
FUNCTIONAL EQUATIONS ARISEN FROM THE
CHARACTERIZATION OF BETA DISTRIBUTIONS

KÁROLY LAJKÓ AND FRUZSINA MÉSZÁROS

Abstract. Two functional equations, introduced by J. Weso lowski [8] related

to an independence property for beta distributions, are investigated without
any regularity conditions. The measurable solutions of equation (3) satisfied

almost everywhere are also given.

1. Introduction

Let X be a Beta-distributed random variable with parameters p and q, where p
and q are fixed positive numbers.

It is known that its density function is

f (x) = βp,q (x) =

{
1

B(p,q)x
p−1 (1− x)q−1 if x ∈ (0, 1)

0 if x /∈ (0, 1) ,

where

B (p, q) =
∫ 1

0

xp−1 (1− x)q−1
dx

is the beta function.
Recently J. Weso lowski (see [8]) studied a new characterization of beta distrib-

ution by the transformation

ψ : (0, 1)2 → (0, 1)2 , ψ (x, y) =
(

1− y

1− xy
, 1− xy

)
. (1)

A possible characterization of univariate distributions is based on the following
general Transformation Theorem.

Theorem 1. Let X = (X1, . . . , Xn) be an absolutely continuous random variable
with density function f : Rn → R, which is zero outside of a region Ωx ⊂ Rn. Let
ψ : Ωx → Ωy ⊂ Rn be a one-to-one transformation onto Ωy and denote ψ−1 its
inverse transformation.

If the Jacobi determinant J (y) = det
(
∂ψ−1(y)
∂y

)
exists, is continuous and does

not change sign in Ωy, then the random variable Y = ψ (X) is absolutely continuous
with density function g such that

g (y) =
{
f

(
ψ−1 (y)

)
|J (y)| if y ∈ Ωy (or y ∈ Ωya.e.)

0 if y ∈ Rn \ Ωy.
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The function ψ defined in (1) is bijective, ψ−1 = ψ and the Jacobi determinant
of ψ−1 is of the form

J (u, v) =
−v

1− uv
(u, v ∈ (0, 1)) .

It is easy to see that J is continuous and does not change sign on (0, 1)2.
Let X,Y be absolutely continuous and independent random variables with range

in (0, 1). Let us denote the densities by fX , fY respectively. Then, by the Trans-
formation Theorem, the random variable

(U, V ) = ψ (X,Y ) =
(

1− Y

1−XY
, 1−XY

)
is absolutely continuous with density function g defined by

g (u, v) := fX

(
1− v

1− uv

)
fY (1− uv)

v

1− uv
(2)

for all (u, v) ∈ (0, 1)2.
Weso lowski mentioned that if the random variables X and Y have beta distri-

bution with density functions

fX (x) = βp,q (x) and fY (x) = βp+q,r (x) , x ∈ (0, 1) ,

respectively, then, setting these density functions equal to the right-hand side of
(2), one finds out easily that the left-hand side of (2) can be factored into a function
of u and a function of v, both functions are beta densities with parameters r, q and
r + q, p, respectively.

Weso lowski asked a question about the converse of this observation: Assume
that X and Y are independent and the random vector (U, V ) = ψ (X,Y ) has
independent components. Is it true in this case that X,Y, U and V have beta
distribution?

This question has been answered in the affirmative by Weso lowski, assuming
that X,Y, U and V have strictly positive and locally integrable densities on (0, 1).

If U and V are independent with density functions fU , fV respectively, then
Weso lowski gets from (2) the functional equation

fU (u) fV (v) = fX

(
1− v

1− uv

)
fY (1− uv)

v

1− uv
, (u, v) ∈ (0, 1)2 (3)

for unknown density functions fX , fY , fU , fV : (0, 1) → R+. In fact, since density
functions are not uniquely determined (the density functions of a random variable
may differ on a set of measure zero), the independence of U and V yields that (3)
is valid only for almost every (u, v) ∈ (0, 1)2.

He determined the solution of (3) under the assumptions that the density func-
tions are strictly positive and locally integrable on (0, 1).

The investigations of Weso lowski are based on the locally integrable real solu-
tions g1, g2, α1, α2 : (0, 1) → R of the following general functional equation

g1

(
1− x

1− xy

)
+ g2

(
1− y

1− xy

)
= α1 (x) + α2 (y) (x, y ∈ (0, 1)) . (4)

He asked the measurable solution of (3) and the general solution of (4) too.
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The main aims of this paper are
(I) to give the general solution of (3) for functions fX , fY , fU , fV : (0, 1) → R+,

as well as the general solution of (4) without any regularity conditions,
(II) to determine the solution of (3) under the following more natural assump-

tions:
• the density functions are measurable,
• (3) is satisfied for almost every (u, v) ∈ (0, 1)2.

2. The general solution of (3)

To determine the general solution of (3) (and later the general solution of (4))
we need the following general result of Gy. Maksa (see [7]) in connection with the
generalized fundamental equation of information with four unknown functions.

Theorem 2. Let

D0 =
{

(x, y) ∈ R2 |x, y, x+ y ∈ (0, 1)
}
.

Functions F,G,H,K : (0, 1) → R satisfy the functional equation

F (x) +G

(
y

1− x

)
= H (y) +K

(
x

1− y

)
((x, y) ∈ D0) , (5)

if and only if

F (x) = l1 (1− x) + l2 (x) + a1 (x ∈ (0, 1)) ,
G (x) = l1 (1− x) + l3 (x)− l3 (1− x)− a1 − b2 (x ∈ (0, 1)) ,
H (x) = l1 (1− x) + l2 (1− x) + l3 (x)− l3 (1− x) + b1 (x ∈ (0, 1)) ,
K (x) = l1 (1− x) + l2 (x)− l3 (1− x) + b2 (x ∈ (0, 1)) ,

where li : R+ → R (i = 1, 2, 3) satisfies the Cauchy logarithmic equation

li (xy) = li (x) + li (y) (x, y ∈ R+) (6)

and a1, b1, b2 ∈ R are arbitrary constants.

Lemma 1. If the functions fX , fY , fU , fV : (0, 1) → R+ satisfy (3) then

fX (x) = exp [l1 (x) + l2 (1− x) + a1] (x ∈ (0, 1)) , (7)
xfU (x)
fV (x) = exp [−l1 (1− x)− l2 (x) + l2 (1− x)− b1] (x ∈ (0, 1)) , (8)

where li : R+ → R (i = 1, 2) satisfies (6) and a1, b1 ∈ R are arbitrary constants.

Proof. Equation (3) can be written in the form

ufU (u) fV (v) = fX

(
1− v

1− uv

)
uv

1− uv
fY (1− uv) (u, v ∈ (0, 1)) . (9)

Since

u,
uv

1− uv
, fU (u) , fV (v) , fX

(
1− v

1− uv

)
and fY (1− uv)

are positive for all u, v ∈ (0, 1), taking the logarithm of (9), we get that the functions
G1, G2, F1, F2 : (0, 1) → R defined by

G1 (u) = ln [ufU (u)] , G2 (u) = ln [fV (u)] , (10)

F1 (u) = ln [fX (u)] , F2 (u) = ln
[

u

1− u
fY (1− u)

]
,
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satisfy the functional equation

G1 (u) +G2 (v) = F1

(
1− v

1− uv

)
+ F2 (uv) (u, v ∈ (0, 1)) . (11)

Interchanging u and v in (11), we get

G1 (v) +G2 (u) = F1

(
1− u

1− uv

)
+ F2 (uv) (u, v ∈ (0, 1)) .

Subtracting this equation from (11), we obtain

(G1 −G2) (u)− (G1 −G2) (v) = F1

(
1− v

1− uv

)
− F1

(
1− u

1− uv

)
(u, v ∈ (0, 1)) .

Now insert in this equation 1−u
1−uv = x and 1−v

1−uv = y, then u = 1−x
y , v = 1−y

x ,
x, y ∈ (0, 1), x+ y > 1 and the functions G = G2 −G1, F1 satisfy the equation

F1 (x) +G

(
1− y

x

)
= F1 (y) +G

(
1− x

y

)
(x, y ∈ (0, 1) , x+ y > 1) .

By the substitutions x→ 1− x, y → 1− y, we get from this last equation that

F1 (1− x) +G

(
y

1− x

)
= F1 (1− y) +G

(
x

1− y

)
(x, y, x+ y ∈ (0, 1)) ,

i.e., the functions F : (0, 1) → R, F (x) = F1 (1− x) and G : (0, 1) → R satisfy the
functional equation

F (x) +G

(
y

1− x

)
= F (y) +G

(
x

1− y

)
(x, y, x+ y ∈ (0, 1)) . (12)

Equation (12) is a special case of equation (5) with H = F,K = G.
Thus, we get from the above mentioned theorem of Maksa that

F (x) = l1 (1− x) + l2 (x) + a1 (x ∈ (0, 1)) ,
G(x) = l1 (1− x) + l2 (x)− l2 (1− x) + b1 (x ∈ (0, 1)) ,

where the function li : R+ → R (i = 1, 2) satisfies the functional equation (6) and
a1, b1 ∈ R are arbitrary constants.

Finally, using the definition F1, F and G, we infer the statement of Lemma 1
and so (7) and (8) for fX (x) and xfU (x)

fV (x) respectively. �

On the other hand, by the substitutions
1− v

1− uv
= x, 1− uv = y ⇐⇒ u =

1− y

1− xy
, v = 1− xy,

we get from (3) the equation

xfX (x) fY (y) = fU

(
1− y

1− xy

)
xy

1− xy
fV (1− xy) (x, y ∈ (0, 1)) . (13)

Thus, similarly to Lemma 1, we get the following result.

Lemma 2. If the functions fX , fY , fU , fV : (0, 1) → R+ satisfy (3) (and so (13)),
then

fU (x) = exp [l3 (x) + l4 (1− x) + a2] (x ∈ (0, 1)) , (14)
xfX(x)
fY (x) = exp [−l3 (1− x)− l4 (x) + l4 (1− x)− b2] (x ∈ (0, 1)) , (15)
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where the function li : R+ → R (i = 3, 4) satisfies the functional equation (6) and
a2, b2 ∈ R are arbitrary constants.

Now we can formulate the main result of this part.

Theorem 3. Functions fX , fY , fU , fV : (0, 1) → R+ satisfy the functional equation
(3) if and only if

fX (x) = exp [l1 (x) + l2 (1− x) + a1] (x ∈ (0, 1)) , (16)
fY (x) = x exp [l1 (x) + l2 (x) + l3 (1− x) + a1 + b2] (x ∈ (0, 1)) , (17)
fU (x) = exp [l2 (1− x) + l3 (x) + a2] (x ∈ (0, 1)) , (18)
fV (x) = x exp [l1 (1− x) + l2 (x) + l3 (x) + a2 + b1] (x ∈ (0, 1)) , (19)

where function li (i = 1, 2, 3) satisfies the Cauchy logarithmic equation (6) and
a1, a2, b1, b2 ∈ R are arbitrary constants.

Proof. Using formulae in (7), (8) in Lemma 1 and (14), (15) in Lemma 2, we get
immediately (16), and that

fY (x) = x exp [l1 (x) + l2 (1− x) + l3 (1− x) + l4 (x)− l4 (1− x) + a1 + b2] (20)
fU (x) = exp [l3 (x) + l4 (1− x) + a2] (21)

fV (x) = x exp [l3 (x) + l4 (1− x) + l1 (1− x) + l2 (x)− l2 (1− x) + a2 + b1] (22)

for all x ∈ (0, 1).
On the other hand, a simple calculation gives that functions (16), (20), (21) and

(22) satisfy (3) iff

l4

[
(1− u) (1− v)uv

1− uv

]
= l2

[
(1− u) (1− v)uv

1− uv

]
(u, v ∈ (0, 1)) .

It is easy to see that the range of the function h : (0, 1)2 → R, h (u, v) = (1−u)(1−v)uv
1−uv

contains the open interval
(
0, 1

6

)
, thus l4 (t) = l2 (t) if t ∈

(
0, 1

6

)
, i.e. (l4 − l2) (t) = 0

if t ∈
(
0, 1

6

)
.

The function l4 − l2 : R+ → R satisfies the Cauchy logarithmic equation (6),
too. Thus (see [2], [3]) l4− l2 ≡ 0. This implies that functions (16), (20), (21), (22)
satisfy (3) if and only if l4 ≡ l2, which implies the statement of our Theorem 3. �

From Theorem 3, we can easily obtain

Corollary 1. The continuous (or measurable) functions fX , fY , fU , fV : (0, 1) →
R+ satisfy the functional equation (3) iff

fX (x) = ea1xp−1 (1− x)q−1 (x ∈ (0, 1)) , (23)

fY (x) = ea1+b2xp+q−1 (1− x)r−1 (x ∈ (0, 1)) , (24)

fU (x) = ea2xr−1 (1− x)q−1 (x ∈ (0, 1)) , (25)

fV (x) = ea2+b1xq+r−1 (1− x)p−1 (x ∈ (0, 1)) , (26)

where a1, a2, b1, b2, p, q, r ∈ R are arbitrary constants.
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Proof. By Theorem 3, the functions fX , fY , fU , fV : (0, 1) → R+ satisfy (3) iff they
are of the forms (16), (17), (18), (19), which implies easily that

l2 (x) = log
[

(1− x) fX (x) fU (1− x)
fV (1− x)

]
+ b1 − a1 (x ∈ (0, 1)) , (27)

l1 (x) = log [fX (x)]− l2 (1− x)− a1 (x ∈ (0, 1)) , (28)
l3 (x) = log [fV (x)]− l1 (1− x)− l2 (x)− log x− a2 − b1 (x ∈ (0, 1)) .(29)

By the continuity (or measurability) of functions fX , fU , fV , (27) implies that l2 is
continuous (or measurable) on (0, 1). Now, by the continuity (or measurability) of
l2 and fX , we get from (28) that l1 is continuous (or measurable) on (0, 1), too.
Finally (29), using the continuity (or measurability) of l1, l2 and fV , implies the
continuity (or measurability) of l3.

l1, l2, l3 : R+ → R satisfy the Cauchy logarithmic equation (6) and are conti-
nuous (or measurable) on (0, 1). These imply (see [2], [3]) that

l1 (x) = A1 log x, l2 (x) = A2 log x, l3 (x) = A3 log x (x ∈ R+) , (30)

where Ai ∈ R (i = 1, 2, 3) is arbitrary constant.
Setting this form of li (i = 1, 2, 3) into (16), (17), (18), (19), an easy calculation

shows that

fX (x) = ea1xA1 (1− x)A2 (x ∈ (0, 1)) , (31)

fY (x) = ea1+b2xA1+A2+1 (1− x)A3 (x ∈ (0, 1)) , (32)

fU (x) = ea2xA3 (1− x)A2 (x ∈ (0, 1)) , (33)

fV (x) = ea2+b1xA2+A3+1 (1− x)A1 (x ∈ (0, 1)) . (34)

These imply, with constants p = A1 + 1, q = A2 + 1 and r = A3 + 1, the statement
of Corollary 1. �

Remark 1. Functions fX , fY , fU , fV : (0, 1) → R+, such that logarithms of these
functions are locally integrable, satisfy (3) iff they are of the forms (23), (24), (25),
(26), where a1, a2, b1 ∈ R and p, q, r ∈ R+ are arbitrary constants.

3. The measurable solution of (3) satisfied almost everywhere

Here we need the following result of A. Járai (see [5] and [6]).

Theorem 4 (Járai). Let Z be a regular space, Zi (i = 1, 2, . . . , n) topological spaces
and T a first countable topological space. Let Y be an open subset of Rk, Xi an
open subset of Rri (i = 1, 2, . . . , n) and D an open subset of T × Y . Let T ′ ⊂ T
be a dense subset, f : T ′ → Z, gi : D → Xi and h : D × Z1 × . . . × Zn → Z.
Suppose that the function fi is almost everywhere defined on Xi with values in Zi
(i = 1, 2, . . . n) and the following conditions are satisfied:

(1) for all t ∈ T ′ for almost all y ∈ Dt

f(t) = h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y))), (35)

where Dt = {y ∈ Y : (t, y) ∈ D};
(2) for each fixed y in Y , the function h is continuous in the other variables;
(3) fi is λri measurable, i.e. fi is Lebesgue measurable on Rri , (i = 1, 2, . . . , n);
(4) gi and the partial derivative ∂gi

∂y is continuous on D (i = 1, 2, . . . , n);
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(5) for each t ∈ T there exist a y such that (t, y) ∈ D and the partial derivative
∂gi

∂y has the rank ri at (t, y) ∈ D (i = 1, 2, . . . , n).

Then there exists a unique continuous function f̃ such that f = f̃ almost everywhere
on T , and if f is replaced by f̃ then equation (35) is satisfied almost everywhere on
D.

Lemma 3. If the measurable functions fX , fY , fU , fV : (0, 1) → R+, satisfy equa-
tion (3) for almost all (u, v) ∈ (0, 1)2, then there exist unique continuous functions
f̃X , f̃Y , f̃U , f̃V : (0, 1) → R+, such that f̃X = fX , f̃Y = fY f̃U = fU , f̃V = fV
almost everywhere, and if fX , fY , fU , fV are replaced by f̃X , f̃Y , f̃U , f̃V respectively,
then equation (3) is satisfied everywhere on (0, 1)2.

Proof. First we prove that there exist unique continuous function f̃X which is
almost everywhere equal to fX on (0, 1) and replacing fX by f̃X , equation (3)
is satisfied almost everywhere.

With the substitution
t =

1− v

1− uv
, y = v

we get from (3) the equation

fX(t) =
fU

(
y+t−1
yt

)
fV (y)
y

fY ( 1−y
t )

1−y
t

, (36)

which is satisfied for almost all (t, y) ∈ D, where

D = {(t, y) |t, y ∈ (0, 1) , t+ y > 1} .
By Fubini’s Theorem it follows that there exists T ⊆ (0, 1) of full measure such
that, for all t ∈ T equation (36) is satisfied for almost every y ∈ Dt, where

Dt = {y ∈ (0, 1) |(t, y) ∈ D} .
Let us define the functions g1, g2, g3, h in the following way:

g1 (t, y) =
y + t− 1

yt
,

g2 (t, y) = y,

g3 (t, y) =
1− y

t
,

h (t, y, z1, z2, z3) =
z1z2
z3

,

and let us now apply Theorem of Járai to (36) with the following casting:

fX (t) = f (t) , fU (t) = f1 (t) ,
fV (t)
t

= f2 (t) ,
fY (t)
t

= f3 (t) ,

Z = R+, Zi = R+, T = (0, 1) , Y = (0, 1) , Xi = (0, 1) , (i = 1, 2, 3) .
Hence the first assumption in the Theorem of Járai with respect to (36) is satisfied.

In the case of a fixed y, the function h is continuous in the other variables, so
the second assumption holds too.

Because the functions in equation (36) are measurable, the third assumption is
trivial.
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The functions gi are continuous, the partial derivatives

D2g1 (t, y) =
1− t

y2t
, D2g2 (t, y) = 1, D2g3 (t, y) = −1

t

are also continuous, so the fourth assumption holds too.
For each t ∈ (0, 1) there exist a y ∈ (0, 1) such that (t, y) ∈ D and the par-

tial derivatives don’t equal zero in (t, y), so they have the rank 1. Thus the last
assumption is satisfied in the Theorem of Járai.

So we get, from Járai’s Theorem that there exists a unique continuous function
f̃X which is almost everywhere equal to fX on (0, 1) and f̃X , fY , fU , fV satisfy
equation (36) almost everywhere, which is equivalent to equation

fU (u) fV (v) = f̃X

(
1− v

1− uv

)
fY (1− uv)

v

1− uv
(37)

for almost all (u, v) ∈ (0, 1)2.
By a similar argument, we can prove the same for the function fY .
From equation (37) with the substitution t = 1− uv, y = v we get the equation

fY (t) =
fU

(
1−t
y

)
fV (y)
y t

f̃X
(

1−y
t

) , (38)

which, by Fubini’s Theorem again, is satisfied for almost all t ∈ (0, 1) and for almost
all y ∈ Dt.

With the casting

g1 (t, y) =
1− t

y
, g2 (t, y) = y, g3 (t, y) =

1− y

t
,

h (t, y, z1, z2, z3) =
z1z2
z3

,

use the Theorem of Járai for the equation (38). In this case, we can also see
that the assumptions of the Theorem of Járai are fulfilled, hence there exists a
unique continuous function f̃Y which is almost everywhere equal to fY on (0, 1)
and f̃X , f̃Y , fU , fV satisfy equation (38) almost everywhere, i.e.

f̃Y (t) =
fU

(
1−t
y

)
fV (y)
y t

f̃X
(

1−y
t

) ,

almost everywhere on (0, 1)2, which is equivalent to (3) replacing fX and fY by f̃X
and f̃Y , i.e.

fU (u) fV (v) = f̃X

(
1− v

1− uv

)
f̃Y (1− uv)

v

1− uv
(39)

for almost all (u, v) ∈ (0, 1)2.
Since ψ = ψ−1, we get from (39) the equation

f̃X (x) f̃Y (y) = fU

(
1− y

1− xy

)
fV (1− xy)

y

1− xy
(40)

for almost all (x, y) ∈ (0, 1)2. Equation (40) is dual to (39) by simple changing
(fU , fV ) into (fX , fY ).

By the same steps as in the case of fX and fY , we can prove that there exist
unique continuous functions f̃U and f̃V which are almost everywhere equal to fU
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and fV on (0, 1), respectively, and replacing fU and fV by f̃U and f̃V , respectively,
the functional equation (40) and so the functional equation

f̃U (u) f̃V (v) = f̃X

(
1− v

1− uv

)
f̃Y (1− uv)

v

1− uv
(41)

is satisfied almost everywhere in (0, 1)2, and hence on a dense set in (0, 1)2.
Then, by the continuity of functions involved in (41), it follows evidently that

(41) is satisfied for all (u, v) ∈ (0, 1)2. Furthermore, fX = f̃X , fY = f̃Y , fU = f̃U
and fV = f̃V almost everywhere on (0, 1). �

Now, using Lemma 3 and Corollary 1, one can easily prove the following

Theorem 5. The measurable functions fX , fY , fU , fV : (0, 1) → R+ satisfy the
functional equation (3) for almost all (u, v) ∈ (0, 1)2 iff there exist positive constants
p, q, r, εi (i = 1, 2, 3, 4) with ε1ε4 = ε2ε3 such that

fX (x) = ε1x
p−1 (1− x)q−1 (x ∈ (0, 1) a.e. ) ,

fY (y) = ε2y
p+q−1 (1− y)r−1 (y ∈ (0, 1) a.e. ) ,

fU (u) = ε3u
r−1 (1− u)q−1 (u ∈ (0, 1) a.e. ) ,

fV (v) = ε4v
q+r−1 (1− v)p−1 (v ∈ (0, 1) a.e. ) .

(Consequently fX , fY , fU , fV are density functions of beta distribution.)

Proof. Under the assumptions of our theorem, it follows from Lemma 3 that there
exist unique continuous functions f̃X , f̃Y , f̃U , f̃V : (0, 1) → R+ such that fX = f̃X ,
fY = f̃Y , fU = f̃U , fV = f̃V almost everywhere and functional equation (41) is
satisfied for all (u, v) ∈ (0, 1)2. Then we infer from Corollary 1 that continuous
functions f̃X , f̃Y , f̃U , f̃V : (0, 1) → R+ satisfy (41) iff they are of the form (23),
(24), (25) and (26) respectively. Summarizing these, we have the statement of our
theorem with constants ε1 = ea1 , ε2 = ea1+b2 , ε3 = ea2 , ε4 = ea2+b1 . �

Corollary 2. If X and Y are absolutely continuous and independent random vari-
ables (and the support of X and Y are equal (0, 1)) such that the random variables,
defined by

U =
1− Y

1−XY
, V = 1−XY,

are also independent, then X,Y, U and V belong to the family of beta distributions.
That is, with the notations of the previous theorem, X, Y , U and V have beta
distributions with parameters p, q; p+ q, r; r, q and q + r, p, respectively.

Remark 2. The following problem is still open (Referee’s suggestion): Is it possible
to solve (3) holding almost everywhere for unknown functions assuming values in
[0,∞)?

4. The general solution of (4)

By the substitutions

1− x

1− xy
= u,

1− y

1− xy
= v
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and consequently

x =
1− u

v
, y =

1− v

u
, u, v ∈ (0, 1) , u+ v > 1,

we get from

g1

(
1− x

1− xy

)
+ g2

(
1− y

1− xy

)
= α1 (x) + α2 (y) (x, y ∈ (0, 1))

the functional equation

g1 (u) + g2 (v) = α1

(
1− u

v

)
+ α2

(
1− v

u

)
(u, v ∈ (0, 1) , u+ v > 1) . (42)

Replacing u by 1− x and v by 1− y in (42), we get

g1 (1− x) + g2 (1− y) = α1

(
x

1− y

)
+ α2

(
y

1− x

)
(x, y, x+ y < 1) .

This implies that the functions F,G,H,K : (0, 1) → R defined by

F (x) = g1 (1− x) , G (x) = −α2 (x) , H (x) = −g2 (1− x) , K (x) = α1 (x)

satisfy the functional equation (5).
Thus, theorem of Maksa implies that

g1 (1− x) = l1 (1− x) + l2 (x) + a1,

−g2 (1− x) = l1 (1− x) + l2 (1− x) + l3 (x)− l3 (1− x) + b1, (43)
α1 (x) = l1 (1− x) + l2 (x)− l3 (1− x) + b2,

−α2 (x) = l1 (1− x) + l3 (x)− l3 (1− x) + b1 − a1 + b2

for all x ∈ (0, 1). Finally from (43) we get the following result.

Theorem 6. The functions g1, g2, α1, α2 : (0, 1) → R satisfy the functional equation
(4) if and only if

g1 (x) = A (x) +B (1− x) + a1 (x ∈ (0, 1)) ,
g2 (x) = C (x) +D (1− x)− b1 (x ∈ (0, 1)) , (44)
α1 (x) = A (1− x) +B (x) +D (1− x) + b2 (x ∈ (0, 1)) ,
α2 (x) = B (1− x) + C (1− x) +D (x)− b1 + a1 − b2 (x ∈ (0, 1))

where functions A,B,C,D : R+ → R satisfy the logarithmic Cauchy equation (6),
A+B + C +D = 0 and a1, b1, b2 ∈ R are arbitrary constants.

Proof. From (43) with notations A = l1, B = l2, D = −l3 and l3 − l1 − l2 = C we
get (44). Functions A,B,C,D : R+ → R satisfy (6).

An easy calculation shows that the functions g1, g2, α1, α2, defined by (44) satisfy
(4) indeed, if A+B + C +D = 0. �

Corollary 3. The measurable functions g1, g2, α1, α2 : (0, 1) → R satisfy the
functional equation (4) iff

g1 (x) = α log x+ β log (1− x) + a1,

g2 (x) = γ log x+ δ log (1− x)− b1,

α1 (x) = β log x− (β + γ) log (1− x) + b2,

α2 (x) = (β + γ) log (1− x) + δ log x− b1 + a1 − b2,

where α, β, γ, δ, a1, b1, b2 ∈ R are arbitrary constants with α+ β + γ + δ = 0.
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Proof. By Theorem 6, functions g1, g2, α1, α2 : (0, 1) → R satisfy (4) iff the func-
tions are of the form (44), which implies easily that

A (x) = g1 (x)− α2 (x) + g2 (1− x)− b2 (x ∈ (0, 1)) ,
B (x) = g1 (1− x)−A (1− x)− a1 (x ∈ (0, 1)) ,
C (x) = α2 (1− x)− α1 (x) +A (1− x) + b1 − a1 + 2b2 (x ∈ (0, 1)) ,
D (x) = −A (x)−B (x)− C (x) (x ∈ (0, 1)) .

The measurability of functions g1, g2, α1, α2 on (0, 1) imply, by these equalities, the
measurability of functions A,B,C and finally D on (0, 1).

Furthermore, A,B,C,D : R+ → R satisfy the Cauchy logarithmic equation (6).
These imply that

A (x) = α log x, B (x) = β log x, C (x) = γ log x, D (x) = δ log x x ∈ R+ (45)

where α, β, γ, δ ∈ R are arbitrary constants with α + β + γ + δ = 0. Setting (45)
into (44), we get immediately the statement of our corollary. �
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