may
appear on the right-hand side of any other rule, and S may not appear in any
other rule at all. A language is said to be k-linear if it can be generated by a
k-linear grammar, and a language is said to be metalinear if it is k-linear for
some positive integer k. The metalinear language family is strictly between
the linear and context-free ones. In this paper we also introduce a pumping
lemma for not metalinear context-free languages, which can be used to prove
that the given language belongs to the class of the metalinear languages.



196 G. Horváth, B. Nagy

2 Preliminaries

In this section we give some basic concepts and fix our notation. Let N denote
the non-negative integers and Q denote the non-negative rationals through the
paper.

A grammar is an ordered quadruple G = (N,V, S,H), where N,V are the
non-terminal and terminal alphabets. S ∈ N is the initial letter. H is a finite
set of derivation rules. A rule is a pair written in the form v → w with
v ∈ (N ∪ V)∗N(N ∪ V)∗ and w ∈ (N ∪ V)∗.

Let G be a grammar and v,w ∈ (N∪V)∗. Then v ⇒ w is a direct derivation
if and only if there exist v1, v2, v

′, w ′ ∈ (N ∪ V)∗ such that v = v1v
′v2, w =

v1w
′v2 and v ′ → w ′ ∈ H. The transitive and reflexive closure of ⇒ is denoted

by ⇒∗.
The language generated by a grammar G is L(G) = {w|S ⇒∗ w∧w ∈ V∗}.

Two grammars are equivalent if they generate the same language modulo the
empty word (λ). (From now on we do not care whether λ ∈ L or not.)

Depending on the possible structures of the derivation rules we are interested
in the following classes [2, 5].
• type 1, or context-sensitive (CS) grammars: for every rule the next scheme
holds: uAv → uwv with A ∈ N and u, v,w ∈ (N ∪ V)∗, w 6= λ.
• type 2, or context-free (CF) grammars: for every rule the next scheme holds:
A → v with A ∈ N and v ∈ (N ∪ V)∗.
• linear (Lin) grammars: each rule is one of the next forms: A → v, A → vBw;
where A,B ∈ N and v,w ∈ V∗.
• k-linear (k-Lin) grammars: it is a linear grammar plus one additional rule
of the form S → S1S2 . . . Sk, where S1, S2, . . . , Sk ∈ N, and none of the Si may
appear on the right-hand side of any other rule, and S may not appear in any
other rule at all.
• metalinear (Meta) grammars: A grammar is said to be metalinear if it is
k-linear for some positive integer k.
• k-rated linear (k-rLin) grammars: it is a linear grammar with the following
property: there exists a rational number k such that for each rule of the form:
A → vBw: |w|

|v| = k (where |v| denotes the length of v).
Specially with k = 1:
• even-linear (1-rLin) grammars.

Specially with k = 0:
• type 3, or regular (Reg) grammars: each derivation rule is one of the following
forms: A → w, A → wB; where A,B ∈ N and w ∈ V∗.

The language family regular/linear etc. contains all languages that can be
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Figure 1: The hierarchy of some context-free language classes

generated by regular/linear etc. grammars. We call a language L fix-rated
linear if there is a k ∈ Q such that L is k-rated linear. So the class of fix-rated
linear languages includes all the k-rated linear language families. Moreover it
is known by [2], that for any value of k ∈ Q all regular languages are k-rated
linear.

The hierarchy of the considered language classes can be seen in Fig. 4.
Further, when we consider a special fixed value of k, then we will also use it
as k = g

h , where g, h ∈ N (h 6= 0) are relatively primes.
Now we present normal forms for the rules of linear, k-rated linear and so,

even-linear and regular grammars.
The following fact is well-known: Every linear grammar has an equivalent

grammar in which all rules are in forms of A → aB,A → Ba,A → a with
a ∈ V,A, B ∈ N.

Lemma 1 (Normal form for k-rated linear grammars) Every k-rated
(k = g

h) linear grammar has an equivalent one in which for every rule of
the form A → vBw: |w| = g and |v| = h such that g and h are relatively
primes and for all rules of the form A → u with u ∈ V∗: |u| < g+ h holds.

Proof. It goes in the standard way: longer rules can be simulated by shorter
ones by the help of newly introduced nonterminals. �

As special cases of the previous lemma we have:

Remark 2 Every even-linear grammar has an equivalent grammar in which
all rules are in forms A → aBb,A → a, A → λ (A,B ∈ N,a, b ∈ V).

Remark 3 Every regular language can be generated by grammar having only
rules of types A → aB,A → λ (A,B ∈ N,a ∈ V).
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Derivation trees are widely used graphical representations of derivations in
context-free grammars. The root of the tree is a node labelled by the initial
symbol S. The terminal labelled nodes are leaves of the tree. The nonterminals,
as the derivation continues from them, have some children nodes. Since there
is a grammar in Chomsky normal form for every context-free grammar, every
word of a context-free language can be generated such that its derivation tree
is a binary tree.

In linear case, there is at most one non-terminal in every level of the tree.
Therefore the derivation can go only in a linear (sequential) manner. There is
only one main branch of the derivation (tree); all the other branches terminate
immediately. Observing the derivations and derivation trees for linear gram-
mars, they seem to be highly related to the regular case. The linear (and so,
specially, the even-linear and fixed linear) languages can be accepted by finite
state machines [1, 7, 8]. Moreover the k-rated linear languages are accepted
by deterministic machines [8].

By an analysis of the possible trees and iterations of nonterminals in a
derivation (tree) one can obtain pumping (or iteration) lemmas.

Further in this section we recall some well-known iteration lemmas.
The most famous iteration lemma works for every context-free languages [3].

Lemma 4 (Bar-Hillel lemma) Let a context-free language L be given. Then
there exists an integer n ∈ N such that any word p ∈ L with |p| ≥ n, admits a
factorization p = uvwxy satisfying

1. uviwxiy ∈ L for all i ∈ N
2. |vx| > 0

3. |vwx| ≤ n.

Example 5 Let L = {aibici | i ∈ N}. It is easy to show with the Bar-Hillel
lemma that the language L is not context-free.

The next lemma works for linear languages [5].

Lemma 6 (Pumping lemma for linear languages) Let L be a linear lan-
guage. Then there exists an integer n such that any word p ∈ L with |p| ≥ n,
admits a factorization p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. |vx| > 0

3. |uvxy| ≤ n.

Example 7 It is easy to show by using Lemma 6 that the language
L = {aibicjdj|i, j ∈ N} is not linear.



Pumping lemmas for linear and nonlinear languages 199

In [6] there is a pumping lemma for non-linear context-free languages that
can also be effectively used for some languages.

Lemma 8 (Pumping lemma for non-linear context-free languages) Let
L be a non-linear context-free language. Then there exist infinite many words
p ∈ L which admit a factorization p = rstuvwxyz satisfying

1. rsituivwjxyjz ∈ L for all integer i, j ≥ 0
2. |su| 6= 0

3. |wy| 6= 0.

Example 9 Let
H ⊆ {12, 22, 32, . . .}

be an infinite set, and let

LH = {akbkalbl} | k, l ≥ 1; k ∈ H or l ∈ H} ∪ {ambm | m ≥ 1}.

The language LH satisfies the Bar-Hillel condition. Therefore we can not
apply the Bar-Hillel Lemma to show that LH is not context-free. However the
LH language does not satisfy the condition of the pumping lemma for linear
languages. Thus LH is not linear. At this point we can apply Lemma 8, and the
language LH does not satisfy its condition. This means LH is not context-free.

Now we recall the well-known iteration lemma for regular case (see, for
instance, [5]).

Lemma 10 (Pumping lemma for regular languages) Let L be a regular
language. Then there exists an integer n such that any word p ∈ L with |p| ≥ n,
admits a factorization p = uvw satisfying

1. uviw ∈ L for all integer i ∈ N
2. |v| > 0

3. |uv| ≤ n.

Example 11 By the previous lemma one can easily show that the language
{anbn|n ∈ N} is not regular.

Pumping lemmas are strongly connected to derivation trees, therefore they
works for context-free languages (and for some special subclasses of the context-
free languages).

In the next section we present pumping lemmas for the k-rated linear lan-
guages and for the not metalinear context-free languages.
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3 Main results

Let us consider a k-rated linear grammar. Based on the normal form (Lemma
1) every word of a k = g

h -rated linear language can be generated by a ‘pine-
tree’ shape derivation tree (see Fig. 2).
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Figure 2: A ‘pine-tree’ shape derivation tree in a fix-rated linear grammar

Now we are ready to present our pumping lemmas for these languages.

Theorem 12 Let L be a (g
h = k)-rated linear language. Then there exists

an integer n such that any word p ∈ L with |p| ≥ n, admits a factorization
p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. 0 < |u|, |v| ≤ n h

g+h

3. 0 < |x|, |y| ≤ n g
g+h

4. |x|
|v| =

|y|
|u| = g

h = k.

Proof. Let G = (N,V, S,H) be a k-rated linear grammar in normal form that
generates the language L. Then let n = (|N|+1) · (g+h). In this way any word
p with length at least n cannot be generated without any repetition of a non-
terminal in the sentential form. Moreover, by the pigeonhole principle, there
is a nonterminal in the derivation which occurs in the sentential forms during
the first |N| steps of the derivation and after the first occurrence it occurs also
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Figure 3: Pumping the subwords between the two occurrences of the non-
terminal A.

in the next |N| sentential forms. Considering the first two occurrences of this
nonterminal A in the derivation tree, the word p can be partitioned to five
parts in the following way. Let u and y be the prefix and suffix (respectively)
generated by the first steps till the first occurrence of A. Let v and x be the
subwords that are generated from the first occurrence of A till it appears sec-
ondly in the sentential form. Finally let w be the subword that is generated
from the second occurrence of A in the derivation. (See also Fig. 3.) In this
way the conditions 2, 3 and 4 of the theorem are fulfilled for the lengths of
the partitions. Now let us consider the derivation steps between the first two
occurrences of A. They can be omitted from the derivation; in this way the
word uwy is obtained. This sequence of steps can also be repeated any time,
in this way the words of the form uviwxiy are obtained for any i ∈ N. Thus
the theorem is proved. �

Theorem 13 Let L be a (g
h = k)-rated linear language. Then there exists

an integer n such that any word p ∈ L with |p| ≥ n, admits a factorization
p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. 0 < |v| ≤ n h

g+h

3. 0 < |x| ≤ n g
g+h

4. 0 < |w| ≤ n
5. |x|

|v| =
|y|
|u| = g

h = k.

Proof. Let G = (N,V, S,H) be a k-rated linear grammar in normal form that
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generates the language L. Then let n = (|N| + 1) · (g + h). In this way any
word p with length at least n cannot be generated without any repetition of
a nonterminal in the sentential form. Moreover there is a nonterminal A in
the derivation which occurs twice among the non-terminals of the last |N+ 1|

sentential forms of the derivation. Considering these last two occurrences of
A in the derivation tree the word p can be partitioned to five parts in the
following way. Let u and y be the prefix and suffix (respectively) generated
from the first steps till that occurrence of A which is the last but one during
the derivation. Let v and x be the subwords that are generated by the steps
between the last two occurrences of A. Finally let w be the subword that is
generated from the last occurrence of A in the derivation. In this way the
conditions 2, 3, 4 and 5 are fulfilled for the lengths of the partitions. Now let
us consider the derivation steps between the these two occurrences of A. They
can be omitted from the derivation; in this way the word uwy is obtained.
This sequence of steps can also be repeated any time, in this way the words of
the form uviwxiy are obtained for any i ∈ N. Thus the theorem is proved. �

Remark 14 In case of k = 0 the previous theorems give the well-known pump-
ing lemmas for regular languages.

Now we are presenting an iteration lemma for another special subclass of
the context-free language family.

Theorem 15 Let L be a context-free language which does not belong to any
k-linear language for a given positive integer k. Then there exist infinite many
words w ∈ L which admit a factorization w = uv0w0x0y0 . . . vkwkxkyk satis-
fying

1. uvi0
0 w0x

i0
0 y0 . . . v

ik
k wkx

ik
k yk ∈ L for all integer i0, . . . , ik ≥ 0

2. |vjxj| 6= 0 for all 0 ≤ j ≤ k.

Proof. Let G = (N,V, S,H) be a context-free grammar such that L(G) = L,
and let GA = (N,V,A,H) for all A ∈ N. Because L is not k-linear, there exists
A0, . . . , Ak ∈ VN and α,β0, . . . , βk ∈ V∗ such that S ⇒∗ αA0β0 . . . Akβk,
where all of the languages L(GAl

), 0 ≤ l ≤ k are infinite. Then the words
{α}L(GA0

){β0} . . . L(GAk
){βk} ⊆ L, and applying the Bar-Hillel Lemma for

all L(GAl
) we receive αa0b

i0
0 c0d

i0
0 e0β0 . . . akb

ik
k ckd

ik
k ekβk ⊆ L for all i0 ≥

0, . . . , ik ≥ 0. Let u = αa0, vl = bl, wl = cl, xl = dl, yl = elβl, and we have
the above form. �
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Remark 16 With k = 1 we have a pumping lemma for non-linear context-free
languages.

Knowing that every k-linear language is metalinear for any k ∈ N, we have:

Proposition 17 Let L be a not metalinear context-free language. For all in-
tegers k ≥ 1 there exist infinite many words w ∈ L which admit a factorization
w = uv0w0x0y0 . . . vkwkxkyk satisfying

1. uvi0
0 w0x

i0
0 y0 . . . v

ik
k wkx

ik
k yk ∈ L for all integer i0, . . . , ik ≥ 0

2. |vjxj| 6= 0 for all 0 ≤ j ≤ k.

4 Applications of the new iteration lemmas

As pumping lemmas are usually used to show that a language does not belong
to a language class, we present an example for this type of application.

Example 18 The DYCK language (the language of correct bracket expres-
sions) is not k-linear for any value of k over the alphabet {(, )}. Let k 6= 1 be
fixed as g

h . Let us consider the word of the form ((g+h)(n+2))(g+h)(n+2). Then
Theorem 12 does not work (if k 6= 1), the pumping deletes or introduces dif-
ferent number of (’s and )’s. To show that the DYCK language is not 1-rated
(i.e., even-)linear let us consider the word (2n)2n(2n)2n. Using Theorem 13 the
number of inner brackets can be pumped. In this way such words are obtained
in which there are prefixes with more letters ) than (. Since these words do not
belong to the language, this language is not k-linear.

In the previous example we showed that the DYCK language is not fixed
linear.

In the next example we consider a deterministic linear language.

Example 19 Let L = {ambm|m ∈ N} ∪ {amcb2m|m ∈ N} over the alphabet
{a, b, c}. Let us assume that the language is fixed linear. First we show that this
language is not fixed linear with ratio other than 1. On the contrary, assume
that it is, with k = g

h ∈ Q such that k 6= 1. Let n be given by Theorem 12.
Then consider the words of the form am(g+h)bm(g+h) with m > n. By the
theorem any of them can be factorized to uvwxy such that |uv| ≤ 2nh

g+h . Since
g + h > 2 (remember that g, h ∈ N, relatively primes and g 6= h), |uv| < nh,
and therefore both u and v contains only a’s. By a similar argument on the
length of xy, x and y contains only b’s. Since the ratio |x|

|v| (it is fixed by the
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theorem) is not 1, by pumping we get words outside of the language. Now we
show that this language is not even-linear. Assume that it is 1-rated linear
(g = h = 1). Let n be the value from Theorem 12. Let us consider the words of
shape amcb2m with m > n. Now we can factorize these words in a way, that
|uv| ≤ n and |xy| ≤ n and |v| = |x|. By pumping we get words am+jcb2m+j

with some positive values of j, but they are not in L. We have a contradiction
again. So this language is not fixed linear.

In the next example we show a fixed-linear language that can be pumped.

Example 20 Let L be the language of palindromes, i.e., of the words over
{a, b} that are the same in reverse order (p = pR). We show that our pumping
lemmas work for this language with the value k = 1. Let p ∈ L, then p =

uvwxy according to Theorem 12 or Theorem 13, such that |u| = |y| and |v| =

|x|. Therefore, by applying the main property of the palindromes, we have u =

yR, v = xR and w = wR. By i = 0 the word uwy is obtained which is in L
according to the previous equalities. By further pumping the words uviwxiy

are obtained, they are also palindromes. To show that this language cannot
be pumped with any other values, let us consider words of shape ambam. By
Theorem 12 it can be shown in analogous way that we showed in Example 19
that enough long words cannot be pumped with ratio k 6= 1.

Besides our theorems work for regular languages with k = 0 there is a non-
standard application of them. As we already mentioned, all regular languages
are k-rated linear for any values of k ∈ Q. Therefore every new pumping
lemma works for any regular language with any values of k. Now we show
some examples.

Example 21 Let the regular language (ab)∗aa(bbb)∗a be given. Then we
show, that our theorems work for, let us say, k = 1

2 . Every word of the lan-
guage is of the form (ab)naa(bbb)ma (with n,m ∈ N). For words that are
long enough either n or m (or both of them) are sufficiently large. Now we
detail effective factorizations p = uvwxy of the possible cases. We give only
those words of the factorization that have maximized lengths due to the ap-
plied theorem, the other words can easily be found by the factorization and,
at Theorem 13, by taking into account the fixed ratio of some lengths in the
factorization.

• Theorem 12 for k = 1
2 :

if n > 3 and m > 0 : let u = ab, v = ababab, x = bbb, y = a,
if m = 0 : let u = ababab, v = abab, x = ab, y = aaa,
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if n = 3 : let u = abababaa, v = bb, x = b, y = bbba,
if n = 2 : let u = ababaa, v = bb, x = b, y = bba,
if n = 1 : let u = abaa, v = bb, x = b, y = ba,
if n = 0 : let u = aa, v = bb, x = b, y = a.

• Theorem 13 for k = 1
2 :

if n ≤ 3m− 4 : let v = bb, w = b x = b,
if n = 3m− 3 : let v = ababab, w = aabbbb x = bbb,
if n = 3m− 2 : let v = ababab, w = abaabbbb x = bbb,
if n = 3m− 1 : let v = ababab, w = ababaabbbb x = bbb,
if n = 3m : let v = ababab, w = aab x = bbb,
if n = 3m+ 1 : let v = ababab, w = abaab, x = bbb,
if n = 3m+ 2 : let v = ababab, w = ababaab, x = bbb,
if n = 3m+ 3 : let v = ababab, w = abababaab, x = bbb,
if n = 3m+ 4 : let v = ababab, w = ababababaab, x = bbb,
if n = 3m+ 5 : let v = ababab, w = abababababaab, x = bbb,
if n ≥ 3m+ 6, n ≡ 0(mod3) : let v = abab, w = λ, x = ab,
if n ≥ 3m+ 7, n ≡ 1(mod3) : let v = abab, w = ab, x = ab,
if n ≥ 3m+ 8, n ≡ 2(mod3) : let v = abab, w = abab, x = ab.

In similar way it can be shown that pumping the words of a regular language
in two places simultaneously with other values of k (for instance, 1, 5, 7

3 etc.)
works.

In the next example we show that there are languages that can be pumped
by the usual pumping lemmas for regular languages, but they cannot be regular
since we prove that there is a value of k such that one of our theorems does
not work.

Example 22 Let L = {arbaqbm|r, q,m ≥ 2, ∃j ∈ N : q = j2}. By the usual
pumping lemmas for regular languages, i.e., by fixing k as 0, one cannot infer
that this language is not regular. By k = 0, x = y = λ and so p = uvw. Due
to the a’s in the beginning, Theorem 12 works: u = a, v = a; and due to the
b’s in the end Theorem 13 also works: v = b,w = b.
Now we show that L is not even-linear. Contrary, let us assume that Theorem
13 works for k = 1. Let n be the value for this language according to the
theorem. Let p = a2ba(2n+5)2

b3. By the conditions of the theorem, it can be
factorized to uvwxy such that |v|, |w|, |x| ≤ n and |u| = |y|. In this way vwx
must be a subword of a(2n+5)2

, and so, the pumping decreases/increases only
q. Since |v|, |x| ≤ n in the first round of pumping p ′ = a2ba(2n+5)2+|vx|b3 is
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obtained. But (2n + 5)2 < (2n + 5)2 + |vx| ≤ (2n + 5)2 + 2n < (2n + 6)2,
therefore p ′ 6∈ L.
Thus L is not even-linear, and therefore it cannot be regular. Our pumping
lemma was effective to show this fact.

Usually pumping lemmas can be used only to show that some languages
do not belong to the given class of languages. One may ask what we can say
if a language satisfy our theorems. Now we present an example which shows
that we cannot infer about the language class if a language satisfies our new
pumping lemmas.

Example 23 Let L = {0j1m0r1i0l1i0r1m0j|j,m, i, l, r ≥ 1, r is prime}. One
can easily show that this language satisfies both Theorem 12 and Theorem 13
with k = 1: one can find subwords to pump in the part of outer 0’s or 1’s
(pumping their number form a given j or m to arbitrary high values), or in
the middle part 0’s or 1’s (pumping their number from i or l to arbitrary
high values), respectively. But this language is not even context-free, since
intersected by the regular language 010∗1010∗10 a non semi-linear language
is obtained. Since context-free languages are semi-linear (due to the Parikh
theorem) and the class of context-free languages are closed under intersection
with regular languages, we just proved that L cannot be linear or fix-rated linear.

It is a more interesting question what we can say about a language for
which there are values k1 6= k2 such that all its enough long words can be
pumped both as k1-rated and k2-rated linear language. We have the following
conjecture.

Conjecture 24 If a language L satisfies any of our pumping lemmas for two
different values of k, then L is regular.

If the previous conjecture is true, then exactly the regular languages form the
intersection of the k-rated linear language families (for k ∈ Q).

Regarding iteration lemma for the not metalinear case, we show two exam-
ples.

Example 25 This is a very simple example, we can use our lemma to show
that the language

L1 = {alblambmanbn | l,m,n ≥ 0}

is metalinear.
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First of all, it is easy to show that L1 is context-free. The language L1 does
not satisfy the condition of the pumping lemma for not metalinear context-free
languages, (Proposition 17,) so L1 must be a metalinear context-free language.

In our next example we show a more complicated language which satisfies
the Bar-Hillel condition, and we use our pumping lemma to show that the
language is not context-free.

Example 26 Let
H ⊆ {2k | k ∈ N}

be an infinite set, and let

L2 = {alblambmanbn | l,m, n ≥ 1; l ∈ H or m ∈ H or n ∈ H}∪

∪{aibiajbj | i, j ≥ 1}.

L2 satisfies the Bar-Hillel condition. Therefore we can not apply the Bar-
Hillel Lemma to show that L2 is not context-free. However it is easy to show
that L2 is not 3-linear language. Now we can apply Theorem 15, and the lan-
guage L2 does not satisfy its condition with k = 3. This means L2 does not
belong to the not 3-linear context-free languages, so the language L2 is not
context-free.

5 Conclusions

In this paper some new pumping lemmas are proved for special context-free
and linear languages. In fix-rated linear languages the lengths of the pumped
subwords of a word depend on each other, therefore these pumping lemmas
are more restricted than the ones working on every linear or every context-free
languages. Since all regular languages are k-rated linear for any non-negative
rational value of k, these lemmas also work for regular languages. The question
whether only regular languages satisfy our pumping lemmas at least for two
different values of k (or for all values of k) is remained open as a conjecture. We
also investigated a special subclass of context-free language family and intro-
duced iteration conditions which is satisfied only not metalinear context-free
languages. These conditions can be used in two different ways. First they can
be used to proove that a language is not context-free. On the other hand, we
can also use them to show that the given language is belong to the metalinear
language family.
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Figure 4: The target language classes of the new iteration lemmas
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