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10 Abstract

11 It has long been known that the major histocompatibility complex (MHC) is essentially involved in genetic susceptibility to ankylosing spondylitis
12 (AS). The HLA-B27 antigen has been accounted for 20 to 50% of the total genetic risk for this disease. However, susceptibility to AS cannot be fully

13 explained by associations with the MHC. Recent studies including linkage analyses as well as candidate gene and, most recently, genome-wide
14 association studies indicate significant associations of the interleukin-1 gene cluster, interleukin-23 receptor and ARTS1 genes as well as other
15 possible loci with AS. In the murine model of proteoglycan-induced spondylitis, two susceptibility loci termed Pgis/ and Pgis2 were identified.
16 Thus, AS is not a single-gene disease and the involvement of multiple non-MHC genes may account for the individual as well as geographical
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1. Introduction

Ankylosing spondylitis (AS) is the prototype of spondy-
loarthropathies (SpA), a group of inflammatory rheumatic
diseases with shared genetic background as well as common
clinical features [1]. Family clustering is an important feature of
AS that suggests the role of genetic factors in susceptibility to AS
[2,3]. For example, in families of SpA patients, additional SpA
cases occur mostly among HLA-B27* relatives [4,5]. Regard-
ing twin studies in AS, in a Finnish study, the concordance was
50% between monozygotic twins, 15% overall among dizygotic
twins and 20% among HLA-B27" dizygotic twins [6]. Differ-
ences in concordance rates between monozygotic and dizygotic
twins indicate the crucial role of genetic factors in susceptibility
to AS [6].

Considering the role of genes, the major histocompatibility
complex (MHC) alone is not sufficient to explain the heritabil-
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ity of AS. While more than 90% of Caucasian AS patients
are HLA-B27*, only less than 5% of HLA-B27" members of
the general population develop AS [7-9]. Thus, HLA-B27 has
been accounted for only approximately 20 to 50% of the overall
genetic susceptibility to AS [10,11].

Although the etiology of the disease is unknown, envi-
ronmental and genetic components have been implicated as
predisposing factors. The dominant genetic component is the
class I MHC encoded human leukocyte antigen HLA-B27, but
the presence of HLA-B27 alone is insufficient for disease devel-
opment [2-4,11,12]. There are two major hypotheses which
explain the association of HLA-B27 with AS. The receptor the-
ory assumes that certain T cell receptors can recognize a complex
of foreign and MHC self peptides when together, but this putative
pathogenic peptide is unknown [2—4]. The molecular mimicry
hypothesizes that microorganisms which partially resemble or
cross-react with HLA molecules are the source of antigenic com-
ponents. This hypothesis of molecular mimicry targeted mostly
Klebsiella and Yersinia antigens, but no appropriate microor-
ganisms have yet been identified in patients with AS [11,13].
Therefore, extensive studies have been undertaken to identify
other non-MHC genetic factors and, indeed, approximately a
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dozen chromosome regions or gene clusters have been linked to
AS [2-4].

Linkage analysis, genome-wide screening and candidate
gene association studies have led to the identification of sev-
eral non-MHC chromosome regions possibly linked to AS [2,3].
Some of these loci, such as the interleukin-1 (IL-1) gene cluster
has been consistently reported by independent research groups
[2,14]. Others, such as the genes of Aminopeptidase Regulator
of TNF receptor Shedding 1 (ARTS1) (also known as Endo-
plasmic Reticulum-associated Aminopeptidase 1 [ERAP1]) and
IL-23 receptor (IL-23R) have been described by the Wellcome
Trust Case-Control Consortium (WTCCC) study group that
had formerly performed the genome-wide association study of
14,000 cases of seven common diseases [15,16]. Yet, less infor-
mation is available regarding the genetics of AS in comparison
to, for example, rheumatoid arthritis (RA).

Despite of the increasing amount of data about genetic con-
tributors, AS is a multifactorial disease, where the “conspiracy”
of genes and environmental factors lead to the development of
the well-known clinical symptoms. In this review, we summa-
rize data on the genetic basis of AS based on both human and
rodents studies. We will review the most relevant information
on HLA as well as non-MHC alleles.

2. Role of HLA-B27 and other major histocompatibility
complex genes

The association between HLA-B27 and AS was first reported
in the early 1970s [17,18]. The prevalence of HLA-B27 is about
6 to 8% in the general population and more than 90% among AS
patients [3,7]. As estimated by linkage analysis as well as HLA-
B27-dependent multiplicative model, the genetic contribution of
HILA-B27 is about 20 to 35% [10,11,19-21]. The concordance
rates for HLA-B27* mono- and dizygotic twins are 63 and 23%,
respectively [6].

Although there is no doubt that HLA-B27 is the major sus-
ceptibility gene for AS, its mechanism of action is still not
known. All manifestations of SpA spontaneously develop in
HLA-B27 transgenic rats indicating a direct role of this gene
in disease susceptibility [22]. Among the 25 known HLA-B27
alleles, HLA-B*2705, the predominant allele in the Caucasian
population, may be the original allele and all other alleles may be
derived from HLA-B*2705 by mutation. Most allelic mutations
affect the variable region and thus result in altered interactions
between T cell receptors and antigenic peptides [23]. While most
other HLA-B27 alleles have been associated with SpA, HLA-
B#2706 and HLA-B*2709 occurring in South-East Asia and
Sardinia, respectively, show no association with SpA [23].

In HLA-B alleles that confer susceptibility to SpA, a presence
of glutamic acid at position 45 and that of cysteine at position
67 of the HLA-B molecule is the specific pattern present in
all alleles associated with SpA but absent in SpA-independent
alleles. Based on these structural alterations, functional theories
have emerged. The arthritogenic peptide theory suggests that this
molecular structure enables the presentation of specific peptides
that induce an autoimmune response. Regarding the impaired
folding theory, disulfide bridges are formed between two cys-

teines at position 67 resulting in altered intracellular trafficking
of the molecules [24,25].

MHC genes other than HLA-B may also be involved in the
development of SpA. These genes may include class Il MHC
alleles (HLA-DR genes), tumor necrosis factor-a (TNF-a) and
complement genes as well as some genes involved in antigen
presentation by class I MHC molecules including TAP, LMP2
and LMP7 [2-4]. Unfortunately, the predominant role of HLA-
B27 highly influences the interpretation of these results as the
reported associations may rather be attributable to linkage dis-
equilibrium between the mentioned loci and HLA-B27. Only
the direct additional effect of HLA-DR4 has been confirmed in
HLA-B27* relatives of SpA patients [24].

3. Non-major histocompatibility complex alleles in
ankylosing spondylitis

As discussed above, MHC accounts for less than 50% of
the genetic risk for AS. Various techniques have been used to
study the contribution of non-MHC genes to susceptibility to
and severity of human AS [2-4] (Table 1).

Animal models are invaluable aids for the research of human
(autoimmune) disorders. The ank/ank mouse has a loss-of-
function mutation in the ank gene and develops a progressive
SpA, similar to human AS [19,26], but the ank gene, either
in humans or mice, is not involved in autoimmune processes
[26,27]. Other models of SpA have been developed in HLA-
B27 transgenic rodents [21], or in transgenic mice expressing a
mutant type IX collagen or a truncated form of TNF-a [28]. In
addition to human data, proteoglycan (PG)-induced spondyli-
tis (PGIS), an autoimmune murine model of SpA will also be
briefly discussed [29,30].

4. Linkage studies

Linkage exists when a candidate gene and another known
locus are very close to each other, therefore, the two loci are
transmitted together. Such linkage studies can be carried out in
large families with many family members affected by a given dis-
ease. In these studies, results are presented as a non-parametric
linkage score (NPL), which is then converted to a log odds ratio
(LOD) score. High LOD values (LOD > 3.6) indicate signifi-
cant associations, while LOD greater or equal to 2.2 values are
suggestive [31].

There have been four large linkage studies with respect to
susceptibility to AS. In the North-American Spondylitis Consor-
tium (NASC) study, 185 families with 255 affected sibling pairs
were analyzed. The most significant associations were attributed
to the MHC locus located on chromosome 6 (LOD = 15.6) and a
single non-MHC locus on chromosome 16 (LOD =4.7). Other
loci with suggestive LOD values were located on chromosomes
1, 3,4,5, 10, 11, 17 and 19 [19]. In the French AS genetics
cohort (GFEGS), 180 families with 244 affected sibling pairs
were assessed. Again, the MHC locus had the strongest linkage
[21]. Also in this cohort, a region on the short arm of chromo-
some 9 was significantly associated with acute anterior uveitis
but not with AS [21]. Two studies from Oxford studies confirmed
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Table 1
Associations of non-major histocompatibility genes with ankylosing spondylitis.
Type of study Genetic linkage Reference(s)
Genome-wide association studies (WTCCC) Interleukin-23 receptor (IL-23R; chromosome 1)* [15,16]
ARTS1 (chromosome 5)* [15,16]
Candidate gene association studies Interleukin-1 gene cluster (IL-1A, IL-1B, IL-1RN) (chromosome 2)* [14,35,36,38-41]
Linkage studies Chromosome 1 [26]
Chromosome 3 [20]
Chromosome 4 [19]
Chromosome 9 [20,26]
Chromosome 102 [19,20,26]
Chromosome 11 [19]
Chromosome 13 [21]
Chromosome 16* [19-21,26]
Chromosome 17 [19,21]
Chromosome 19 [19,20,26]

WTCCC: Wellcome Trust Case-Control Consortium
2 Confirmed strong association.

the strongest linkage with the MHC region and suggested link-
age with loci on chromosomes 2, 3, 9, 10, 11, 16 and 19 [26]
(Table 1).

A pooled meta-analysis indicated the most clear evidence for
linkage to MHC on chromosome 6. Additional strong linkage
was observed with regions on chromosomes 16 and 10, while
moderate linkage was seen with loci on chromosomes 2, 3, 4, 5,
6, 11 and 17 [14].

Some loci were also associated with disease activity and
functional severity. While MHC showed no linkage, regions on
chromosome 18 were significantly associated with the BASDAI
score. In addition, regions on the long arm of chromosome 2
exerted suggestive linkage with the BASFI functional impair-
ment score [27].

5. Candidate gene associations

There have been conflicting results regarding the IL-1 gene
cluster. This gene complex is located on chromosome 2 and
includes genes encoding IL-la (IL-1A), IL-1B3 (IL-1B), 1L-1
receptor antagonist (IL-/RN) and other genes (ILIF5.ILIF10)
[32]. This gene cluster corresponds to the region on chromosome
2 identified in linkage studies described above [14,26]. IL-1a
and IL-1p3 are pro-inflammatory cytokines primarily produced
by monocyte/macrophages, which stimulate the release of other
inflammatory mediators including prostaglandins, matrix met-
alloproteinases and other cytokines as well as the expression of
various adhesion receptors [33,34]. IL-1Ra competitively block
the binding of IL-1a and IL-13 to their receptor and thus antago-
nize the effects of these cytokines [34]. While early small studies
suggested association between AS and the /L-/RN gene encod-
ing IL-1Ra [35,36], further larger studies could not confirm this
association [37-39]. However, some small studies and a recent
meta-analysis showed higher carriage of a variable nucleotide
tandem repeat (VNTR) in intron 2 of the IL-/RN gene in AS
patients compared to controls [35,36,40]. Moreover, two SNP
in exon 6 of the IL-1RN gene were also associated with AS [40].
Regarding other genes in the IL-1 cluster, altogether 14 SNP in

the IL-1A and IL-1B genes exerted significant associations with
AS [39,41]. Among these SNP, SNP rs3783526 in the IL- 1A and
rs1143627 in the IL- 1B gene showed the most significant associ-
ations [39]. In addition, SNP rs2856836, rs17561 and rs1894399
in the IL-/A gene also showed very strong associations [41]
(Table 1).

6. Genome-wide association studies

As described above, the WTCCC initiative identified two new
loci strongly associated with AS, IL-23R and ARTSI1 [15,16]
(Table 1). IL-23R has been implicated in the pathogenesis of
RA, psoriasis and inflammatory bowel diseases (IBD) [42—44].
IL-23 is a potent pro-inflammatory cytokine that stimulates the
generation of Th17 cells as well as the production of other
cytokines including TNF-o, IL-6, IL-17 and IL-22. The gene
for the IL-23R protein is located on chromosome 1. Susceptibil-
ity to Crohn’s disease and psoriasis has been associated with the
SNP rs11209026 [42,43]. In addition, SNP rs7530511 is also
associated with psoriasis [43]. Apart from the SNP mentioned
above, several other SNP including rs10889677 and rs2201841
also had significantly increased prevalence in Crohn’s disease
in comparison to controls [42]. We have recently confirmed
that SNP rs10889677 and rs2201841 are not only associated
with IBD, but also with RA [44]. In the WTCCC cohort, eight
IL-23R SNP were genotyped in 1000 AS patients and 1500
controls. Seven out of these eight SNP showed association
with AS. Highly significant associations were found with SNP
rs11209032, rs11209026 and rs10489629 [16,45]. Associations
between IL-23R gene polymorphisms and AS have recently
been confirmed in a Spanish cohort [46]. The IL-23R gene is
responsible for 9% of the population-attributable risk of AS
[15,16].

As far as ARTS1 is concerned, this protein is an aminopep-
tidase in the endoplasmic reticulum. ARTSI, also known as
ERAPI, cleaves receptors for cytokines including TNF-a (TNF-
R1), IL-1 (IL-1R2) and IL-6 (IL-6Ra) from the cell surface
[47]. ARTSI is also involved in the processing of antigenic
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peptides to optimal length for antigen presentation [48]. The
three genes encoding ARTS1 are located on chromosome 5 [49].
In the WTCCC cohort and follow-up studies, five SNP includ-
ing 1s27044, rs30187, rs17482078, rs10050860 and rs2287987
were associated with AS [16]. In addition, there is no associ-
ation between any ARTS1 SNP and either Crohn’s disease or
ulcerative colitis [16]. Thus, ARTS1 may not be involved in the
pathogenesis of various SpA but its effects may be specific for
AS within the SpA family. The ARTS1 gene is responsible for
26% of the overall risk of AS [15,16].

7. Other genes with unconfirmed associations

As discussed above, the associations of IL-1 cluster genes,
IL-23R and ARTS|1 genes have been confirmed in large cohorts.
There have been small studies suggesting the associations of
other genes with AS.

Some alleles of the cytochrome P450 CYP2D6 gene located
on chromosome 22 have been weakly associated with AS [50].
There have been controversies regarding possible associations of
AS with the transforming growth factor-3 (TGF-), ANKH and
Toll-like receptor 4 (TLR4) genes. While some studies suggested
marginal associations of these genes with AS [51-53], other
studies could not confirm this [54-56]. Finally, NOD2/CARD15
mutations have been associated with Crohn’s disease, however,
several studies confirmed that there were no such associations
with AS [57].

8. Lessons from the proteoglycan-induced spondylitis
model

Polyarthritis and spondylitis can be induced in suscepti-
ble mouse strains by immunization with human cartilage PG
[58,59]. PGIS shows similarities to AS in terms of clinical and
radiological features. PGIS was induced in susceptible BALB/c
and C3H/HelJCr (C3H) strains of mice, and in their F1 and
F2 generations derived from intercrosses with arthritis- and/or
spondylitis-resistant DBA/2 and DBA/1 parent strains, by sys-
temic immunization with cartilage PG. Almost all (97-100%)
PG-immunized BALB/c and C3H mice developed peripheral
arthritis by 2 weeks after the third antigen injection. Massive
inflammatory cell infiltration, pannus formation, and cartilage
and bone erosion characterized the histopathologic picture of
the affected joints. None of the DBA/1 or DBA/2 parents nor
the (BALB/c x DBA/2) F1 hybrids developed arthritis until the
end of the 14—18-week experimental period. The incidence and
severity of spondylitis were highly comparable in both PGIS-
susceptible inbred strains (BALB/c and C3H) [29].

Although F1 hybrids of the BALB/c x DBA/2 intercross
were fully resistant to peripheral PGIA, unexpectedly, more than
30% of them developed PGIS, whereas none of the F1 hybrids
of BALB/c x DBA/1 developed PGIS [23]. These observations
suggest that the DBA/1 strain carries very strong protective
genes against SpA, while the DBA/2 genome may contain both
spondylitis susceptibility and protective genes that might be
silent in the original background.

Quantitative trait analysis was used in order to identify and
characterize non-MHC chromosome loci that may be highly
associated with the development of PGIS [30]. Two major
loci exerted highly significant linkage, accounting for 40%
of the trait variance in the BALB/c x DBA/2 F2 generation.
The dominant spondylitis-susceptibility allele for the Pgis2
locus (mouse chromosome 2) was derived from the BALB/c
strain, whereas the Pgis/ (chromosome 18) recessive allele
was present in the arthritis-resistant DBA/2 strain. The Pgis]
locus significantly affected the disease-controlling Pgis2 locus,
inducing as high incidence of spondylitis in F2 hybrids as
was found in the spondylitis-susceptible parent BALB/c strain.
Additional disease-controlling loci with suggestive linkage were
mapped to the chromosomes 12, 15, and 19. A major locus
controlling IL-6 production was found on chromosome 14
close to the gene of osteoclast differentiation factor Tnfsfll.
Locus on chromosome 11 near the Stat3 and Stat5 genes
controlled serum levels of the immunoglobulin IgG2a iso-
type. The two major genetic loci Pgisl and Pgis2 of murine
spondylitis were homologous to chromosome regions in human
genome, which control AS in human patients [30]. The first
murine locus (Pgis/) is homologous to human chromosomes
5q and 18q, both of which have significant linkage with AS
found in British and European kindreds [19,27,60]. The Pgia2
locus overlaps with the cluster of /L-/ and Arts genes impli-
cated in susceptibility to AS in humans as described above
[2,15,16,38].

9. Conclusions

It is evident that the MHC, especially HLA-B27, plays a cen-
tral role in susceptibility to AS. For example, HLA-B27 confers
approximately 20 to 50% of the total genetic risk for this dis-
ease. However, AS is definitely not a single gene disease and the
genetic background of AS cannot be fully explained by associa-
tions with the MHC. Candidate gene and, recently, genome-wide
association studies have confirmed the strong association of IL-
1 cluster on chromosome 2, IL-23R gene on chromosome 1 and
ARTS]1 genes on chromosome 5 with AS. Linkage analysis con-
firmed possible associations with other regions. The strongest
linkage was observed for loci on chromosome 16, while mod-
erate linkage was suggested at sites on chromosomes 3, 10, 11,
17 and 19. In the PGIS animal model, two susceptibility loci
termed Pgis] and Pgis2 were identified.
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