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Abstract

In this paper, we examine five different three-dimensional grids suited for
image processing. Digital distance functions are defined on the cubic, face-
centered cubic, body-centered cubic, honeycomb, and diamond grids. We
give the parameters that minimize an error function that favors distance
functions with low rotational dependency. We also give an algorithm for
computing the distance transform – the tool by which these distance func-
tions can be applied in image processing applications.

Keywords: Digital geometry, Distance functions, Distance transforms,
Three-dimensional image processing, Non-standard grids

1. Introduction

Three-dimensional images generated by, e.g., tomographic methods are
used as a diagnostic tool in medicine and increasingly in material science and
other applications. With higher precision in image acquisition equipment,
the amount of data that is used when processing these images is increasing.
By using optimal sampling grids, almost 30% fewer samples are needed to
get the same representation/reconstruction quality [1, 2, 3]. Alternatively,
better quality can be obtained with the same number of samples. And as
the images are computed, rather than captured directly, there is no special
reason to use the standard cubic grid.
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The possibility of using alternative structures for representing images
in two, three, and higher dimensions has inspired researchers to develop
image processing methods for non-standard grids [4, 5, 6]. One argument
for using non-Cartesian grids is that fewer samples can be used to perfectly
reconstruct a band-limited signal when sampled on some of these grids [1,
2, 3, 7, 8]. Given a grid for sampling, the density of the grid in spatial
domain is inversely proportional to the density in frequency domain. The
denser grid in frequency domain, the larger part of the frequency domain
is covered by non-overlapping balls (which is required if aliasing should be
avoided). Therefore, one important property when it comes to sampling
functions efficiently is related to optimally dense packings. The packing
density of a grid is defined as the fraction of the space that is covered by
non-overlapping balls of maximal radius centered at the grid points. The
densest three-dimensional grid is the face-centered cubic (fcc) grid [9]. The
reciprocal grid (the grid in frequency domain) is the body-centered cubic
(bcc) grid.

Acquiring images on non-standard grids by tomographic methods is con-
sidered in [10, 11, 12]. When reconstructing an object by tomography, each
2D slice of the 3D object that is being imaged is handled separately. If
each such slice is reconstructed on a hexagonal grid and the slices are recon-
structed without any lateral translation between the slices, the 3D volume
image is represented on a honeycomb grid [8, 13]. If lateral translation is
applied, the 3D object can be represented by an fcc grid, since the hexagonal
grid is embedded in the fcc grid [12].

An important and often used tool in image processing is the distance
transform. In a distance transform, each background/object grid point is
assigned the minimal distance from the object/background grid point. Some
recent papers in which the distance transform is used in applications are
found in [14, 15, 16].

In this paper, we will consider the cubic, fcc, bcc, honeycomb, and di-
amond grids. All these grids, except the diamond grid, are point-lattices,
meaning that the grid forms a discrete subgroup of Euclidean space and
therefore can be described by a basis. It should also be noted that each of
the cubic, fcc, bcc, and diamond grids are unique up to rotation and isotropic
scaling. The honeycomb grid consists of layers that are hexagonal grids, and
the height between each layer must be defined.

We will analyze distance functions defined as the minimal cost-path us-
ing two neighborhood relations on these five grids. With such path-based
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Table 1: Packing densities of the grids considered here, in density order.

grid packing density

fcc π/
√

18 ≈ 0.74

bcc π
√

3/8 ≈ 0.68

honeycomb π
√

3/9 ≈ 0.60
cubic π/6 ≈ 0.52

diamond π
√

3/16 ≈ 0.34

distance functions, the distance between two points is calculated by counting
the number of (weighted) steps needed to go from one point to the other. We
distinguish these digital distance functions from the Euclidean metric which
is not discrete in this sense.

To define our digital distance functions, we use weights and neighborhood
sequences. This framework includes weighted distances [17, 18, 19, 20] and
distances based on neighborhood sequences (ns-distances) [21, 22, 23, 24],
which are both generalizations of the well-known city block and chessboard
metrics [25]. With weighted ns-distances [26, 27, 28], the rotational depen-
dency of the distance function is potentially low [27, 29].

In this paper, we build on some of our old results, for example [30, 31]
presented at the 13th International Workshop on Combinatorial Image Anal-
ysis (IWCIA 2009), and give formulas for weighted ns-distances for the five
grids considered here. The performance on the different grids is compared
by means of the asymptotic rotational dependency. The distance transform,
the tool for using the distance functions in image processing, is described in
Section 5.

2. Three-Dimensional Grids and Neighborhood Relations

The main motivation for this work is to allow image processing on non-
standard, three-dimensional grids. In this section, we will define the five grids
considered here and give some basic definitions on neighborhood relations.
In the illustrations in this paper, each grid point is associated with a voxel
defined as the Voronoi region of the grid at that point. The packing densities
of these grids are found in Table 1.
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(a) (b) (c)

Figure 1: (a) A voxel in the cubic grid, (b) voxels corresponding to 1-neighbors, and (c)
2-neighbors.

2.1. The Cubic Grid

The cubic grid Z3 is often used for three-dimensional images. One reason
is that there is a natural connection between the cubic grid and the data
structure that is often used for storing images in computers.

Let (x, y, z) be the difference between the two points P and Q in Z3. The
points P and Q are

1-neighbors if |x|+ |y|+ |z| = 1

2-neighbors if max (|x|, |y|, |z|) = 1 and |x|+ |y|+ |z| = 2.

See also Figure 1.
Note that the 3-neighbor relations can also be defined in a natural way

(i.e., based on Voronoi cells); ns-distances using all three types of neighbor-
hood is described in [23, 32, 33, 34].

2.2. The Face-Centered Cubic Grid

The face-centered cubic (fcc) grid is the densest possible packing in three
dimensions. This is the Kepler conjecture stated in 1611 [35], proved to
be correct as late as 1998 by Hales [36]. Since the fcc grid is a densest
packing, it has been considered for image processing in several papers. See
for example [5, 6, 8]. In [37], it is proved that sampling a three-dimensional
object (a binary function with smooth boundary) on an fcc grid gives better
topology-preserving properties than sampling on a cubic grid with twice as
many samples(!).
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(a) (b) (c)

Figure 2: (a) A voxel in the fcc grid, (b) voxels corresponding to 1-neighbors, and (c)
2-neighbors.

We use the following definition of the fcc grid: F = {(x, y, z) ∈ Z3 and x+
y + z ≡ 0 (mod 2)}.

Let (x, y, z) be the difference between the two points P and Q in F. The
points P and Q are

1-neighbors if max (|x|, |y|, |z|) = 1

strict 2-neighbors if max (|x|, |y|, |z|) = 2 and |x|+ |y|+ |z| = 2.

The shape of the voxels and the neighborhood relations are illustrated in
Figure 2.

2.3. The Body-Centered Cubic Grid

The body-centered cubic (bcc) grid is the reciprocal of the fcc grid.
Therefore, it is optimal for sampling 3D functions according to the mul-
tidimensional Shannon sampling theorem [1, 2, 3, 7, 8]. It is defined as
B = {(x, y, z) ∈ Z3 and x ≡ y ≡ z (mod 2)}.

Let (x, y, z) be the difference between the two points P and Q in B. The
points P and Q are

1-neighbors if max (|x|, |y|, |z|) = 1

strict 2-neighbors if max (|x|, |y|, |z|) = 2 and |x|+ |y|+ |z| = 2.

As can be seen in Figure 3, the voxels in the bcc grid are truncated octahedra
and there are eight 1-neighbors and six strict 2-neighbors.
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(a) (b) (c)

Figure 3: (a) A voxel in the bcc grid, (b) voxels corresponding to 1-neighbors, and (c)
2-neighbors.

2.4. The Honeycomb Grid

The honeycomb grid H is obtained by piling hexagonal grids on top of
each other. Therefore, it is natural to generate images on the honeycomb grid
if each slice in a tomographic image acquisition method is represented by a
hexagonal grid. In [13], digital geometry and computer graphics properties
of the honeycomb grid are presented. The grid is spanned by the vectors

(1, 0, 0), (0, 0, 1),
(

1
2
,
√

3
2
, 0
)

.

Let (x, y, z) be the difference between the two points P and Q in D. The
points P and Q are

1-neighbors if |(x, y, z)| = 1

strict 2-neighbors if |(x, y, z)| =
√

2.

The neighborhoods are illustrated in Figure 4. Note that (1, 0, 0), (0, 0,m),(
1
2
,
√

3
2
, 0
)

generates a honeycomb grid for any m, where m is the distance

between the hexagonal layers. We use m = 1 here since this has been shown
to be optimal for digital (weighted) distance functions in [12].

2.5. The Diamond Grid

The diamond grid, or tetrahedral packing, is found in diamond which is
the hardest substance known. It is not a point-lattice, but there is a natural
relation between the cubic, fcc, bcc, and the diamond grids [38, 39]. You can
say that in the same way that the cubic grid is the 3D grid that corresponds to
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(a) (b) (c)

Figure 4: (a) A voxel in the honeycomb grid, (b) voxels corresponding to 1-neighbors, and
(c) 2-neighbors.

the 2D square grid and the fcc and bcc grids correspond to the 2D hexagonal
grid, the diamond grid corresponds to the 2D triangular grid.

A definition of the diamond grid is D = {(x, y, z) ∈ Z3, x ≡ y ≡ z
(mod 2) and x + y + z ∈ {0, 1} (mod 4)}. Which neighboring points a
point in the diamond grid has depends on its parity : a point in the diamond
grid is even if x + y + z ≡ 0 (mod 4). Otherwise it is an odd point. Let
(x, y, z) be the difference between the two points P and Q in D. The points
P and Q are

1-neighbors if max (|x|, |y|, |z|) = 1

strict 2-neighbors if max (|x|, |y|, |z|) = 2 and |x|+ |y|+ |z| = 4.

In Figure 5, the neighborhood relations are illustrated.
We note here that the 1-neighborhood plays the role of chemical bonds

in diamond (and other materials using this crystal structure). The strict
2-neighborhood has also chemical meaning, since this relation represents
the closest same type atoms in GaAs and in some other materials. The
3-neighbor relations can also be defined using Voronoi cells [40]. Moreover,
the 4-neighborhood can be defined in natural way by a unit cell [38, 39, 31].
However in this paper we generalize the ns-distances to wns-distances only
for the first two neighborhood.

3. Distance Functions

The distance functions we consider here are defined as minimal cost-paths.
This is a property which makes them well-suited for efficient digital image
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(a) (b) (c)

Figure 5: (a) A voxel in the diamond grid, (b) voxels corresponding to 1-neighbors, and
(c) 2-neighbors.

processing algorithms, as we will see in Section 5. Since the weighted ns-
distances are generalizations of the weighted distances and ns-distances, the
formulas presented here also gives the weighted distance and the ns-distance.

Two points are adjacent if they are 2-neighbors. A neighborhood sequence
(ns) B is a sequence B = (b(i))∞i=1, where each b(i) denotes a neighborhood
relation in a grid G. If B is periodic with period l, then we write B =
(b(1), b(2), . . . , b(l)). A path in a grid is a sequence of adjacent grid points.
A path P0, P1, . . . , Pn is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, Pi−1

and Pi are b(i)-neighbors.

Definition 1. Given the ns B, the ns-distance d(P0, Pn;B) between the P0

and Pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a path of length n, where
exactly l (l ≤ n) adjacent grid points in the path are strict 2-neighbors, be
given. The cost of the path is (n− l)α+ lβ. A B-path between P0 and Pn is
a minimal cost B-path if no other B-path between the points has lower cost.

Definition 2. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(P0, Pn;B) is the cost of a minimal cost B-path(s) between the points.

The following notation is used:

1kB = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2kB = |{i : b(i) = 2, 1 ≤ i ≤ k}|.

In the formulas below, the weights α, β are such that α ≤ β ≤ 2α. We
remark that the weighted distance is obtained when B = (2) and the ns-
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distance is obtained when α = β = 1. The formulas are valid for any two
points P,Q in the grid such that x ≥ y ≥ z ≥ 0, where (x, y, z) = Q− P .

3.1. The Cubic Grid
Weighted ns-distances in Z3 were examined in [28]. In [8, 34, 41, 33],

formulas for ns-distances (with unit weights) were presented for the cubic
grid Z3. We will use these results to give a formula for weighted ns-distances
in Z3.

The following formula is a slightly modified version of Corollary 3.5 in
[8].

Lemma 1 (ns-distance in Z3). The ns-distance is given by

d(P,Q;B) =





min
k

{
k ≥ max

{
x+ y + z − 2kB

}} if x < y + z
and (x, y, z) ∈ F

min
k

{
k ≥ 1 + max

{
x+ y + z − 1− 2kB

}} if x < y + z
and (x, y, z) /∈ F

min
k

{
k ≥ max

{
x, x+ y + z − 2kB

}}
if x ≥ y + z.

Theorem 1 (weighted ns-distance in Z3). The weighted ns-distance is given
by

dα,β(P,Q;B) = (2d(P,Q;B)− d(P,Q; (1)))α + (d(P,Q; (1))− d(P,Q;B)) β

Proof. When x, y, z ≥ 0, (x, y, x) = a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1) for
some a1, a2, a3. The 1-distance is a1 + a2 + a3. If the ns B allows b 2-steps to
reach (x, y, z), then there are a′1, a

′
2, a
′
3, b1, b2, b3 such that the B-distance is

given by d = a′1+a′2+a′3+b1+b2+b3, where (x, y, z) = a′1(1, 0, 0)+a′2(0, 1, 0)+
a′3(0, 0, 1) + b1(1, 1, 0) + b2(0, 1, 1) + b3(1, 0, 1), where all coefficients are non-
negative and b ≥ b1 + b2 + b3. We now prove that this corresponds to a
shortest B-path with minimal number of 2-steps:
Assume that there is a shortest B-path with smaller number of 2-steps, then
some additional local steps are used in such a path and since all other local
steps have at least one negative coordinate value, either the number of steps
is larger than d or the number of steps equals d and the number of 2-steps is
larger than b1 + b2 + b3, which means that the assumption is false.

Since we have a shortest B-path with minimal number of 2-steps, for any
weights α, β such that α ≤ β ≤ 2α, the weighted ns-distance is (

∑
a′i)α +

(
∑
bi)β. The formula follows from the identity d(P,Q; (1)) =

∑
ai =

∑
a′i+

2
∑
bi = d(P,Q;B)+

∑
bi, where

∑
bi is the number of 2-steps in the shortest

B-path.
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3.2. The Face- and Body-Centered Cubic Grids

The following theorems were first presented as Theorem 1 and 2, respec-
tively, in [27]. They are also found in [8] and [42].

Theorem 2 (weighted ns-distance in F). The weighted ns-distance is given
by

dα,β (P,Q;B) =

{
k · α if x ≤ y + z

(2k − x) · α + (x− k) · β otherwise,

where k = min
l

:

{
l ≥ max

(
x+ y + z

2
, x− 2lB

)}
.

Theorem 3 (weighted ns-distance in B). The weighted ns-distance is given
by

dα,β (P,Q;B) = (2k − x) · α + (x− k) · β

where k = min
l

:

{
l ≥ max

(
x+ y

2
, x− 2lB

)}
.

3.3. The Honeycomb Grid

The following theorem gives the weighed ns-distance between points in
the honeycomb grid. It is a slightly modified version of Corollary 3.14 in [8].
To make the formula valid for x ≥ y ≥ z ≥ 0, we note that when y

x
> 1√

3
the distance value is obtained by changing the coordinates using a rotation
by π/3 in the xy-plane.

Theorem 4 (weighted ns-distance in H). The weighted ns-distance is given
by

dα,β (P,Q;B) = (2k − T − z) · α + (T + z − k) · β
where

k = min
l

: l ≥ max
(
T, z, T + z − 2lB

)

and

T =

{
x+ 1√

3
y if 0 ≤ y

x
≤ 1√

3
2√
3
y otherwise.
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3.4. The Diamond Grid

Distances based on neighborhood sequences (i.e., without weights) are
examined in [40, 31, 43]. Since the symmetries are not as obvious as on the
other grids, we give formulas that hold for arbitrary P,Q. We still use the
notation Q− P = (x, y, z). The following lemma is presented as Theorem 1
in [40].

Lemma 2 (ns-distance in D). If P and Q have the same parity , then

d(P,Q;B) = min
l

:
l∑

i=1

b(i) ≥
{ |x|+ |y|+ |z|

2
, |x|, |y|, |z|

}
.

If

• P is even, Q is odd and (x, y, z) has odd number of negative values or

• P is odd, Q is even and (x, y, z) has even number of negative values

then

d(P,Q;B) = min
l

:
l∑

i=1

b(i) ≥
{ |x|+ |y|+ |z| − 1

2
, |x|, |y|, |z|

}
.

If

• P is even, Q is odd and (x, y, z) has even number of negative values or

• P is odd, Q is even and (x, y, z) has odd number of negative values

then

d(P,Q;B) = min
l

:
l∑

i=1

b(i) ≥
{ |x|+ |y|+ |z|+ 1

2
, |x|, |y|, |z|

}
.

Remark 1. The diamond grid has the following property: Two point P 6= Q
are 2-neighbors iff there is a 1-path of length two between the points.

Theorem 5 (weighted ns-distance in D). The weighted ns-distance is given
by

dα,β(P,Q;B) = (2d(P,Q;B)− d(P,Q; (1)))α+(d(P,Q; (1))− d(P,Q;B)) β.
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Proof. We prove that, any shortest B-path between two points P and Q is
also a minimal cost-path with weights α, β such that 0 ≤ α ≤ β ≤ 2α:
If it is not a minimal cost-path, then there is a path with lower cost (but not
shorter) than the given path. This means that the number of strict 2-steps
is larger, but by Remark 1, any B-path consists if as many strict 2-steps as
possible. Therefore, the ns-distance given in Lemma 2 can be used to define
also the weighted ns-distance. The formula follows from the identity given
in the proof of Theorem 1.

4. Parameter Optimization

Finding optimal parameters for digital distance functions has been con-
sidered by many authors using different error functions [8, 18, 19, 20, 26,
44, 45, 46, 47, 48]. The goal is to find parameters that give minimal ro-
tational dependency for the digital distance functions. In this way, we can
approximate the Euclidean distance without leaving the framework of digital
distance functions.

In this section, we use the compactness measure

E =
A3

V 2

1

36π
− 1,

where V is the volume and A is the area of the boundary of a polyhedron.
The polyhedra used here correspond to the asymptotic shapes of the digital
balls generated by the distance functions presented in Section 3.

In [49], we show that the compactness measure is close to the asymptotic
optimal also for short distances on the fcc and bcc grids. Experiments have
shown that this is the case also for the other grids considered here. However,
we focus on the asymptotic behavior in this paper.

The asymptotic compactness measure of balls generated by the distance
functions are obtained by using continuous versions of the discrete quantity
1kB and allowing R3 as the domain for the distance functions. We replace
limk→∞ 1kB/k by a parameter, γ. Note that limk→∞ 2kB/k corresponds to
(1− γ). The polyhedra corresponding to the asymptotic shape of the digital
balls are obtained in this way. The shape of these polyhedra are used in the
optimization.

4.1. The Cubic Grid

The formulas in Lemma 1 and Theorem 1 are rewritten using γt, 0 ≤
γ ≤ 1, t ∈ R instead of 1kB. The continuous value t is used instead of the

12



discrete value k to have a distance functions defined for any (x, y, z) ∈ R3

such that x ≥ y ≥ z ≥ 0. We get

d = (2t− x− y − z)α + (x+ y + z − t) β, where

t =

{
x+ y + z − (1− γ)t if x < y + z

max {x, x+ y + z − (1− γ)t} if x ≥ y + z.

To get the surface patches that bound the polyhedron, we will solve d = r,
where r is some radius.

4.1.1. Case i: x < y + z

Now t = x+ y+ z− (1−γ)t, i.e., t = x+y+z
2−γ which gives r = x+y+z

2−γ (2α−β) +

(x+ y + z)(β − α).

4.1.2. Case ii: x ≥ y + z and x ≥ x+ y + z − (1− γ)t

t = x, so r = (x− y − z)α + (y + z)β.

4.1.3. Case iii: x ≥ y + z and x ≤ x+ y + z − (1− γ)t

Now t = x+ y+ z− (1−γ)t, i.e., t = x+y+z
2−γ which gives r = x+y+z

2−γ (2α−β) +

(x+ y + z)(β − α).
We note that the shape of the polyhedron depends on β/α and γ. The

formulas above describe planes which bound a polyhedron in the region x ≥
y ≥ z ≥ 0. By symmetry, the entire polyhedron is described. The vertices
are, up to symmetry, given by

r

a
(1, 0, 0) and

r

β + αγ − βγ (1, 1− γ, 0).

The optimal values β
α
≈ 1.307 and γ = 0 are obtained by optimizing E with

respect to these two parameters. These values give E ≈ 0.137. Polyhedra for
some parameters are shown in Figure 6. The polyhedron for the parameters
that minimize E is shown in Figure 11.

4.2. The fcc and bcc Grids

The optimization for the fcc and bcc grids are found in [8, 27, 29]. The
shape of polyhedra for some parameters are found in Figure 7 and 8. Optimal
values are found in Table 2. The shape of the “optimal” polyhedra are shown
in Figure 11.
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Figure 6: Asymptotic shapes of balls in the cubic grid. Left to right: γ = 0, 0.5, 1. Top to
bottom: β/α = 1, 1.5, 2.

4.3. The Honeycomb Grid

By replacing 1kB by γt in Theorem 4 and rewriting the formula, we get

d = (2t− T − z) · α + (T + z − t) · β, where

t = max (T, z, T + z − (1− γ)t) and

T =

{
x+ 1√

3
y if 0 ≤ y

x
≤ 1√

3
2√
3
y otherwise.

4.3.1. Case i: T ≥ z, T + z − (1− γ)t

r = (T − z)α + zβ.

4.3.2. Case ii: z ≥ T, T + z − (1− γ)t

r = (z − T )α + Tβ.

4.3.3. Case iii: T + z − (1− γ)t ≥ T, z

In this case t = T+z
2−γ , which gives r =

((
2

2−γ − 1
)
α +

(
1− 1

2−γ

)
β
)

(T + z).
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Figure 7: Asymptotic shapes of balls in the fcc grid. Left to right: γ = 0, 0.5, 1. Top to
bottom: β/α = 1, 1.5, 2.
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Figure 8: Asymptotic shapes of balls in the bcc grid. Left to right: γ = 0, 0.5, 1. Top to
bottom: β/α = 1, 1.5, 2.
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Figure 9: Asymptotic shapes of balls in the honeycomb grid. Left to right: γ = 0, 0.5, 1.
Top to bottom: β/α = 1, 1.5, 2.

The shape of the polyhedra bounded by the planes corresponding to the
formulas calculated for the three cases are shown in Figure 9 for some pa-
rameters. The values that minimize E are found in Table 2 and for the
corresponding polyhedron, see Figure 11.

4.4. The Diamond Grid

We use the identity
∑k

i=1 b(i) = k+ 2B before γt is used to replace 1kB in
Lemma 2. Asymptotically, the parity of the points does not matter, so we
use the formula for points of the same parity and get

d = (2t− t′)α + (t′ − t)β, where

t : t+ (1− γ)t = max

{ |x|+ |y|+ |z|
2

, |x|, |y|, |z|
}

and

t′ = max

{ |x|+ |y|+ |z|
2

, |x|, |y|, |z|
}
.

This leads to

t =
t′

2− γ , so d =

(
γ

2− γα +
2

2− γβ
)
t′.
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Figure 10: Asymptotic shape of balls in the diamond grid for any parameters.

(a) (b) (c) (d) (e)

Figure 11: Asymptotic shapes of balls in the (a) cubic, (b) fcc, (c) bcc, (d) honeycomb,
and (e) diamond grids with optimal parameters (see text).

Adjusting the parameters results in a scaling of the polyhedron, so any pa-
rameters give the optimal value E ≈ 0.349. By Remark 1, any neighborhood
sequence and weights result in the same polyhedron – a cuboctahedron, see
Figure 10 and 11. This interesting phenomenon can also be connected to
the fact that the diamond grid is not a lattice, and therefore by using only
the two closest neighborhood relations we have not enough freedom. Other-
wise using three or four neighborhood relations the situation is much more
complex, non-symmetric distance function may appear [40, 31].

Table 2: Optimal parameters and the corresponding values of E.
grid β/α γ E

Z3 1.307 0 0.137
F 1.486 0.487 0.127
B 1.220 0.453 0.158
H 1.313 0.424 0.148
D [1, 2] [0, 1] 0.349

18



5. Distance Transforms

The distance transform is a mapping from the image domain, a subset
of the grid, to the range of the distance function. In a distance transform,
each object grid point is given the distance from the closest background
grid point. With the distance functions presented here, the distance values
correspond to minimal-cost paths. This implies that the centers of maximal
balls (the balls in an object that are not completely covered by any other ball
in the object) can be computed efficiently and without errors for some digital
distance functions [8, 50, 51] opposed to when the Euclidean distance is used
[52]. The original object can be recovered from the set of centers of maximal
balls by computing the reverse distance transform. It is straight-forward
to compute the reverse distance transform with digital distance functions
[8]. When the Euclidean distance is used, this computation is more complex
[53]. Also, when computing the constrained distance transform (the distance
transform on non-convex domains, for example, the geodesic distance) using
the Euclidean distance, a complex algorithm based on visible points is needed
[54]. The corresponding algorithm using a path-based approach is simple,
fast, and easy to generalize to higher dimensions [55, 56]. The algorithm
presented in this section can be used to compute the constrained distance
transform, but here we restrict the discussion to the unconstrained case.

The image domain is a finite subset of the grid G denoted IG. We call
the function F : IG −→ Rd, where Rd is the range of the distance function
d, an image.

The union of the set of object grid points and the set of background grid
points equals the image domain IG. We denote the distance transform for
path-based distances with DTC, where the subscript C indicates that costs
are computed.

Definition 3. The distance transform DTC generated by the distance func-
tion dα,β(·, ·;B) of an object X ⊂ IG is the mapping

DTC : IG → Rd defined by

P 7→ dα,β
(
X,P ;B

)
, where

dα,β
(
X,P ;B

)
= min

Q∈X
{d (Q,P )} .

For weighted ns-distances, the size of the neighborhood allowed in each
step is determined by the length of the minimal cost-path (not the cost),
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so this value is also is needed when propagating distance information. We
define the auxiliary transform DTL that holds the length of the minimal cost
path at each point.

Definition 4. The transform DTL of an object X ⊂ G is the mapping

DTL : IG → N defined by

P 7→ d1,1 (Q,P ;B) , where

Q is such that dα,β (Q,P ;B) = dα,β
(
X,P ;B

)
.

Algorithm 1: Computing DTC and DTL for weighted ns-distances by
wave-front propagation.

Input: B, α, β, and an object X ⊂ G.
Output: The distance transforms DTC and DTL.
Initialization: Set DTC(P )← 0 for grid points P ∈ X and
DTC(P )←∞ for grid points P ∈ X. Set DTL = DTC. For all grid
points P ∈ X adjacent to X: push (P,DTC(P )) to the list L of
ordered pairs sorted by increasing DTC(P ).
Notation: ω−→v is α if −→v corresponds to a 1-step and β if −→v
corresponds to a 2-step.
while L is not empty do

foreach P in L with smallest DTC(P ) do
Pop (P,DTC(P )) from L;
foreach Q: Q,P are b(DTL(P ) + 1)-neighbors do

if DTC(Q) > DTC(P ) + ωP−Q then
DTC(Q)← DTC(P ) + ωP−Q;
DTL(Q)← DTL(P ) + 1;
Push (Q,DTC(Q)) to L;

end

end

end

end

Algorithm 1 shows how the distance transform can be computed by wave-
front propagation. The Algorithm is based on the Dijkstra algorithm, which
has time complexity O(n log n), where n is the number of grid points in the
image domain. The factor n is unavoidable, since each grid point has to be
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Table 3: Integer approximations of the optimal parameters in Table 2 used to generate
the digital balls in Figure 12.

grid α β B Number of voxels

Z3 10 13 (2) 28533
F 2 3 (1, 2) 33385
B 5 6 (1, 2) 26015
H 10 13 (1, 2, 1, 2, 2) 29737
D 1 1 (1, 2) 23691

visited at least once and the factor log n is needed to keep the auxilary data
structure, the list L of ordered pairs, sorted. However, with integer weights,
the list can be kept sorted in constant time, since only integer distance values
are attained. The sorting is then similar to pigeonhole sort. Also, since the
wave-front contains a limited number of distance values, this approach does
not lead to any significant increase in space complexity.

In [8], it is proved that Algorithm 1 gives correct results on point-lattices.
The distance transform DTC can be computed in linear time without the
additional transform DTL on point-lattices by using a look-up table [8].

5.1. Digital Balls

Here we give the shape of digital balls, i.e., balls defined by the digital
distance functions. Algorithm 1 was used to generate the balls in Figure 12,
where each grid point in the ball is represented by the corresponding voxel.
The radii of the balls are 20α. In the implementations, we used integer
approximations that give good approximations of the optimal, real-valued
parameters. The main reason for using integer parameters is that it is easy
and efficient to use integers in the algorithms. The parameters that were
used are shown in Table 3.

6. Conclusion and Future Work

With the compactness measure used here, the fcc grid has the lowest
rotational dependency. The cubic grid has the second lowest value of the
error function. Note that the optimal value for the cubic grid is attained for
weighted distances, i.e., the neighborhood sequence does not add anything
to the performance. Since the vectors corresponding to 2-neighbors in the
cubic grid are collinear with the vectors corresponding to the 2-neighbors on
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(a) (b)

(c) (d)

(e)

Figure 12: Digital balls with radius 20α (= 20 1-steps) in the (a) cubic, (b) fcc, (c) bcc,
(d) honeycomb, and (e) diamond grids with the parameters in Table 3.
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the fcc grid, the asymptotic shape of the digital balls are equal for these grids
when the weighted distances is considered.

In our future work, we plan to apply other error functions to see if it
is true that the fcc grid has lowest rotational dependency in general. The
shape of the polyhedron in Figure 11(d) seems to be a good approximation
of the Euclidean sphere, so intuitively we believe that the honeycomb grid
might be the best choice in some aspects. Also, in cases where the resolution
is lower in the z-direction, which is often the case in CT images of living
patients, the honeycomb grid handles this problem as easily as the cubic
grid. The “height” of the voxels that is optimal for sampling is computed in
[57] and some preliminary results on the optimal “height” for digital distance
functions have been derived, but are not yet published.

By using a larger number of neighbors, the rotational dependency can be
reduced. As we mentioned earlier, it is natural to include three neighbor-
hoods for the cubic and diamond grids, since each voxel meet voxels from
three neighborhoods in these grids. In [38, 39], we used four neighborhood
relations to define ns-distances (i.e., when α = β = 1) on the diamond grid.

The algorithm for computing the (constrained) distance transform given
in Section 5 gives a powerful tool for most fields of applications in image
processing on these three-dimensional grids. Traditional application areas
include matching [58], mathematical morphology operators [59], medial rep-
resentations and skeletonization [8], etc. Recent examples of applications in
which the distance transform is used are template matching [14], estimation
of blood vessel width [15], and navigation in a 3D environment [16]. Digital
distance functions are commonly used in these applications since the digi-
tal distance functions are efficient and the algorithms can be based on the
well-known wave-propagation technique [55, 56]. This is not the case for the
Euclidean distance [54].

It is today a standard procedure to use three-dimensional images in, e.g.,
medical diagnosis. We believe that the interest in non-Cartesian, three-
dimensional grids will increase, since three-dimensional images are becoming
more common also in non-medical applications. Handling three-dimensional
images is more efficient with grids that are optimal for representing these
images.
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