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Abstract. In this paper we prove that there are at most one complex number b for
which the shifted Euler polynomial En(x)+ b has at most two zeros of odd multiplicities.

1. Introduction

Euler polynomials En(x) are defined by the power series

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

The first fifteen Euler polynomials are listed for example in [16] on page 477. Euler polyno-
mials appear in many classical results and play an important role in various approximation
and expansion formulas which are applied both in numerical analysis and in analytic num-
ber theory (see [1], [12]). Numerous interesting and useful identities and properties involving
Euler polynomials can be found in several publications (see for example [5], [8], [9], [14], [10],
[17], [18]). Several authors investigated the values of Euler polynomials En(x), where x is a
rational number. It can be shown that the Euler polynomials at rational arguments can be
expressed in terms of a finite combination of trigonometric functions and the Hurwitz zeta
function (see [6]).

Concerning the roots of Euler polynomials, Brillhart [3] proved that all Euler polynomials,
except E5(x), have only simple roots. Further, the Euler polynomials have no rational root
other than 0, 1, and 1/2. Later Delange [7], generalizing a result of Howard [11], gave an
upper and a lower bound for the greatest real root of En(x).

In the present paper we investigate the multiplicities of the zeros of shifted Euler poly-
nomials En(x) + b, where b is a complex number. We prove among other things that for
given n ≥ 5, there are at most one b for which En(x) + b has at most two zeros of odd mul-
tiplicities. Our result is an analogue of our earlier theorem [15] related to shifted Bernoulli
polynomials. As an application we will give an effective finiteness theorem related to the
hyperelliptic diophantine equation

(1) F (En(x)) = y2,

where F (x) is a polynomial with algebraic integer coefficients.
A polynomial F (x) with complex coefficients will be called non-degenerate if it has at

least three zeros of odd multiplicities and degenerate otherwise.

2. Results

For n > 1, Ln denotes the cardinality of the set of nonzero complex numbers b for which
En(x) + b is degenerate, where En(x) is the nth Euler polynomial.
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Theorem 1. We have L3 = L4 = 2. Further, if n ≥ 5 is an odd positive integer then Ln = 0
while in case when n ≥ 6 is even then Ln ≤ 1.

The next result applies to hyperelliptic equations with algebraic integer coefficients. This
is a simple consequence of Theorem 1 and Lemma 4 of Brindza [4].

Theorem 2. Let K be an algebraic number field with ring of integers OK, and let F (x) ∈
OK[x] be a non-square polynomial. Then the equation

(2) F (En(x)) = y2

has only finitely many solutions x, y ∈ OK which can be effectively determined, provided that
n ≥ 5 and deg F (x) is even or deg F (x) and n ≥ 5 are odd positive integers.

3. Auxiliary results

The following are well-known identities of Euler polynomials:

Lemma 1. For a positive integer n, En(x) denotes the nth Euler polynomial. Then we have
(i) E′

n(x) = nEn−1(x).
(ii) En(x) = (−1)nEn(1− x).
(iii) E2n(0) = E2n(1) = 0.
(iv) The only rational root of E2n−1(x) is 1

2 .
(v) E5(x) is the only Euler polynomial with a multiple root.

Proof. See [3]. ¤

Lemma 2. If n is a rational integer with n ≥ 5 and a, b are complex numbers with b 6= 0
then the polynomial (En(x) + a)2 + b is non-degenerate.

Proof. On supposing the contrary we have

(3) (En(x) + a)2 + b = f2(x)

or

(4) (En(x) + a)2 + b = g(x)f2(x),

for some f(x), g(x) ∈ C[x], where g(x) is a quadratic polynomial with nonzero discriminant.
From (3) we obtain that

(5) 2(En(x) + a)E′
n(x) = 2f(x)f ′(x).

However, since (f(x), En(x) + a) = 1 we obtain that f(x)|E′
n(x), but then n = deg f(x) ≤

deg E′
n(x) = n− 1 which is impossible.

If we differentiate (4), we have

2(En(x) + a)E′
n(x) = 2g(x)f(x)f ′(x) + g′(x)f2(x) = f(x)(2g(x)f ′(x) + g′(x)f(x)).

Since b 6= 0, we obtain from (4) that (f(x)g(x), En(x) + a) = 1, so

f(x)|E′
n(x) and En(x) + a|2g(x)f ′(x) + g′(x)f(x).

It is easy to see that deg f(x) = n−1, therefore E′
n(x) = c1f(x) and g′(x)f(x)+2g(x)f ′(x) =

c2(En(x)+a), where c1, c2 are nonzero complex numbers. Substituting the first relation into
the second one, we get

1
c1

g′(x)E′
n(x) +

2
c1

g(x)E′′
n(x) = c2(En(x) + a)

and thus
1
c1

g′′(x)E′
n(x) +

3
c1

g′(x)E′′
n(x) +

2
c1

g(x)E′′′
n (x) = c2E

′
n(x).
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Applying (i) from Lemma 1, we infer that

(6)
(

1
c1

g′′(x)− c2

)
En−1(x) +

3(n− 1)
c1

g′(x)En−2(x) +
2(n− 1)(n− 2)

c1
g(x)En−3(x) = 0.

For odd values of n we substitute x = 0, 1 into (6) and we obtain, by (iii) of Lemma 1 ,
that

g′(0)En−2(0) = g′(1)En−2(1) = 0.

Since g′(x) is a linear polynomial, thus En−2(0)En−2(1) = 0. But this contradicts (iv) from
Lemma 1.

In case when n is even, differentiating (6) and using again (i) from Lemma 1, we have

(7)
(

4
c1

g′′(x)− c2

)
En−2(x) +

5(n− 2)
c1

g′(x)En−3(x) +
2(n− 2)(n− 3)

c1
g(x)En−4(x) = 0,

and the same argument as in the odd case gives a contradiction again.
¤

Lemma 3. Let f(x) be a polynomial with complex coefficients. If deg f(x) ≥ 5 then there
are at most two complex numbers b for which the polynomial f(x) + b is degenerate.

Proof. On supposing the contrary we have

(8) f(x) + bi = gi(x) (hi(x))2 i = 1, 2, 3,

where the polynomials gi(x) ∈ C[x] i = 1, 2, 3 are of degree at most 2 with nonzero discrim-
inant, hi(x) ∈ C[x] i = 1, 2, 3. One can see from (8) that

(9) (h1(x), h2(x)) = (h1(x), h3(x)) = (h2(x), h3(x)) = 1.

From (8) we obtain that deg hi(x) ≥ (deg f(x) − 2)/2, i = 1, 2, 3. Now, on differentiating
equation (8) we deduce that

(10) f ′(x) = g′i(x) (hi(x))2 + 2gi(x)hi(x)h′i(x) i = 1, 2, 3.

It follows from this that hi(x)|f ′(x) i = 1, 2, 3. Using (9) one can observe that

h1(x)h2(x)h3(x)|f ′(x)

and so deg h1(x) + deg h2(x) + deg h3(x) ≤ deg f ′(x). Since deg hi(x) ≥ (deg f(x) − 2)/2
i = 1, 2, 3 we have that

3
deg f(x)− 2

2
≤ deg f(x)− 1

that is deg f(x) ≤ 4 which is a contradiction. ¤

Several authors investigated the superelliptic equation f(x) = ym, where f(x) is a poly-
nomial of degree ≥ 3 with integer or algebraic integer coefficients and m ∈ N. LeVeque
[13] gave a criterion for superelliptic equations to have only finitely many integer solutions.
LeVeque’s theorem is ineffective. Baker [2] was the first to prove a general effective result for
the solutions of the equation f(x) = ym. Since then a lot of generalizations and extensions of
Baker’s result have been established. The following result is an effective version of LeVeque’s
theorem.

Let K be an algebraic number field with ring of integers OK.

Lemma 4. (Brindza, [4]) Let

f(x) = a0x
N + · · ·+ aN = a0

n∏

i=1

(x− αi)ri

be a polynomial in OK[x] with a0 6= 0 and αi 6= αj for i 6= j. Further, let b ∈ OK, m > 1
and qi = m/(m, ri), i = 1, 2, · · · , n. Suppose that (q1, q2, · · · , qn) is not a permutation of
(q, 1, · · · , 1) or (2, 2, 1, · · · , 1), where q ≥ 1. Then the equation

f(x) = bym in x, y ∈ OK
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has only finitely many solutions and all these can be effectively determined.

An easy consequence of this result is that the hyperelliptic equation

f(x) = y2 in x, y ∈ OK

has only finitely many solutions x, y provided that the polynomial f(x) is non-degenerated.

4. Proofs

Proof of Theorem 1. For small values of n we can use the following observation: the dis-
criminant of En(x) + b is a polynomial in b of degree n− 1. Hence apart from at most n− 1
distinct values of b the polynomial En(x)+ b has only simple zeros. From Lemma 3 we know
that there are at most two complex numbers for which the shifted Euler polynomials are
degenerate. Suppose that b1 and b2 are two distinct complex numbers for which En(x) + bi

are degenerate i = 1, 2. If n ≥ 5 is an odd integer then we have

En(x) + bi = gi(x)f2
i (x)

where fi(x), gi(x) ∈ C[x] and deg gi(x) = 1 for i = 1, 2. We know that b1 6= b2, hence
(g2(x), f1(x)) = (g1(x), f2(x)) = (g1(x), g2(x)) = 1. It is clear that the polynomial

(11) (En(x) + b1)(En(x) + b2) =
(

En(x) +
b1 + b2

2

)2

−
(

b1 + b2

2

)2

+ b1b2 =

= g1(x)g2(x)(f1(x)f2(x))2

is degenerate. However, it follows from Lemma 2 that b1b2 −
(

b1+b2
2

)2
= 0. But then

b1 = b2 = 0, which is a contradiction.
Now suppose that there is a nonzero value b such that the polynomial En(x) + b is

degenerate. Then it is easy to see that the polynomial En(1 − x) + b is also degenerate. It
follows from (ii) of Lemma 1 that −En(x) + b and so En(x) − b are also degenerate. Since
b is nonzero, we obtain two distinct values, b and −b, for which the polynomials En(x) ± b
are degenerate, which is impossible.

Assume now that n is even. In this case there are the following four possibilities:
(a) En(x) + b1 = f1(x)2 and En(x) + b2 = f2(x)2,
(b) En(x) + b1 = f1(x)2 and En(x) + b2 = g2(x)f2(x)2,
(c) En(x) + b1 = g1(x)f1(x)2 and En(x) + b2 = f2(x)2,
(d) En(x) + b1 = g1(x)f1(x)2 and En(x) + b2 = g2(x)f2(x)2,

where the polynomials g1(x), g2(x) ∈ C are quadratic polynomials with nonzero discriminant,
f1(x), f2(x) ∈ C[x]. Moreover, g1(x), g2(x), f1(x), f2(x) are pairwise coprime polynomials
in C[x]. In cases (a), (b) and (c) we can deduce again that the polynomial

(En(x) + b1)(En(x) + b2) =
(

En(x) +
b1 + b2

2

)2

−
(

b1 + b2

2

)2

+ b1b2

is degenerate. However, from Lemma 2 we obtain that ((b1 + b2)/2)2 − b1b2 = 0 and so
b1 = b2. Consider now the last case (d). We can suppose that

(12) g1(x) = (x− α1)(x− α2) and f1(x) =
n/2−1∏

i=1

(x− βi)

and

(13) g2(x) = (x− γ1)(x− γ2) and f2(x) =
n/2−1∏

i=1

(x− δi),

where αj , γj , βi, δi ∈ C, j = 1, 2, i = 1, . . . , n/2− 1 and α1 6= α2, γ1 6= γ2.
4



Using (ii) from Lemma 1 we infer that

(14) (x− α1)(x− α2)
n/2−1∏

i=1

(x− βi)2 = (1− x− α1)(1− x− α2)
n/2−1∏

i=1

(1− x− βi)2

that is

(15) (x− α1)(x− α2)
n/2−1∏

i=1

(x− βi)2 = (x− (1− α1))(x− (1− α2))
n/2−1∏

i=1

(x− (1− βi))2.

One can see from (15) that

α1, α2 ∈
{
1− α1, 1− α2, 1− β1, . . . , 1− βn/2−1

}
.

Suppose that α1 = 1− βj for some j ∈ {1, 2, . . . , n/2− 1}. Then x− α1 = x− (1− βj) and

(16) (x−α2)
n/2−1∏

i=1

(x−βi)2 = (x−(1−α1))(x−(1−α2))(x−(1−βj))
n/2−1∏

i=1,i6=j

(x−(1−βi))2.

Hence 1 − βj ∈ {
α2, β1, . . . , βn/2−1

}
. If 1 − βj = α2 then α1 = α2 which contradicts

our assumption that g1(x) has non-zero discriminant. Thus α1 = 1 − βj = βk for some
k ∈ {1, . . . , n/2− 1}. However, in this case (g1(x), f1(x)) 6= 1 and so E′

n(x) = nEn−1(x) has
a multiple root, but it is possible only in case when n = 6 by (v) from Lemma 1. It follows
from the above that

α1, α2 ∈ {1− α1, 1− α2} .

If α1 = 1− α1 then α2 = 1− α2 and α1 = α2 = 1/2 which is impossible. So we have

(17) α1 + α2 = 1 and βj ∈
{
1− β1, . . . , 1− βn/2−1

}
j = 1, . . . , n/2− 1.

Using the same argument as above we can infer that

(18) γ1 + γ2 = 1 and δj ∈
{
1− δ1, . . . , 1− δn/2−1

}
j = 1, . . . , n/2− 1.

If n/2 − 1 is odd then this implies that 1
2 ∈ {β1, β2, . . . βn/2−1}

⋂ {
δ1, . . . , δn/2−1

}
. But

this gives a contradiction because then f1(1/2) = f2(1/2) = 0 and so b1 = b2.
Suppose that n/2− 1 is even. Then f1(1/2)f2(1/2) 6= 0. Otherwise, we can see from (17)

or (18) that 1/2 is a multiple root of the polynomial f1(x) or f2(x). Then the polynomial
E′

n(x) = nEn−1(x) has a multiple root by (d). But, by Lemma 1, this is possible only if
n = 6. From (d) we obtain that

(19) (En(x) + a)2 + b = g(x)f(x)2,

where

a =
b1 + b2

2
, b = b1b2 −

(
b1 + b2

2

)2

, f(x) = f1(x)f2(x)

and

(20) g(x) = (x2 − x + c1)(x2 − x + c2)

where c1 = α1α2, c2 = γ1γ2. One can observe from (19) that

(21) 2 (En(x) + a) E′
n(x) = f(x) (g′(x)f(x) + 2g(x)f ′(x)) .

Since (En(x), f(x)) = 1, therefore f(x)|En−1(x). This fact and property (iv) of Lemma 1
yield that

(22) En−1(x) =
(

x− 1
2

)
f(x),

further,

(23) 2n (En(x) + a)
(

x− 1
2

)
= g′(x)f(x) + 2g(x)f ′(x).

One can observe from Lemma 1 and (22) that
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(24) (n− 1)(n− 2) · · · (n− (i + 1))En−(i+2)(x) =

= f (i+1)(x)
(

x− 1
2

)
+ (i + 1)f (i)(x), i = 0, 1, . . . , n− 2.

If we substitute x = 1/2 into (24) we obtain that

(25) f (i)

(
1
2

)
=

{
0, if i is odd,

1
i+1 (n− 1)(n− 2) · · · (n− (i + 1))En−(i+2)

(
1
2

)
, if i is even.

From relations (20) and (21) we deduce the following:

(26) g

(
1
2

)
=

1
16
− 1

4
(c1 + c2) + c1c2, g′

(
1
2

)
= g′′′

(
1
2

)
= 0, g′′

(
1
2

)
= −1 + 2(c1 + c2).

After the i− 1 ≥ 3-th derivation from (23) we obtain that

(27)

2n2(n− 1) · · · (n− (i− 3))
[
(n− (i− 2))En−(i−1)(x)

(
x− 1

2

)
+ (i− 1)En−(i−2)(x)

]
=

=
4∑

j=0

aijg
(j)(x)f (i−j)(x),

where

ai0 = 2, ai1 = 2i− 1, ai2 = (i− 1)2, ai3 =
(i− 1)(i− 2)(2i− 3)

6
and

ai4 =
(i− 1)(i− 2)2(i− 3)

12
.

Substitute i = n, n− 2, n− 4 and x = 1/2 into (27). Using (25), (26) and deg f(x) = n− 2
we obtain that

(28) 2n2(n− 1)(n− 2) · · · 3 (n− 1)E2

(
1
2

)
=

= (n− 1)2(−1 + 2(c1 + c2))
1

n− 1
(n− 1)(n− 2) · · · 2+

+ 2(n− 1)(n− 2)2(n− 3)
1

n− 3
(n− 1)(n− 2) · · · 3E2

(
1
2

)
,

(29) 2n2(n− 1)(n− 2) · · · 5 (n− 3)E4

(
1
2

)
=

= 2
(

1
16
− 1

4
(c1 + c2) + c1c2

)
1

n− 1
(n− 1)(n− 2) · · · 2+

+ (n− 3)2(−1 + 2(c1 + c2))
1

n− 3
(n− 1)(n− 2) · · · 3E2

(
1
2

)
+

+ 2(n− 3)(n− 4)2(n− 5)
1

n− 5
(n− 1)(n− 2) · · · 5E4

(
1
2

)
,
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(30) 2n2(n− 1)(n− 2) · · · 7 (n− 5) E6

(
1
2

)
=

= 2
(

1
16
− 1

4
(c1 + c2) + c1c2

)
1

n− 3
(n− 1)(n− 2) · · · 3E2

(
1
2

)
+

+ (n− 5)2(−1 + 2(c1 + c2))
1

n− 5
(n− 1)(n− 2) · · · 5E4

(
1
2

)
+

+ 2(n− 5)(n− 6)2(n− 7)
1

n− 7
(n− 1)(n− 2) · · · 7E6

(
1
2

)
,

We know that

E2

(
1
2

)
= −1

4
, E4

(
1
2

)
=

5
16

, E6

(
1
2

)
= −61

64
.

We can deduce from (28) and (29) that

c1 + c2 =
−n + 2

2
,

c1c2 =
(n− 2)(2n2 − 11n + 6)

48
.

Using these relations from (30) we get the following equation:

−6n3 + 111n2 − 549n + 810 = 0.

It is easy to see that this equation has only one integer solution n = 3. ¤

Proof of Theorem 2. Let K be an algebraic number field with ring of integers OK and let

(31) F (x) =
t∏

i=1

(x− αi)ki ∈ OK[x]

be a non-square polynomial. If deg F (x) is odd then we can suppose that k1 is also odd.
Since En(x) is non-degenerate, providing that n ≥ 5 is odd, therefore the polynomial

F (En(x)) =
t∏

i=1

(En(x)− αi)ki , n ≥ 5 odd,

is also non-degenerate.
In case when deg F (x) ≥ 6 is even we can assume that k1 and k2 are odd.
We know from Theorem 1 that there is at most one complex number b for which the

shifted Euler polynomial En(x) + b is degenerate. It follows from this and

(32) F (En(x)) =
t∏

i=1

(En(x)− αi)ki

that the polynomial F (En(x)) is non-degenerate. Hence our statement is true by Lemma 4.
¤
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