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Abstract

A new method is presented for calculation of the shell correction with the inclusion of the

continuum part of the spectrum. The smoothing function used has a finite energy range in contrast

to the Gaussian shape of the Strutinski method. The new method is specially useful for light nuclei

where the generalized Strutinski procedure can not be applied.
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I. INTRODUCTION

Nuclei being far from the bottom of the stability valley are studied extensively at the

experimental facilities with radioactive beams. One of the fruit of these type of research is

the production of the light exotic nuclei. Let us refer to e.g. a recently identified new double

magic nucleus the 24O [1] at the neutron drip line. The exact location of the particle drip

lines limits the region for these studies and it is intensively investigated both by experimental

and theoretical methods. Theoretical prediction of the drip lines is based on mass (binding

energy) calculations since particle separation energies can be easily deduced.

There are two important theoretical frameworks for global mass calculations. Microscopic

HF or HFB calculations with sophisticated effective density dependent interactions are very

successful in this field. In the best HFB mass formula so far [2] the rms error is 674 keV

[3]. In earlier HF calculations [4, 5] this number was somewhat larger, namely 805 keV and

822 keV [3]. In order to achieve this improved fit a new parameterization of the effective

nucleon-nucleon interaction has been introduced and the pairing interaction was treated

differently than in the earlier calculations.

Surprisingly a more simple alternative procedure in the framework of the so called macro-

scopic microscopic (MM) formalism can compete with the microscopic calculations in the

calculation of the binding energies. The rms error in the MM calculation is 676 keV. We

may say that the quality of the microscopic and MM methods are the same. Despite the

almost identical global fits however the microscopic and MM methods show considerable

differences when the neutron drip line is approached [3].

The key quantity of the MM calculations is the shell correction. The concept of the

shell correction was suggested long time ago by Strutinski [6, 7] and it is still in use. E.g.

in a recent global mass calculation [8] the basic ingredient of the shell correction method

the smoothed single particle density is calculated in a semi-classical way by the Wigner–

Kirkwood expansion. The other elements of the Strutinski method was not altered.

Since the invention of the shell correction there were several refinements of the original

method. Besides the original energy averaging, a smoothing in the particle number space

was introduced [9, 10]. Even a combination of the two averaging spaces was considered [11].

The particle mean field, the simple harmonic oscillator or Nilsson potential was replaced

in the calculations by more realistic phenomenological forms in which the spectrum has a
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continuum beside the discrete single particle levels. The treatment of the single particle level

density due to the continuum was a long standing problem [12, 13] but an elegant solution

was finally reached [14, 15].

A large part of the uncertainty due to the proper choice of the technical parameters

of the smoothing method has been removed by introduction of the generalized Strutinski

procedure[15, 16], which made it possible to calculate reliable shell correction values for

medium and heavy nuclei, where the smoothed level density has a long region with linear

energy dependence. As it will be discussed in Sec. IV., for lighter nuclei the length of the

linear region is reduced due to the reduction of the number of the occupied shells and the

increase of the shell gap. For light nuclei the lower and upper ends of the spectrum distort

linearity, therefore the method is not appropriate for light nuclei.

The main goal of this work is to develop a new method which is free from this limitation

and is applicable for the whole nuclear chart, even in the vicinity of the two drip lines. We

are solving this problem by introducing a finite range smoothing instead of the infinite range

Gaussian smoothing used in the Strutinski method.

The paper is organized as follows. In Sec. II. we recapitulate the formalism of the

calculation of the shell correction. In Sec. III. we describe the standard Strutinski method

with the plateau condition. In Sec. IV. we do the same with the generalized Strutinski

procedure, what we want to replace in this work. In Sec. V. we describe the new method

with finite range smoothing in details. In Sec. VI we apply the new method for several

nuclei and calculate shell corrections for neutrons and protons. Finally in Sec. VII. we end

with the main conclusions of the paper.

II. CALCULATION OF THE BINDING ENERGY BY USING THE SHELL COR-

RECTION.

The binding energy of an atomic nucleus composed of A = N + Z nucleons (N neutrons

and Z protons) B(N,Z) can be calculated in the microscopic-macroscopic model (MM) as

B(N,Z) = Emacr(N,Z) + δE(N,Z) , (1)

where Emacr(N,Z) is the binding energy calculated in the macroscopic model (e.g. liquid

drop or droplet model) and δE(N,Z) is the shell correction. While Emacr(N,Z) is a smooth
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function of the number of nucleons, the shell correction takes care of the shell fluctuations

of the binding energy which is missing from the macroscopic model. Shell fluctuations are

present in any microscopic model. E.g. the shell correction can be calculated from sin-

gle particle energies of self-consistent Hartree-Fock and relativistic mean filed calculations

[17, 18]. In Ref. [18] shell correction calculated on the single particle energies was used

to generate a smooth energy from the result of these microscopic calculation and the typi-

cal phenomenological parameterization of the microscopically calculated macroscopic energy

terms were analyzed.

In the present work we use the simplest i.e. the independent particle shell model to

generate the single particle energies in a phenomenological nuclear potential for the sake of

simplicity only, since the smoothing procedure could be tested equally well on the result of

this simple model. In this model we treat neutrons and protons separately. In this case the

shell correction

δE(N,Z) =
∑

τ=ν,π

δEτ (Nτ ) = δE(N) + δE(Z) (2)

is the sum of the shell corrections δEτ (Nτ ) calculated for neutrons: τ = ν with Nν = N

and for protons τ = π with Nπ = Z . In what follows we shall discuss the calculation of the

shell correction δEτ (Nτ ) for a sort of nucleons only.

The shell correction can be estimated as the difference of the shell model binding energy

Eτ
sp and its smoothed counterpart Ẽτ calculated also in the shell model.

δEτ = Eτ
sp − Ẽτ . (3)

Here the shell model binding energy

Eτ
sp =

Nτ∑

j=1

Eτ
j (4)

is a sum of the single particle energies Eτ
j of the lowest energy orbits, from Eτ

1 until the

Fermi-level. In the sum above we can take into account the ni-fold degeneracies of the shell

model orbits and use only the different single particle energies denoted by eτi

Eτ
sp =

∑

i

ni e
τ
i . (5)

The key quantity of the MM model is the smoothed energy Ẽτ therefore, we have to give

a unique definition for calculating it unambiguously. If we have the bound single particle
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energies: eτi , the density of the bound nuclear levels is

gτd(E) =
∑

i

ni δ(E − eτi ). (6)

The particle number as a functions of the energy E of the single nucleon considered is an

integral of the level density in Eq.(6), i.e. it is equal to the following step function:

nτ (E) =

∫ E

−∞
gτd(e)de =

∑

i

ni Θ(E − eτi ) , (7)

where Θ(x) is a Heaviside function of the form:

Θ(x) =





0 , if x < 0

1 , if x ≥ 0 .
(8)

Since in the smoothing procedure we treat neutrons and protons on the same footing, we

can drop the τ index for a moment. ( We shell include it later again when it is needed to

avoid ambiguity.) We can calculate the smoothed level density g̃(E) from the level density

in Eq.(6) by folding it with a properly selected smoothing function: fp(x). The smoothing

function spreads the energy of a discrete level over a certain energy range characterized by

the smoothing range parameter γ. Therefore, the smoothed level density is

g̃(E) =
1

γ

∫ +∞

−∞
g(e) fp

(
e− E
γ

)
de . (9)

The smoothing function in Eq.(9) is usually a product of a weight function w(x) and a

polynomial hp(x) of degree p

fp(x) = w(x) hp(x). (10)

The later is called as curvature correction polynomial. Since the smoothing function fp(x) =

fp(−x) is an even function of x, for an even weight function w(x) the polynomial hp(x)

should also be even and the coefficients of the odd terms in it should be equal to zero.

Therefore, the curvature correction polynomial has the form:

hp(x) =
∑

i=0,2,...,p

cix
i . (11)

The ci coefficients of the curvature correction polynomial hp(x) are determined from the so

called self-consistency condition [19], which requires that the smoothing should reproduce

the original function if it is a polynomial gn(x) with degree n ≤ p+ 1:

gn(x) =

∫ +∞

−∞
gn(x′) fp(x− x′)dx′ . (12)
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We calculate the smoothed energy by using the smoothed level density in Eq.(9) :

Ẽ =

∫ λ̃

−∞
ε g̃(ε)dε . (13)

The smoothed Fermi-level λ̃ is calculated from the condition that the number of neutrons

and protons, i.e. the particle number is given:

N =

∫ λ̃

−∞
g̃(ε)dε . (14)

The smoothed Fermi-level λ̃ is different from the Fermi-level λ because the level density has

been modified by the smoothing.

III. STANDARD STRUTINSKI METHOD WITH PLATEAU CONDITION

Strutinski used a smoothing function with a Gaussian a weight function

w(x) =
1√
π

exp(−x2) , (15)

and it can be shown that the curvature correction polynomials for a weight function of

Gaussian shape are the associated Laguerre-polynomials

hp(x) = L
1/2
p/2(x2) . (16)

Therefore, in the standard Strutinski method the smoothing function is

fp(x) =
1√
π

exp(−x2)L
1/2
p/2(x2) . (17)

For nuclei lying on the bottom of the stability valley the single particle potential can be

approximated by a simple harmonic oscillator (h.o.) form. For a nucleus with mass number

A the distance of consecutive shells can be expressed by the well known rule [20]

~Ω0 = 41 A−1/3 [MeV ] . (18)

Shell structure of this simple h.o. model is modified by the presence of the spin-orbit

interaction and also by the non-spherical shape of deformed nuclei but the quantity in Eq.(18)

is still serves as a reasonably good measure for the shell structure. An attractive feature of
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the h.o. potential is that the shell correction δE(γ, p) as a function of the smoothing range

γ shows a wide plateau in which the

∂δE(γ, p)

∂γ
= 0 (19)

plateau condition is fulfilled. More precisely, the fulfillment of the plateau condition is valid

if at the same time the values belonging to the plateau are practically independent of the p

value used. It was observed that the plateau condition is fulfilled for h.o. potential. Since

γ and p are technical parameters of the smoothing procedure and they have no physical

meaning, it is natural to expect that the definition of the smoothed quantities should not

depend strongly on these values. Therefore, the shell correction calculated for the h.o.

potential is well defined. This nice feature of the h.o. potential is related to the fact that

this potential has only bound states (even at high positive energy values). For potentials

which are similar to the harmonic oscillator potential e.g. the Nilsson potential we can always

find regions for γ where the plateau condition is fulfilled [12, 21]. Since these potentials have

only bound states (infinitely many) and no continuum the ending of the bound states does

not spoil the picture.

IV. GENERALIZED STRUTINSKI PROCEDURE FOR SPECTRA WITH CON-

TINUUM

However a more realistic single particle potential has a discrete spectrum with finite

number of bound states ei < 0 and a continuum of scattering states with E > 0 energy. The

full level density in this case is a sum of the level densities of the discrete states gd(E) and

that of the scattering states gc(E) forming the continuum

g(E) = gd(E) + gc(E). (20)

Now the smooth level density has to be calculated again with the prescription of Eq.(9).

It was realized by Brack and Pauli[21] that for this case the plateau condition can not be

satisfied since the δE(γ, p) curves, what we call plateau curves do not have wide plateaus,

where Eq.(19) is fulfilled. They searched for the minima δE(γp, p) of the plateau curves for

each p values and introduced the concept of local plateau condition. At the minima i.e. at

γ = γp Eq.(19) is certainly satisfied. An additional requirement of the local plateau condition
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is the approximate p-independence of the δE(γp, p) values, which is satisfied if the variation

of the δE(γp, p) values are small.

It was shown in Ref.[15] that sometimes even the local plateau condition might not be

fulfilled and the smoothing procedure of the standard Strutinski method might not able to

furnish us with well defined smoothed energy. A typical nucleus for which the local plateau

condition fails if the continuum part of the spectrum is taken into account is the 146Gd, as

one can see in Fig. 1. Although one can find minima for each plateau curves, the shell

correction values at these minima vary too much (even an approximate p-independence is

not hold). Therefore it is not surprising that the δE(γp, p) values deviate considerably from

the semi-classical value.

In order to cure this difficulty in the work [15] a modified plateau condition was suggested.

In the modified plateau condition the plateau condition in Eq.(19) is replaced by the require-

ment that in a certain energy region the smoothed level density should be fitted well by a

straight line.

The shell correction δE(γp, p) for a given p should be calculated with those γp value for

which the smoothed level density can be fitted best by a linear function: y(E) = aE+ b in a

certain energy range: [el, eu]. So we should find the minimum of the function in the variable

γ for each p value

χ2(γ, p) =
nu∑

i=1

[
g̃(qi, γ, p)− y(qi)

]2

. (21)

Here qi for i = 1, .., nu is a mesh of the energy interval [el, eu] used, and γp is the value where

the function χ2 has its minimum at a given p-value. To get rid of the shell fluctuations the

length of the interval has to be larger than the estimated shell gap

eu − el = 1.5 ~Ωo . (22)

Having selected the proper γp value for a set of p values between pmin = 6 and pmax = 14,

the mean value and the variation of the corresponding δE(γp, p) values have to be calculated

as follow:

δE =
2

(pmax − pmin + 2)

∑

p=pmin,pmin+2,...,pmax

δE(γp, p) , (23)

σ =

√
2

(pmax − pmin + 2)

∑

p=pmin,pmin+2,...,pmax

(δE(γp, p)− δE)2 . (24)
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Since in Ref.[15] this variation was reasonably small for most of the nuclei, the mean in

Eq.(23) was used to define the shell correction and the variation in Eq.(24) was considered

as an uncertainty of the method. The procedure described above was called as a generalized

Strutinski procedure.

In order to illustrate the use of the modified plateau condition we present the smoothed

level densities for the 146Gd nucleus in Fig. 2. The lower and upper ends of the energy

interval in which the best linear fit of the g̃(E) is required are shown by filled triangles on

the E-axis. Practically no p-dependence of the g̃(E) curves can be observed in the [el, eu]

interval where g̃(E) is apparently behaves as a linear function of E. Some p-dependence can

only observed at around E ≈ −10 MeV being a bit above the λ̃ value and at higher energy in

the E = 0 MeV region which has no influence on the shell correction. The large bump of the

smoothed level density around E = 0 MeV is the effect of the higher end of the spectrum.

In the positive part of the spectrum only a few neutron resonance contribute to the level

density and their effect is smoothed by the smoothing parameters which are the abscissas

of the filled circles in Fig.1. These γp values are between 10 − 15 MeV, therefore the end

effect is spread well below the threshold. The effect of the lower end is less pronounced but

can be seen at E < −35 MeV. Here the derivative of g̃(E) with respect to E changes and at

E < −45 MeV g̃(E) goes below zero for a while. The main feature of the g̃(E) is that the

linearity required in Eq.(1) holds only in a certain distance from the lower and upper ends

of the spectrum.

In Fig.1 the filled circles on the different p curves show the (γp, δEn(γp, p)) points where

the γp values are those where the function in Eq.(21) has its minimum. One can see from

the circles that these shell correction values have much smaller variation (σ) than the shell

correction values at the minima of the curves. Moreover the mean of the δEn(γp, p) values

denoted by circles is in good agreement with the dotted line showing the semi-classical

value. In the work [15] it was found that this situation is quite typical and the generalized

Strutinski procedure gave similar values to the result of the semi-classical averaging based on

the Wigner–Kirkwood expansion [21–27] in those cases in which the later could be applied.

Moreover the generalized Strutinski procedure gave similar results to that of the standard

one for all cases where the plateau condition is fulfilled. But it gave a well defined value for

the smoothed energy even in cases like 146Gd where we can not really speak about plateau.

It turned out only later, in the work [16] where the generalized Strutinski procedure was
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used for deformed nuclei, that the function in Eq.(21) might have more than one minimum

in γ. It was concluded in that the minimum at the smaller γ value should be selected.

An uncertainty of the generalized Strutinski smoothing procedure is that the results are

slightly depend on the position of the [el, eu] energy interval used. For medium and heavy

nuclei the uncertainty of the generalized Strutinski procedure was always below 250 keV. To

get this small variation, the energy interval [el, eu] was adjusted to the smoothed Fermi-level,

and the upper end of the energy interval was eu = λ̃ − ~Ω0. If the interval was shifted up

to have eu = λ̃ and the length was kept the same as in Eq.(22) a variation of the shell

correction by around 400 keV was observed. This uncertainty was still reasonably small and

it was comparable to the typical deviation from the semi-classical result.

The dependence on the position of the interval become stronger for light nuclei. If the

mass number A is reduced, the distance of the shells estimated in Eq.(18) increases and the

length of the interval in Eq.(22) also increases. We should use larger and larger γ values

for smoothing the shell fluctuations. On the other hand the region in which g̃(E) is linear

becomes shorter and shorter because the effect of the lower end shifts higher and that of the

higher end shifts lower. Therefore for small A there is not enough space where the required

linear region could develop. The linearity of g̃(E) function is spoiled by the end effects. This

explains why the generalized Strutinski procedure breaks down for light nuclei.

Therefore, in this work our goal is to find a new smoothing procedure which is less sensitive

to the end effects, but it still keeps the advantages of the generalized Strutinski procedure

i.e. the shell correction is practically independent of the p values (σ is small). An additional

requirement is that Ẽ resulted by the new procedure should not be too different from the

result of the semi-classical procedure (Wigner–Kirkwood method) if the later approach can

be applied.

V. NEW SMOOTHING PROCEDURE

A disadvantage of the smoothing procedures used so far is that the Gaussian weight

function w(x) used has an infinite range, therefore, the effect of an energy ei is smeared to

the whole energy axis from −∞ to ∞. Therefore, the effect of the lower and upper ends of

the spectrum influences the whole region of the smoothed level density and also the shell

correction δE. In this work we try to reduce the end effects in these quantities by using
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weight functions which have only a finite range. One possible candidate for a weight function

with finite range is a shape

w(x) =




ke
− 1

1−x2 , if |x| < 1

0 , if |x| ≥ 1.
(25)

The value of the normalization constant k should be chosen from the condition that

1 =

∫ +1

−1

w(x) dx . (26)

One advantage of the form in Eq.(25) is that all derivative of that function are continuous

at |x| = 1, so the weight function continues smoothly to the regions where it is equal to zero.

The effect of the smoothing with this form is localized to the x ∈ [−1, 1] interval. In order to

use the new smoothing function we have to recalculate the curvature correction polynomials

hp(x) in Eq.(11) for the new weight function (in Eq.(25)). The recalculated polynomials

hp(x) will be different from the one in Eq.(16) and they should satisfy the self-consistency

condition in Eq.(12), with the finite-range weight function. As it was shown in Ref.[19], the

coefficients ci of the curvature correction polynomials in Eq.(11) are solutions of the system

of linear equations:
p∑

i=0

ciai+j = δj,0 0 ≤ j ≤ p , (27)

where the coefficients al are the integrals:

al =

∫ 1

−1

w(x)xl dx . (28)

The integration is over the interval where the weight function w(x) is different from zero.

We present the coefficients ci for the p ∈ {0, 2, 4, 6} values in Table I for illustration

purposes. In Fig. 3. we present the shape of the smoothing function fp(x) for a few p

values and the finite range weight function in Eq.(25) w(x) = f0(x). In order to show the

difference to the standard Gaussian case, we present the similar curves with the Gaussian

weight function in Fig.4. For both weight functions for p > 0 the curvature correction

polynomials hp(x) have p = 2m zeroes:

hp(x
(p)
j ) = 0, j = ±1, ...,±m, x−j = −xj . (29)

One can observe the positions of the roots x
(p)
j of the Eq.(29) in Fig. 3 and Fig.4. For a

fixed p value it is convenient to arrange the positive roots of Eq.(29) so that they form a
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monotonous series:

0 < x
(p)
1 < x

(p)
2 < ... < x(p)

m . (30)

In the smoothing function fp(x) in Eq.(10) the most important part of the smoothing is

produced by the central region in hp(x): x ∈ [−x(p)
1 , x

(p)
1 ], determined by the first root x

(p)
1 .

One can see in the figures that for p > 0 values x
(p+2)
1 < x

(p)
1 i.e. the value of x

(p)
1 decreases

when p increases.

The finite range smoothing has the advantage that the effect of a certain single particle

energy ei vanishes beyond the interval E ∈ [ei − γ, ei + γ]. Therefore, the smoothed level

density becomes exactly zero for energies lying below (e1− γ), while the Gaussian oscillates

around zero. This oscillation character appears at any value of the smoothing parameter.

If we go to higher E-values, we can smooth the oscillatory character of the g̃(E) if we use

large enough γ values in the smoothing function with Gaussian weight function. This is not

the case however, if we smooth with finite range weight function, where some undulation

in g̃(E) remains even if we use large smoothing range parameters. Therefore, it can not be

well approximated by a straight line as it was in the generalized Strutinski procedure.

This seems to be an important difference between the smoothed level densities calculated

by using Gaussian or finite range smoothings.

We calculate the smoothed energy in Eq. (13) by using the finite range smoothing

functions, for a range of γ ∈ [γmin, γmax] and p ∈ {pmin, pmin + 2, ..., pmax} values. This

allows us to study the plateau curves. For p = 0 the plateau curve is an monotonously

increasing function, therefore, neither the plateau condition in Eq.(19) nor the local plateau

condition can be applied. (There is no γ value where the derivative is zero.) This result

show the necessity of using curvature correction polynomials.

For p > 0 plateau curves have minima (and maxima) where the plateau condition in

Eq.(19) is fulfilled locally. However the plateau curves might have several minima and we

have to find the proper one among those minima. A necessary condition of the smoothing

is that the smoothed level density should not reflect the shell structure of the single particle

levels. Therefore, in the smoothing procedure we have to start searching for the minimum

of δE(γ, p) from a (p-dependent) γmin value with which the shell structure has already

disappeared.

The most important characteristics of the single particle spectrum is the largest gap

between the occupied levels. Therefore, we have to determine the largest distance between
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the consecutive occupied levels of the N particles (shell gap)

G = max
{

(ei+1 − ei)
}
. (31)

This G value is a more accurate measure of the shell structure of the single particle energies

than the ~Ω0 in Eq.(18). In order to estimate a reasonable γmin value, we have to determine

the effective width of the smoothing function with a given p. The effective width corresponds

to the central peak of hp(x) in the interval x ∈ [−x(p)
1 , x

(p)
1 ]. Since the effective range of the

smoothing function decreases for increasing p, therefore, for larger p value one should use

larger γ values for having the same smoothing effect. In order to compensate this effect, it

is worthwhile to introduce a renormalized smoothing range as follows:

Γp = x
(p)
1 γp , (32)

in which the p dependence of the smoothing is considerably reduced.

In order to smooth the fluctuations due to the major shells this Γp range should be larger

than the shell gap Γp > G. To achieve this we introduce a factor F > 1, and calculate

a minimal value for the renormalized range Γp,min = FG. (We observed that the optimal

value for the factor F is F = 1.5− 2 for light and F = 2.5− 3.5 for heavier nuclei.) Having

fixed this minimum we search for the first minimum of δE(γ, p) for

γ ≥ γp,min =
FG

x
(p)
1

. (33)

This criteria serves as a guide to select the proper minimum of the plateau curve δE(γp, p).

For most nuclei the plateau curves have multiple minima at γp,1 < γp,2 <, .., < γp,l. The

number of minima l generally increases when p increases. We observed that for p = 2 we

have at most two minima, i.e. l = 1 or l = 2 and one of them satisfies the following condition:

Γ2,l = x
(2)
1 γ2,l ∼ FG . (34)

For higher p values the proper minimum should be close to this value since we reduced the p

dependence considerably by using the renormalized smoothing range. Therefore, we have to

select the k-th minimum, for which Γp,k = x
(p)
1 γp,k ≈ Γ2,l . If we select the smoothing range

according to this criteria then the variation of the corresponding δE(γp,k, p) values will be

small.
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VI. DETAILS OF THE NUMERICAL CALCULATIONS

We used Saxon-Woods (SW) potential with spin-orbit term. For protons it was comple-

mented by a Coulomb potential of uniformly charged sphere with diffuse edge. (To have

this form is necessary for being able to calculate semi-classical results for comparison.) The

parameters of the potentials were that of the so called universal potential given in Ref.[28].

The depth of the central potential for neutrons (τ = ν) t3 = 1/2 or for protons (τ = π)

t3 = −1/2

Vτ (Z,N) = −V
[
1− 2κt3

N − Z
A

]
, (35)

where κ = 0.86, V = 49.6 MeV. The depth of the spin-orbit potential

Vso = −λsoVτ
4

( ~
2µc

)2

, (36)

with the reduced mass µ of the nucleon and λso = 35(36) for neutrons(protons). The

diffuseness was a = aso = aC = 0.7 fm the same for all potential terms. The radius

parameters were r0 = 1.347 fm, r0 = rC = 1.275 fm for neutrons and protons, respectively,

while for the spin-orbit term rso = 1.31(1.32) fm for neutrons(protons). These potential

parameters might not be optimal for the individual nuclei but give a good general N , Z

dependence all over the nuclear chart at least for our purpose for testing our method.

The single particle energies ei of the single particle Hamiltonian were calculated by diag-

onalizing the matrix of the Hamiltonian in h.o. basis having twenty principal h.o. quanta

and maximal orbital angular momentum nine. (An increase of the size of the basis did not

change the results.) The same basis was used for diagonalizing the free Hamiltonian (with-

out nuclear potential terms) to get the positive energies e
(0)
i needed to include the effect

of the continuum in the Green’s function method described in Ref.[16] in detail. From the

difference of the smoothed level densities of the spectra of the true and the free Hamiltonians

the effect of the artificial nucleon gas cancels out and we get the same smoothed continuum

level density as we could get by smoothing the continuum level density derived from the

derivative of the scattering phase shifts [16].

In Fig. 5 we show the plateau curves for the 146Gd nucleus with the finite range smoothing

and the result of the Wigner–Kirkwood calculation as a reference. The range of the p values

used in the present work was taken to be the same as in Ref. [15] in order to make comparison

with those results possible. Using the new method with the finite range smoothing we are
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able to use the local plateau condition i.e. to choose the γp values where the δE(γ, p) curves

have minimum for all the plateau curves shown. The shell correction values at the minima of

the curves agree very well (within 500 keV) with the horizontal line representing the result

of the semi-classical calculation. Since the σ variation of the δE(γp, p) values in Eq. (24) is

small the shell correction value calculated from the mean in Eq. (23) is well defined.

In Fig.6 we show an example for the double magic 132Sn nucleus where the σ variation is

smaller that 200 keV and the deviation from the semi-classical value ∆ is less than 1 MeV.

This is the largest deviation from the cases listed in Table II. One can observe in both Figs.

5 and 6, that the γp values, where the minima of the δE(γp, p) appear are increasing with

increasing p values. This can be compensated to some extent if we use the renormalized

smoothing range Γp defined in Eq.(32).

The δE(γp, p) plateau curves are very similar for most nuclei we calculated if we select the

values of the first γp minima of the different p curves beyond γp,min in Eq.(33). We identify

the shell correction with the mean values of the δE(γp, p) in Eq. (23) and its σ variation

with the uncertainty of the shell correction.

In Table II we show the shell corrections for neutrons and for a set of medium and

heavy nuclei resulted by the new smoothing procedure δEn(FR), and that of the generalized

Strutinski procedure δEn(G). Their σ variations are in the third and in the fifth columns.

In the last two columns we compare their values to that of the semi-classical procedure given

in Ref.[13]. The differences from δEsc are below 1 MeV for the new procedure which is a

bit better agreement than it is by using the generalized Strutinski procedure. The average

of the differences are 0.6 MeV and 0.8 MeV for these two procedure, respectively.

In Table III we show the similar results for protons, where the average of the differences

from the semi-classical results are 0.4 MeV and 0.6 MeV for the new procedure and for

the generalized Strutinski procedure, respectively. So the new procedure can be applied for

protons as well.

These differences are not large neither for neutrons nor for protons. The result of the new

procedure is generally closer to the semi-classical result if we approach the drip lines. See

e.g. the 78Ni, 122Zr, 124Zr nuclei for neutrons and the 180Pb nucleus for proton. Therefore,

we believe that the finite range smoothing allows us to approach the drip line closer than

we can approach it by using the infinite range Gaussian weight function.

The basic advantage of the new method is however, that the determination of the proper
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shell correction value is better defined. The values resulted by the new procedure are free

from most of the uncertainties of the generalized Strutinski smoothing procedure. E.g. they

do not depend on the position of the interval where the linearity of the smoothed level

density is required.

The most important advantage of the new procedure is that it can be applied for light

nuclei where, as we have discussed in Sec.IV. the generalized Strutinski procedure can not

be applied.

The results of the new method for light nuclei are shown in Table IV for neutrons and

in Table V for protons. One can see that the agreement with the semi-classical values are

as good it was for heavier nuclei. We received specially good agreement for oxygen isotopes

even at the neutron drip line.

In Fig.7 we show the neutron plateau curves for the new double magic nucleus 24O as

functions of the renormalized smoothing range parameter Γp, for p = 6, 8, ..., 14. The semi-

classical result is the dotted horizontal line. The minima of each curve are denoted by filled

circles on the corresponding curves. One can see that the δEn(Γp, p) values denoted by

circles are between -0.9 and -2.3 MeV and their Γp values are quite similar at Γp ∼ 8MeV .

The variation of the δEn(Γp, p) values are σ ∼ 0.5MeV and their mean value coincide with

the semi-classical value. This is certainly an accident but one can see that the ∆ value is

small for the other O isotopes too. Observe also that the positions of the minima of the

different p curves in this figure scatter much less in Γ (∼ 15 %) than the locations of the

minima in Fig.6 where the smoothing range γ was used (∼ 90 %) or in Fig.5 where the

smoothing range γ was used (∼ 70 %).

Therefore, we believe that the finite range smoothing allows us to approach the drip line

closer than we can approach it by using the infinite range Gaussian weight function.

VII. CONCLUSION

The new method uses a finite range smoothing function which makes it possible to localize

the effect of a single particle state with energy ei to a finite energy range: [ei − γ, ei + γ].

This localization makes possible to extend the region of applicability of the method to closer

to the end regions of the spectrum. This helps in calculating shell corrections for slightly

bound nuclei lying closer to drip lines and also for lighter nuclei, where the shell gap is large,
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therefore, larger values of γ values are needed to smooth the shell structure out. The new

method works equally well for calculating neutron and proton shell corrections.

We introduced a renormalized smoothing range in which the p dependence of the smooth-

ing range was reduced considerably. Using this renormalized range the selection of the proper

minimum of the plateau curves was easier.

Therefore, we recommend the use of the new procedure with finite range smoothing first

of all for light nuclei, where the generalized Strutinski method can not be applied. We also

recommend its use in regions being close to drip lines where the finite range smoothing seems

to work somewhat better than the generalized Strutinski method.
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Nucleus δEn(FR) σ δEn(G) σ δEsc ∆FR ∆G

68Ni 0.16 0.12 0.50 0.07 0.81 0.65 0.31

78Ni −3.59 0.07 −2.78 0.16 −4.21 0.62 1.43

90Zr −7.42 0.06 −7.35 0.17 −6.82 0.60 0.53

122Zr −5.92 0.11 −4.52 0.15 −6.33 0.41 1.81

124Zr −4.12 0.12 −3.25 0.13 −4.35 0.23 1.10

100Sn −8.16 0.20 −6.95 0.23 −7.50 0.66 0.55

132Sn −9.85 0.14 −8.58 0.10 −8.87 0.98 0.29

146Gd −10.26 0.07 −10.33 0.20 −9.79 0.47 0.54

TABLE II: Neutron shell corrections δEn and their variations σ calculated using the finite range

weight function (FR) and the generalized Strutinski procedure G in comparison with the semi-

classical shell correction δEsc = Esc − Ensp calculated for several nuclei. Their deviations from the

semi-classical result ∆FR = |δEsc−δEn(FR)|, ∆G = |δEsc−δEn(G)| are also shown. All energies

are in MeV units.

Nucleus δEp(FR) σ δEp(G) σ δEsc ∆FR ∆G

90Zr 1.59 0.19 1.88 0.20 1.44 0.15 0.44

100Sn −7.47 0.064 −7.42 0.14 −7.01 0.46 0.41

132Sn −7.39 0.068 −6.04 0.12 −6.64 0.75 0.60

146Gd 4.89 0.10 5.28 0.24 4.52 0.37 0.76

180Pb −8.94 0.15 −7.78 0.04 −8.62 0.32 0.84

208Pb −7.57 0.07 −6.73 0.03 −7.29 0.28 0.56

TABLE III: Proton shell corrections δEp and their variations σ calculated using the finite range

weight function (FR) and the generalized Strutinski procedure G in comparison with the semi-

classical shell correction δEsc = Esc − Ensp calculated for several nuclei. Their deviations from the

semi-classical result ∆FR = |δEsc−δEp(FR)|, ∆G = |δEsc−δEp(G)| are also shown. All energies

are in MeV units.

19



10 15 20 25 30 35 40
γ     [MeV]

-20

-15

-10

-5

0

δE
n(γ

)  
   

[M
eV

]

p =  6
p =  8
p = 10
p = 12
p = 14
W-K

FIG. 1: Neutron shell correction δEn(γ, p) for the nucleus 146Gd as a function of the smoothing

range γ calculated for p = 6, .., 14 by using the Gaussian weight function for the smoothing functions

fp. Filled circles on the different curves denote the (γp, δEn(γp)) points, where γp values belong to

the minima of the function in Eq.(21) and the δEn(γp, p) values are the results of the generalized

Strutinski procedure. Dotted horizontal line shows the value of the semi-classical value δEsc =

Esc − Ensp.
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FIG. 2: Energy dependence of the smoothed level densities calculated in the generalized Strutinski

procedure for p = 6, 10, 14 by using a Gaussian weight function for the smoothing functions fp for

the nucleus 146Gd . The lower and upper ends of the interval [el, eu] in which the condition of the

best linear fit is applied are shown by triangles on the E− axis.
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FIG. 3: Shapes of the finite range smoothing function fp(x) for p = 0, 2, 4, 14. Note that f0(x) =

w(x).

Nucleus δEn σ δEsc ∆

16O −1.63 0.04 −1.57 0.06

18O 2.67 0.04 3.01 0.34

20O 3.25 0.24 3.11 0.14

22O 0.12 0.53 0.09 0.03

24O −1.68 0.49 −1.69 0.01

20Ne 3.07 0.56 3.01 0.06

40Ca −1.77 0.35 −0.66 0.97

48Ca −2.91 0.24 −2.59 0.32

TABLE IV: Shell correction δEn, the variation σ in Eq.(24) and the semi-classical shell correction

δEsc = Esc − Ensp calculated for several nuclei. The deviations ∆ = |Esc − Ẽ| are also shown. All

energies are in MeV units.
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FIG. 4: Shapes of the smoothing function fp(x) with Gaussian weight function for p = 0, 2, 4, 14.

Note that the Gaussian weight function is f0(x) = w(x).

Nucleus δEp σ δEsc ∆

16O −1.65 0.03 −1.44 0.21

18O −1.65 0.10 −1.66 0.01

20O −2.09 0.19 −1.90 0.19

22O −2.30 0.15 −2.14 0.16

24O −3.10 0.66 −2.36 0.74

40Ca −1.62 0.12 −0.91 0.71

48Ca −1.70 0.19 −1.44 0.26

48Ni −0.80 0.36 −1.23 0.43

56Ni −3.67 0.29 −3.45 0.22

TABLE V: Shell correction δEp, the variation σ in Eq.(24) and the semi-classical shell correction

δEsc = Esc − Epsp calculated for several nuclei. All energies are in MeV units.
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FIG. 5: Neutron shell corrections δEn(γ, p) for the nucleus 146Gd as a function of the smoothing

range γ calculated for p = 6, .., 14 by using the finite-range weight function for the smoothing

functions fp. Dotted horizontal line shows the value of the semi-classical value δEsc = Esc −Ensp.
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FIG. 6: Neutron shell corrections δEn(γ, p) for the nucleus 132Sn as a function of the smoothing

range γ calculated for a set of p-values by using the finite-range smoothing function fp. Dotted

horizontal line shows the value of the semi-classical value δEsc = Esc − Ensp.
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FIG. 7: Neutron shell correction δEn(Γp) for the nucleus 24O as a function of the renormalized

smoothing range Γp calculated for a set of p-values by using the finite-range smoothing function

fp. Dotted horizontal line shows the semi-classical value: δEsc = Esc − Ensp.
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