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Abstract. As a possible generalization of the concept of s-convexity due to Breck-

ner [2], we introduce the so-called (H, s)-convexity. Besides collecting some facts on

this type of functions, the main goal of this paper is to prove some regularity properties

of (H, s)-convex functions.

1. Introduction

Let D be a convex, open, nonempty subset of a real (complex) linear space X.
Bernstein and Doetsch [1] (see [11] further references) proved that if a function
f : D → R is locally bounded from above at a point of D, then the Jensen-
convexity of the function yields its local boundedness and continuity as well,
which implies the convexity of the function f . This result has been generalized
by several authors. The first such type results are due to Nikodem and Ng [13]
for the approximately Jensen-convex functions (the so-called ε-Jensen-convexity),
which was extended by Páles ([14], [15]) to approximately t-convex functions.
Further generalizations can be found in papers of Mrowiec [12], Házy ([6], [7]),
Házy and Páles ([8], [9]). In the paper of Gilányi, Nikodem and Páles [5]
there are some Bernstein–Doetsch type results for quasiconvex functions.
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The concept of s-convexity was introduced by Breckner [2]. A real valued
function f : D → R is called Breckner s-convex (or shortly s-convex, in notation
f ∈ Ks), if

f (λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y) (1)

for every x, y ∈ D and λ ∈ [0, 1], where s ∈]0, 1] is a fixed number (see also [3],
[10], [17]). The case s = 1 means the usual convexity of f .

Let H ⊆ [0, 1] be a nonempty set. A real valued function f : D → R is
called Breckner (H, s)-convex, (or shortly (H, s)-convex, in notation f ∈ Ks

H), if
it fulfills (1) for all λ ∈ H.

In the special cases when H =
{

1
2

}
, H = {λ} or H = Q ∩ [0, 1], the cor-

responding Breckner (H, s)-convex functions are said to be Breckner Jensen s-
convex, Breckner (λ, s)-convex and Breckner rationally s-convex, respectively (or
shortly Jensen s-convex, (λ, s)-convex and rationally s-convex ).

In [2] and [3] it was proved a Berstein–Doetsch type result on rationally s-
convex functions, moreover, the s-Hölder property of s-convex functions. Pycia

[17] gives a new proof of the latter statement, when f is defined on a nonempty,
convex subset of a finite dimensional vector space. In [10] the authors collect
some properties of s-convex functions defined on the nonnegative reals.

The main goal of this paper is to prove some regularity properties of (H, s)-
convex functions, besides we also collect some facts on such functions.

2. Some elementary properties of s-convex functions

In this section we collect some interesting, easily-proved properties of Breck-
ner s-convex functions.

Proposition 1. If λ, s ∈ ] 0, 1 [ and f : D → R is an (λ, s)-convex function,

then f is nonnegative.

Proof. Let x be an arbitrary element of D. Using (λ, s)-convexity of f

f(x) = f(λx + (1− λ)x) ≤ λsf(x) + (1− λ)sf(x) = (λs + (1− λ)s)f(x),

which implies
0 ≤ (λs + (1− λ)s − 1)f(x).

Since λs +(1−λ)s− 1 > 0 for all λ, s∈ ] 0, 1[ , we have that f(x)≥ 0, as desired.
¤
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Remark 1. According to the previous proposition, (H, s)-convex functions
are also nonnegative when 0 < s < 1 and H \ {0, 1} 6= ∅. This is not true for
s = 1.

Proposition 2. Let H ⊆ [0, 1]. If f, g ∈ Ks (or Ks
H), then f + g, cf (with

c > 0), and max{f, g} are also in Ks (resp. Ks
H).

Proof. Easy calculation. ¤

The next two propositions imply that the set of s-convex functions is strictly
increasing as s tends to zero.

Proposition 3. Let 0 < s2 ≤ s1 < 1. If f ∈ Ks1 (or Ks1
H ), then f is also in

Ks2 (resp. Ks2
H ).

Proof. Assume that f ∈ Ks1 , and let first λ ∈ ] 0, 1 [ . Then, by Proposi-
tion 1, f(x) and f(y) are nonnegative for all x, y ∈ D. Furthermore, λs1 ≤ λs2

and (1− λ)s1 ≤ (1− λ)s2 , thus

f(λx + (1− λ)y) ≤ λs1f(x) + (1− λ)s1f(y) ≤ λs2f(x) + (1− λ)s2f(y).

The above inequalities hold for λ ∈ {0, 1}, too, therefore f ∈ Ks2 . ¤

Proposition 4. Let 0 < s1 < s2 ≤ 1. Then there exists a function f such

that f ∈ Ks1
1
2

but f /∈ Ks2
1
2

.

Proof. Let the function f : ] 0,∞[ → R be defined by f(x) := xs1 . First we
show that f is a Jensen s1-convex function. To this we may assume that x ≤ y

without loss of generality. Then the Jensen s1-convexity of f is equivalent to the
inequality

(u + 1)s1 ≤ us1 + 1, u ∈ ] 0, 1] ,

where u := x
y . The above inequality is equivalent to the nonnegativity of the

function
g(u) = log(us1 + 1)− s1 log(u + 1), u ∈ [0, 1].

Because of g(0) = 0 and of g being monotone increasing on [0, 1] (first derivative
test), we get the Jensen s1-convexity of f .

Now we prove f /∈ Ks2
1
2

. Assume to the contrary that f ∈ Ks2
1
2

. Then

(
x + y

2

)s1

≤ xs1 + ys1

2s2
, x, y ∈ ] 0,∞[ .
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We can assume again that x ≤ y. Divide by ys1 both sides of the above inequality
and substitute u := x

y . After some rearranging we get

1 ≤ 2s1−s2
us1 + 1

(u + 1)s1
, u ∈ ] 0, 1] .

Here the right-hand side tends to 2s1−s2 < 1 as u tends to zero, which is a
contradiction. ¤

We give a simple characterization of s-convex functions, which is analogous
to the characterization of convex functions.

Theorem 1. Let I ⊂ R be a nonempty, open interval. A function f : I → R
is s-convex if and only if

(z − x)sf(y) ≤ (z − y)sf(x) + (y − x)sf(z) , (2)

for every x < y < z , x, y, z ∈ I.

Proof. Assume that f is s-convex and let x, y and z be arbitrary element
of I such that x < y < z. Then

f(y) = f

(
z − y

z − x
x +

y − x

z − x
z

)
≤

(
z − y

z − x

)s

f(x) +
(

y − x

z − x

)s

f(z) ,

which is equivalent to (2). One can prove the converse assertion in a similar
manner. ¤

3. Regularity properties of (λ, s)-convex functions

In this section we assume that (X, ‖ · ‖) is a real (complex) normed space
instead of a real (complex) linear space. We recall that a function f : D → R is
called locally bounded from above on D if, for each point of p ∈ D, there exist
% > 0 and a neighborhood U(p, %) := {x ∈ X : ‖x − q‖ < %} such that f is
bounded from above on U(p, %).

Theorem 2. Let D ⊂ X be convex, open, nonempty and f : D → R. Let

λ ∈ ] 0, 1 [ be fixed. If f ∈ Ks
λ is locally bounded from above at a point p ∈ D,

then f is locally bounded at every point of D.
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Proof. First we prove that f is locally bounded from above on D. Define
the sequence of sets Dn by

D0 := {p}, Dn+1 := λDn + (1− λ)D.

Using induction on n, we prove that f is locally upper bounded at each point
of Dn. By assumption, f is locally upper bounded at p ∈ D0. Assume that f is
locally upper bounded at each point of Dn. For x ∈ Dn+1, there exist x0 ∈ Dn

and y0 ∈ D such that x = λx0 + (1 − λ)y0. By the inductive assumption, there
exist r > 0 and a constant M0 ≥ 0 such that f(x′) ≤ M0 for ‖x0−x′‖ < r. Then,
by the (λ, s)-convexity of f , for x′ ∈ U0 := U(x0, r) we have

f(λx′ + (1− λ)y0) ≤ λsf(x′) + (1− λ)sf(y0) ≤ λsM0 + (1− λ)sf(y0) =: M.

Therefore, for

y ∈ U := λU0 + (1− λ)y0 = U(λx0 + (1− λ)y0, λr) = U(x, λr),

we get that f(y) ≤ M . Thus f is locally bounded from above on Dn+1.
On the other hand, we show that

D =
∞⋃

n=1

Dn.

From the definition of Dn, it follows by induction that Dn = λnp + (1 − λn)D.
For fixed x ∈ D, define the sequence xn by

xn :=
x− λnp

1− λn
.

Then xn → x if n →∞. As D is open, xn ∈ D for some n. Therefore

x = λnp + (1− λn)xn ∈ λnp + (1− λn)D = Dn.

Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let q ∈ D be arbitrary.

Since f is locally bounded from above at the point q, there exist % > 0 and M > 0
such that

sup
U(q,%)

f ≤ M.
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Let x ∈ U(q, λ%) and y := q−(1−λ)x
λ . Then y is in U(q, %). By (λ, s)-convexity,

f(q) ≤ (1− λ)sf(x) + λsf(y),

which implies

f(x) ≥ f(q)− λsf(y)
(1− λ)s

≥ f(q)− λsM

(1− λ)s
=: M ′.

Therefore f is locally bounded from below at any point of D. ¤

As an immediate consequence of the previous theorem we obtain:

Corollary 1. Let f : D → R be a Jensen s-convex function. If f is locally

bounded from above at a point of D, then f is locally bounded at every point

of D.

The next theorem essentially weakens the local boundedness assumption if
the underlying space is of finite dimension. It can be derived from Theorem 2
adopting the argument followed in [8] (that is based on Steinhaus’ and Pic-

card’s theorems (cf. [18], [16])).

Theorem 3. Let D be an open convex subset of Rn and let f : D → R
be a (λ, s)-convex function with a fixed 0 < λ < 1. Assume that there exist a

Lebesgue-measurable set of positive measure (or a Baire-measurable set of second

category) S ⊆ D and a Lebesgue-measurable (resp. Baire-measurable) function

g : S → R such that f ≤ g on S. Then f is locally bounded on D.

Proof. Let

Sk,m := {x ∈ S | g(x) ≤ k} ∩ U(0, m) m, k ∈ N.

Then

S =
∞⋃

m=1

∞⋃

k=1

Sk,m,

therefore, for some k, m, the set Sk,m is of positive measure. Therefore, f is
bounded by k on Sk,m, which is a bounded set of positive measure (or a bounded
set of second category).

Taking x, y ∈ Sk,m, we get that

f (λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y) ≤ (λs + (1− λ)s)k ≤ 21−sk.

That is, f is bounded on λSk,m + (1− λ)Sk,m, which, by the theorem of Stein-

haus [18] (or the theorem of Piccard [16]) (cf. [11]), contains an interior point.
Therefore, f is locally bounded from above at a point of D. As an immediate con-
sequence of the previous theorem we obtain that f is locally bounded on D. ¤
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Remark 2. It is a well-known fact that if a Jensen-convex function f is locally
bounded above at a point of its domain (see [1], [11]), then it is continuous on its
domain. This is not true for Jensen s-convex functions. Indeed, let 0 < s < 1 be
fixed and

f(x) :=





1, if x ∈ ](2s − 1)
1
s , 1[ \Q;

xs, if x ∈ ](2s − 1)
1
s , 1[ ∩Q,

Then f is Jensen s-convex, bounded and nowhere continuous.

Next theorem gives a sufficient condition for local boundedness to imply
continuity.

Theorem 4. Let the sequence {λn}n∈N be such that λn∈ ] 0, 1] and λn tends

to 0 (when n →∞). If f : D → R is in Ks
{λn}n∈N and f is locally bounded from

above at a point x0 ∈ D, then f is continuous at x0.

Proof. Since f is locally bounded from above at a point x0 ∈ D, there
exists a neighborhood U at x0 and a constat K ≥ 0 such that f(x) ≤ K for every
x ∈ U . Let ε be an arbitrary nonnegative constant. Then there exists n0 ∈ N
such that if n ≥ n0, then

λs
nK + [(1− λn)s − 1] f(x0) < ε,

whence
λs

n

(1− λn)s
K +

[
1− 1

(1− λn)s

]
f(x0) < ε.

Let V be a neighborhood of 0 such that x0 + V ⊆ U , and let U ′ = x0 + λnV . We
prove that

|f(x)− f(x0)| < ε (x ∈ U ′).

For x ∈ U ′ there exist y, z ∈ x0 + V such that

x = λny + (1− λn)x0, x0 = λnz + (1− λn)x.

Indeed,

y − x0 =
1
λn

(x− x0) ∈ 1
λn

λnV = V,

and
z − x0 =

1− λn

λn
(x0 − x) ∈ 1− λn

λn
λnV = (1− λn)V ⊆ V.

According to (λn, s)-convexity of f ,

f(x) ≤ λs
nf(y) + (1− λn)sf(x0) ≤ λs

nK + (1− λn)sf(x0),

f(x0) ≤ λs
nf(z) + (1− λn)sf(x) ≤ λs

nK + (1− λn)sf(x).
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We get
f(x)− f(x0) ≤ λs

nK + [(1− λn)s − 1] f(x0) < ε (3)

and

f(x) ≥ f(x0)− λs
nK

(1− λn)s
,

which implies

f(x)− f(x0) ≥
[

1
(1− λn)s

− 1
]

f(x0)− λs
n

(1− λn)s
K > −ε. (4)

The inequalities (3) and (4) show that |f(x)− f(x0)| < ε, that is f is continuous
at x0, which was to be proved. ¤

Corollary 2. Let H ⊆ [0, 1] and assume that 0 or 1 is a limit point of H. If

f : D → R is (H, s)-convex, locally bounded at a point of D, then f continuous

at that point.

Proof. Since f is (H, s)-convex, it is also (1−H, s)-convex, so there exists
a sequence in H or in 1−H, which tends to zero. Now, we can apply the previous
theorem. ¤

Theorem 5. Let H ⊆ [0, 1] and assume that 0 or 1 is a limit point of H. If

f : D → R is (H, s)-convex and locally bounded at a point of D, then f continuous

on D.

Proof. According to Theorem 2, f is locally bounded at every point of D.
So, we can use the previous corollary to get the continuity of f at every point
of D. ¤
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[4] Z. Daróczy and Zs. Páles, Convexity with given infinite weight sequences, Stochastica
11 (1987), 5–12.
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