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Abstract

In this paper the nodes of the hexagonal grid are used as points. There are 3 types
of neighbours on this grid, therefore neighbourhood sequences contain values 1, 2,
3. The grid is coordinatized by three coordinates in a symmetric way. Digital cir-
cles are classified based on digital distances using neighbourhood sequences. They
can be triangle, hexagon, enneagon and dodecagon. Their corners and side-lengths
are computed, such as their perimeters and areas. The radius of a digital disc is
usually not well-defined, i.e., the same disc can have various radii according to
the neighbourhood sequence used . Therefore the non-compactness ratio is used to
measure the quality of approximation of the Euclidean circles. The best approxi-
mating neighbourhood sequence is presented. It is shown that the approximation
can be improved using two neighbourhood sequences in parallel. Comparisons to
other approximations are also shown.

Key words: Digital geometry, neighbourhood sequences, approximation, digital
circles, formal systems, finite automata

1 Introduction

Circle approximations are interesting and important problems of digital ge-
ometry. The approximation can be done by using digital distance functions.
One of the main problems of classical digital distances, such as the city block
and chessboard distances, is that they are not rotational independent [6]. A
proposed solution is the neighbourhood sequences: one can vary the allowed
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type of the neighbourhood in a path step by step [14,3]. Some properties of
distances based on neighbourhood sequences are detailed in [4]. The literature
on this topic using Zn is rich [7,5], however nowadays, in many applications
it is worth to consider other grids than the square one [1]. It is well-known
that there are three tessellations of the plane if it is required that all tessellas
(pixels) be congruent to one and only one polygon: the triangular tessellation,
the square tessellation and the hexagonal tessellation. Moreover the triangular
and hexagonal tessellations are duals of each other in graph theoretic sense.
(The square grid is self-dual in this sense.) The triangular and hexagonal grids
have some nice properties and they are regular, therefore it is not too hard
to handle them. In this paper the nodes of hexagonal grid are used as points
therefore our grid is isometric with the triangular tessellation. Some of the
earlier results given on the triangular grid (where the triangles are used as
points) can also be used [8]. The geometry of the hexagonal grid with a sym-
metric coordinate system is described in [9,11]. In [12,10] the neighbourhood
sequences were also used in the hexagonal grid. We note here that the possible
extensions of the hexagonal and triangular grids to 3 dimension are the face-
centered cubic, the body-centered cubic and the diamond grids. The theory of
neighbourhood sequences is also developed to these grids [15,13]. In this paper
we will analyse some properties of the distances based on neighbourhood se-
quences on the hexagonal grid, namely the approximation of Euclidean circles,
i.e., disks by digital ones.

Here, instead of the Euclidean geometry, we consider the structure of the
hexagonal grid. We use distance functions defined as shortest paths instead of
the Euclidean distance. The concept of shortest paths is important in several
image processing algorithms such as graph based approaches and algorithms
for computing the distance transform etc. For example, the constrained dis-
tance transform is much more efficient to compute using the concept of shortest
paths compared to when the Euclidean distance is used. Shortest paths can
be computed by a standard Dijkstra-like algorithm [13], which is not possible
with the Euclidean distance [2]. We note here that there is another way to get
less rotational dependent distance functions. The so-called weighted distances
give also octagons as digital discs. In [16] it is shown that the best approxi-
mating digital discs are dodecagons in the square grid using complex distance
functions mixing neighbourhood sequences by weighted distances. We show
that similar good results can be obtained on the hexagonal grid in a simpler
way, by using only neighbourhood sequences without weights.

One usually used measure of the approximation of the Euclidean distance
and circle is the non-compactness ratio (or isoperimetric quotient, that is the
ratio perimeter squared divided by the area). It is somehow also a measure
of rotational independence of the distance function. It is minimal for circles
defined by the Euclidean distance.
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Fig. 1. Types of neighbours in the hexagonal grid

The structure of the paper is as follows. In Section 2 we give our notation,
and provide some important properties of the concepts introduced. In Section
3 we characterize the digital discs (some parts are analogous with the results
presented in [8]), moreover we compute some geometric details. For small
circles the best approximations are presented and a greedy algorithm is shown
which provides a good and fast approximation for larger circles. Since we are
working on a discrete plane (i.e., in a digital grid) with distances based on
neighbourhood sequences, the value of the distances can only be integer, the
development of digital disks can be seen as a process on discrete time scale
(step by step). In this way finite automata are appropriate choices to present
some of the results. Some properties of the obtained disks are also presented,
in which the hexagonal grid differs from the square grid. For instance the
approximation can be better using the intersection of two discs with the same
radius. In the last section we summarize our results.

2 Definitions, Preliminaries

In this section we present some definitions, notation and facts, mostly from the
literature mentioned earlier. We also give some useful details and properties
of neighbourhood sequences on the hexagonal grid that we use later.

There are usually three types of neighbours defined, as Figure 1 shows, among
the nodes of the hexagonal grid: a node and its 12 neighbours are shown.
Only the 1-neighbours are directly connected by a side, the other 2- and 3-
neighbours are at the positions of shorter and longer diagonals, respectively.
These relations are symmetric. In addition, all 1-neighbours of a grid-point
are its 2-neighbours and all 2-neighbours are 3-neighbours, as well.

The coordinate values of the grid were introduced as shown in Figure 2. The
coordinate axes meet at a grid-point called Origin O having triplet (0,0,0). The
axes are at the directions of grid-edges starting at the Origin. The coordinate
values of each point can be computed as the sum of steps on the grid-edges
taken into direction of the edges. A step by direction of axis x increases the
first coordinate value by 1, while a step to inverse direction decreases the first
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Fig. 2. Coordinate values of nodes

coordinate. Similarly steps on the edges parallel to axis y and z modify the
second and third coordinate values, respectively.

By the presented coordinate system every node has a unique triplet which
exactly shows the place of the node. We can write the neighbourhood relations
in the following formal form.

The points P (p(1), p(2), p(3)) and Q(q(1), q(2), q(3)) of the hexagonal grid are
m-neighbours (m = 1, 2, 3), if the following two conditions hold:

(1) |p(i)− q(i)| ≤ 1, for i = 1, 2, 3,
(2) |p(1)− q(1)|+ |p(2)− q(2)|+ |p(3)− q(3)| ≤ m.

The hexagonal grid contains exactly those triplets which have sum of coordi-
nate value 0 or 1. We call the points with 0-sum value even (their connections
have shape Y in the figure); the points with 1-sum are odd (opposite shape).

The formal definition above with the presented coordinate values (Figure 2)
gives exactly the neighbourhood relations shown in Figure 1. In [11] the iso-
metric transformations of the grid are described using the coordinate system
above. It is very helpful to know the following facts about the coordinate
system therefore we recall it.

Proposition 1 The mirror images of a point with respect to the coordinate
axes have the same coordinate values in a permuted way: the images of P (x, y, z)
are Px(x, z, y), Py(z, y, x) and Pz(y, x, z) with respect to axes x, y and z, re-
spectively. Moreover Pyz = Pzx = Pxy(y, z, x) and Pzy = Pxz = Pyx(z, x, y) the
mirror images after two operations.
A point is on an axis if and only if two of its coordinate values are the same.
The third value corresponds to the axis in which the point is located.
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A point with its (iterated) mirror images represent at most six points. Exactly
six points are addressed in the case when there are not equal coordinate values,
i.e. the point is not on an axis.

The hexagonal grid is two dimensional. To help compute Euclidean measures
of polygons we show how the hexagonal coordinate values (x, y, z) can be rep-
resented by the traditional Cartesian coordinate frame. The following proposi-
tion can be proved by a straightforward coordinate-geometrical computation.

Proposition 2 Let the axes of the hexagonal coordinatization be given (as it
is shown in Figure 2). Let the Origin of the Cartesian coordinate system be
also the point (0, 0, 0), and let Cartesian x′ axis be the same as the hexagonal
x. Then the Cartesian axis y′ is orthogonal to axis x′, and so to x; and the
direction of y′ is growing between the opposite direction of axis y and the
direction of z. Let a point P (x, y, z) be given with hexagonal coordinate values.

Then its Cartesian coordinate values are: (x′, y′) =
(
x− y+z

2
,
√

3(z−y)
2

)
.

In this paper, we are dealing with neighbourhood sequences in the hexagonal
grid. The sequence B = (b(i))∞i=1, where b(i) ∈ {1, 2, 3} for all i ∈ N, is called a
neighbourhood sequence (on the hexagonal grid). When we need only the ini-
tial part up to the l-th element, then we briefly write Bl = (b(1), b(2), . . . , b(l)).

A movement is called a b(i)-step when we move from a point P to a point Q and
they are b(i)-neighbours. Let P, Q be two points and B be a neighbourhood
sequence. The point-sequence P = P0, P1, . . . , Pk = Q, in which we move from
Pi−1 to Pi by a b(i)-step (1 ≤ i ≤ k), is called a B-path from P to Q of
length k. The B-distance d(P,Q; B) from P to Q is defined as the length of
the shortest B-path(s).

In this paper we are approximating the Euclidean circle/disk by digital ones.
The digital circles/disks are based on digital distances. In this paper we con-
sider digital disks based on distances generated by neighbourhood sequences.
Now, we formally define the digital disks that we are going to use.

Definition 3 Let the digital B-disk with radius k be the region occupied by B
after the first k steps:

CBk
= {P : d(O,P ; B) ≤ k}.

It contains all the points of the grid having B-distance at most k from the
Origin.

In our further analysis we focus on the regions that the neighbourhood se-
quences occupy and cover after some steps; we consider only the finite initial
parts of neighbourhood sequences instead of the whole infinite sequences. Usu-
ally several initial parts (of various neighbourhood sequences) define the same
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region. We call two such initial parts region-equivalent (or simply equivalent)
if they occupy the same region.

Informally we can write that the sequence part (..., 2, 3, ...) is region-equivalent
to the part (..., 3, 2, ...), and (..., 1, 2, ...) is region-equivalent to (..., 2, 1, ...).
The sequence part (..., 2, ...) is region-equivalent to (..., 1, 1, ...). The sequence
part (..., 3, 3, ...) is region-equivalent to the part (..., 3, 2, ...). For this purpose
the following lemma plays an important role. It can be proven by simple
combinatorics by listing all points that can be reached by appropriate steps.

Lemma 4 Let the initial part (b(1), ..., b(k)) of a neighbourhood sequence be
given. Concerning the digital disk generated by this initial part (in k steps) the
following equivalences are fulfilled.

(1) If b(i) = 2, b(i + 1) = 3 for a value i (1 ≤ i ≤ k − 1), then the basic part

built up by the values b′(j) =





3 if j = i,

2 if j = i + 1,

b(j) otherwise

is region-equivalent to the original one.
If b(i) = 2, b(i + 1) = 1 for a value i (1 ≤ i ≤ k − 1), then the basic part

built up by the values b′(j) =





1 if j = i,

2 if j = i + 1,

b(j) otherwise

is region-equivalent to the original one.
(2) If b(i) = 2 for a value i (1 ≤ i ≤ k), then the basic part (b′(1), ..., b′(k+1))

with values b′(j) =





b(j) if j < i,

1 if j = i,

1 if j = i + 1,

b(j − 1) if j > i + 1

is region-equivalent to the original one.
(3) If b(i) = 3, b(i + 1) = 3 for a value i (1 ≤ i ≤ k − 1), then the basic part

built up by the values b′(j) =





2 if j = i + 1,

b(j) otherwise

is equivalent to the original one.

Since the region-equivalence is a symmetric relation they also work in the
opposite direction. Moreover all the equivalences can be given by finitely many

6



applications of the above three equivalences.

The first statement of Lemma 4 allows to move the values 2 within (the used
initial part of) the sequence, while using the second statement one can replace
every occurrence of two consecutive 1’s to a value 2 or vice-versa. It is very
important that by this fact one can modify the number of steps without chang-
ing the generated digital disk, i.e. the radius of the disk is not well-defined.
By the definition of our disks it is not surprising that different sequences can
yield the same disk. This is also the case in Zn, where the elements of the
neighbourhood sequence used can freely be permuted without changing the
digital object obtained. However in Zn all the appropriate neighbourhood se-
quences need the same number of steps to define the same region. Here we
have an entirely different case. We will detail this phenomenon later on. The
third statement of the lemma allows to replace values 3 by value 2 in some
places; it is interesting because it changes a value present in the neighbourhood
sequence.

We already defined the region-equivalence among the initial parts of neigh-
bourhood sequences. This relation will be crucial in our paper. There was an-
other equivalence relation defined among the neighbourhood sequences that
we also will use. The two concepts have some connections.

Opposite to the square grid (and generally to Zn) in the hexagonal grid there
are neighbourhood sequences that generate the same distance functions. B
and B′ generate the same distance if the B-distance of any point pair is the
same as their B′-distance. For instance the neighbourhood sequence contain-
ing only 3’s (B = (3, 3, 3, 3, ...)) generate the same distance function as any
neighbourhood sequences starting with a 3 and not containing any 1’s. This
is due to the property of the grid, that one cannot go further from a point by
two strict 3-steps than a 3-step and a 2-step. The part (..., 3, 3, ...) is not only
region equivalent to the part (..., 3, 2, ...), but ‘stepwise’ region-equivalent, i.e.,
the distance function is the same. The neighbourhood sequences generating
the same distance function form equivalence classes. The next definition and
lemma can be found in [12] and they describe these equivalence classes.

Definition 5 Let B = (b(i))∞i=1 and B′ = (b′(i))∞i=1 be two neighbourhood
sequences. B′ is the minimal equivalent neighbourhood sequence of B, if the
following conditions hold:

(1) d(P, Q; B) = d(P,Q; B′) for all point pairs P, Q, and
(2) for each neighbourhood sequence B′′ = (b′′(i))∞i=1, if d(P,Q; B) = d(P, Q; B′′)

for all point pairs P,Q, then b′(i) ≤ b′′(i) for all i.

Lemma 6 The minimal equivalent neighbourhood sequence B′ of B is uniquely
determined, and it is given by

7



• b′(i) = b(i), if b(i) < 3,
• b′(i) = 3, if b(i) = 3 and there is no j < i such that b′(j) = 3,

• b′(i) = 3, if b(i) = 3 and there is some b′(l) = 3 with l < i, and
i−1∑

k=j+1
b′(k)

is odd, where j = max { l| l < i, b′(l) = 3},
• b′(i) = 2, otherwise.

Now we sketch an alternative proof based on Lemma 4.

PROOF. The generated distance function is the same for two neighbourhood
sequences if and only if the same sequence of digital disks can be obtained.
The third statement of Lemma 4 allows to replace values 3 by value 2 in
places immediately after a value 3. Combining it with the first two statements
(a value 2 can be replaced by 11 an vice versa, moreover a value 2 can freely
move through the sequence and back) one can change any value b(i) = 3 to

2 for which the subsum
i−1∑

k=j+1
b(k) of the neighbourhood sequence after the

previous value 3 (= b(j)) is even. (By convention the empty sum is 0, in case
of i = j + 1 meaning two consecutive 3’s.) 2

The minimal equivalent neighbourhood sequence is elementwise minimal among
the neighbourhood sequences generating the same distance function. Every
equivalent class of neighbourhood sequences can and will be represented by
the minimal equivalent neighbourhood sequence of the class.

Before we detail the approximation of Euclidean circles, i.e., disks, we would
like to present some further important properties of the neighbourhood se-
quences on the hexagonal grid.

Based on the defined equivalence of initial parts of neighbourhood sequences
(occupance of the same region) we present a finite class of them that is suffi-
cient to generate all possible digital disks. This classification procedure is the
following.

In the next definition we write the initial parts of the neighbourhood sequences
as strings over the alphabet {1, 2, 3}, i.e., we do not care about the separations,
and parentheses can be used as technical symbols in the description. We will
also use this string form of initial parts later.

Definition 7 An initial part of a neighbourhood sequence is a basic part, if it
can be described by one of the following forms:

(A) (B) (C) (D) (E)

1l (13)n2m 1(31)n2m 3(13)n−12m (31)n2m
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where n,m ∈ N and wj is the repetition of the string w j times as usual
(allowing the empty string w0). In cases (B)–(E) we suppose that n ≥ 1.

The following proposition shows that it is sufficient to deal with the above
defined classes of basic parts in our approximation procedure.

Proposition 8 Let B be a neighbourhood sequence on the hexagonal grid.
Every finite initial part of B has an equivalent basic part.

PROOF. If the initial part is also a basic part, then there is nothing to prove,
therefore we deal with only possible initial parts that are not basic parts.
If the initial part does not contain 3, then by using equivalence (2) of Lemma
4 for every value 2 one can obtain an initial part of the form (A).
If there is at least one 3 in the initial part, then by equivalence (2) one can
replace each consecutive pair of 1’s by a 2. Then by equivalence (1) of Lemma
4 one can move all values 2 to the end of the initial part. (If necessary these
two steps can be repeated.) Finally there is no consecutive occurrence of 1’s,
and all 2’s in the end of the initial part. Now the second element of every
consecutive 3’s can be replaced by a 2 with equivalence (3) and it can be
moved to the end of the initial part by equivalence (1). The result will not
contain consecutive 1’s and consecutive 3’s and all the values 2 will be in the
end. This fact can be fulfilled in four different ways. All 4 possibilities are
presented as type (B), (C), (D) and (E). 2

It is easy to show that by our assumption (n ≥ 1) the five types of basic parts
presented are pairwise disjoint sets.

Moreover, the equivalences presented in Lemma 4 are enough to get any initial
sequence from any other one from the same equivalence class. Formally, the
next theorem can be obtained.

Theorem 9 The associative calculus W ({1, 2, 3}, {23 ↔ 32, 21 ↔ 12, 33 ↔
32, 11 ↔ 2}) describes the equivalence classes of the initial parts written in
string from.

PROOF. The statement follows from the fact (Proposition 8) that every
initial part can be transformed to an equivalent basic part. 2

Since the digital disks are finite sets of points we will use the convex hull of
them in our purpose. In this way we work in our approximations with real
Euclidean objects (with perimeter and area), namely with digital discs. We
note here that the generated discs obtained by the union of triangles on the
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triangular grid are also real Euclidean objects (they are polygons), but they
are usually not convex (they can have ‘hilly’ and ‘sawtooth’ sides, see [8]).
Therefore it is not convenient to use them in our approximations. Moreover
they are represented on the dual grid of the hexagonal, and so their charac-
terization and classes are slightly different from our present characterization
and classes. In this way to continue the research started in [8] we interchanged
the grid used to its hexagonal representation.

There are several ways to compare digital disks (or other objects) to the
Euclidean disk. Since the radius of our digital discs is not always well-defined
we need a measure which is independent of the radius.

A standard geometric measure of the approximations of Euclidean circles or

disks is the noncompactness ratio. It is computed as perimeter2

area for any object
in the plane. In Euclidean geometry, according to the isoperimetric inequality,
this ratio is never less than 4π, and is minimal for the circle (disk). So, the non-
compactness ratio of the Euclidean circle is 4π ≈ 12.566; it is 16 for squares;
and for regular hexagon, octagon, enneagon and dodecagon it is approximately
13.856, 13.255, 13.103 and 12.862, respectively.

3 Approximating the Euclidean disc

3.1 Digital discs on the hexagonal grid

First we present some examples for the digital disks in Figure 3.

(a) (b)

Fig. 3. Examples of digital disks: (a) Digital disks by (1) (dotted line, radius 1),
(1,1) (solid line, radius 2) and (1,3) (dashed line, radius 3). (b) Digital disks by (3)
( dotted line, radius 1) and (3,1) (solid line, radius 2).
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In the figures we will use the convex hull as the occupied polygon of the digital
disk. These polygons have sides and corners in the usual sense. Since they are
convex, the sets of the coordinate triplets of corners describe them. (We use
the term corner only for angles less than π.)

As we already mentioned, usually a digital disc can be generated in several
ways. The disk C(2) is the same as the disk C(1,1) (see Figure 3 (a), where C(1)

is also shown by dotted line), so the radius of this disc is not well-defined,
i.e., it is not unique, in the sense that having only the disc one may not
be sure about its radius. Another interesting fact can also be observed in
Figure 3: opposite to the grids Zn the permutation of the used elements of a
neighbourhood sequence may generate different discs. The elements 3 and 1
are not freely permutable in the sequence. The disks generated by (3,1) and
(1,3) are incomparable. This fact is related to the existence of non-symmetric
distances on the hexagonal grid [12]. All possible permutations that generate
the same disc was already discussed in Lemma 4.

In the next part we present algorithms (and state-diagrams in the form of
automata) computing the geometrical data of the digital disks, such as coor-
dinate values of corners, sidelengths and type of the polygon.

Based on technical calculations, the next incremental algorithm gives the cor-
ners of polygons occupied by a neighbourhood sequence step by step. Not only
the coordinate values of the corner points but their various types are also in-
dicated. The polygon has angle π

3
at corners type α, 2π

3
at the corners type β

and γ, and 5π
6

at corners type δ. The indices will have the following meaning:
e means that the corner is on an even point, o means that it is on an odd
point. Every corner type γ is located on a coordinate axis, it can be y and
z for the computed points. (Corners type β are not on any coordinate axis.)
One of the sides of corners type δ is perpendicular to a coordinate axis. This
is the second index of these corners.

Similar algorithm can work for the infinity if one wants to continue the process
beyond any finite value of k.

Figure 4 shows the state-transition diagram of the possible corners according
to Algorithm 1. There are some places on the figure where two edges start
simultaneously (with element 3 of the neighbourhood sequence). In these steps
two new corners of different types are obtained. These cases are exactly those
ones in which the points P1 and P2 start to develop in different ways. (Note
that we use the region z ≥ x ≥ y in our computation, all other parts can
be obtained by permuting the coordinate values.) One can easily extend this
machine (with tapes) to a more complex one that computes also the coordinate
values.

The coordinates of the vertices can be computed step by step based on the
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Algorithm 1: Computing corners of the digital disc CBk
.

Input: neighbourhood sequence B, radius k > 0.
Output: The points P1, P2 and all the points that are obtained as coordinate

permutation of any of them as the corners of the digital disc CBk
.

If b(1) = 1 then let P1 = (0, 0, 1)α and P2 = (0, 0, 1)α.
If b(1) = 2 then let P1 = (0,−1, 1)βe and P2 = (0,−1, 1)βe .
If b(1) = 3 then let P1 = (0,−1, 1)δe,z and P2 = (1,−1, 1)γo,y .
for j = 2 to k do

If b(j) = 1 for i = 1, 2 do
IfPi = (x, y, z)α then let P ′

i = (x, y − 1, z)βe .
If Pi = (x, y, z)βe then let P ′

i = (x, y, z + 1)βo .
If Pi = (x, y, z)βo then let P ′

i = (x, y − 1, z)βe .
If Pi = (x, y, z)γo,y then let P ′

i = (x, y − 1, z)γe,y .
If Pi = (x, y, z)γe,y then let P ′

i = (x, y, z + 1)δo,y .
If Pi = (x, y, z)γo,z then let P ′

i = (x, y − 1, z)δe,z .
If Pi = (x, y, z)γe,z then let P ′

i = (x, y, z + 1)γo,z .
If Pi = (x, y, z)δo,y then let P ′

i = (x, y − 1, z)δe,y .
If Pi = (x, y, z)δe,y then let P ′

i = (x, y, z + 1)δo,y .
If Pi = (x, y, z)δo,z then let P ′

i = (x, y − 1, z)δe,z .
If Pi = (x, y, z)δe,z then let P ′

i = (x, y, z + 1)δo,z .

If b(j) = 2 for i = 1, 2 do
If Pi = (x, y, z)α then let P ′

i = (x, y − 1, z + 1)βo .
If Pi = (x, y, z)βe then let P ′

i = (x, y − 1, z + 1)βe .
If Pi = (x, y, z)βo then let P ′

i = (x, y − 1, z + 1)βo .
If Pi = (x, y, z)γo,y then let P ′

i = (x, y − 1, z + 1)δo,y .
If Pi = (x, y, z)γe,y then let P ′

i = (x, y − 1, z + 1)δe,y .
If Pi = (x, y, z)γo,z then let P ′

i = (x, y − 1, z + 1)δo,z .
If Pi = (x, y, z)γe,z then let P ′

i = (x, y − 1, z + 1)δe,z .
If Pi = (x, y, z)δo,y then let P ′

i = (x, y − 1, z + 1)δo,y .
If Pi = (x, y, z)δe,y then let P ′

i = (x, y − 1, z + 1)δe,y .
If Pi = (x, y, z)δo,z then let P ′

i = (x, y − 1, z + 1)δo,z .
If Pi = (x, y, z)δe,z then let P ′

i = (x, y − 1, z + 1)δe,z .

If b(j) = 3 for i = 1, 2 do
If P1 = (x, y, z)α then let P ′

1 = (x− 1, y − 1, z + 1)γe,z .
If P2 = (x, y, z)α then let P ′

2 = (x, y − 1, z + 1)δo,y .
If P1 = (x, y, z)βe then let P ′

1 = (x, y − 1, z + 1)δe,z .
If P2 = (x, y, z)βe then let P ′

2 = (x + 1, y − 1, z + 1)δo,y .
If P1 = (x, y, z)βo then let P ′

1 = (x, y − 1, z + 1)δo,y .
If P2 = (x, y, z)βo then let P ′

2 = (x, y − 1, z)δe,z .
If Pi = (x, y, z)γo,y then let P ′

i = (x, y − 1, z + 1)δo,y .
If Pi = (x, y, z)γe,y then let P ′

i = (x + 1, y − 1, z + 1)γo,y .
If Pi = (x, y, z)γo,z then let P ′

i = (x− 1, y − 1, z + 1)γe,z .
If Pi = (x, y, z)γe,z then let P ′

i = (x, y − 1, z + 1)δe,z .
If Pi = (x, y, z)δo,y then let P ′

i = (x, y − 1, z + 1)δo,y .
If Pi = (x, y, z)δe,y then let P ′

i = (x + 1, y − 1, z + 1)δo,y .
If Pi = (x, y, z)δo,z then let P ′

i = (x− 1, y − 1, z + 1)δe,z .
If Pi = (x, y, z)δe,z then let P ′

i = (x, y − 1, z + 1)δe,z .

Let P1 = P ′
1 and P2 = P ′

2.
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Fig. 4. State transition of types of corners of digital disks.

neighbourhood sequence with incremental (linear) algorithm. Now we give
simple formulae to compute the coordinate values of the vertices of the digital
discs. Based on Proposition 8 we do not need to follow the neighbourhood
sequence step by step, it is enough to know the basic part that generates the
desired polygon. The formula depends on the type of the disc, i.e., on the type
of the basic part the disc can be obtained with.

Theorem 10 The corners of the (convex hull of) digital disks are the follow-
ing.

• type (A)





l = 1 : α(0, 0, 1)

l = 2k : β(0,−k, k); (k > 0)

l = 2k + 1 : β(0,−k, k + 1); (k > 0)

• type (B)





m = 0 : γ(−n,−n, 2n), δ(n− 1,−2n + 1, n + 1)

m > 0 : δ(−n,−n−m, 2n + m), δ(n− 1,−2n−m + 1, n + m + 1)

• type (C)





m = 0 : γ(−n,−n, 2n + 1), δ(n− 1,−2n, n + 1)

m > 0 : δ(−n,−n−m, 2n + m + 1), δ(n− 1,−2n−m,n + m + 1)

13



• type (D)





m = 0 : γ(n,−2n + 1, n), δ(−n + 1,−n, 2n− 1)

m > 0 : δ(n,−2n−m + 1, n + m), δ(−n + 1,−n−m, 2n + m− 1)

• type (E)





m = 0 : γ(n,−2n, n), δ(−n + 1,−n, 2n)

m > 0 : δ(n,−2n−m,n + m), δ(−n + 1,−n−m, 2n + m)

and all of their permutations.

PROOF. We omit the technical calculations using Algorithm 1 for the basic
parts. 2

Based on the various corners of the polygons their shapes can be described.

Theorem 11 The shape of the digital disk generated by the neighbourhood
sequence B in k steps is a triangle if and only if it is C(1). The shape is a
hexagon if and only if there is no element 3 in the initial part of B up to the
k-th element. (Except the previous case, in which C(1) is especially a triangle.)
The shape is an enneagon if and only if there is neither any element 2 nor
any consecutive 1,1 or 3,3 occurring in the initial part Bk. (Except C(1).) In
every other case the digital disk is a dodecagon.

PROOF. In the first case the triangle has 3 α corners. According to Algo-
rithm 1 only other types of corners can occur at the other digital disks. With
other type of corners it is impossible to get a triangle.

Now let us consider the other digital disks. It is easy to check by Algorithm 1
that starting with an element 2 we get a hexagon with six β corners. Moreover
it is clear that using 1-step(s) and/or 2-step(s) from corners type α and from
corners type β the new corners will be type β as well. With only corners type
β there must be six of them to make a polygon. Therefore without a 3-step
the result is a hexagon with corners type β.

It is shown in Figure 3 (b) that C(3) is an enneagon, it has 3 type γ and 6
type δ corners. The corner γ (1,−1, 1) is odd and it is on the axis y. Therefore
with a 1-step it grows to a γe,y which is even and on the same axis. (With
a 2-step or a 3-step the corner would be divided to two δ vertices that are
symmetric pairs to axis y, and a side connect them orthogonally to this axis.)
From γe,y with a 3-step γo,y is resulted; it is odd on axis y. (From γe,y with
a 1-step or a 2-step we would obtain two δ corners.) Since γo,y is exactly the
same type as γ (1,−1, 1) the cycle is repeating till only 1-steps and 3-steps
turn by turn. Observe in Figure 4 that corner type γ can be obtained from α,
but not from β. Therefore there is no way to get γ vertices from C(2) and so
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(A) (A) (B)–(E) (B)–(E)

(l = 1) (l ≥ 1) (m = 0) (m ≥ 1)

triangle hexagon enneagon dodecagon
Table 1
The possible types of polygons depending on the used basic part

from any hexagon. From C(1) one can obtain an enneagon in one way, namely
to get C(1,3). The obtained corner γ (−1,−1, 2) even and it is on the axis z.
One can check that there is a similar computing cycle for this γ to keep it with
only 1-steps and 3-steps by turns. (Leaving this computing cycle two corners
type δ are obtained instead of the type γ corner.)

Finally, in all other cases the polygon has only δ vertices. When 12 corners
type δ are in a digital disk, then it never happen that they change to another
type (see Algorithm 1 and Figure 4) and twelve of them are needed for a
polygon. Therefore the last statement is proved. 2

Fig. 5. State transition of possible types of digital disks.

Figure 5 also shows the resulted polygons. Various polygons can be obtained
as digital disks on the hexagonal grid. Since all digital disks can be obtained
by using only basic parts, we show a characterization in this way. Table 1
summarizes the types of the possible polygons that can be produced by using
various basic parts.
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Figure 6 shows an automaton that computes the type of the basic sequence
of the obtained disc. Moreover it computes also the parameters l, m, n for the
various types. Remember that l is the number of 1’s in type (A), in other
types m and n are the number of 2’s and 3’s, respectively.

Fig. 6. State transition of types of basic parts of neighbourhood sequences extended
by computation of parameters.

Now the side-lengths of the polygons are computed. There can be three dif-
ferent side-lengths in an obtained dodecagon. There can be two types of sides
(three-three sides) that are orthogonal to one of the coordinate axes. (At tri-
angle and at enneagons one type of these sides has length 0, therefore these
cases are degenerate cases of the hexagons and dodecagons.) Moreover there
can be (and there are at enneagon and dodecagon) six sides that are parallel
to one of the axes. Let the length of the sides orthogonal to an axis be a1 and
a2 with a1 ≥ a2. See Figure 7. These sides form the triangle and the hexagons
(using basic part type (A)). At enneagons and dodecagons these sides are be-
tween two type δ corners such that they are symmetric images of each other
and so the side is orthogonal to an axis. Let the length of the sides parallel
to an axis be a3. These sides can be only between corners type γ and δ, and
between two corners type δ if the side do not meet with any of the axes. The
last case corresponds to sides between points P1 and P2 of Algorithm 1.

Theorem 12 The lengths of different sides (for notation see Figure 7) are
the following.
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Fig. 7. The side-lengths of the polygons: a1 ≥ a2 are the lengths of sides orthogonal
to a coordinate axis; a3 is the length of sides parallel to a coordinate axis.

type case length of a1 length of a2 length of a3

(A) l = 2k (k > 0) k
√

3 k
√

3 0

l = 2k + 1 (k ≥ 0) (k + 1)
√

3 k
√

3 0

(B) (m + 2)
√

3 m
√

3 3n− 2

(C) (m + 2)
√

3 m
√

3 3n− 1

(D) (m + 1)
√

3 m
√

3 3n− 2

(E) (m + 1)
√

3 m
√

3 3n− 1

PROOF. The calculation is based on the coordinate values of the corners
given in Theorem 10 and on Proposition 2. 2

The diagram-automaton of Figure 6 can easily be modified to compute the
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side-lengths of the polygon in a similar way as the parameters l, m, n are
computed. A part of this modified automaton can be seen in Figure 8.

Now we are ready to give the necessary measures for the non-compactness
ratio.

Theorem 13 The perimeter (L) and area (A) of various digital disks are
computed in the following way (for notation see Figure 7):

L = 3a1 + 3a2 + 6a3

A =
√

3

(
a2

1

4
+

a2
2

4
+

3a2
3

2
+ a1a2

)
+ 3a1a3 + 3a2a3.

PROOF. The computation is based on (coordinate) geometry. 2

So one needs only to substitute the values of the side-lengths that given by the
function of the values 2 and 3 for various classes of basic types (from Theorem
12).

We note here that the automata of types of polygons, corners and side-lengths
(Figures 5,4,6) can be used independently as generator devices, but one can
join them to a large automaton with several tapes (input tape: elements of
neighbourhood sequence, output tapes: types, corners etc.).

3.2 The best approximating neighbourhood sequence

Since there are several neighbourhood sequences that generate the same se-
quence of discs, the minimal equivalent neighbourhood sequence representing
the class is used in the approximation.

For very small digital disks the following ones are the best approximating ones:
For k = 1 there are three possibilities; they are shown in the following table:

polygon C(1) C(2) C(3)

shape triangle hexagon enneagon

non-compactness ratio 20.785 13.856 13.785

.

Observing all possible initial parts of neighbourhood sequences with 2,3,4 and
5 elements, the best approximating discs are the following ones:
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length of the initial part best initial part non-compactness ratio

2 (3,2)=(2,3)=(3,3) 13.287

3 (3,2,1)=(3,1,2)=... 13.020

4 (3,2,1,3)=(3,1,3,2)=... 12.972

5 (3,2,1,3,2)=(3,1,3,2,2)=... 12.906

The type of all these discs is dodecagon. We can state that up to the first
5 steps the initial part (3,2,1,3,2) is the best approximating one, there is no
neighbourhood sequence that gives better result for any of the radii 1,...,5.
(One can check this fact by enumerating and check all possibilities.) In the
table the basic part generating the disc is also shown among possible initial
parts generating the same disc.

In other side, in the limit k = ∞ the regular dodecagon can be obtained by
any of the types (B)–(E). If the ratio a1

a3
goes to 1, then the regular dodecagon

is obtained in the limit.

Based on these facts we propose a neighbourhood sequence that can be ob-
tained by a greedy algorithm which gives a very good approximation.

Instead of computing all possibilities at every step we use the next heuristics.
The more sides (and corners) of the polygon the better the approximation
can be. The non-compactness ratio is lower (i.e., better) for polygons closer to
the regular one. Therefore we propose a fast algorithm that tries to keep the
sidelengths of the obtained dodecagon as close to each other as possible. The
side-lengths of a1 and a2 are developing in the same way (see Theorem 12). The
difference of their length is fixed as 2

√
3 at discs generated by basic parts type

(B) and (C), while it is fixed as
√

3 at type (D) and (E). Therefore we use the
latter types in our approximation. Figure 8, in form of an automaton, shows
how the sidelengths are changing. The figure shows only the modified part
part of Figure 6 which is needed in our analysis, dealing with neighbourhood
sequences start with 3.

The algorithm chooses the next value of the neighbourhood sequence such that
the length a3 is the closest to the average of a1 and a2 among the possibilities.

The best approximating neighbourhood sequence up to the first 20 elements
is: Bopt =(3,2,1,3,2,1,2,3,2,1,2,3,2,1,3,2,1,2,3,2). The noncompactness values of
the generated digital disks can be seen in Figure 9. One can check that Al-
gorithm 2 gives exactly the best choices for these steps, i.e., the next value
of the neighbourhood sequence corresponds to the disc having the minimal
non-compactness ratio among the possible next discs. We note here that it is
impossible to have the sequence of discs that contain only the best approx-
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Fig. 8. State transition of types of basic parts starting with a 3, extended by com-
putation of side-lengths.

Algorithm 2: Computing neighbourhood sequence for approximating the
Euclidean distance.
Input: the number of steps k.
Output: (b(1), ..., b(k)) as a very good approximation through k steps.
Let b(1) = 3. If k = 1 then end.
Let b(2) = 2. If k = 2 then end.
Let b(3) = 1. If k = 3 then end.
Let b(4) = 3. If k = 4 then end.
Let b(5) = 2. If k = 5 then end.
Let m = 2, n = 2, let type=D, type’=D.
for j = 6 to k do

if type=D then

if |2m+3
2

√
3− 3n + 2| ≥ |2m+1

2

√
3− 3n + 1| then

let b(j) = 1 and type’=E.
else

let b(j) = 2, m = m + 1

if type=E then

if |2m+3
2

√
3− 3n + 1| ≥ |2m+3

2

√
3− 3n + 2| then

if |2m+1
2

√
3− 3n− 1| ≥ |2m+3

2

√
3− 3n + 2| then

let b(j) = 1, m = m + 1 and type’=D.
else

let b(j) = 2, m = m + 1

else
let b(j) = 3, n = n + 1, type’=D

type=type’

imating ones. The length of the various sides are growing via various steps,
therefore the changes of the ratio of the sides fluctuate around the optimal
value. The lengths are increasing with values with an irrational ratio, therefore
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the fluctuation cannot be periodic. In the given optimal initial part the non-
compactness ratio of CBopt 10 is less than the ratio of CBopt 11 . It can happen,

Fig. 9. Non-compactness ratio of the discs obtained by Algorithm 2.

if the approximation in a step is very good (the side-lengths are close to each
other). Roughly speaking, the next step must increase the lengths of a1 and
a2 or (exclusive or) a3. In this way the next dodecagon is a little bit further
from the regular one. Remember now that the radius of these discs is not well
defined. It allows us to use the previous disc as a better approximation to the
Euclidean with the given radius: replacing any value 2 among the first eleven
values of the sequence by two consecutive 1’s, CBopt 10 is obtained as a disc
with radius 11 in the previous example. The same trick can be used for discs
having radii 13, 15, 17 and 19. Note that the obtained disc with radius 20 has
non-compactness ratio 12.86457 that is 1.000234 times more than the ideal
(regular dodecagon).

In [4] Das and Chatterji showed that for every initial part of a neighbourhood
sequence in the square grid (using Cartesian coordinates and two types of
neighbours), the obtained digital disk is always an octagon. These octagons
can be degenerated, so the digital disks are squares in the following cases:
Using only 1-steps (cityblock) in the initial part of the neighbourhood sequence
we get only four sides (the corners will be (0, k), (k, 0), (0,−k), (−k, 0)), while
using only 2-steps (chessboard) we get a square with corners (k, k), (k,−k),
(−k,−k), (−k, k). In the case when we use both 1-step(s) and 2-step(s) our
result is a non-degenerated octagon.
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The approximation of large disks can be very close to the regular octagon,
and it is achieved in the limit (r → ∞). Since the noncompactness ratio
of the regular octagon 13.255, i.e., it is much higher than the value for our
dodecagons, it is clear that the approximation is much more effective in the
hexagonal grid than in the square grid (see Figure 9). Our approximation was
better from the third step (for disk with radius 3) than the best approximation
on the square grid that can be obtained in the limit k →∞.

Since the side-lengths of the obtained dodecagons are increasing in the way as
presented in Figure 8 and in Algorithm 2, their ratio tends to 1. The increasing
process is close to linear, and the sum of the lengths increasing at least by 3
in any two consecutive steps. It means that every side grows at least by 0.5
average in a step. The maximum difference of side-lengths cannot be larger as
a constant, let us say 2+2

√
3. In this way we have a very rough approximation:

the ratio of side-lengths has deviation less than 4+4
√

3
k

that tends to 0.

To get the optimal approximation of a Euclidean circle/disk, we use types (D)
and (E). For approximation with radius greater than 2, this gives dodecagons
with corners of the same type (δ) and side lengths a1, a2, a3. In Theorem 12,
the side-lengths are given as functions of the number of the number of 2’s (m)
and 3’s (n) in the used initial part of the neighbourhood sequence. Since we
are dealing only with initial parts of the neighbourhood sequences written as
a basic part, see Proposition 8, the number of 1’s (l) in the used part of the
neighbourhood sequence satisfies l = n or l = n− 1 (depending on the type).
Asymptotically a1 = a2 = a3 is, by Theorem 12,

√
3l = m =

√
3n. Thus,

asymptotically, the number of 1’s equals the number of 3’s and the number of
2’s is a factor

√
3 greater.

We note here that by distances based on neighbourhood sequences using
weights on the square grid one can obtain dodecagons. In this way the ap-
proximation on the square grid is similarly efficient, but the main difference
is that we used pure distances based on neighbourhood sequences without
weights. So our approximation method is much simpler, using the hexagonal
grid.

3.3 Approximation by two neighbourhood sequences

Prof. A. Kuba proposed the idea to approximate the Euclidean distance by two
neighbourhood sequences simultaneously in a private communication during
the 4th Hungarian Conference on Image Processing in 2004. Opposite to the
square grid (and Zn) there are digital discs with the same radius that are not
comparable (for instance C(3,1) and C(1,3)).

Therefore it is worth to consider the combination of two discs (or two sequences
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of discs generated by two neighbourhood sequences). In this section we present
some initial results.

The intersection of two digital discs will be used, since the intersection pre-
serves the convexity [17]. We believe that a good approximation of the Eu-
clidean circle should go by the help of convex polygons.

Example 14 Let the approximation for disk k = 4 be the intersection of dig-
ital disks C(3,1,3,2) and C(2,2,2,2). The corners of the first disc are δ (2,−4, 3)
and δ (−1,−3, 4) (and their mirror images). The corners of the latter disc are
β (−4, 0, 4) and its permutations. The intersection is a dodecagon with side-
lengths: a1 = 2

√
3, a2 = 2

√
3, a3 = 3 (see Figure 10 also). Its noncompactness

ratio is 12.866 that is less than any polygon’s can be obtained by four steps
with a neighbourhood sequence.

Fig. 10. The intersection of two non-comparable discs gives a better approximation

As the example shows in the hexagonal grid one can obtain better approxi-
mation using two neighbourhood sequences, than using only one. However it
is not the case in the square grid (nor in Zn), since for any two digital discs
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with the same radius at least one of them contains the other one. The digital
discs with a given radius form a well-ordered set in the square grid.

Since there are twelve directions (see Figure 7) of the possible edges of the
possible polygons the approximation, even using more than one neighbourhood
sequences, cannot go beyond the regular dodecagon (in the limit).

4 Conclusions

One can easily handle the hexagonal grid by the recalled coordinate system
that uses 3 dependent coordinate values. Since the grid is planar, it can also
be described by 2 independent values. For calculation of perimeter, area etc.
of some digital objects it is nice to have a connection between the 3-valued
description and the Cartesian 2-valued frame. We presented such a connection.

As we gave an alternative proof, the minimal equivalent neighbourhood se-
quence is a unique representation of the class of the neighbourhood sequences
generating the same distance function. Similarly there is a unique basic part
for every digital disk as we proved.

The initial parts of the neighbourhood sequences form equivalence classes that
are described in a formal way by associative calculus.

Algorithms to compute the corners, types, etc. of the digital disks are pre-
sented. The computations are also presented in graphical form using finite
automata/transducer approaches. Some properties of the approximation are
analysed and a fast greedy algorithm is presented that provides a very good
approximation (the best initial part can be obtained by at least length of 20).
Example for approximation using two neighbourhood sequences is shown to
be more effective than using only one sequence. A topic of further research is
to analyse how good the approximation can be in this way. As we showed the
approximation result is much more better in the used hexagonal grid (i.e., in
the triangular tessellation) than in the square grid using distances based on
neighbourhood sequences. By mixing neighbourhood sequences and weighted
distances in the square grid [16] the approximation can be as good as in the
presented approximation on the hexagonal grid. It is a task of future work to
analyse how the value of the approximation would increase using both weights
and neighbourhood sequences on the hexagonal grid.

Our results can be used in digital image processing and in the field of net-
works as well. It can be used in region growing procedures. In grid-structured
networks the non-common properties can be useful. Some digital disks can be
obtained by more than one radius or the non permutability of the elements of
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the neighbourhood sequence are exotic properties.
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