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We study the damage process of fiber bundles in a wedge-shape geometry which ensures a constant strain
gradient. To obtain the wedge geometry we consider the three-point bending of a bar, which is modeled as two
rigid blocks glued together by a thin elastic interface. The interface is discretized by parallel fibers with random
failure thresholds, which become elongated when the bar is bent. Analyzing the progressive damage of the
system we show that the strain gradient results in a rich spectrum of novel behavior of fiber bundles. We find
that for weak disorder an interface crack is formed as a continuous region of failed fibers. Ahead of the crack
a process zone develops which proved to shrink with increasing deformation, making the crack tip sharper as
the crack advances. For strong disorder, failure of the system occurs as a spatially random sequence of
breakings. Damage of the fiber bundle proceeds in bursts whose size distribution shows a power law behavior
with a crossover from an exponent 2.5 to 2.0 as the disorder is weakened. The size of the largest burst increases
as a power law of the strength of disorder with an exponent 2 /3 and saturates for strongly disordered bundles.
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I. INTRODUCTION

The damage and fracture of disordered materials is an
important scientific and technological problem which has at-
tracted intensive research during the past years �1–3�. Theo-
retical and experimental studies have revealed that at the
beginning of the loading process of highly disordered mate-
rials, first microcracks nucleate randomly, covering the entire
volume of the specimen without any spatial correlations
�1–4�. Approaching the critical load, localization occurs, re-
sulting in a single growing crack along which the specimen
falls apart. In a composite system of two solid blocks glued
together along an interface, the damage usually concentrates
along the weak plane of the glue �5–8�. Loading such com-
posites, interface crack propagation occurs which has also
been found to be a complex sequence of crack growth and
arrest with interesting spatial and temporal fluctuations
�5–7,9–12�. The crackling noise accompanying the failure of
disordered systems �bulk or interface cracking� can be re-
corded in the form of a complicated trail of signals whose
analysis provides important information about the micro-
scopic dynamics of damaging �11,13–18�.

Fiber bundle models �FBMs� are one of the most impor-
tant theoretical approaches to the progressive damage of dis-
ordered materials. During the last decade FBMs have pro-
vided deep insight into the collective nature of the
microscopic dynamics and statistical properties of degrada-
tion phenomena. Recently, FBMs have also been applied to
study the interfacial failure of glued solid blocks under shear
loading �5,8� and wear �6,7,19�. Interesting novel results
have been obtained on the temporal and spatial fluctuations
of local breakings which precede macroscopic failure and on
the analogy of fracture with phase transitions and critical
phenomena �5–8,19�. In this paper we study the damage pro-
cess of a fiber bundle in a wedge-shape geometry, which
provides a constant strain gradient of fibers. To obtain a

simple representation of the geometry and loading condi-
tions, we consider a bar subject to three-point bending. The
bar is modeled as two rigid blocks coupled together by an
elastic interface which is then discretized by a bundle of
parallel fibers. Deformation and damage of the bar is con-
centrated in the interface resulting in a linear deformation
profile of fibers, while the two blocks remain intact. Besides
interfacial failure, the model provides the mean field limit of
the failure of disordered materials under three-point bending.
Varying the amount of disorder of fibers, we can control the
strength of nonlinearity before macroscopic failure, and
hence, the type of fracture �brittle-quasibrittle� of the bundle
�15,20,21�. We focus on the progressive damage of the fiber
bundle analyzing the damage profile, crack formation, and
bursts of local breakings. We find that for weak disorder an
interface crack is formed by a continuous region of failed
fibers. Ahead of the interface crack, a process zone develops
which proved to shrink with increasing deformation making
the crack tip sharper. For strong disorder the failure of the
bundle occurs due to a spatially random sequence of local
breakings. Very interestingly we find that the size distribu-
tion of bursts is a power law whose exponent shows a cross-
over from exponent 2.5 to 2.0 when the strength of disorder
is lowered.

We demonstrate that the results of our model calculations
are the consequence of the strain gradient; in the homo-
geneous case of zero gradient, our model recovers all recent
results of FBMs with varying threshold disorder
�13,15,20,21,27,28�. Our results imply that interfacial frac-
ture problems can lead to novel universality classes of break-
down phenomena.

II. MODEL

In order to obtain a fiber bundle with a linear deformation
profile, we construct a simple model for the loading of an
elastic bar of rectangular shape by an external force exerted
perpendicular to the longer side of the bar in the middle. For
simplicity, in the model the bar is composed of two rigid*feri@dtp.atomki.hu
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blocks of side lengths a and b which are glued together by an
elastic interface of width l0, where l0�b holds; see Fig. 1.
The interface region can deform and suffer breaking under
deflection of the specimen while the two rigid blocks remain
intact. Bending of the specimen is performed such that the
two blocks undergo rigid rotation about their outer upper
corner, concentrating the deformation in the interface layer.
We discretize the interface in terms of elastic fibers of num-
ber N and length l0 which are placed equidistantly between
the two blocks. The fibers do not have bending rigidity; they
can undergo only stretching deformation characterized by the
same value of the Young modulus E. During the bending of
the specimen, the fibers can support only a finite deforma-
tion, i.e., if the local deformation �i of fiber i exceeds a
threshold value �i

c the fiber breaks and a microcrack nucle-
ates in the interface. The disordered properties of the mate-
rial are represented by the randomness of the breaking
thresholds �i

c, which are independent identically distributed
random variables with a probability density p��� and cumu-

lative distribution P��c�=�0
�c

p�x�dx. The rigidity of the two
rotating blocks implies that the macroscopic deformation of
the specimen can be characterized by a single variable �
which denotes the deflection of the middle of the bar from
the original position; see Fig. 1.

It can be seen in Fig. 1 that under bending of the speci-
men the interface opens, resulting in an increasing elongation
of fibers from top to bottom. The actual length of fibers li can
be expressed as a function of � as

li = l1 + 2�
a

b

i − 1

N − 1
, i = 1, . . . ,N , �1�

where l1= l0+2�b−�b2−�2� is the length of fiber index i=1
at the top of the bar. It follows that also the elongation �li
and longitudinal strain �i of fibers increase linearly as a func-
tion of their position i:

�li = 2b − 2�b2 − �2 + 2�
a

b

i − 1

N − 1
, �2�

�i =
�li

l0
. �3�

Equilibrium of the system is obtained when the total momen-
tum of forces with respect to the clamping points is zero.
During the deformation process, those fibers which exceed
their threshold value break; i.e., they are removed from the
interface. Since 1− P(�i���) is the probability that the inter-
face element of index i remained intact under the externally
imposed deformation �, based on the equilibrium condition,
the constitutive equation ���� of the deflected bar can be cast
in the form

���� =
1

NL
�
i=1

N �� + �b2 − �2a

b

�i − 1�
�N − 1�	

� �1 − P„�i���…�E�i��� , �4�

where L=2b+ l0 is the overall length of the bar and the sum
goes over all the fibers. On the right-hand side �i��� should
be substituted from Eqs. �2� and �3�. The above equations
describe the macroscopic response of a fiber bundle which
has a linear deformation profile. In the following, for the
explicit calculations the geometrical parameters were set as
a=1, b=2.5, and l0=0.1.

The amount of disorder of the failure thresholds �i
c has a

substantial effect on the macroscopic response of the fiber
bundle ����. In the limiting case of zero disorder—i.e., when
all the fibers have the same breaking threshold �i

c=�0
c—the

failure of the bundle starts at the bottom of the interface
where the stretching deformation is the highest and proceeds
upward as � is increased. It can be seen in Fig. 2 that the
corresponding constitutive curve is sharply peaked. The criti-
cal deformation �c defined by the peak position correspond

FIG. 1. The geometrical layout of the model. The two rigid
blocks of side length a and b are glued together by an interface of
width l0 which is discretized in terms of elastic fibers. The specimen
suffers deflection � under the action of the external force F exerted
in the middle of the bar. The wedge-shaped opening of the interface
results in a linear deformation profile of fibers.
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FIG. 2. The constitutive curve ���� of the interface composed of
N=10 000 fibers varying the width of the threshold distribution � at
the fixed value of �0

c =0.01. For �=0 the constitutive curve ���� has
a sharp peak which gets rounded and develops into a quadratic
maximum when � is increased.
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to the instant of the first fiber breaking �0
c =�N��c�. Beyond

the peak stress, � rapidly decreases due to the gradual break-
ing of fibers as � increases. In order to study how the behav-
ior of the system changes when the amount of disorder of
fibers is varied, we consider a uniform distribution for the
breaking thresholds over an interval of width 2� centered at
the value �0

c:

P��c� =
�c − ��0

c − ��
2�

, �0
c − � 	 �c 	 �0

c + � . �5�

The strength of disorder of the breaking thresholds is char-
acterized by �, while �0

c sets the scale of fiber strength. The
width � can be varied over the interval �0,�0

c� where the
limits �=0 and �=�0

c corresponds to zero disorder and the
strongest disorder, respectively. Figure 2 shows that increas-
ing �, the peak of the constitutive curve gets more and more
rounded and develops into a quadratic maximum. The maxi-
mum of ���� is preceded by a longer and longer nonlinear
regime due to the breaking of fibers, so that for �→�0

c the
linear behavior prevails only for small deformations �→0.
On the microlevel this process is accompanied by the ran-
domization of the breaking sequence of fibers along the in-
terface, i.e., for ��0, fibers do not simply break in the de-
creasing order of their index i �from bottom to top of the
bar�.

III. SIMULATION TECHNIQUES

The complete constitutive curve of the system presented
in Fig. 2 can only be recovered by deformation-controlled
loading. When � is controlled externally, the local load on
the fibers is solely determined by the externally imposed
deformation, so that there is no load redistribution after fiber
breaking. Under stress-controlled conditions, the breaking of
fibers is followed by the redistribution of load over the intact
ones. Due to the wedge shape of the deformed interface, at a
given external load �, the load on the fibers linearly in-
creases from top to bottom. It has the consequence that in
spite of the rigidity of the two solid blocks, the load redistri-
bution following fiber failure differs from the usual equal
load sharing �ELS� approximation commonly used for the
study of parallel bundles of fibers �2,4,20,22,23�. The rigid
surfaces, however, ensure that the load is redistributed glo-
bally in such a way that the excess load received by an intact
fiber depends on its position along the interface but not on its
distance from the failed one. This implies that no stress en-
hancement arises in the vicinity of the failed fibers as in the
case of the local load sharing approximation �LLS� of fiber
bundles �2,21,24�. Our fiber bundle model provides the
mean-field limit of the damage and fracture of disordered
materials under three-point bending conditions and also rep-
resents an interesting interface rupture problem.

In order to analyze the microscopic damage mechanism of
FBMs with a constant strain gradient, we worked out an
efficient simulation technique for a sample where the inter-
face is composed of N fibers with breaking thresholds �i

c, i
=1, . . . ,N, sampled from the probability distribution, Eq. �5�.
Substituting the breaking thresholds �i

c on the left-hand side

of Eq. �2� and inverting it for �, we can determine the value
of the macroscopic deformation parameter �i

c=���i
c , i�, i

=1, . . . ,N, at which the fibers break. Of course, �i
c is a func-

tion of both the position of the fiber i along the interface and
the local breaking threshold �i

c. During the loading process
the fibers break in the increasing order of their critical mac-
roscopic deformation �i

c, which can be a randomized se-
quence of the fibers’ position i. The computer simulation of
the loading process proceeds as follows: after generating the
breaking thresholds of fibers �i

c we determine the corre-
sponding critical deflections �i

c and sort them into increasing
order. The constitutive curve of the sample can be simply
obtained by calculating the load needed to achieve the defor-
mation �i

c after the breaking of the first i−1 fiber with there
remaining only Nintact=N− �i−1� intact elements. Between
the breaking of the �i−1�th and ith fibers, the constitutive
equation of the system takes the form

� =
E

l0L
2��b − �b2 − �2�Nintact

+ ��24a

b
− 2ab + 2a�b2 − �2	 1

N − 1�
j=1

N

��j − 1�

+
2�a2

�N − 1�2b2
�b2 − �2�

j=1

N

��j − 1�2� , �6�

where the prime indicates that the summation is restricted to
indices of intact fibers �which are not necessarily consecutive
integers�. Note that in Eq. �6� the value of � falls in the range
�i−1

c 	�	�i
c.

Performing stress-controlled experiments, after the break-
ing of a fiber the deformation of the specimen can freely
change, resulting in a redistribution of load over the intact
fibers. The excess load taken up by the intact fibers can give
rise to further fiber failures which may trigger an entire ava-
lanche of breakings. This avalanche either stops and the bar
becomes stable under the externally imposed load or it spans
the entire interface and the specimen breaks into two pieces
�the entire bundle ruptures�. In order to study numerically
this microscopic breaking process, in the simulations first we
increase the deformation � such that a single fiber breaks—
i.e., �=�1

c with index i1. Then the load needed to maintain
this deformation � is calculated from Eq. �6� for Nintact=N
fibers. After the breaking of fiber i1 its load has to be redis-
tributed over the remaining N−1 fibers. In order to determine
the load of intact fibers after the removal of the broken one,
we remove fiber i1 on the right-hand side of Eq. �6� and
invert the equation for ����, keeping the load � fixed. The
fibers with threshold values �i

c	���� break as a conse-
quence of the load redistribution. This iteration has to be
repeated under a fixed external load � until the breaking
sequence stops or all the fibers break, resulting in a macro-
scopic failure of the system.

IV. SPATIAL EVOLUTION OF DAMAGE

In a bundle of fibers loaded between two parallel rigid
plates, due to the equal load sharing after fiber breaking, the
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failure of a fiber is solely determined by its breaking thresh-
old �13–15,25�. Hence, fibers break in a completely random
sequence without any spatial correlations. In our system,
however, during the loading process the fibers break in in-
creasing order of their critical macroscopic deformation
�i

c��i
c , i�, which depends both on the local breaking thresh-

olds �i
c and on the spatial position i of fibers. In the limiting

case of zero disorder—i.e., �=0 and �i
c=�0

c—the critical de-
formation �i

c��0
c , i� is a monotonically decreasing function of

i, which implies that the fibers break one by one starting
from the bottom. This breaking sequence can be conceived
as a crack which is generated and penetrates the interface
upward such that below the crack tip all the fibers are broken
while above it the fibers are intact. Under strain-controlled
loading stable crack propagation is obtained, gradually
breaking the fibers by the strain increments. Controlling the
external load, however, the onset of crack propagation occurs
in an unstable manner, resulting in immediate catastrophic
failure when the maximum of ���� is reached �see Fig. 2�.

Increasing the strength of disorder �, the breaking se-
quence of fibers determined by �i

c becomes spatially random-
ized. At a given deformation �, the fibers with �i

c	� have
already failed. If the disorder is not too strong, an interesting
spatial distribution of these broken fibers emerges: starting
from the bottom of the interface a continuous region of failed
fibers develops, forming a crack. On the opposite side, start-
ing from the top of the interface a continuous region of in-
tact, elongated fibers can be observed. The two regimes are
separated by a process zone, which is a sparse sequence of
intact and broken elements. To illustrate this feature, in Fig. 3
we show the probability Pb�i� that the fibers are broken along
the interface for several different values of � using the
threshold distribution, Eq. �5�. The probability Pb�i� that fi-
ber i is broken at the deflection � can be obtained directly
from the threshold distribution Pb�i�= P(�i���). The process
zone is defined as the regime where for the probability Pb of
fiber breaking 0	 Pb	1 holds. It can be observed in Fig. 3
that the process zone sharpens, i.e., its width decreases as the
deformation � increases which makes the crack tip sharper as
the crack advances. It can be obtained analytically that at a
given deflection � the width W of the process zone depends

both on the strength of disorder � and on the geometrical
extensions a and b of the specimen. For the explicit calcula-
tions, it is worth considering separately the following three
regimes of the damage profile: �A� for the breaking probabil-
ity at the bottom of the interface it holds that
Pb�i=N�	1—i.e., the crack has not yet developed ��1 in
Fig. 3�; �B� the process zone is completely contained by the
interface Pb�i=1�=0 and Pb�i=N�=1 ��2 ,�3 ,�4 in Fig. 3�;
and �C� there is no intact region Pb�i=1�
0 ��5 in Fig. 3�.
The width W of the process zone can be obtained analytically
as a function of � for the three cases

�A� W = N�1 −
�0

c − � − 2b + 2�b2 − �2

2�

b

a
	 , �7�

�B� W =
�

�

b

a
�N − 1� , �8�

�C� W = N
�0

c + � − 2b + 2�b2 − �2

2�

b

a
. �9�

We also determined the width of the process zone, W, nu-
merically for a system of 106 fibers, which is presented in
Fig. 4 together with the corresponding analytic results. In
Fig. 4 the curves of W��� are composed of three distinct parts
corresponding to regimes �A�, �B�, and �C� of Eqs. �7�–�9�. It
can be seen that for smaller values of � /�0

c first W increases
and reaches a maximum where the crack occurs. As the crack
advances, the width of the process zone decreases according
to Eq. �8� and finally, as the tip of the process zone reaches
the top of the interface, W rapidly decreases as given by Eq.
�9�. It is interesting to note that for large � values no crack
can be identified, i.e., for the parameter set used in Fig. 4 the
damage profile spans the entire interface max�W /N�=1 when
� /�0

c exceeds 0.46. It follows from the above arguments that
the disorder of the interface can be considered strong if the
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FIG. 3. Damage profile—i.e., the breaking probability Pb of
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damage proceeds as a spatially random sequence of local
breakings without the formation of a propagating crack. No
crack can develop if at the deformation � where the top of
the interface may already be damaged �1���
�0

c −� the bot-
tom of the interface may still be intact �N���	�0

c +�. Mak-
ing use of Eq. �2� and assuming b��0

c −�, the condition of
strong disorder can be formulated as

b

a2�2 + � 
 �0
c , �10�

which implies that the average fiber strength �0
c, the width of

the distribution �, and the geometrical layout a and b of the
specimen together determine the relevance of disorder. At a
given value of a, b, and �0

c, the crossover point �* between
weak and strong disorder can be obtained as

�* �
a2

2b
��1 +

4b�0
c

a2 − 1	 , �11�

so that for �
�* no crack is formed, while for �	�* crack
propagation occurs with a shrinking process zone ahead f the
crack tip. For the parameter values of Fig. 4 the crossover
point �*=0.4633 was obtained from Eq. �11�, in excellent
agreement with the numerical results.

V. BURSTS OF FIBER BREAKINGS

In order to characterize the damage process of the fiber
bundle under stress-controlled conditions, we determined the
distribution of burst sizes s of fiber breakings varying the
width � of the disorder distribution. Simulations were car-
ried out by increasing the external load to break a single fiber
and following the cascading fiber breakings with the algo-
rithm discussed in Sec. III. The avalanche size distributions
D�s� are presented in Fig. 5, varying the amount of disorder
in a broad range. It can be observed in Fig. 5 that D�s� has a
power law form

D�s�  s−� �12�

at any finite value of � with an exponential cutoff at large
avalanches. Simulations revealed an interesting change of

the value of the exponent � as the strength of disorder is
varied: for strong disorder the value of � coincides with the
mean-field �equal load sharing� exponent of the classical par-
allel bundle of fibers ��2.5 �13,26�. However, as the disor-
der is weakened, the distribution exhibits a crossover to an-
other power law with a lower exponent ��2.0. To better
illustrate this effect, in Fig. 5�b� burst distributions are shown
separately for the limiting case of very weak disorder. The
numerical results are well described by a power law with an
exponent 2.0.

It is interesting to note that the size of the largest burst
smax has a strong dependence on the value of � �see Fig.
5�b��; namely, as the strength of disorder is reduced, the larg-
est avalanche decreases. To obtain a quantitative character-
ization of this effect, Fig. 6 presents the average size of the
largest bursts �smax� as a function of �, where a power law
dependence is evidenced,

�smax�  �, �13�

for the case of weak disorder �	�*. As � exceeds �*, the
largest avalanche smax reaches a maximum and levels off �see
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Fig. 6�. Computer simulations revealed that the exponent 
has a universal value =2 /3 indicated by the straight line
drawn in Fig. 6 to guide the eye. The value of � where �smax�
saturates is in good agreement with the corresponding value
of �* estimated from Eq. �11�.

It is important to emphasize that in our system no critical
disorder distribution can be identified in the sense defined in
Refs. �15,21,27–30�. For equal-load-sharing fiber bundles the
threshold distribution is considered to be critical if the break-
ing of the weakest fiber gives rise to an immediate macro-
scopic failure of the system. For uniformly distributed
threshold values in the interval �x0 ,1� the distribution be-
comes critical for x0→0.5 �15,21,27–30�. It has been pointed
out that approaching the critical disorder, the macroscopic
response of the system becomes perfectly brittle and on the
microlevel the size distribution of bursts exhibits a crossover
from a power law of exponent 2.5 to a significantly lower
one 1.5 �15,21�. Using our terminology, such critical behav-
ior in a bundle of fibers loaded between two parallel rigid
plates—i.e., in the case of equal load sharing—should be
obtained for �→�0

c /3; however, computer simulations re-
vealed a sudden collapse of our FBM with constant strain
gradient solely at �=0.

The reason for the missing critical state in our model is
the inhomogeneity of the load of fibers along the interface.
Equation �2� shows that at any deflection � the load of intact
fibers linearly increases from top to bottom of the interface
where the gradient—i.e., the strength of inhomogeneity—is
determined by the geometry of the system, a /b. Setting the
cross section of the specimen a to zero, a=0, the positional
dependence of �i disappears in Eqs. �2�–�4� and formally all
the fibers keep the same load determined by �. We carried
out computer simulations in the limiting case a=0, varying
the strength of disorder �. We indeed find that in this homo-
geneous case a critical state arises at �c /�0

c �0.258 such that
for �	�c a single fiber breaking triggers a catastrophic ava-
lanche. The corresponding numerical results are presented in
Fig. 7�a�, where it can be seen that approaching �c from
above, the burst size distribution exhibits a crossover from
the exponent �=5 /2 to a lower value �=3 /2, in agreement
with the predictions of Refs. �15,27,28�. The deviation of �c
from �0

c /3 arises due to the nonlinear terms of � in Eqs. �2�

and �4�. It can also be observed in the figure that in the
homogeneous case the largest burst smax increases as critical-
ity is approached in agreement with Ref. �21�.

However, at any finite value of a—i.e., in the presence of
a strain gradient—the picture drastically changes: criticality
occurs solely in the limit �→0 so that catastrophic failure is
always preceded by avalanches with a power law distribution
but the cutoff avalanche size goes to zero as a power law of
� when � is decreased. Figure 7�b� presents simulation re-
sults obtained with 106 fibers at the value a=0.01, which
results in a much lower strain gradient than in Fig. 5. Com-
paring the burst size distributions of different values of � for
the homogeneous �Fig. 7�a�� and inhomogeneous �Fig. 7�b��
cases, a clear difference can be observed. The higher value of
the crossover exponent �=2 compared to �=3 /2 of the ho-
mogeneous case shows that in the absence of a finite critical
disorder, the large avalanches are less dominating in the dis-
tributions D�s�.

VI. DISCUSSION

We presented a detailed study of the progressive damage
and fracture of fiber bundles in a wedge-shape geometry
which provides a linear deformation profile for fibers. For a
simple representation of the geometrical and loading condi-
tions of the system, we considered a bar subjected to three-
point bending. The bar is composed of two rigid blocks
coupled by an elastic interface which is then discretized in
terms of parallel fibers. We showed that in the limit of zero
disorder of fibers’ strength the bundle has a perfectly brittle
macroscopic response, i.e., under stress-controlled loading,
global failure occurs as a sudden collapse of the system with-
out any precursory activity. Furthermore, fibers break in a
completely ordered sequence from bottom to top of the
wedge, creating an unstable crack with a sharp tip. The rel-
evance of disorder is determined together by the parameters
�mean and width� of the strength distribution of fibers and by
the geometrical layout of the wedge. We demonstrated that a
propagating interface crack can only be defined for weak
disorder. Ahead of the crack a process zone is formed whose
width decreases with increasing deformation making the
crack tip sharper as the crack advances. For strong disorder a
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spatially random sequence of local breakings occurs along
the entire bundle.

The breaking of single fibers can trigger cascades of
breaking events. The size distribution of these bursts is found
to be a power law with an interesting crossover effect as the
strength of disorder is varied: for strong disorder the mean-
field exponent �=5 /2 of equal-load-sharing fiber bundles is
recovered indicating the complete randomness of the failure
process. However, for weak disorder where a propagating
crack with a process zone develops, a lower exponent �
=2.0 is obtained. In the weak disorder regime the largest
burst increases as a power law of the width of the disorder
distribution with an exponent =2 /3. We showed that in the
limit of zero strain gradient our calculations reproduce the
crossover of burst exponents from 5 /2 to 3 /2 predicted re-
cently. The features of our system originate from the finite
strain gradient—i.e., from the geometrical constraints of fi-
bers which naturally occur, for instance, at interfacial frac-
ture problems. Our model provides also the mean-field limit
of the damage and fracture of disordered materials under
three-point bending. The results imply that the statistical
physics of interfacial rupture can reveal universality classes
of breakdown phenomena.

Recently, it was found experimentally that the cracking of
a bar under three-point bending proceeds in bursts which are
characterized by power law distributions �31�. The experi-
ments showed that the exponents of the amplitude, area, and
energy distribution of magnetic emission signals recorded
during the fracture process of ferromagnetic materials are
sensitive to the type of fracture; i.e., the noise spectra of
ductile materials are characterized by higher exponents than
the brittle ones. The boundary and loading conditions en-
sured in the experiments that the damage localizes to a rela-
tively thin layer of the specimen, giving rise to a single
growing crack so that the crackling noise measured during
the loading process characterizes the crack propagation. Note
that in our model the crossover to a lower exponent of burst
sizes with decreasing disorder is accompanied on the mac-
rolevel by an increasing degree of brittleness showing that
this simple mean-field approach can qualitatively account for
the changing properties of crackling noise observed experi-
mentally �31�.
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