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Parameters of isobaric analog resonance (IAR) are calculated in the framework of the Lane model
using different methods. The standard method: the direct numerical solution of the coupled channel
Lane equations (CC) served as a reference for checking two complex energy methods, namely the
complex energy shell model (CXSM) and the complex scaling (CS) approaches. The IAR parameters
calculated by the CXSM and the CS methods agree with that of the CC results within 1 keV for all
partial waves considered. Although the CXSM and the CS methods have similarities an important
difference is that the CXSM offers a direct way for studying the configurations of the IAR wave
function in contrast to the CS method.
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I. INTRODUCTION

The isobaric analogue resonance (IAR) has been dis-
covered about four decades ago. The IAR appears due
to the approximate isospin symmetry of the states in iso-
baric nuclei. The parent and the analogue states would
be degenerate if the isospin were a good quantum num-
ber but Coulomb forces break the degeneracy and shift
the analogue states up from the parent state. Therefore
in medium and heavy nuclei where the Coulomb energy
shift is large enough the analogue state becomes a reso-
nance.

Recently IAR has attracted interest again during the
study of the light exotic nuclei being in the drip line re-
gion. Here a smaller value of the Coulomb energy differ-
ence can produce IAR because the parent state is weakly
bound. The unusual properties of neutron rich nuclei
provide insights into the nuclear structure far from the
valley of stability. The extreme neutron to proton ratios
might help to understand the nuclear matter at extreme
conditions. However, the experimental study of the neu-
tron rich nuclei around the neutron drip line are difficult.
Since the IAR has essentially the same structure as the
parent state it was suggested that instead of the neutron
rich exotic nuclei (11Li, 14Be, 7He, 9He) [1–4] their less
exotic analogue states should be studied (with inverse
kinematics) in order to gain information on the proper-
ties of these exotic nuclei.

New developments in experimental facilities opened
the possibility of identifying large number of exotic nu-
clei. To understand the structure of these nuclei new
theoretical methods have been developed for describing
the dynamics of weakly bound or unbound nuclei from

which nucleons can be emitted. Some of the new meth-
ods is e.g. the Shell Model in the complex energy plane
(CXSM) [5, 6] or the Gamow Shell Model [7–11] use the
Berggren basis [12]. In the Berggren basis bound and
resonant states are treated on equal footing and scatter-
ing states taken along a contour L of the complex energy
sheet are included. This will be discussed later in detail.
In the last few years this basis has been used successfully
in a serious of works [13–17]. Since the extended use of
this basis started not very long ago we think that it is
worthwhile to accumulate more experience concerning its
use, namely the accuracy and the parameter dependence
of the methods in which this basis is used.

Another well established method for calculating res-
onances is the complex scaling (CS) method. CS has
a strict mathematical foundation given in Refs.[18–20].
The possible applications and the details of the CS
method are reviewed in [21, 22].

The IAR phenomenologically can be described by the
Lane equations [23] or can be studied microscopically
[24]. Coupled channel (CC) Lane equations offer a simple
but not trivial example (the simplest multichannel exam-
ple) in which both the CXSM and the CS approaches can
be checked.

Our aim in this work is to compare the parameters
of the IAR calculated by different methods. We shall
compare the characteristic features of the two methods
working on the complex energy plane. The experiences
of a methodical work like this might be useful later in an-
alyzing experimental data in more realistic calculations.

The CS can be applied only for dilation analytic poten-
tials and interactions. Some of the widely used nuclear
potentials are not dilation analytic or they are dilation
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analytic only in a limited range of the rotation angle,
i.e. below the critical value of the rotation angle. There-
fore we repeat our calculation with a slightly modified
Coulomb potential which is dilation analytic. This com-
parison is very useful to compare the accuracy of the
CXSM and CS methods in cases when both methods can
be applied.

In section II A we summarize the features of the Lane
equations. In section II B we describe the approximate
solution of the Lane equations using the CXSM, while in
section II C we make a short description of the solution
of the Lane equations using CS. In chapter III we give
the numerical results of the calculations. In the first part
of chapter III we compare the positions of the poles of
the S-matrix calculated by the CXSM method with those
extracted from the solution of the Lane equations. The
results of the CS method are also presented here. The
similarities and differences of the CXSM and CS methods
are also discussed in that chapter. Finally in the last
chapter we summarize the main conclusions of the paper.

II. RESONANCE SOLUTION OF THE LANE
EQUATION

The Lane equations in the simplest case describe the
quasi-elastic scattering of a proton and the IAR. We as-
sume that the target nucleus has mass number A = N+Z
and charge number Z. The ground state of the target has
isospin TA and isospin projection T3 = N−Z

2 = TA. The
target is bombarded by a beam of protons.

A. Lane equation

The Hamiltonian of the target plus nucleon system H
can be divided to a part describing the internal motion
of the target H(ξ) and the relative motion Hrel of the
nucleon with respect to the target

H = H(ξ) +Hrel . (1)

The internal state of the ground state of the target is
denoted by |A〉 and this state is the solution of the equa-
tion H(ξ)|A〉 = εA|A〉. The analogue nucleus is denoted

by Ã it has the same isospin TA and isospin projection
TA − 1. It is an excited state of the isobaric nucleus
with Z + 1 protons and N − 1 neutrons. If we neglect
the mass difference between the neutron and proton and
denote the additional Coulomb energy of the analogue
nucleus by ∆c then the eigenvalue of the internal mo-
tion of the analogue state is simply εA + ∆c and we have
H(ξ)|Ã〉 = (εA+∆c)|Ã〉. Let |pA〉 and |nÃ〉 be the states

formed by adding a proton and neutron to |A〉 and |Ã〉,
respectively. The total wave function of the system may
be written in the form

Ψ = |A〉φp(r) + |Ã〉φn(r), (2)

where φp(r) and φn(r) describe the relative motion. The
relative motion part of the total Hamiltonian can be cast
into the form

Hrel = K + V0(r) + t̂ · T̂V1(r) + (
1

2
− t3)VC(r) , (3)

where K is the kinetic energy operator of the relative mo-
tion, V0 comes from the interactions independent from
the isospin, VC is the nuclear Coulomb potential and
t̂·T̂V1(r) is the symmetry term accounting for the isospin
dependent strong interactions. The vector operators
t̂ and T̂ are the isospin operators of the nucleon and
that of the target. Substituting the ansatz (2) into the
Schrödinger equation HΨ = EΨ and taking into account
the form (3) of the relative Hamiltonian we get the Lane
equations [23]:

[
K + V0 −

V1

2
TA + VC − Ep

]
φp +

√
1

2
TAV1φn = 0

[
K + V0 +

V1

2
(TA − 1)− (Ep −∆c)

]
φn +

√
1

2
TAV1φp = 0, (4)

where Ep = E − εA is the center-of-mass energy of
the relative motion in the proton plus target system and
the energy in the neutron plus analogue nucleus channel,
namely Ep −∆c. If we assume spherically symmetric in-
teractions then the relative motion can be separated into
partial waves and will not be coupling between different
partial waves characterized by orbital l and total angular
momentum j quantum numbers. We consider this simple
case. In the standard method described e.g. in Ref. [25]
we solve the Lane equation by using numerical integra-
tion. The numerical solution of the Lane equation is car-
ried out by using fourth order Runge-Kutta method. At
each real Ep value we calculate two linearly independent
solutions of the coupled equations. The physical solution
with components φp and φn being regular at r = 0 was
combined from these independent solutions. These com-
ponents φp and φn were matched to the scattering (or
outgoing wave) solutions of the corresponding channels
at a distance where the nuclear potentials are cut to zero.

B. CXSM a solution using Berggren basis

In this section we calculate the complex energy eigen-
values of the IAR by diagonalizing the Hamiltonian (1)
in combined Berggren bases [12] of the target plus proton
and analog plus neutron systems. First we describe the
Berggren basis for the protons. We consider an auxiliary
problem, a radial Schrödinger equation with the diagonal
potential of the first equation of the Lane equation (4)

[
Kl + V0 −

1

2
TAV1 + VC − E(p)

n

]
u(p)
n (r) = 0, (5)
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where

Kl = − ~
2

2µ

[
d2

dr2
− l(l + 1)

r2

]
. (6)

The discrete bound and resonance solution with energy

E
(p)
n are denoted by u

(p)
n (r) and the scattering solutions

by u(p)(r, E). Sometimes when it is obvious we will use
the wave number k instead of the energy E and the scat-
tering states along the contour in the lower half of the
second energy sheet will be denoted by u(p)(r, k).

The main advantage of the Berggren basis is that the
single-particle basis set consists not only of bound states
but also of poles of the single-particle Green function on
the complex energy (wave number) planes and a contin-
uum of scattering states taken along a complex contour
L. A typical contour of the complex wave number plane
is shown in Fig. 1. The L+ part of the contour goes
from the origin to infinity in the lower half of the second
energy sheet, while the L− part of the contour makes
exactly the same tour on the first energy sheet. It was
observed in Refs. [26, 27] that the contour L+ need not
return to the real axis at infinity. The shape of the cho-
sen complex contour L = L+ +L− regulates which of the
poles should be included into the Berggren basis forming
the completeness relation of Berggren:

δ(r − r′) =
∑

n=b,d

u(p)
n (r)u(p)

n (r′)

+

∫

L+

dk u(p)(r, k)u(p)(r′, k) . (7)

In this relation (and later) the notation n = b, d means
that the sum over n runs through all bound states plus
the decaying resonances lying between the real energy
axis and the integration contour L+ of Fig. 1. The in-
tegral in Eq. (7) is over the scattering states along L+ .
The poles denoted by d in the basis generally correspond
to decaying resonances lying on the fourth quadrant of
the complex k-plane.

The completeness relation in Eq. (7) was introduced
for chargeless particles in Ref. [12] and it has been shown
later in Ref. [28, 29] that it is valid even for charged
particles. Berggren completeness can be generalized by
using a contour of different shape in which antibound
states [30] lying on the negative part of the imaginary
k-axis are included in the sum in Eq. (7). Since the
inclusion of antibound states is not optimal as far as the
number of basis states is concerned [31] we are not using
antibound basis states in this work.

Berggren introduced a generalized scalar product be-
tween functions defining a special complex metric of the
Berggren space [12]. In the generalized scalar product in
the left (bra) position of the scalar product the mirror
partner state (denoted by tilde over the state) is used.
This state corresponds to a reflection to the imaginary
k-axis. Due to this reflection in this scalar product in
the integral the radial wave function itself appears and

1b

2b

1d
2d

L+

L−

Im(k)

Re(k)

FIG. 1: Positions of the bound (b1, b2) and decaying resonant
(d1, d2) poles of S(k) on the complex k-plane and a possible
choice of the complex contour L .

not the complex conjugate of the radial function. (This
causes no difference for bound states lying on the positive
part of the imaginary axis.) This is the only modifica-
tion in the scalar product since the spin-angular degrees
of freedom remains unchanged. If the radial integral to
be calculated has no definite value then a regularization
procedure has to be applied. Zel’dovich [32] and also
Romo [33] suggested regularization methods but we use
the complex rotation of the radial distance r beyond the
range of nuclear forces [34].

The upper half of the complex k-plane maps to the
physical (or first) Riemann-sheet of the complex energy
E ∼ k2. The pole wave functions of this sheet are square
integrable functions belonging to bound states. While
the lower half of the complex k-plane maps to the un-
physical (or second) Riemann-sheet of the energy E. The
pole wave functions of the second sheet are not square in-
tegrable functions and they belong to decaying/capturing
resonances lying on the lower/upper part of that energy
sheet or antibound states lying on the negative real en-
ergy axis. The calculation of integrals in which these
radial wave functions appear might need the use of reg-
ularization procedure.

Since the number of basis states has to be finite the
complex continuum has to be discretized. It is prefer-

able to use as discretization points E
(p)
i the abscissas

of a Gaussian quadrature procedure. The correspond-
ing weights of that procedure are denoted by hi. By
discretizing the integral in Eq. (7) one obtains an ap-
proximate completeness relation for the finite number of
basis states:

δ(r − r′) ≈
M∑

n=b,d,c

w(p)
n (r, E(p)

n )w(p)
n (r′, E(p)

n ), (8)

where c labels the discretized contour L+ states. If
E

(p)
n corresponds to scattering energy from the contour

L+ then the scattering state of the discretized con-
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tinuum is denoted by w
(p)
n (r, E

(p)
n ) =

√
hnu

(p)
n (r, E

(p)
n )

and if E
(p)
n corresponds to a normalized pole state then

w
(p)
n (r, E

(p)
n ) = u

(p)
n (r). The set of Berggren vectors form

a bi-orthonormal basis in the truncated space

< w̃(p)
n |w(p)

m >= δn,m . (9)

The Berggren basis for neutrons is defined similarly but
the auxiliary problem uses the diagonal part of the second
equation of (4)

[
Kl + V0 +

1

2
(TA − 1)V1 − E(n)

n

]
u(n)
n (r) = 0. (10)

Having fixed the Berggren basis for neutrons and pro-
tons we take the ansatz (2) and the relative motion func-
tions are expanded on the corresponding Berggren bases

φp(r) =



Mp∑

i=1

C
(p)
i w

(p)
i (r, E

(p)
i )


Yljm (11)

and

φn(r) =

[
Mn∑

i=1

C
(n)
i w

(n)
i (r, E

(n)
i )

]
Yljm , (12)

where Yljm denotes the spin-angular part of the wave
function. Using Eq. (4) we get the following set of lin-
ear equations for the unknown complex expansion coeffi-

cients C
(p)
i and C

(n)
i

(E
(p)
k − Ep)C

(p)
k +

Mn∑

m=1

〈w̃(p)
k |δv|w(n)

m 〉C(n)
m = 0

k = 1, . . . ,Mp (13)

and

(E
(n)
k − (Ep −∆c))C

(n)
k +

Mp∑

m=1

〈w̃(n)
k |δv|w(p)

m 〉C(p)
m = 0

k = 1, . . . ,Mn,(14)

where the coupling potential is δv =
√

TA
2 V1. The

above two equations can be combined into one matrix
eigenvalue equation with dimension Mp+Mn. By diago-
nalizing the matrix of the Hamiltonian we get Mp +Mn

complex eigenvalues Eνp ν = 1, . . .Mp + Mn. One of the

complex eigenvalues Eνp is identified by the energy of the
IAR. The identification in general is easy because most of
the other unbound states correspond to discretized con-
tour states and they are lying far from the position of the
IAR at EIAR = Er − iΓ

2 and in the wave function of the
IAR the dominant component is a bound neutron state.

C. Complex scaled Lane equation

The poles of the Green-operator on the complex energy
plane can be determined with the help of the complex
scaling. The CS is mathematically well founded [18–20]
and has many applications in atomic, molecular and nu-
clear physics. We demonstrate the effect of the CS on

an example of a single-particle Hamiltonian ĥ. The real
angle θ of the CS rotates the coordinates of the particle
to complex, i.e. r is simply replaced by exp(iθ)r. More
precisely the effect of the CS can be given with the help
of an operator Û(θ). It acts on an arbitrary function g(r)
as

Û(θ)g(r) = exp(i
3

2
θ)g(reiθ) . (15)

The complex scaled Hamiltonian is the following

ĥθ = ÛθĥÛ
−1
θ . (16)

The kinetic energy K̂ = − ~2

2µ∆r transforms due to the

complex scaling to

ÛθK̂Û
−1
θ = exp(−i2θ)(− ~

2

2µ
∆r) , (17)

and a local potential V̂ (r) transforms to the form:

V̂ θ(r) = ÛθV̂ (r)Û−1
θ = V̂ (r exp(iθ)). (18)

If we assume that χν(r) is a bound or resonance

eigenfunction of the the Hamiltonian ĥ and the corre-
sponding eigenvalue is Eν then the function χθν(r) =
exp(i 3

2θ)χν(reiθ) will be the eigenfunction of the complex

scaled Hamiltonian ĥθ with the same eigenvalue Eν . The
advantage of the CS is that the function χθν(r) is square
integrable even if the original state was a resonant wave
function. The square integrability of χθν(r) allows that
it can be approximated well with finite expansion using
only square integrable basis functions.

The Lane equation can be considered as an eigenvalue
problem of a two by two matrix Hamiltonian

H =


 K + V0 − TA

2 V1 + VC

√
TA
2 V1√

TA
2 V1 K + V0 + TA−1

2 V1 + ∆c


 . (19)



5

The Lane-equation (4) can be cast into the form

H
(
φp(r)
φn(r)

)
= Ep

(
φp(r)
φn(r)

)
. (20)

The generalization of the operator Ûθ is straightforward

Uθ =

(
Uθ 0
0 Uθ

)
(21)

and the complex scaled matrix Hamiltonian is Hθ =
ÛθHÛ−1

θ . The eigenvalue problem of this operator

Hθ
(
φθp(r)
φθn(r)

)
= Eθp

(
φθp(r)
φθn(r)

)
(22)

in components gives the following set of equations

[
Hθ
p − Eθp

]
φθp +

√
1

2
TAV

θ
1 φ

θ
n = 0

[
Hθ
n − Eθp

]
φθn +

√
1

2
TAV

θ
1 φ

θ
p = 0 , (23)

where Hθ
p = exp(−i2θ)K + V θ0 − 1

2TAV
θ
1 + V θC and Hθ

n =

exp(−i2θ)K+V θ0 + 1
2 (TA−1)V θ1 +∆c. We will refer to (23)

as complex scaled Lane-equation. Since the functions
φθp(r) and φθn(r) are square integrable we can make the
approximations

φθp(r) =



Mp∑

i=1

C
(p,θ)
i ψ

(p)
i (r)


Yljm (24)

and

φθn(r) =

[
Mn∑

i=1

C
(n,θ)
i ψ

(n)
i (r)

]
Yljm, (25)

where ψ
(n)
i (r) and ψ

(p)
i (r) are arbitrary square integrable

basis functions. Substituting these forms into the (23) we
get a matrix eigenvalue equation. In detail we have

Mp∑

m=1

〈ψ̃(p)
k |Hθ

p |ψ(p)
m 〉C(p,θ)

m +

Mn∑

m=1

〈ψ̃(p)
k |δvθ|ψ(n)

m 〉C(n,θ)
m

= Ep
Mp∑

m=1

〈ψ̃(p)
k |ψ(p)

m 〉C(p,θ)
m k = 1, . . . ,Mp,(26)

and

Mn∑

m=1

〈ψ̃(n)
k |Hθ

n|ψ(n)
m 〉C(n,θ)

m +

Mp∑

m=1

〈ψ̃(n)
k |δvθ|ψ(p)

m 〉C(p,θ)
m

= Ep
Mn∑

m=1

〈ψ̃(n)
k |ψ(n)

m 〉C(n,θ)
m k = 1, . . . ,Mn.(27)

The solution of these equations provides us Mp + Mn

number of complex eigenvalues. The majority of these
eigenvalues correspond to the discretization of the ro-
tated continua. The bound and resonance poles can be
clearly identified and the accurate value can be deter-
mined using the so called θ trajectory technique.

III. NUMERICAL RESULTS

We applied the methods described in section II B and
II C for the description of the IAR-es in the 209Bi nucleus
with large neutron excess. We studied several analogue
resonances in the p +208 Pb system. For illustrative pur-
poses we selected an IAR which in our simple model is
the analog of the ground state of 209Pb, i.e. a g9/2 sin-
gle particle state. The effect of the double magic core
is described by a phenomenological potential. We used
Woods-Saxon (WS) forms for both the diagonal and the
coupling potentials in (4). The WS forms cut to zero at
a finite distance: Rmax = 20 fm

VWS
tr (r) =

{
VWS(r) if r < Rmax

0 if r ≥ Rmax .
(28)

The spin-orbit part of the potential has the usual deriva-
tive form:

VWS
so (r) = −Vso

ra
2(~l · ~s) e

r−R
a

(1 + e
r−R
a )2

. (29)

It is also cut to zero at Rmax. The numerical values of
the potential parameters were taken from an early work
[35]. For the sake of simplicity the radii and the diffuse-
ness were taken the same values for protons and neu-
trons and for the common spin-orbit term: r0 = 1.19
fm and a = 0.75 fm, Vso = 11.6 MeV. For Coulomb po-
tential we assumed that the charge Ze of the target is
homogeneously distributed inside a sphere with radius
Rc = rcA

1/3 with sharp edge

VC(r) = Ze2

{
1

2Rc
[3− ( r

Rc
)2] if r ≤ Rc

1/r if r > Rc .
(30)

The depth of the nucleon potential was 56.4 MeV and
the strength of the symmetry potential was 0.5 MeV.
Therefore the diagonal WS potential felt by the proton
was 61.9 MeV and by the neutron 51.15 MeV according
to the Lane equations in Eq. (4). The Coulomb radius
was identical with the one of the nuclear potential. The
Coulomb energy difference was also the same as in Ref.
[35] ∆c = 18.9 MeV.

In the CXSM the elements of the single particle bases
are calculated in the diagonal potentials appearing in the
corresponding channels of the Lane equations. The single
particle energies for the g9/2 neutron and proton orbits
are summarized in Table I. The vertexes of three dif-
ferent proton and neutron L contours for the g9/2 case
are shown in Table II. The numbers of the discretization
points Ni of the segment [Vi, Vi+1] are shown between
the vertex points. To calculate IAR-es we could use neu-
tron contours taken along the real axis. For other partial
waves we used a large variety of contours.

In the CC method we solved the coupled Lane equa-
tions for a fine equidistant mesh of the bombarding pro-
ton energy Ep = E0, E0+dE , ..., Emax in the center of mass
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State neutron proton(Eq. (30)) proton(Eq. (32))

1g9/2 (−22.878, 0.0000) (−11.894, 0.0000) (−13.975, 0.0000)

2g9/2 (−4.060, 0.0000) (7.674,−6.210−4) (6.070,−2.010−5)

TABLE I: Energies of the discrete g9/2 single-particle basis states for neutrons and for protons corresponding to the Woods-
Saxon potential described in the text. The Coulomb potential for protons is either the usual one in Eq. (30) or the dilation
analytic one in Eq. (32). Energies are in MeV.

Channel proton neutron

Contour LP1 LP2 LP3 LN1 LN2 LN3

V0 (0,0) (0,0) (0,0) (5,-0.4) (5,-0.35) (3,0)

N0 0 0 4 0 0 10

V1 (5,-0.4) (5,-0.35) (5,-0.4) (30,-0.4) (30,-2.098) (3,-10)

N1 78 34 22 0 0 4

V2 (30,-0.4) (30,-2.098) (30,0) (30,0) (100,-6.993) (10,-10)

N2 2 4 2 0 0 6

V3 (30,0) (100,-6.993) (100,0) (100,0) (10,0)

N3 0 4 0 0 4

V4 (100,0) (200,0) (200,0) (30,0)

N4 0 0 0 0

V5 (200,0) (100,0)

TABLE II: Integration contours for g9/2 protons and neutrons given by vertexes Vi (in MeV) and the number of Gaussian
points Ni. The Ni values are the ones necessary to reach the 1 keV accuracy for the IAR or for the broad resonance at
Ep = (23.996,−6.147) MeV. Contours LP3 and LN3 were used for the broad resonance.

system and calculated the scattering matrix elements for
each energy values: S(Ep).

In order to determine the parameters of the IAR we
fitted the tabulated values of the S(Ei) by the following
form:

S(Ep) = e2iδp(Ep)(1− i Γp
Ep − EIAR

) , (31)

where EIAR denotes the complex energy of the IAR, i.e.
EIAR = Er − iΓ

2 , Γ is the full width and Γp is the pro-
ton partial width of the IAR. Below the threshold of the
208Pb(p, n̄)208Bi reaction the total width is equal to the
the partial width: Γ = Γp in our model. Equation (31)
represents a one pole approximation to the S-matrix in
the proton channel.

For the background phase shift in the entrance chan-
nel δp(Ep) we take a linear energy dependence in order
to better reproduce the non-resonant background. Natu-
rally all these quantities refer to definite l, j partial waves.
The best fit parameter values are listed in the Er(CC)
and Γ(CC) columns in Table III. The one pole formula
of (31) gave excellent fit to the tabulated values of S(Ei)
in all cases in Table III.

The numerical values of EIAR are shown as Er(CXSM)
and Γ(CXSM) in Table III in comparison with the results
extracted from the solution of the coupled Lane equations
Er(CC) and Γ(CC). As one can see from the comparison

l j Er(CXSM) Er(CC) Γ(CXSM) Γ(CC)

g9/2 14.954 14.954 0.046 0.047

i11/2 15.526 15.526 0.003 0.003

d5/2 16.445 16.444 0.141 0.140

s1/2 16.918 16.917 0.156 0.156

g7/2 17.367 17.367 0.086 0.084

d3/2 17.441 17.440 0.144 0.145

j15/2 18.774 18.774 0.006 0.006

TABLE III: Comparison of the IAR parameters calculated by
using the CC and CXSM methods for different partial waves
with Coulomb potential Eq. (30). Energies are in MeV units.

the positions and the widths calculated by the CXSM
agree well (within 1 keV) with the result of the CC.

Let us discuss below briefly how this agreement has
been achieved. We optimized the shape of the contours
and the number of points along the contours separately
for neutrons and protons and for different partial waves.
The shape of the contour is fixed by the vertexes which
were chosen to be able to include the narrowest single-
particle resonant states. We observed that the contour
should not go close either to the energies of the reso-
nances included into the basis or the IAR resulted by the
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diagonalization. The last vertex point i.e. the energy of
the last segment with Ni 6= 0 was crucial to get good
agreement for both the real and the imaginary parts of
the IAR energy calculated by solving the Lane-equation.

We tested the convergence of the IAR energies by in-
creasing the number of discretization points and stopped
to increase it when the energy did not change. After that
we continued with the next interval and increased the
points of that interval similarly. After going through all
the intervals we optimized the number of mesh-points by
reducing them until the energy in keV did not change.
We also tested the convergence of the IAR energies by
varying the positions of the vertexes. If the contour goes
very far from the real axis i.e. if we choose the value of
the imaginary parts of the vertexes considerably larger
than the ones in Table II then the degree of agreement
might be spoiled even if we choose larger number of dis-
cretization points. We found for all partial waves that
the IAR resonances are not very much sensitive to the
low energy part of the continuum (below 5 MeV), nei-
ther for neutron nor for proton. At high energy however
a cutoff smaller than 30 MeV affects the convergence of
the IAR energy.

In order to be able to compare pole solutions for cal-
culation of the resonance parameters of the IAR we re-
peated the calculation by applying the CS for the solu-
tion of the Lane equations. Unfortunately the Coulomb
potential of a charged sphere with sharp edge is not di-
lation analytic because this form becomes discontinuous
for θ 6= 0. We used the Coulomb potential expressed by
the error function which is dilation analytic. This form
of the Coulomb potential

VC(r) = Ze2 Erf(r/α)

r
(32)

is widely used in both atomic and nuclear physics [26, 36].
In the resonating group model it can be obtained as the
direct folding interaction between nuclei [37]. The nu-
merical value of the parameter α = 0.31 fm was adjusted
to the Coulomb potential in Eq. (30). For the nuclear
potential we kept the WS form which is dilation ana-
lytic until the rotation angle is below the critical angle:
θ < θcrit = arctg(aπR ).

For the solution of the complex scaled Lane equation
we used the Laguerre mesh basis functions

ψ
(ν)
i (r) = (−1)ir

−1/2
i

rLMν
(r)

r − ri
exp(−r/2), (33)

where ν = p, n. The mesh points given by LMν
(ri) = 0,

where LMν
(r) is the Laguerre polynomial. The advan-

tage of this basis is that the matrix elements of any local
potential is extremely simple [38]. This type of basis
functions are proved to be very accurate both in simple
model calculations and in three body problems [38–40].
One can introduce an additional simple scaling parame-
ter of the basis [38] for this parameter we used the 0.3
fm value.

The agreement between the pole positions calculated
by the CXSM and the CS method is extremely good for
all partial waves in Table IV. One can see in this Table
that the agreement with the numerically exact solution
of the Lane-equation (CC) is as good as in the previous
case when the CXSM method was used with the stan-
dard Coulomb potential. The maximal difference does
not exceeds 1 keV.
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FIG. 2: Positions of the g9/2 Berggren basis states (circles
for neutrons and squares for protons) and the results of the
CXSM method (filled circles) on the complex E-plane for the
Coulomb potential Eq. (30).

To understand better the formation of the IAR let us
consider again the l = 4, j = 9/2 case as an example. In
Fig. 2 we show the positions of the unperturbed states
forming the Berggren basis (denoted by circles for neu-
trons and squares for protons) and some of the results
of the diagonalization (perturbed states denoted by filled
circles) on the complex energy plane. A section of the
real E-axis and of the lower half of the complex plane
is shown. In this case the neutron contour is along the
real axis while the proton contour has a trapezoidal shape
with vertexes denoted by LP1 in Table II. In order to see
better the region of our interest the states with energies
higher than 60 MeV are not shown in Fig.2. The discrete
basis states are listed in Table I. The bound basis states
are the 1g9/2 proton state at E

(p)
i = −13.975 MeV and

the two neutron states: 1g9/2, 2g9/2 at E
(n)
i = −22.878

MeV and at E
(n)
i = −4.060 MeV which are shifted up by

∆c = 18.9 MeV . The narrow 2g9/2 proton resonance at

E
(p)
i = (6.070,−2 × 10−5) MeV seems to lie on the real

axis.

Most of the perturbed states lie close to the posi-
tions of the corresponding basis states since the cou-
pling symmetry potential term causes only a small shift
for these states. One of the exception is the IAR at
EIAR = (14.933,−0.021) MeV which shifted down well
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l j Er(CXSM) Er(CS) Er(CC) Γ(CXSM) Γ(CS) Γ(CC)

g9/2 14.933 14.933 14.934 0.041 0.041 0.042

i11/2 15.493 15.493 15.493 0.002 0.002 0.002

d5/2 16.436 16.436 16.444 0.121 0.120 0.120

s1/2 16.913 16.913 16.913 0.127 0.127 0.128

g7/2 17.350 17.349 17.349 0.076 0.075 0.074

d3/2 17.434 17.434 17.433 0.118 0.119 0.120

j15/2 18.752 18.751 18.752 0.005 0.005 0.005

TABLE IV: Comparison of the IAR parameters calculated by using the CC, CXSM and CS methods for different partial waves
with the dilation analytic Coulomb potential Eq. (32). Energies are in MeV units.

below the bound 2g9/2 neutron state which is the main

component of its wave function C
(n)
i = (0.9921,−0.0047).

The second largest component is that of the 2g9/2 proton

resonance with C
(p)
i = (−0.1194, 0.0002). The other per-

turbed states which do not fit to the path of the contours
are states based on contour states but fall off the contour
because of the finite number of discretization points. If
the number of discretization points are increased they
move closer to the contour. They move also with the
contour if we change the shape of the contour in con-
trast to the IAR which remains in the same position. Of
course the IAR should lie above the proton contour in
order to be explored. This feature is very similar to the
one observed in the CS calculation.

¿From the mathematical theory of the complex scal-
ing [18–22] it is known that the continuous part of the
spectrum of the complex scaled Hamilton operator con-
sist of half lines on the complex energy plane. The half
lines start at the thresholds and they are rotated down
from the real axis by 2θ. In our calculation we have used
Mp = Mn = 100 basis functions and received two hun-
dred approximate complex eigenvalues from the diagonal-
ization. These eigenvalues are plotted on Fig. 3 for two
different θ values θ = 2o and θ = 4o. From this Figure it
is obvious that the vast majority of the eigenvalues corre-
spond to discretization of the continuous spectrum. How-
ever there are a few eigenvalues which are independent
from the complex scaling parameter θ. These are denoted
by letters b1,b2 and r1,r2 in the Figure 3 at part (a). The
r2 is the IAR which is based mainly on the 2g9/2 bound
neutron state as we have seen in the CXSM calculation
before. The r1 resonance is based mainly on the nar-

row 2g9/2 proton resonance at E
(p)
i = (6.070,−2× 10−5)

MeV. The bound states b1 and b2 originate on the 1g9/2

proton state at E
(p)
i = −13.975 MeV and the 1g9/2 neu-

tron state at E
(n)
i = −22.878 MeV which are shifted up

by ∆c = 18.9 MeV.

The part (b) of the Figure 3 show the so called θ tra-

FIG. 3: Part (a): positions of the g9/2 states on complex E-
plane with CS method with the rotation angle θ = 2o (filed
circles) and with θ = 4o ( open circles) for the Coulomb poten-
tial Eq. (32). The IAR is the state r2. Part (b): the vicinity
of the IAR, the CS scaling parameter θ is varied between 2o

and 8o with a step size of 1o.

jectory i.e. the complex energy plane in the vicinity of
the IAR when the complex scaling parameter changes be-
tween θ = 2 and θ = 8 degrees with step size of one de-
gree. There is a small change in the position and width of
the resonance (this should be independent form the value
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of θ) but this comes from the fact that a finite basis is
used. This phenomena is well know in all complex scaling
calculation and there are methods how to select the best
approximation for the resonance [41]. The resonance po-
sition and width values given in Table IV correspond to
calculations with θ = 4o.

A similarity of the CXSM and the CS method is that
results become less accurate if the contour of the CXSM
or the rotated half lines are lying close to the resonance.
To get high accuracy the resonance has to be well ex-
plored i.e. should lie far above the contour. The ro-
tated half lines of the CS play similar role as the con-
tours of the CXSM therefore we shall call the half lines
of the CS method also contours. Only the resonances
above the contours can be calculated. This means that
the 3g9/2 neutron resonance at E(n) = (4.929,−6.035)

arg(E(n)) = 50.76o or the corresponding perturbed solu-
tion can not be calculated by the CS method since they
can not be explored because of the critical angle of the
WS potential θcrit = 18.48o. It can be calculated how-
ever by the CXSM using contours LP3 − LN3 and we
get for the perturbed energy Ep = (23.996,−6.147) MeV
arg(Ep −∆c) = 50.33o.

The similarity of the methods can be seen even bet-
ter if we try to use a contour in CXSM, which resem-
bles to the rotated continuum of the CS calculation. In
Fig. 4 we present the results of the CXSM calculation
in which the contours LP2 and LN2 were chosen to be
the same as the one corresponding to the optimal θ = 4o

rotational angle of the CS calculation. One can see that
the IAR is well separated from the two contours starting
at the origin and the one starting at the neutron emis-
sion threshold. The unperturbed pole closest to the IAR
is the bound 2g9/2 neutron state which is the dominat-
ing component of the IAR wave function with amplitude:

C
(n)
i = (0.9918,−0.0043). The second largest component

of the IAR wave function is the one of the 2g9/2 pro-

ton resonance with amplitude C
(p)
i = (−0.1194, 0.0001).

The wave function of the IAR is practically unchanged
as far as the discrete components are concerned with re-
spect to the case with the contours used in Fig. 2 (LP1
and a real neutron contour). The energy of the IAR is
Ep = (14.93309,−0.02058) MeV coincide with the one
Ep = (14.93303,−0.02062) MeV with the contours used
in Fig. 2 within the numerical error 1 keV estimated from
the deviation from the CC results in Table IV. This good
agreement convinces us that the use of the LP2 and LN2
contours which resembles to the contour of the CS could
also be used for calculating the IAR. The components
of the different scattering states taken from the differ-
ent contours are certainly very different but the summed
contribution of the proton and neutron contours are ba-
sically the same. Since both are small numbers their nu-
merical values have little importance. For the g9/2 IAR
the neutron continuum has negligible effect. For other
partial waves this effect is also small but not completely
negligible.
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FIG. 4: Positions of the g9/2 Berggren basis states (circles
for neutrons and squares for protons) and the results of the
CXSM method (filled circles) on the complex E-plane for the
Coulomb potential Eq. (32) with contours LP2 and LN2 in
Table II. They are similar to the optimal contour of the CS
method.

An important difference between the results presented
in Figs. 3 and 4 is that in Fig. 3 only perturbed states are
shown since in the CS method the basis states used are
not eigenstates of any unperturbed Hamiltonians. There-
fore from the coefficients of the wave function of the IAR
explored we can not estimate the role of the unperturbed
neutron and proton states easily. To get similar quanti-
ties we have to calculate the unperturbed state with the
same CS contour and we have to calculate overlaps with
the IAR wave function.

IV. SUMMARY

Let us summarize briefly the results we received in this
study. We reproduced the results of the direct numerical
solution of the coupled Lane equations by diagonalizing
the Hamiltonian in the full n-p Berggren basis i.e. using
the CXSM method. The IAR parameters were extracted
from the S(Ep) calculated by solving the Lane equation
along the real Ep-axis by fitting it using the one pole ap-
proximation Eq. (31). The fitted position Er(CC) and
the width Γ(CC) of the IAR was compared to the result
of the CXSM calculation and the agreement was gener-
ally better than 1 keV for all partial waves in which we
had IAR. In the wave function of the IAR furnished by
the CXSM the contribution of the bound neutron state
has the dominant role and the proton resonance has a
non negligible effect. The integrated effect of the proton
continuum is small but essential to produce the correct
width for the resonance. We studied the details of the
different parts of the continuum segments and the neces-
sary numbers of the discretization points on the different
segments. The role of the cut off energy and the low en-
ergy part of the continuum were also investigated. The
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neutron continuum played very small effect for the IAR-
es.

The pole position of the IAR was calculated by com-
plex scaling method as well. For that we modified the
Coulomb potential for a dilational analytic one and re-
peated the CC calculation and CXSM method with the
modified Coulomb potential. We received very good
agreement to the numerical solution of the coupled Lane-
equations both with the CXSM and the CS methods.
Therefore we conclude that in this case the CXSM and
the CS method give basically the same results apart some
numerical errors which naturally not the same in the two
types of calculations. This agreement suggests that the
two methods are basically equivalent in those cases when
both methods can be applied.

Besides the similarities and differences of the CXSM
and the CS methods discussed so far there are further
important differences between them. The application of
the uniform CS method used here is restricted to dila-
tion analytic potentials and the range of the rotational
angle could also be limited. On the other hand in the
CXSM method the shape of the contour can be chosen
with large flexibility although to go too deep into the
complex energy might spoil a bit the accuracy of the cal-
culated results. Another advantage of the CXSM is that
the structure of the resonant state can be seen directly

from the coefficients of the perturbed wave function. In
the CS method the same information can be explored in
a more indirect way.

In order to be able to compare the result of our pow-
erful CXSM method to measured cross sections we have
to extend our method for complex potentials which could
account for the flux of the particles into reaction channels
not explicitly included in the Lane model. Therefore we
plan to use complex potentials in the CXSM and calcu-
late partial and spreading widths of the resonances using.
For taking realistic values for the isoscalar and isovector
parts of the nucleon-nucleus optical potential classical
works in Refs. [42, 43] and the results of a recent system-
atics in Ref. [44] might be useful.
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99, 801 (1998).
[27] G. Hagen and J.S. Vaagen, Phys. Rev. C 73, 034321

(2006).
[28] N. Michel, W. Nazarewicz, and M. P loszajczak, Phys.

Rev. C 70, 064313 (2004).
[29] N. Michel, J. Math. Phys. 49, 022109 (2008).
[30] R. Id Betan, R. J. Liotta, N. Sandulescu, T. Vertse and

R. Wyss, Phys. Rev. C 72, 054322 (2005).
[31] N. Michel, W. Nazarewicz, M. P loszajczak, J. Rotureau,

Phys. Rev. C 74, 054305 (2006).
[32] Ya. B. Zel’dovich, Zh. Eksp. i Theor. Fiz. 39, 776 (1960).
[33] W. J. Romo, Nucl. Phys. A116, 617 (1968).
[34] B. Gyarmati and T. Vertse, Nucl. Phys. A160, 523

(1971).
[35] B. Gyarmati and T. Vertse, Nucl. Phys. A182, 315

(1972).
[36] J. Toulouse, Phys. Rev. B 72, 035117 (2005).
[37] S. Saito, Suppl. Prog. Theor. Phys. 62, 11 (1977).
[38] D. Baye, M. Hesse and M. Vincke, Phys.Rev. E 65,

026701 (2002).



11

[39] D. Baye and P.-H. Heenen, J. Phys. A19, 2041 (1986).
[40] D. Baye, Nucl. Phys. A627, 305 (1997).
[41] R. Yaris and P. Winkler, J. of Phys. B11, 1475 (1978).
[42] F. A. Brieva, R. G. Lovas, Nucl. Phys. A341, 377 (1990).
[43] J. D. Carlson, D. A. Lind, and C. D. Zafiratos, Phys.

Rev. Lett. 30, 99 (1973).
[44] G. C. Jon, K. Ishii, H. Ohnuma, Phys. Rev. C 62, 044609

(2000).


