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In earlier work a linear differential equation satified by the Schwartz ground-state electron density ��r� for
�non-relativistic� He-like atomic ions with large atomic number Z has been derived. Here, we utilize the
asymptotic expansion at large r given by Amovilli and March for the neutral He atom. We thereby show that
a linear differential equation of the same general shape as that satisfied by the Schwartz ��r� again emerges for
the neutral He atom itself, in the asymptotic limit of large r. We argue that essential input into the final
differential equation for the He ground-state electron density will be the ionization potential plus the atomic
polarizability.
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Going back at least to the early work of Hoffmann-
Ostenhof and Hoffmann-Ostenhof �1�, it is known that the
ground-state density ��r� of spherical atoms �e.g., Ne and
Ar� falls off at sufficiently large r as

��r� � Nrn exp�− 2�2Ir�, r → � , �1�

where I is the ionization potential in atomic units.
Here we shall be concerned with the two-electron He

atom ground-state density ��r� and, in particular, with the
ongoing search for the differential equation this ��r� satis-
fies. A first step toward this objective was taken by Gál,
March, and Nagy �2�. These authors adopted as their starting
point the study of Schwartz �3� who considered �always via
the nonrelativistic Schrödinger equation, however� the large
atomic number Z limit of two-electron He-like ions of
nuclear charge Ze. His result had the form

��r� =
2Z3

�
�1 +

2

Z
��r��exp�− 2Zr� , �2�

where ��r� was calculated explicitly. The major finding in �2�
was that ��r� in Eq. �2� satisfied exactly a third-order linear
homogeneous differential equation �see Eq. �3� below�.

The motivation for reopening the search for such an exact
differential equation for the neutral He atom itself, with
Z=2, comes from the very recent study by two of us �4� of
the long-range asymptotic behavior of ��r� in this case. In
particular, we take as the starting point of the present study
the asymptotic, large r expansion given in Eqs. �31�–�33�
of �4�.

We show below that the Amovilli-March �AM� large r
form satisfies indeed a third-order linear homogeneous dif-
ferential equation having precisely the same shape, but of
course differs in fine details. As in �2� the form is explicitly

P3�r����r� + P2�r����r� + P1�r����r� + P0�r���r� = 0.

�3�

Treating the AM asymptotic form as exact, one is then led
�see below� to the fact that the Pi�r� in Eq. �3� are polyno-
mials all with the highest power of r3. Of course, even if this
proves the correct structure of any final differential equation
for ��r� for the He itself, the coefficients of the low-order
terms will be changed.

Below we present an outline of the derivation of the form
�3� from the AM asymptotic large r expansion of ��r� �4�
�see especially Eqs. �31�–�34��. In particular, Eq. �31� yields,
at large r,

exp�2�2Ir���r� = g�r� = Ark�1 +
C1

r
+

C2

r2 +
C3

r3 + O	 1

r4
� .

�4�

Differentiating Eq. �4� three times then leads to the form

�g� = g��� + 6�2I�� + 24I�� + 16I�2I�� . �5�

Using expression �4� for g and truncating the expansion at
r−3 we find the general form of Eq. �3�, where the polyno-
mials have the form

P3�r� = C3 + C2r + C1r2 + r3, �6�

P2�r� = 6�2I�C3 + C2r + C1r2 + r3� , �7�

P1�r� = 24I�C3 + C2r + C1r2 + r3� , �8�

and

P0�r� = �16I�2IC3 − k�k − 1��k − 2� + 16I�2IC2r

+ 16I�2IC1r2 + 16I�2Ir3� . �9�

Comparing Eq. �4� with Eq. �31� of �4�, namely,
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���r� � Mr�−1�1 +
A1

r
+

A2

r2 +
A3

r3 �exp�− �2Ir� , �10�

we obtain

C1 = 2A1, �11�

C2 = A1
2 + 2A2, �12�

and

C3 = 2�A3 + A1A2� . �13�

It was shown in �4� that for He

A1 =
��� − 1�

2��2I�� − 1� − 1�
, �14�

A2 =
A1�� − 1��� − 2�
2��2I�� − 2� − 1�

, �15�

A3 =
A2�� − 2��� − 3�
2��2I�� − 3� − 1�

+
�

2��2I�� − 3� − 1�
, �16�

and

� =
k

2
+ 1 =

1
�2I

. �17�

Of course, while we expect the highest powers of r in poly-
nomials Pi�r� entering Eq. �3� will be derivable from the
result �32� and �33� in �4�, we shall not pursue the details
further.

What we emphasize here is that such a differential equa-
tion as in Eq. �6� will then be characterized by �i� the ion-
ization potential I and �ii� the polarizability �, which enters
the AM coefficient A3 and, consequently, C3 occurring in
Eq. �4�.

For the future, should it prove, as we conjecture, that the
shape �3� is formally exact for the ground-state electron den-
sity of the He atom, then the small r expansion of ��r�

should also be invoked to fix the low-order terms in the
polynomials Pi�r� entering Eq. �6�. In fact, from the study of
Nagy and Sen �5�, one has a relation between derivatives of
��r� at the origin of the form

�̄��0� = Z�− 5�̄��0� + 12Z2�̄�0� + 4�1�0�� . �18�

The spherical average of the density can be written as

�̄�r� = �0�r� + �
l�0

r2l�l�r� . �19�

The last term in Eq. �18� contains not the density itself, but
only a part of the density: the part corresponding to l=1; that
is, there is a contribution only from the “p electron density”
�5�. In this aspect Eq. �18� differs from Eq. �3� that contains
only the density and its derivatives.

In summary, the shape �3� of the linear third-order homo-
geneous differential equation satisfied by the Schwartz lim-
iting density �2� for He-like atomic ions with large atomic
number Z also follows from the AM asymptotic large r ex-
pansion for the ground state of the He atom itself. Then the
AM result indicates that such a differential equation will be
characterized by the ionization potential I, which should oc-
casion no surprise due to the exact asymptotic result quoted
in Eq. �1�, and also by the atomic polarizability �. The origin
of the dependence on � can be traced back, through density
functional theory, to the large r form of the exchange-
correlation potential Vxc as −e2 /r−� /2r4 �6,7�.
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