
Developing the algorithmic skills through word processing and
handling spreadsheets

CSERNOCH Mária1, BUJDOSÓ Gyöngyi2

1Department of Information Technology and 2Department of Computer and Library Information Science
University of Debrecen, Faculty of Science and Technology

Egyetem tér 1., 4010 Debrecen, Hungary,
E-Mail:csernoch.maria@inf.unideb.hu, bujdoso.gyongyi@inf.unideb.hu

Abstract – Compared to the high number of computer
users the proportion of those students who are willing
to write programs has dropped seriously. Even those
whose curriculum includes programming usually start
late and the chance to change their attitude towards
programming lessens as they are getting older. A
possible solution would be to sneak programming into
the primary and secondary education by hiding it
behind the scenes of software they use. Students are
usually proud of their knowledge of word processing
and handling spreadsheets and they think these
programs are easy to use. We can thus use these
programs to teach algorithms instead of using
traditional environments. In this article, through the
analysis of a problem, we give examples how we can
switch from programming languages to applications
and still teach some basic algorithmic skills.

Keywords: teaching programming, forming algorithms,
spreadsheets, applications.

I. INTRODUCTION

We all experience that with the increasing number of
computers the proportion of those who use programming
languages as compared to those who are using
application software has dropped seriously. It has
become a challenging task to convince average students
that they should learn programming. In this novel
environment it is the teachers’ responsibility to bring
back programming and more importantly developing
algorithmic skills in Informatics classes [2]. A well-
chosen task by itself can be a good starting point, but
beyond the task, the different methods, which can be
used to solve the problem, would have more influence
on the students.

When teaching programming we solve a problem in
several different ways and discuss the advantages and
disadvantages of each solution found. The same can be
done to tasks which are wrapped in word processing or
handling spreadsheets. Students believe that they are
creating a text, a table, and nothing else, but there is a lot
more behind the scenes.

Here, we present a task from one of the Competitions
of Applied Informatics of Hungary [1, 3], and through
this task a couple of different possibilities to solve it. To

break the task into meaningful smaller parts gives
opportunities to get acquainted with basic programming
algorithms.

In this project Microsoft Word and Excel are used to
carry out this selected task, but other software such as
Open Office, would be equally acceptable.

II. RESULTS

The task we will use to demonstrate how word

processors and spreadsheets can be used for teaching
algorithmic thinking is presented in Fig. 1.

A. Converting text from a web page into a spreadsheet

A B

Fig. 1. The first task to be solved. A table of three columns
should be created with a spreadsheet, as drawn in B, enlarged
in Fig. 3, from the left column of the given web page (A,
enlarged in Fig. 2). Th first column of the web page consists of
three data: the name of a county, the number of castles in this
county, and the number of castles with ground-plan (in this
order). These data should be converted into the first three
columns of the spreadsheet.

Being familiar with the content of the first column of
the web page might help the conversion process. To take
a closer look at these data we can open the file in a
browser (Fig. 1A), in MS Word (Fig. 5), in Excel (data
not shown), or the source of the web page in a text editor
(Fig. 4). Opening the source or the file in a word
processor or a text editor reveals that the text is loaded
with both normal and Non-breaking Spaces in arbitrary
order and places (Fig. 4 and 5). These Space characters
should be regularized to be able to convert the text into
the desired three columns of a spreadsheet.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160927988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. The original web page, whose first colum (peach
background on the left) should be converted into a spreadsheet.

Fig. 3. A table with three columns should be generated from
the data of the first column in Fig. 2.

Fig. 4. The source of the web page presented in Fig. 2 when opened in a text editor. The text is loaded with normal and Non-
breaking Spaces. Arrow points to the extra Non-breaking Space following county Bosznia, inclosed in the Anchor tag (<A>
).

Fig. 5. The printing and non-printign characters (Spaces, Non-
breaking Spaces, Manual Line Breaks) of the first column of
the web page presented in Fig. 2 when opened in MS Word.
Arrow points to the extra Non-breaking Space following
county Bosznia.

A.1. Solving the task in Excel

We can directly open the web page in Excel. If we
do this, we first have to delete the unnecessary rows
above the name of the counties and the unnecessary
columns right of them. Doing this gives us a single
column with three data in each cell. If we save the file as
a text file and then reopen it in Excel while using Space
as separator character we generate a three-columned
structure.

At first sight the conversion worked. In the first
column we have the name of the counties in capital
letters, in the second the number the castles, and finally,
the number of the ground-plans as negative numbers,
due to the parentheses around these numbers on the web
page. However, the conversion does not work
completely in the third column in the row of
‘BOSZNIA’, where the number remains in the original
format, with the parenthesis. This is due to the extra
Non-breaking Space following the closing parenthesis

(Fig. 4, 5), which turns the negative value into a string.
To correct this problem the extra Non-breaking Space
should be deleted.

Now we have to set up the algorithm to bring the
three columns into the correct format (Fig. 3).

1) Compute the absolute value of column C.
2) Delete the leading Spaces of column A.
3) Delete the follow up Spaces of column A.
4) Change the case of column A to Title case.
5) Delete the substitute columns from the table.

The solutions for these steps are detailed below.

A.1.1. Computing the absolute value of column C

After we have negative numbers in each row, the
absolute value of the numbers of column C should be
calculated and put into column D.

D2: =ABS(C2)

A.1.2. Deleting the leading Spaces of column A

To delete the leading Space from each cell, we have
to crop the string from the right of the cell to characters
numbering length − 1.

E2: =RIGHT(A2,LEN(A2)-1)

A.1.3. Deleting the follow up Spaces of column A

In the next step we have to crop the string of column
E to the meaningful part by deleting the Spaces, if there
is any, from the end of the cell. To do this, first we have
to find out if there is any extra Space or not. If the cell is
burdened with Space(s) we have to find the position of
the first Space.

Both questions can be answered with the SEARCH()
function. If we have extra Space(s) the function returns
the position of the first Space. If there is no such Space,
the function comes back with a #VALUE!. To handle both
cases an enclosing IF() is needed. If SEARCH() returns
with an error the whole content of cell E2 should be
copied to F2. If SEARCH() returns with an integer the text
should be truncated with the LEFT() function until the
position found.

F2: =IF(ISERROR(SEARCH(" ",E2)),

E2,LEFT(E2,SEARCH(" ",E2)-1))

There is however one more detail which should be
taken care of, namely, the first actual parameter of
function SEARCH(). Since the extra characters are Non-
breaking Spaces the first parameter of the function must
be a Non-breaking Space, which should be copied into
the function from column A. Note, that we can check the
result by copying the values of column F to G by Paste
Special.

A.1.4. Changing the case of column A to Title case

The last step of this process is to change the case of
the names of the counties from Capital to Title case.
Here, again, an Excel function, PROPER(), can be used to
finish the conversion into column H. Both F and G can be
used as the actual parameter of PROPER.

H2: =PROPER(F2)

A.1.5. Deleting the substitute columns from the table

Finally, the substitute columns should be deleted and
the three columns should be ordered according to the
sample (Fig. 3). Be aware that a simple deleting does not
work. If a column which is referred to is deleted the
function looses its source and consequently its values.
Copying the values with Paste Special (see in Chapter
A.1.3) solves the problem.

To complete this assignment was like writing a
program. First, we had to find the algorithm, then the
functions which are available in this environment to
fulfill the task, call these functions with the actual
parameter(s), and finally create embedded functions if it
was necessary. Students not necessarily realize that they
are programming, because the surface of Excel does not
offer the familiar programming environment.
Nevertheless, they do. We believe, if they move more
freely in the Excel environment, let them do so. It is the
teachers’ responsibility to guide them from behind the
scenes towards programming and forming algorithms.

A.2. Solving the task by opening the file in a browser

or in Word

Other different algorithms can be assigned to this
task if we complete it using a word processor such as
MS Word. In this case we should convert the first
column of the web page (Fig. 2) to a table with three
columns in the word processor through a sequence of
Replace commands.

Actually, we give two methods, which means two
independent algorithms. To unify the two different kinds
of Spaces in the first algorithm they are converted into
Non-breaking Spaces, while in the second they are
converted into normal Spaces.

If we open the web page in either a browser or in a
word processor we can copy the column in question into
a new Word document. The difference between the two
algorithms lies in the type of Paste we use. By using the
normal Paste command both the normal and the Non-
breaking Spaces are inherited together with the line
closing Manual Line Break (Shift+Enter) characters and
the hyperlinks. By using the Paste Special command
and selecting Unformatted Unicode Text from the list
of Paste Special dialog box we come to a text with
normal Spaces only, with line-closing End of paragraph
(Enter) characters.

A.3. First algorithm, using normal Paste command

The text is opened in a browser or in Word and the
text in question is copied to a new document using
normal Paste. In this new document first the normal
Spaces should be converted to Non-breaking Spaces to
unify them. The two fields of the Replace command
should be filled in as follows.

Find what: Space
Replace with: ^s
Both Find what and Replace with fields can be

filled in by typing the codes of the corresponding non-
printing characters or selecting them from the list
offered by More/Special. If the two fields are filled in
we can choose Replace All to complete the replacement
in one step.
Change the Manual Line Break characters to Paragraph
Mark characters.

Find what: ^l
Replace with: ^p

Change the ‘Non-breaking Space–Enter’ combinations
to Enter.

Find what: ^s^p
Replace with: ^p

Change the multiple Non-breaking Spaces to single
Non-breaking Spaces. Repeat the Replace all command
until the number of replacements is down to zero.

Find what: ^s^s
Replace with: ^s

Delete the opening parenthesis.
Find what: (
Replace with:

Delete the closing parenthesis.
Find what:)
Replace with:

Change the Non-breaking Spaces to Tabulator
characters

Find what: ^s
Replace with: ^t
With this final replacement, we have a table of four

columns. The unnecessary leading column can easily be
deleted in Excel. Finally, we have to change the case of
the names of the counties to Title case.

Now we have at least two choices to import the file
into Excel. We can copy the table to Excel with Paste
Special to get rid of the hyperlinks, or we can save it as
a text file and open it in Excel.

A.4. Second algorithm, using Paste Special command

Paste Special is like a stepchild. It does not matter
how good it is only a small proportion of users prefer it
against normal Paste. In the following solution we
present how much easier it is to solve this problem with
Paste Special than with normal Paste.

Copying the text of the web page with the Paste
Special command into a new document results in a text

which carries only normal Space characters, Enters at
the end of the lines without hyperlinks.

Similarly to the previous algorithm (A.4) a sequence
of replacements should be carried out.

Change the multiple Spaces to single Spaces. Repeat
the Replace all command until the number of
replacements is down to zero.

Find what: SpaceSpace
Replace with: Space

Change the ‘Space–Enter’ combinations to Enter.
Find what: Space^p
Replace with: ^p

Change the Spaces to tabulators
Find what: Space
Replace with: ^t

Delete the opening parenthesis.
Find what: (
Replace with:

Delete the closing parenthesis.
Find what:)
Replace with:
After creating the four-columned table we have to

change the case of the characters and then copy the text
into Excel with Paste, with Paste Special, or we can
save it as a text file for further use.

Either of the detailed methods is good for guiding
the students to find the algorithms for the correct order
of the replacements. The students should find out which
steps had to be completed previous to the another. If
they are able to see clearly that only one Space character
should be left between the two columns and this
replacement should be prior to the ‘Space–Tab’
replacement then they get the hint of how to form an
algorithm.

B. Condition based coloring of a spreadsheet

B.1. The algorithm of the problem

The tool in Excel to complete the assignment is
Conditional Formatting. However, previous to
Conditional Formatting we have to create a column with
substitute values which indicates when a change in the
first character of the names occurs.

1) Set an initial value for the first cell of the
substitute column.

2) Cut the first character of the name.
3) Create a condition to distinguish the first

characters.
4) Handle the case when there is no change in the

first characters.
5) Handle the case when there is a change in the

first character.
6) Set conditional formatting.

Two opportunities are available. We can either use

any two distinguishable characters (two letters of the
alphabet, two words longer than one character, two

number, etc.), or the two Boolean values for the
substitute values.

Fig. 6. The second task to be solved. The names of the counties
are in alphabetical order in column A. The background color of
the cells should alternate between yellow and blue depending
on the first character of the name, that is the background color
of the cells with names starting with the same character should
be colored with the same color. Note that the letters A and Á
are different in the Hungarian alphabet.

B.2. First algorithm using two characters as

substitute values

Let us start with the longer but simpler method. For a
beginner the method where two easily distinguishable
values alternate is easier to follow. To distinguish the
two states we use the one-character-long strings “Y” (for
yellow) and “B” (for blue, Fig. 7).

In the steps detailed below the embedded functions
are built up from the most enclosed towards outward,
following Steps 1–5 of B.1.

B.2.1. Setting an initial value for the first cell

To start the process the first substitute cell (D2)
should be set to either “Y” or “B”. We start with “Y”.

B.2.2. Cutting the first character of the name

In the following cells, starting with D3, we have to
compare the first character of cell A2 to the first
character of cell A3. The first character of a string can be
excised with the function LEFT(). Since only the first
character is needed, the second parameter of function
LEFT() can be omitted.

D2: =LEFT(A2)

B.2.3. Creating a condition to separate the first
characters

The comparison can be carried out with function IF().

In the condition of IF() the results of the two LEFT()
functions are compared.

D3: =IF(LEFT(A2)=LEFT(A3),,)

B.2.4. Handling the case when there is no change in

the first characters

If the two characters are identical then the character
in D2 should go into D3.

D3: =IF(LEFT(A2)=LEFT(A3),D2,)

Fig. 7. Substitute values in column D when characters are used.

B.2.5. Handling the case when there is change in the

first characters

If the two characters are different we have to check
the content of D2. If it was a “Y” we have to set D3 to
“B”, otherwise to “Y”.

D3: =IF(LEFT(A2)=LEFT(A3),D2,IF(D2="Y","B","Y"))

B.2.6. Setting conditional formatting

To color the cells we have to add the conditions to
the panels of Conditional Formatting (Fig. 8).

Fig. 8. The filled in panels of Conditional Formatting when
‘Y’ and ‘B’ characters are used as substitute values.

B.3. Second algorithm using two Boolean values for

the substitute values

If we use “TRUE” or “FALSE” as substitute values
(Fig. 9) we can omit the embedded IF function.
However, we still have to be sure to change from one
Boolean value to the other when the first character of the
names changes. That is, if the two starting characters are

the same we have to set E3 to the value of E2, if they are
not, we have to set E3 to the opposite of E2. The
opposite of a Boolean value can be generated with the
function NOT().

E3: =IF(LEFT(A2)=LEFT(A3),E2,NOT(E2))

Fig. 9. Boolean substitute values in column E. The substitute
values of ‘Y’ and ‘B’ are left in column D to make the
comparison of the substitute values more obvious.

Using the Boolean values for the substitute values
the conditions of the Conditional Formatting is
somewhat shorter than they are in the previous
algorithm (Fig. 10).

Fig. 10. The filled in panels of Conditional Formatting when
Boolean values are used as substitute values.

In this coloring task we met the classical
programming problem how we can distinguish two

states. The algorithms presented here are exactly the
same we would use in a source code of a program.

III. CONCLUSIONS

In the problems given in this article we demonstrate
that teaching basic algorithms does not necessarily
require a classical programming environment. We
therefore believe, if the students feel more comfortable
in an application let them use it. The focus should be on
the task not on the programming environment. With this
method even those students who do not want to be a
professional in Informatics can get the hint of forming
algorithms. The age has an important role in this
process, since to get acquainted with programming as an
adult is much harder than as a child. If the students first
encounter such problems at an early age later on they
would absorb it much easier.

The specific assignments presented in the article and
the chosen applications, however, are just one of many
possible examples. Several other opportunities are open
to find similar tasks and wrap them in the environment
of familiar and popular applications.

REFERENCES

[1] Competitions of Applied Informatics of Hungary

http://tehetseg.inf.elte.hu/nemesa/2008/nemes_adat1.zip

[2] L. Raymond After the gold rush: toward sustainable
scholarship in computing. Conferences in Research and
Practice in Information Technology Series; Vol. 315
Proceedings of the tenth conference on Australasian
computing education - Volume 78, 2008.

[3] L. Zsakó Combinatorics – Competition – Excel. Teaching
Mathematics and Computer Science.4 (2006) 2. pp. 427–
435, 2006.

http://tehetseg.inf.elte.hu/nemesa/2008/nemes_adat1.zip

