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Limit theorems for normalized nearly critical branching

processes with immigration

By Márton Ispány

Abstract. Functional limit theorems are proved for a sequence of Galton–Watson

processes with immigration, where the offspring mean tends to its critical value 1 under

weak conditions for the variances of offspring and immigration processes. In the limit

theorems the norming factors depend on these variances, respectively.

1. Introduction

In this paper we consider a sequence of branching processes with im-

migration (SBPI) (X
(n)
k )k∈Z+ , n ∈ N, given by the recursion

X
(n)
k =

X
(n)
k−1∑

j=1

ξ
(n)
k,j + ε

(n)
k for k, n ∈ N, X

(n)
0 = 0, (1)

where {ξ(n)
k,j , ε

(n)
k : k, j, n ∈ N} are independent, nonnegative, integer valued

random variables such that {ξ(n)
k,j : k, j ∈ N} and {ε(n)

k : k ∈ N} for each n ∈ N

are identically distributed. For a fixed n ∈ N we can interpret X
(n)
k as the size of

the kth generation of a population, where ξ
(n)
k,j is the number of offsprings of the

jth individual in the (k − 1)st generation and ε
(n)
k is the number of immigrants

contributing to the kth generation. Athreya and Vidyashankar [3] provides a
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short overview concerning these processes. A number of new developments and

applications can be found in Athreya and Jagers [2], and Haccou et al. [5].

We assume that mn := Eξ
(n)
1,1 , λn := Eε

(n)
1 , σ2

n := Varξ
(n)
1,1 , b2

n := Varε
(n)
1 exist

and finite for all n ∈ N. The cases when the offspring mean is less, equal or larger

than one are referred to subcritical, critical or supercritical, respectively. If

mn tends to 1 as n → ∞ then the SBPI is called nearly critical. This concept is

introduced in the next more precise definition.

Definition 1.1. A SBPI defined by (1) is called nearly critical with rate

α ∈ R if mn = 1 + αn−1 + o(n−1) as n → ∞.

This definition has been suggested by Chan and Wei [4] for the first time in

case of AR(1) models.

Introduce the random step functions

X (n)(t) := X
(n)
⌊nt⌋ for t ∈ R+, n ∈ N,

where ⌊·⌋ denotes the lower integer part. We investigate, after appropriate normal-

ization, the asymptotic behaviour of the processes X (n) as n → ∞. One can see

that the necessary norming factor and the possible limit process strongly depend

on the variance conditions that are supposed to hold for the offspring and immi-

gration processes. In order to cover as many cases as possible such normalizing

factors are used which depend on the variance of the offsprings or immigrations.

If both the offspring and the immigration variances tend to non–zero finite limits

then we say that the SBPI fulfills the standard variance conditions. This case has

been investigated by Wei and Winnicki [16], and Sriram [15].

In this paper, some non–standard cases, where these variances are asymp-

totically small or large, are also investigated. In Theorem 2.1, where the first

two moments of the immigration are under the control of the offspring variance,

we prove that the limit process is a square–root type diffusion process defined

by (4), the norming factor being (nσ2
n)−1. If the offspring variances behave like

a power function then we have Theorem 2.5 as a corollary of Theorem 2.1, and

we obtain a similar limiting diffusion process in (6). Finally, if the offspring vari-

ances are asymptotically small, more precisely σ2
n = σ2n−1 + o(n−1) as n → ∞

with some σ2 ≥ 0, then with the norming factor (nb2
n)−1/2 the limit process will

be an Ornstein–Uhlenbeck type process defined by (8), see Theorem 2.9 and its

consequence, Theorem 2.12.

Note that convergence of finite dimensional distributions of a SBPI has been

investigated by Kawazu and Watanabe [11], and Aliev [1]. Functional limit the-

orems have been proved by Wei and Winnicki [16], Sriram [15], and Li [12].
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The first attempts to deal with the non–standard case were Ispány et al. [7, 8],

where conditions σ2
n = σ2n−1 + o(n−1) and b2

n = b2 + o(1) as n → ∞ with some

σ2, b2 ≥ 0 have been supposed. The cases of increasing or decreasing (in the mean)

non–homogeneous immigration have been studied by Rahimov [14, Chapter III].

Theorem 2.5 and 2.12 can be extended by using regularly varying functions.

2. Limit theorems for nearly critical SBPI

In the sequel, let (X
(n)
k )k∈Z+ , n ∈ N, denote a nearly critical SBPI with

parameters mn, λn, σ2
n, b2

n, n ∈ N, and rate α ∈ R. The first theorem covers the

case where the offspring variances are strictly positive and the first two moments

of the immigration are under the control of the offspring variance. Introduce the

function

µ(t) := λ

∫ t

0

eαs ds, t ∈ R+. (2)

Theorem 2.1. Suppose that σ2
n > 0 for all n ∈ N, and

(i) E

(
|ξ(n)

1,1 − mn|21{|ξ
(n)
1,1 −mn|>θnσ2

n}

)
= o(σ2

n) as n → ∞ for all θ > 0,

(ii) λn = λσ2
n + o(σ2

n) as n → ∞ for some λ ≥ 0,

(iii) b2
n = o(nσ4

n) as n → ∞.

Then (
nσ2

n

)−1
EX (n)(t) → µ(t) as n → ∞ (3)

for all t ∈ R+, and

(
nσ2

n

)−1 X (n) D−→ X as n → ∞,

that is, weakly in the Skorokhod space D(R+, R), where
(
X (t)

)
t∈R+

is the unique

solution of a stochastic differential equation (SDE)

dX (t) = (λ + αX (t)) dt +
√
X+(t) dW (t), t ∈ R+, (4)

with initial condition X (0) = 0, where x+ := max{x, 0} and (W (t))t∈R+ is a

standard Wiener process. Moreover,
(
nσ2

n

)−1 (
X (n) − EX (n)

) D−→ X̃ as n → ∞,

where
(
X̃ (t)

)
t∈R+

is the unique solution of a SDE

dX̃ (t) = αX̃ (t) dt +

√
(X̃ (t) + µ(t))+ dW (t), t ∈ R+, (5)

with initial condition X̃ (0) = 0.
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Remark 2.2. It is well known that the SDE (4) has a unique global strong

solution for every given initial value. Moreover, X(t) ≥ 0 almost surely for all

t ∈ R+. Thus, we can replace X+(t) by X (t) under the square root. (See,

e.g., Ikeda and Watanabe [6, Example IV.8.2].) The process
(
X (t)

)
t∈R+

is called

square–root process or Cox–Ingersoll–Ross model in financial mathematics, see

Musiela and Rutkowski [13, p. 290].

Remark 2.3. Condition (i) is, in fact, the Lindeberg condition for the trian-

gular system {ξ(n)
i,j /(nσ2

n) : n ∈ N, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊nσ2
n⌋}. Note that the

average size of the nth population at time n is µ(1)nσ2
n. Plainly, if there exists

γ > 0 such that n−γσ
2(1−γ)
n E|ξ(n)

1,1 − mn|2+γ → 0 as n → ∞, then condition (i) is

satisfied. Note that no Lindeberg condition is needed for the immigration process.

Example 2.4. Let P(ξ
(n)
1,1 = n) = αn−2, P(ξ

(n)
1,1 = kn) = k−1

n , and P(ξ
(n)
1,1 =

0) = 1 − k−1
n − αn−2 for all n ∈ N, where α ∈ R+ and kn ∈ N, n ∈ N, such that

kn → ∞ as n → ∞. We have that mn = 1+αn−1 and σ2
n = kn +α− (1+αn−1)2

for all n ∈ N. Condition (i) fulfills since {|ξ(n)
1,1 − mn| > θnσ2

n} is empty for all

sufficiently large n if θ > 0 is fixed. Moreover, suppose that ε
(n)
1 has Poisson

distribution with parameter λn such that λn = λkn + o(kn) with some λ ≥ 0,

thus conditions (ii) and (iii) hold. Then the norming factor is (nkn)−1, and the

limit process is given by (4).

In particular, if the variance of the offspring distribution is a power function

we obtain the following limit theorem.

Theorem 2.5. Suppose that there exists ̺ ≥ 0 such that

(i) σ2
n = σ2n̺ + o(n̺) as n → ∞ with some σ > 0,

(ii) E

(
|ξ(n)

1,1 − mn|21{|ξ
(n)
1,1 −mn|>θn1+̺}

)
= o(n̺) as n → ∞ for all θ > 0,

(iii) λn = λn̺ + o(n̺) as n → ∞ with some λ ≥ 0,

(iv) b2
n = o(n1+2̺) as n → ∞.

Then

n−(1+̺)X (n) D−→ X as n → ∞,

where
(
X (t)

)
t∈R+

is the unique solution of a SDE

dX (t) = (λ + αX (t)) dt + σ
√
X+(t) dW (t), t ∈ R+, (6)

with initial condition X (0) = 0, where (W (t))t∈R+ is a standard Wiener process.
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Remark 2.6. In case of ̺ = 0 the theorem is a generalization of the Sriram’s

theorem, see [15, Theorem 3.1]. Moreover, condition (ii) is weaker than Sriram’s

one (see [15, Section 3]) where n1/2 rate is supposed in the indicator function.

Plainly, if there exists γ > 0 such that

n̺(1−γ)−γ
E|ξ(n)

1,1 − mn|2+γ → 0 as n → ∞, (7)

then condition (ii) is satisfied. The centered sequence n−(1+̺)(X (n) − EX (n)),

n ∈ N, converges weakly to a process
(
X̃ (t)

)
t∈R+

which is the unique solution of

a SDE

dX̃ (t) = αX̃ (t) dt + σ

√
(X̃ (t) + µ(t))+ dW (t), t ∈ R+, X̃ (0) = 0.

Example 2.7. Let P(ξ
(n)
1,1 = 0) = 1 − n−1, P(ξ

(n)
1,1 = n) = n−1 for all n ∈ N,

and suppose that ε
(n)
1 has Poisson distribution with parameter λn with some

λ > 0. Since {|ξ(n)
1,1 − mn| > θn1+̺} is empty for all sufficiently large n condition

(ii) holds. Then the norming factor is n−2 and the limit process is the unique

solution of a SDE

dX (t) = λdt +
√
X+(t) dW (t), X (0) = 0.

Example 2.8. If ξ
(n)
1,1 has a Poisson distribution with parameter 1 + αn−1,

where α ∈ R, then mn = σ2
n = 1 + αn−1. Thus, the model is nearly critical, the

condition (i) holds with σ2 = 1 and ̺ = 0, moreover the Lyapunov condition (7)

fulfills with γ = 2 implying (ii). Let P(ε
(n)
1 = 0) = 1 − n−1 lnn and P(ε

(n)
1 =

⌊λn ln−1 n⌋) = n−1 lnn for all n ∈ N with some λ > 0. It is easy to see that

conditions (iii) and (iv) holds. However b2
n → ∞ as n → ∞, thus [15, Theorem

3.1] can not be applied. The limit process of this sequence of branching processes

will be the square–root process (6).

If the sequence of offspring variances tends to 0 with speed n−1 then the

norming factor depends on the immigration variance and we have Ornstein–

Uhlenbeck process as a fluctuation limit.

Theorem 2.9. Suppose that b2
n > 0 for all n ∈ N such that nb2

n → ∞ as

n → ∞, and

(i) σ2
n = σ2n−1 + o(n−1) as n → ∞ with some σ ≥ 0,

(ii) E

(
|ξ(n)

1,1 − mn|21{|ξ
(n)
1,1 −mn|>θ

√
nb2n}

)
= o(n−1) as n → ∞ for all θ > 0,

(iii) λn = λb2
n + o(b2

n) as n → ∞ for some λ ≥ 0,
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(iv) E

(
|ε(n)

1 − λn|21{|ε
(n)
1 −λn|>θ

√
nb2n}

)
= o(b2

n) as n → ∞ for all θ > 0.

Then

(nb2
n)−1/2

(
X (n) − EX (n)

) D−→ X̃ as n → ∞,

where
(
X̃ (t)

)
t∈R+

is an Ornstein–Uhlenbeck type process defined by the SDE

dX̃ (t) = αX̃ (t) dt +
√

σ2µ(t) + 1dW (t), X̃ (0) = 0, (8)

where (W (t))t∈R+ is a standard Wiener process, and µ is defined by (2).

Remark 2.10. If b2
n → b2 as n → ∞ with some b ≥ 0, then we have that

n−1/2(X (n) − EX (n))
D−→ X̃ as n → ∞, where

(
X̃ (t)

)
t∈R+

is an Ornstein–

Uhlenbeck type process defined by the SDE

dX̃ (t) = αX̃ (t) dt + b
√

σ2µ(t) + 1 dW (t), X̃ (0) = 0.

Thus, Theorem 2.9 is a generalization of [8, Theorem 2.2]. Moreover, if the

offspring distributions are Bernoulli distributions with mean 1 − αn−1 then con-

ditions (i) and (ii) are fulfilled, see Ispány et al. [7] for details.

Remark 2.11. Conditions (ii) and (iv) are the Lindeberg conditions for the tri-

angular systems {ξ(n)
i,j /

√
nb2

n : n ∈ N, 1 ≤ i, j ≤ n} and {ε(n)
j /

√
nb2

n : n ∈ N, 1 ≤
j ≤ n}, respectively. Plainly, if there exists γ > 0 such that n1−γ/2b

−(2+γ)
n E|ξ(n)

1,1 −
mn|2+γ → 0 and n−γ/2b

−(2+γ)
n E|ε(n)

1 −λn|2+γ → 0 as n → ∞ then conditions (ii)

and (iv) are satisfied.

In particular, if the variance of the immigration distribution is a power func-

tion we obtain the next limit theorem.

Theorem 2.12. Suppose that there exists ̺ > −1 such that

(i) σ2
n = σ2n−1 + o(n−1) as n → ∞ with some σ ≥ 0,

(ii) λn = λn̺ + o(n̺) as n → ∞ with some λ ≥ 0,

(iii) b2
n = b2n̺ + o(n̺) as n → ∞ with some b > 0,

(iv) E

(
|ε(n)

1 − λn|21{|ε
(n)
1 −λn|>θn(1+̺)/2}

)
= o(n̺) as n → ∞ for all θ > 0.

Then

n−(1+̺)/2
(
X (n) − EX (n)

) D−→ X̃ as n → ∞,

where
(
X̃ (t)

)
t∈R+

is an Ornstein–Uhlenbeck process defined by the SDE

dX̃ (t) = αX̃ (t) dt +
√

σ2µ(t) + b2 dW (t), X̃ (0) = 0, (9)

where (W (t))t∈R+ is a standard Wiener process.
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Remark 2.13. Note that in this case no Lindeberg condition is needed for

the offspring distributions. Condition (iv) is the Lindeberg condition for the

triangular system {ε(n)
j /n(1+̺)/2 : n ∈ N, 1 ≤ j ≤ n}. If there exists γ > 0 such

that n−̺−(1+̺)γ/2E|ε(n)
1 − λn|2+γ → 0 as n → ∞ then condition (iv) is satisfied.

Example 2.14. If ξ
(n)
1,1 has a Bernoulli distribution with mean 1−αn−1, where

α ≥ 0, and P(ε
(n)
1 = 0) = 1 − n−1 ln2 n and P(ε

(n)
1 = ⌊bn ln−1 n⌋) = n−1 ln2 n for

all n ∈ N with some b > 0, then conditions of Theorem 2.12 hold with ̺ = 1.

3. A general functional limit theorem

First we need the following definitions and notations. Let (Ω,F ,F, P) be

a stochastic basis, i.e. (Ω,F , P) is a probability space and F =
(
Ft

)
t∈R+

is a

filtration on it with F0 = {∅, Ω}. Let O be the optional σ–field on Ω × R+

generated by all càdlàg adapted processes. Let P ⊆ O be the predictable σ–

field on Ω × R+ generated by the collection of sets A × (s, t], where 0 ≤ s < t

and A ∈ Fs. Denote by V the set of all real–valued processes
(
U(t)

)
t∈R+

on

(Ω,F ,F, P) that are càdlàg adapted, U(0) = 0, and whose paths t 7→ U(ω, t) are

of locally finite variation for all ω ∈ Ω. A random measure µ := {µ(ω; dt, dx) :

ω ∈ Ω}, where µ(ω; ·) is a nonnegative Borel measure on R+ × R satisfying

µ(ω; {0} × R) = 0 for all ω ∈ Ω, is called optional (predictable) if the integral

process If
µ(ω; t) =

∫ t

0

∫
R

f(ω; s, x)µ(ω; ds, dx) is O–measurable (P–measurable)

for all integrable O ⊗ B(R)–measurable (P ⊗ B(R)–measurable) function f . A

random measure ν is called the compensator measure of µ if it is predictable

and If
ν (·;∞) = If

µ(·;∞) for every nonnegative P ⊗ B(R)–measurable f . The

compensator measure is unique up to a P–null set.

A function h : R → R is said to be a truncation function if it is bounded,

continuous with compact support satisfying h(x) = x in a neighbourhood of 0.

Let X =
(
X(t, ω)

)
t∈R+,ω∈Ω

be a semimartingale and define the process Xh(t) :=

X(t) − ∑
s≤t[∆X(s) − h(∆X(s))], t ∈ R+, where ∆X(t) := X(t) − X(t−) if

t > 0 and ∆X(0) := 0. Then Xh is a special semimartingale with canonical

decomposition Xh = X0 + Mh + Bh, where X0 is F0–measurable, Mh is a local

martingale with Mh(0) = 0 and Bh ∈ V is predictable, see Jacod and Shiryaev

[10, Lemma I.4.24]. Let δa denote the Dirac measure at point a ∈ R+ × R.

Definition 3.1. A triplet (B, C, ν) is called a characteristic of a semi-

martingale X with respect to h if (i) B = Bh is a predictable process in V,
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(ii) C = 〈Xc, Xc〉, where Xc is the continuous martingale part of X , is an in-

creasing continuous process in V, and (iii) ν is the compensator of the random

measure µ(ω; ·) :=
∑

s 1{∆X(s,ω) 6=0}δ{(s,∆X(s,ω))} associated to the jumps of X .

The process C̃(t) := C(t)+
∫ t

0

∫
R

h2(x)ν(ds, dx)−∑
s≤t(B(s)−B(s−))2, t ∈ R+,

is called the modified second characteristic of X .

We recall that each semimartingale defined on (Ω,F ,F, P) has a character-

istic (B, C, ν) associated with a truncation function h. Moreover, C and ν are

unique if h is fixed. (See Jacod and Shiryaev [10, Section II.2a].) We assume that

each semimartingale U considered in this paper starts from zero, i.e. U(0) = 0.

Denote by Π(B, C, ν) the martingale problem associated with the characteristic

(B, C, ν). A real–valued process
(
U(t)

)
t∈R+

is a solution of this martingale prob-

lem if it is a semimartingale on the basis (Ω,F ,F, P) with characteristic (B, C, ν)

relative to the truncation function h.

The next theorem provides sufficient conditions in terms of characteristics

for the weak convergence of semimartingales to a limiting semimartingale.

Theorem 3.2. For each n ∈ N, let
(
U (n)(t)

)
t∈R+

be a sequence of semi-

martingales with characteristics (B(n), C(n), ν(n)). Assume that the martingale

problem Π(0, C, 0), where C is a càdlàg adapted and increasing process with

C(0) = 0, has a locally unique solution for all deterministic initial condition. Let

(U(t))t∈R+ be a solution with U(0) = 0, and assume that there exists a function

Φ : D(R+, R) → D(R+, R) such that C = Φ(U). Suppose that for each T > 0,

(i) there is an increasing continuous function ϕa,T : R+ → R for all a > 0 such

that Φ(x)(t)−Φ(x)(s) ≤ ϕa,T (t)−ϕa,T (s) for all 0 ≤ s ≤ t ≤ T if ‖x‖∞ ≤ a,

x ∈ D(R+, R) (local strong majoration hypothesis),

(ii) the functions x 7→ Φ(x)(t) are Skorokhod–continuous for all 0 ≤ t ≤ T (local

continuity condition),

(iii) sup
t∈[0,T ]

∣∣∣B(n)(t)
∣∣∣ P−→ 0 as n → ∞,

(iv) sup
t∈[0,T ]

∣∣∣C̃(n)(t) − Φ(U (n))(t)
∣∣∣ P−→ 0 as n → ∞,

(v) ν(n)([0, T ]× {x : |x| > θ}) P−→ 0 as n → ∞ for all θ > 0.

Then

U (n) D−→ U as n → ∞.

Proof. The proof is based on a general limit theorem of Jacod and Shiryaev

[10, Theorem IX.3.39] and a standard localization procedure, see Ispány and Pap



Limit theorems for normalized nearly critical branching processes 9

[9]. Note that the local condition on big jumps holds trivially since the third

characteristic of the limiting semimartingale is zero. �

In the sequel, we suppose that (U(t))t∈R+ is a diffusion process with zero

drift, i.e. it is a weak solution of a SDE

dU(t) = G(t, U(t))dW (t), t ∈ R+, (10)

where G : R+ × R → R is a Borel function and (W (t))t∈R+ is a standard Wiener

process. If SDE (10) has a unique weak solution (U(t))t∈R+ with U(0) = 0, then

it is a semimartingale with characteristic

B(t) = 0, C(t) =

∫ t

0

G2(s,U(s))ds, ν([0, t] × A) = 0,

where A is a Borel set and t ∈ R+. (See Jacod and Shiryaev [10, Section III.2c].)

Thus C = Φ(U), where the function Φ : D(R+, R) → D(R+, R) is defined by

Φ(x)(t) :=
∫ t

0
G2(s, x(s))ds, x ∈ C(R+, R). One can easily check that assumptions

(i) and (ii) of Theorem 3.2 hold with ϕa,T := sup0≤t≤T sup‖x‖≤a G2(t, x). Clearly,

there exists A ≥ 1 such that h(x) = x for |x| ≤ 1/A, h(x) = 0 for |x| ≥ A, and

|h(x)| ≤ A for all x ∈ R. Thus, |h(x)| ≤ A2|x| if |x| > 1/A. Hence we may throw

off the truncation function, and for martingale differences Theorem 3.2 can be

simplified in the following way, see [9, Corollary 2.2].

Corollary 3.3. Let G : R+ × R → R be a continuous function. Assume

that the SDE (10) has a unique weak solution with U(0) = u0 for all u0 ∈ R. Let

(U(t))t∈R+ be a solution with U(0) = 0. For each n ∈ N, let
(
U

(n)
k

)
k∈N

be a se-

quence of martingale differences with respect to the natural filtration
(
F (n)

k

)
k∈Z+

,

i.e. F (n)
k := σ

{
U

(n)
1 , . . . , U

(n)
k

}
, E(U

(n)
k | F (n)

k−1) = 0 and E(|U (n)
k |2 | F (n)

k−1) < ∞
for all k ∈ N. Let

U (n)(t) :=

⌊nt⌋∑

k=1

U
(n)
k , t ∈ R+, n ∈ N.

Suppose that, for each T > 0,

(i) sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

E

(
(U

(n)
k )2 | F (n)

k−1

)
−

∫ t

0

G2(s,U (n)(s))ds

∣∣∣∣∣∣
P−→ 0,

(ii)

⌊nT⌋∑

k=1

E

(
(U

(n)
k )21

{|U
(n)
k |>θ}

| F (n)
k−1

)
P−→ 0 for all θ > 0
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as n → ∞. Then

U (n) D−→ U as n → ∞.

Condition (ii) is the conditional Lindeberg condition for the triangular system

{U (n)
k : k, n ∈ N}.

4. Proof of the main theorems

In the proofs we apply the following simple formulas and recursions for mo-

ments and covariances of a branching process with immigration.

Lemma 4.1. Let (Xk)k∈Z+ be a branching process with immigration defined

by recursion (1) with moments m, σ2, λ and b2. Then, for all k ∈ N,

EXk = λ
k−1∑

ℓ=0

mℓ, VarXk = b2
k−1∑

ℓ=0

m2ℓ +
λσ2

m + 1

k−1∑

ℓ=0

mℓ
k−2∑

ℓ=0

mℓ.

Moreover, for all k, ℓ ∈ Z+,

Cov(Xk, Xℓ) = m|k−ℓ|
VarXk∧ℓ.

Furthermore, for all k ∈ Z+,

E
(
M2

k

∣∣Fk−1

)
= σ2Xk−1 + b2.

Remark 4.2. The expectation EXk and the variance VarXk are monoton

increasing in k.

Remark 4.3. In order to prove (3) we note that

sup
t∈[0,T ]

∣∣∣∣∣∣
1

n

⌊nt⌋∑

k=1

mκk
n −

∫ t

0

eκαs ds

∣∣∣∣∣∣
→ 0 as n → ∞

for each fixed κ ∈ R. Thus, by Definition 1.1, condition (ii), and Lemma 4.1

we have (3). Moreover, the convergence in (3) is uniform on each finite interval

[0, T ], T > 0.

The technique of the proofs of the main theorems is the so–called “martingale

method” initiated by Stroock and Varadhan, see Jacod and Shiryaev [10] for
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details. Namely, let F (n)
k denote the σ–algebra generated by the random variables

X
(n)
0 , X

(n)
1 , . . . , X

(n)
k for n ∈ N and k ∈ Z+. Plainly,

M
(n)
k := X

(n)
k − E(X

(n)
k | F (n)

k−1) = X
(n)
k − mnX

(n)
k−1 − λn, k, n ∈ N,

defines a martingale difference sequence
(
M

(n)
k

)
k∈N

with respect to the filtration
(
F (n)

k

)
k∈Z+

for all n ∈ N. Note that M
(n)
k can be decomposed into a random sum

and a centered random variable, which are independent, as follows

M
(n)
k =

X
(n)
k−1∑

j=1

ξ
(n)
k,j + ε

(n)
k − mnX

(n)
k−1 − λn = N

(n)
k + δ

(n)
k , (11)

where

N
(n)
k :=

X
(n)
k−1∑

j=1

(ξ
(n)
k,j − mn), δ

(n)
k := ε

(n)
k − λn.

Then we define a suitable sequence of random step functions and we prove weak

convergence of this sequence to a continuous process applying a general functional

limit theorem of Section 3. Finally, by recursion

X
(n)
k − EX

(n)
k = mn

(
X

(n)
k−1 − EX

(n)
k−1

)
+ M

(n)
k =

k∑

j=1

mk−j
n M

(n)
j (12)

we show that X (n) is a function of the introduced random step function for all

n ∈ N, and a continuous mapping type argument yields the desired convergence.

Proof of Theorem 2.1. Introduce the random step functions

N (n)(t) :=

⌊nt⌋∑

k=1

m−k
n M

(n)
k for t ∈ R+, n ∈ N,

and let Ñ (n)(t) := (nσ2
n)−1eαtN (n)(t) + µ(t), t ∈ R+, n ∈ N. Finally, let us

introduce the stochastic process N (t) := e−αt(X (t) − µ(t)), t ∈ R+. By Itô’s

formula we have that
(
N (t)

)
t∈R+

satisfies the SDE

dN (t) = e−αt
√

(eαtN (t) + µ(t))+ dW (t), t ∈ R+, N (0) = 0. (13)

Note that, since eαtN (t) + µ(t) = X (t) ≥ 0 almost surely for all t ∈ R+, we can

replace the non–negative part by the original value under the square root. We

will prove (
nσ2

n

)−1 N (n) D−→ N as n → ∞ (14)
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applying Corollary 3.3 for U = N and U
(n)
k = (nσ2

n)−1m−k
n M

(n)
k . If

(
N (t)

)
t∈R+

satisfies the SDE (13) then X (t) := eαtN (t)+ µ(t), t ∈ R+, satisfies the SDE (4).

Thus, the SDE (13) has a unique strong solution with N (0) = x for all x ∈ R.

The coefficient function G(t, x) := e−αt
√

(eαtx + µ(t))+, t ∈ R+ and x ∈ R, is

continuous. It suffices to show that

sup
t∈[0,T ]

∣∣∣∣∣∣
1

σ4
nn2

⌊nt⌋∑

k=1

m−2k
n E

((
M

(n)
k

)2 | F (n)
k−1

)
−

∫ t

0

e−2αsÑ (n)
+ (s)ds

∣∣∣∣∣∣
P−→ 0, (15)

1

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n E

((
M

(n)
k

)21
{|M

(n)
k |>θnσ2

nmk
n}

| F (n)
k−1

)
P−→ 0 (16)

as n → ∞ for all T > 0 and θ > 0.

If t ∈ [ℓ/n, (ℓ + 1)/n), ℓ ∈ Z+, then by (12) and Lemma 4.1 we have

Ñ (n)(t) =
(
nσ2

n

)−1
eαtm−ℓ

n X
(n)
ℓ −

(
nσ2

n

)−1
λneαt

ℓ∑

k=1

m−k
n + µ(t).

Since |(a + b)+ − a| ≤ |b| for any a ∈ R+ and b ∈ R, we have

∣∣∣Ñ (n)
+ (t) −

(
nσ2

n

)−1
eαtm−⌊nt⌋

n X
(n)
⌊nt⌋

∣∣∣ ≤

∣∣∣∣∣∣
(
nσ2

n

)−1
λneαt

⌊nt⌋∑

k=1

m−k
n − µ(t)

∣∣∣∣∣∣

for all t ∈ R+. On the other hand, by Lemma 4.1, we obtain

1

σ4
nn2

⌊nt⌋∑

k=1

m−2k
n E

((
M

(n)
k

)2 | F (n)
k−1

)
=

1

σ2
nn2

⌊nt⌋∑

k=1

m−2k
n X

(n)
k−1 +

b2
n

σ4
nn2

⌊nt⌋∑

k=1

m−2k
n .

Thus, in order to prove (15) it is enough to show that

D(1)
n := sup

t∈[0,T ]

∣∣∣∣∣
1

σ2
nn2

⌊nt⌋∑

k=1

m−2k
n X

(n)
k−1 +

b2
n

σ4
nn2

⌊nt⌋∑

k=1

m−2k
n

− 1

σ2
nn

∫ t

0

e−αsm−⌊ns⌋
n X

(n)
⌊ns⌋ds

∣∣∣∣∣
P−→ 0, (17)

D(2)
n :=

∫ T

0

e−2αt

∣∣∣∣∣
(
nσ2

n

)−1
λneαt

⌊nt⌋∑

k=1

m−k
n − µ(t)

∣∣∣∣∣dt → 0 (18)
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as n → ∞. To prove (17) we note that

∫ t

0

e−αsm−⌊ns⌋
n X

(n)
⌊ns⌋ds =

⌊nt⌋∑

k=1

m−k+1
n X

(n)
k−1e

−α(k−1)/n

∫ 1/n

0

e−αs ds

+ m−⌊nt⌋
n X

(n)
⌊nt⌋

∫ t

⌊nt⌋/n

e−αs ds

Thus, we have

D(1)
n ≤ 1

σ2
nn2

⌊nT⌋∑

k=1

d
(n)
k X

(n)
k−1 +

1

σ2
nn2

e|α|T max
1≤k≤⌊nT⌋

m−k
n X

(n)
k +

b2
n

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n ,

where the third term on the right hand side tends to 0 by condition (iii) and

Remark 4.3, and

d
(n)
k :=

∣∣∣∣∣m
−2k
n − m−k+1

n e−α(k−1)/nn

∫ 1/n

0

e−αs ds

∣∣∣∣∣ .

One can easily see that

lim
n→∞

max
1≤k≤⌊nT⌋

d
(n)
k = 0.

Thus, in order to prove (17) it is enough to see that (σ2
nn2)−1

∑⌊nT⌋
k=1 X

(n)
k−1 is

stochastically bounded and (σ2
nn2)−1 max1≤k≤⌊nT⌋ m−k

n X
(n)
k

P−→ 0 as n → ∞.

The first statement follows by the Markov inequality since

1

σ2
nn2

⌊nT⌋∑

k=1

EX
(n)
k−1 ≤ T

σ2
nn

EX
(n)
⌊nT⌋,

where the right hand side is bounded by (3). To prove the second statement we

note that, by (12),

m−k
n X

(n)
k =

k∑

j=1

m−j
n M

(n)
j + m−k

n EX
(n)
k

for all k, n ∈ N. By Definition 1.1 we obtain that n lnmn → α as n → ∞, hence

C := supn∈N
|n lnmn − α| < ∞. Thus, we have

max
1≤k≤⌊nT⌋

m−k
n X

(n)
k ≤

⌊nT⌋∑

j=1

m−j
n

∣∣∣M (n)
j

∣∣∣ + e(|α|+C)T
EX

(n)
⌊nT⌋.
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By the Lyapunov and the Cauchy–Schwarz inequalities we obtain

E



 1

σ2
nn2

⌊nT⌋∑

j=1

m−j
n

∣∣∣M (n)
j

∣∣∣



 ≤



 1

n

⌊nT⌋∑

j=1

m−2j
n




1/2 

 1

σ4
nn3

⌊nT⌋∑

j=1

E
(
M

(n)
j

)2




1/2

.

The sequence
(
n−1

∑⌊nT⌋
j=1 m−2j

n

)
n∈N

is bounded by Remark 4.3. Moreover, by

Lemma 4.1 and Remark 4.2, we have

1

σ4
nn3

⌊nT⌋∑

j=1

E
(
M

(n)
j

)2
=

1

σ4
nn3

⌊nT⌋∑

j=1

(
σ2

nEX
(n)
j−1 + b2

n

)
≤

TEX
(n)
⌊nT⌋

σ2
nn2

+
Tb2

n

σ4
nn2

,

where the second term on the right hand side tends to 0 by condition (iii). Thus,

by Markov’s inequality, in order to prove the second statement it is enough to see

that (σ2
nn2)−1EX

(n)
⌊nT⌋ → 0 as n → ∞, which follows from (3).

To prove (18) consider the estimation

D(2)
n ≤λn

σ2
n

sup
t∈[0,T ]

∣∣∣∣∣∣
1

n

⌊nt⌋∑

k=1

m−k
n −

∫ t

0

e−αs ds

∣∣∣∣∣∣

∫ T

0

e−αt dt

+

∣∣∣∣
λn

σ2
n

− λ

∣∣∣∣
∫ T

0

e−αt

∫ t

0

e−αs dsdt.

Hence, condition (ii) and Remark 4.3 imply (18).

To prove (16) we apply inequality 1{|Y +Z|>θ} ≤ 1{|Y |>θ/2} + 1{|Z|>θ/2},

where Y and Z are random variables, and decomposition (11). Thus, it suffices

to show that

Li,j
n :=

1

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n E

((
ζ
(i)
n,k

)21
{|ζ

(j)
n,k|>θnσ2

nmk
n}

∣∣∣F (n)
k−1

)
P−→ 0 (19)

as n → ∞ for all T, θ > 0 and i, j = 1, 2, where ζ
(1)
n,k = N

(n)
k and ζ

(2)
n,k = δ

(n)
k .

Introduce the random variable S
(n)
k :=

∑X
(n)
k−1

j=1 (ξ
(n)
1,j − mn) for all k, n ∈ N. In

case of i = j = 1 we have to prove that An → 0 and Bn → 0 as n → ∞, where

An :=
1

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n E




X
(n)
k−1∑

j=1

|ξ(n)
1,j − mn|21{|S

(n)
k |>θnσ2

nmk
n}


 ,

Bn :=
2

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n E




X
(n)
k−1∑

i=2

i−1∑

j=1

(ξ
(n)
1,i − mn)(ξ

(n)
1,j − mn)1

{|S
(n)
k |>θnσ2

nmk
n}


 .
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Applying again the above mentioned inequality for the indicator functions of

random variables ξ
(n)
1,j − mn and S

(n)
k,j :=

∑X
(n)
k−1

ℓ 6=j (ξ
(n)
1,ℓ − mn) we obtain

An ≤ 1

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n EX

(n)
k−1 · E

(
|ξ(n)

1,1 − mn|21{|ξ
(n)
1,1 −mn|>θnσ2

nmk
n/2}

)

+
1

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n E




X
(n)
k−1∑

j=1

|ξ(n)
1,j − mn|21{|S

(n)
k,j

|>θnσ2
nmk

n/2}


 .

(20)

Since mk
n ≥ exp{−T (|α|+ C)} for all 1 ≤ k ≤ ⌊nT ⌋, n ∈ N, and, by Remark 4.2,

1

σ2
nn2

⌊nT⌋∑

k=1

m−2k
n EX

(n)
k−1 ≤ 1

σ2
nn2

EX
(n)
⌊nT⌋

⌊nT⌋∑

k=1

m−2k
n ,

where the right hand side is bounded by Remark 4.3, the first term in (20) tends

to zero by condition (i). The second term in (20), by the Markov inequality, can

be majorized by

4

θ2σ4
nn4

⌊nT⌋∑

k=1

m−4k
n E

(
X

(n)
k−1

)2 ≤ 4

θ2σ4
nn4

(
(EX

(n)
⌊nT⌋)

2 + VarX
(n)
⌊nT⌋

) ⌊nT⌋∑

k=1

m−4k
n

which tends to 0 as n → ∞. Let V
(n)
k :=

∑X
(n)
k−1

i=2

∑i−1
j=1(ξ

(n)
1,i − mn)(ξ

(n)
1,j − mn),

k, n ∈ N. Then E(V
(n)
k )2 = (σ4

n/2)E(X
(n)
k−1(X

(n)
k−1 − 1)) for all k, n ∈ N. By the

Cauchy–Schwarz inequality and the Markov inequality we have

|Bn| ≤
2

σ4
nn2

⌊nT⌋∑

k=1

m−2k
n

(
E(V

(n)
k )2P(|S(n)

k | > θnσ2
nmk

n)
)1/2

≤ 21/2

θσ3
nn3

⌊nT⌋∑

k=1

m−3k
n

(
E
(
X

(n)
k

)2
EX

(n)
k

)1/2

≤ 21/2

θσ3
nn3

((
Var(X

(n)
⌊nT⌋) + (EX

(n)
⌊nT⌋)

2
)
EX

(n)
⌊nT⌋

)1/2
⌊nT⌋∑

k=1

m−3k
n → 0

as n → ∞ by Lemma 4.1, Remark 4.2 and 4.3. To prove (19) in case of i = 1 and

j = 2 let us use the inequality

E

((
N

(n)
k

)21
{|δ

(n)
k |>θnσ2

nmk
n}

∣∣∣F (n)
k−1

)
≤ θ−2n−2m−2k

n b2
nσ−2

n X
(n)
k−1.
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Thus, by Remark 4.2, we have

E(L1,2
n ) ≤ b2

n

θ2σ6
nn4

⌊nT⌋∑

k=1

m−4k
n EX

(n)
k−1 ≤ b2

n

θ2σ6
nn4

EX
(n)
⌊nT⌋

⌊nT⌋∑

k=1

m−4k
n → 0

as n → ∞ by condition (iii) and Remark 4.3. To prove the cases i = 2 and j = 1, 2

we note that L2,1
n and L2,2

n can be majorized by σ−4
n n−2b2

n

∑⌊nT⌋
k=1 m−2k

n , which

tends to 0 by condition (iii) and Remark 4.3. Consequently, we proved (14)

By recursion (12) it is easy to see that

X (n)(t) − EX (n)(t) = m⌊nt⌋
n N (n)

(
⌊nt⌋

n

)
.

Thus, (nσ2
n)−1X (n) tends to the process X (t) := eαtN (t) + µ(t), t ∈ R+, as

n → ∞ in the Skorokhod space. Since µ satisfies the ordinary differential equation

dµ(t) = (λ + αµ(t))dt with initial condition µ(0) = 0, Itô’s formula yields

d(eαtN (t) + µ(t)) = (λ + α(eαtN (t) + µ(t))) dt + eαt dN (t),

which agrees with the SDE (4). Finally, (nσ2
n)−1(X (n) − EX (n)) tends to the

process X̃ (t) := eαtN (t), t ∈ R+, as n → ∞ which satisfies SDE (5). �

Proof of Theorem 2.5. By Theorem 2.1 (nσ2
n)−1X (n) D−→ X ′ as n → ∞,

where
(
X ′(t)

)
t∈R+

is the unique solution of a SDE

dX ′(t) = (λ′ + αX ′(t)) dt +
√
X ′

+(t) dW (t), t ∈ R+,

with initial condition X ′(0) = 0, where λ′ := limn→∞ λn/σ2
n = λ/σ2 by conditions

(i) and (iii). Thus, n−(1+̺)X (n) D−→ σ2X ′ as n → ∞. Introduce the process

X := σ2X ′. Then, by Itô’s formula, we have that the process
(
X (t)

)
t∈R+

satisfies

SDE (6). �

Proof of Theorem 2.9. The proof is based on the martingale central

limit theorem similarly to the proof of [8, Theorem 2.2.8]. Define the random

step functions

M(n)(t) :=

⌊nt⌋∑

k=1

M
(n)
k for t ∈ R+, n ∈ N. (21)

We prove that (nb2
n)−1/2M(n) D−→ M as n → ∞, where

(
M(t)

)
t∈R+

is a Wiener

process M(t) = W (T (t)), t ∈ R+, with T (t) := σ2
∫ t

0 µ(s)ds + t, t ∈ R+,
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(
W (t)

)
t∈R+

is a standard Wiener process. By the martingale central limit theo-

rem we have to prove that

1

nb2
n

⌊nt⌋∑

k=1

E

((
M

(n)
k

)2
∣∣∣F (n)

k−1

)
P−→ T (t), (22)

1

nb2
n

⌊nt⌋∑

k=1

E

((
M

(n)
k

)21
{|M

(n)
k |>θ

√
nb2n}

∣∣∣F (n)
k−1

)
P−→ 0 (23)

as n → ∞ for all t ∈ R+ and θ > 0.

By Lemma 4.1, in order to prove (22) we have to show that

σ2
n

nb2
n

⌊nt⌋∑

k=1

EX
(n)
k−1 → σ2

∫ t

0

µ(s)ds as n → ∞, (24)

Var

(
σ2

n

nb2
n

⌊nt⌋∑

k=1

X
(n)
k−1

)
→ 0 as n → ∞. (25)

Since (nb2
n)−1EX

(n)
⌊nt⌋ → µ(t) as n → ∞ uniformly on each finite interval [0, T ],

T > 0, by condition (i) we have (24). To prove (25) we apply (12)

⌊nt⌋∑

k=1

(
X

(n)
k−1 − EX

(n)
k−1

)
=

⌊nt⌋−1∑

j=1

⌊nt⌋−1∑

k=j

mk−j
n M

(n)
j .

Thus, by Lemma 4.1 and Remark 4.2, we have

Var

(
σ2

n

nb2
n

⌊nt⌋∑

k=1

X
(n)
k−1

)
≤ t


 1

n

⌊nt⌋∑

k=0

mk
n




2 (
(nσ2

n)3

(nb2
n)2

EX
(n)
⌊nt⌋ +

(nσ2
n)2

nb2
n

)
,

where the right hand side tends to 0 by Remark 4.3 and conditions of the theorem.

To prove the Lindeberg condition (23) it suffices to check that, for all θ > 0

and t ∈ R+,

Li,j
n :=

1

nb2
n

⌊nt⌋∑

k=1

E

((
ζ
(i)
n,k

)21
{|ζ

(j)
n,k|>θ

√
nb2n}

∣∣∣F (n)
k−1

)
P−→ 0 as n → ∞ (26)

if i, j = 1, 2, where ζ
(1)
n,k = N

(n)
k and ζ

(2)
n,k = δ

(n)
k . The proof of (26) in cases of

i = j = 1 and i 6= j is similar to one of (19) in these cases. Finally, in case of

i = j = 2 (26) agrees exactly with Lindeberg condition (iv). �
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Proof of Theorem 2.12. By Theorem 2.9 (nb2
n)−1/2(X (n) − EX (n))

D−→
X̃ ′ as n → ∞, where

(
X̃ ′(t)

)
t∈R+

is an Ornstein–Uhlenbeck type process defined

by the SDE

dX̃ ′(t) = αX̃ ′(t) dt +
√

σ2µ′(t) + 1dW (t), X̃ ′(0) = 0,

with µ′(t) := (λ/b2)
∫ t

0 eαs ds, t ∈ R+. Thus, n−(1+̺)/2
(
X (n) − EX (n)

) D−→ bX̃ ′

as n → ∞. The process X̃ := bX̃ ′ clearly satisfies SDE (9). �
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