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Abstract

In the ground state the pair density n can be determined by solving a

single auxiliary equation of a two-particle problem. Electron-electron cusp

condition and asymptotic behaviour for the Pauli potential of the effective

potential of the two-particle equation are presented.

1 Introduction

In the density matrix functional theory [1, 2, 3, 4] it was shown that the ground

state problem of an arbitrary system can be reduced to a two-particle problem,

that is, only a single auxiliary equation of a two-particle system should be solved.

The effective potential of the two-particle equation contains a term vp of completely

kinetic origin. The exact form of this Pauli potential is unknown. In this paper the

electron-electron cusp condition and asymptotic behaviour for the Pauli potential are

presented. The paper is organized as follows: In section 2 the asymptotic behaviour
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for the Pauli potential is derived. Section 3 presents the electron-electron cusp

condition for the Pauli potential. The last section is devoted to discussion.

2 Asymptotic behaviour of the Pauli potential of

the pair functional theory

First, the method of Levy, Perdew and Sahni [5] is generalized to derive the two-

particle equation of the pair density functional theory and give an expression for the

Pauli potential. (The derivation is essentially the same as the one given by Furche

[6].) The Schrödinger equation of the N -electron ground-state problem has the form

Ĥ(N̄)Ψ(N̄) = ENΨ(N̄) , (1)

where M̄ signifies the coordinates of electrons 1, ..., M . Take the following partition

of the Hamiltonian of the N -electron system:

Ĥ(N̄) = Ĥ(N, N − 1) + Ĥ(N − 2) +
N−2∑

j=1

(
1

rjN
+

1

rjN−1

)
, (2)

where

Ĥ(N, N − 1) = −1

2
∇2

N − 1

2
∇2

N−1 + v(rN ) + v(rN−1) +
1

rNN−1
(3)

and

Ĥ(N − 2) =
N−2∑

j=1

(
−1

2
∇2

j + v(rj)
)

+
N−2∑

i<j

1

rij
. (4)

v(r) is the external potential and the notation

rij = |ri − rj| (5)
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is applied. The pair density is defined as

n(rN−1, rN) =
N(N − 1)

2

∫
|Ψ(N̄)|2d(N − 2)dσN−1dσN . (6)

Now, we define a function Φ(N) as

Φ(N) =

(
N(N − 1)

2

)1/2
Ψ(N̄)

n1/2(rN−1, rN)
(7)

From the definitions (7) and (6) follows that

∫
|Φ(N)|2d(N − 2) = 1 (8)

for any rN−1 and rN . Subtract E0
N−2,NΨ(N̄) from both sides of Eq. (1), multiply

by Φ(N)∗ and integrate over all the coordinates of electrons 1, ..., N − 2 and spin

coordinates of electrons N − 1, N :

〈Φ(N)|Ĥ(N̄) − E0
N−2,N |Ψ(N̄)〉 = µ〈Φ(N)|Ψ(N̄)〉 . (9)

E0
N−2,N is the total energy of the N − 2-electron system (the one obtained after

removing two electrons from the N -electron system) and

µ = E(N̄) − E0
N−2,N . (10)

After simple manipulation Eqs. (7) - (10) lead to

[
Ĥ(N, N − 1) + ṽeff(rN−1, rN)

]
n1/2(rN−1, rN) = µn1/2(rN−1, rN) , (11)

where the effective potential is given by

ṽeff(rN−1, rN) = 〈Φ(N)|Ĥ(N − 2) − E0
N−2,N |Φ(N)〉

− n−1/2
[
∇Nn1/2〈Φ(N)|∇NΦ(N)〉 + ∇N−1n

1/2〈Φ(N)|∇N−1Φ(N)〉
]

− 1

2
〈Φ(N)|∇2

NΦ(N)〉 − 1

2
〈Φ(N)|∇2

N−1Φ(N)〉

+
6

N(N − 1)

(∫
ñ(rN−2, rN−1, rN)

rN−2,N−1
drN−2

+
∫

ñ(rN−2, rN−1, rN)

rN−2,N

drN−2

)
. (12)
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ñ(rN−2, rN−1, rN) is the density of that Φ(N) associated with electron N−1 at point

rN−1 and electron N at point rN . Adding Eq. (12) to its complex conjugate we

obtain

ṽeff(rN−1, rN) = 〈Φ(N)|Ĥ(N − 2) − E0
N−2,N |Φ(N)〉

− 1

2n1/2

[
∇Nn1/2∇N〈Φ(N)|Φ(N)〉 + ∇N−1n

1/2∇N−1〈Φ(N)|Φ(N)〉
]

− 1

4
〈Φ(N)|∇2

NΦ(N)〉 − 1

4
〈∇2

NΦ(N)|Φ(N)〉

− 1

4
〈Φ(N)|∇2

N−1Φ(N)〉 − 1

4
〈∇2

N−1Φ(N)|Φ(N)〉

+
6

N(N − 1)

(∫
ñ(rN−2, rN−1, rN)

rN−2,N−1
drN−2

+
∫ ñ(rN−2, rN−1, rN)

rN−2,N
drN−2

)
. (13)

From Eq. (8) follows that the second term disappears and the Laplacian terms can

be expressed with the integral of the gradient of Φ(N) leading the the form

ṽeff (rN−1, rN) = 〈Φ(N)|Ĥ(N − 2) − E0
N−2,N |Φ(N)〉

+
1

2

(
〈|∇NΦ(N)|2〉 + 〈|∇N−1Φ(N)|2〉

)

+
6

N(N − 1)

(∫
ñ(rN−2, rN−1, rN)

rN−2,N−1

drN−2

+
∫

ñ(rN−2, rN−1, rN)

rN−2,N
drN−2

)
. (14)

Inverting Eq. (11) ṽeff can be given by

ṽeff =
1

2

∇2
N−1n

1/2

n1/2
+

1

2

∇2
Nn1/2

n1/2
− v(rN−1) − v(rN) − 1

rNN−1
+ µ. (15)

No term on the right hand side of Eq. (14) can ever be negative, consequently

ṽeff ≥ 0. (16)
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Let us now turn to the asymptotic behavior of the pair density and the effective

potential ṽeff . From Eq. (11) follows that

n(rN−1, rN) → e−2αrN−1e−2αrN , (17)

where

α = [−µ + ṽeff (∞,∞)]1/2. (18)

From the inequality (16) we obtain

α ≥ √−µ. (19)

Multiply Eq. (1) by an eigenstate Ψ∗
l (N − 2) of the N − 2-electron system,

integrate over the coordinates of N − 2 electrons and employ Eqs. (2)-(7) to obtain

[
−1

2
∇2

N−1 −
1

2
∇2

N + v(rN−1) + v(rN) +
1

rN−1,N

− εl

]
gl(rN−1, rN) =

−(N − 2)n1/2(rN−1, rN)〈Ψl(N − 2)

(
1

r1,N−1
+

1

r1,N

)
Φ(N)〉, (20)

where

εl = EN − El
N−2, (21)

El
N−2 is the eigenvalue corresponding to the eigenfunction Ψl(N − 2) and

gl(rN−1, rN) = n1/2(rN−1, rN)
∫

Ψ∗
l (N − 2)Φ(N)d(N − 2). (22)

Consider now the case l = 0:

g0(rN−1, rN) = n1/2(rN−1, rN)
∫

Ψ∗
0(N − 2)Φ(N)d(N − 2). (23)
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Eq. (20) asymptotically gives g0(rN−1, rN) → e−
√
−µrN−1e−

√
−µrN as ε0 = µ. Using

the asymptotic form (17) of the pair density and the Schwartz inequality

|
∫

Ψ∗
0(N − 2)Φ(N)d(N − 2)| ≤ 1, (24)

Eq. (23) leads to

α ≤ √−µ. (25)

From inequalities (19) and (25) follows the equality

α =
√−µ. (26)

Then Eq. (18) gives

ṽeff (∞,∞) = 0. (27)

It has the consequence that Φ(N) asymptotically collapses to the eigenfunction

Ψ0(N − 2). It can be seen from Eqs. (7) and (14) as Φ(N) asymptotically cannot

depend on the coordinates rN−1 and rN . The last term on the right hand side of

Eq. (14) gives the asymptotic form of the effective potential:

ṽeff → N − 2

rN−1
+

N − 2

rN
. (28)

In earlier papers the two-particle equation (9) was written as

[
−1

2
∇2

N−1 −
1

2
∇2

N + v(rN−1) + v(rN) +
N − 1

rN−1,N
+ vP (rN−1, rN)

]
n1/2(rN−1, rN)

= µn1/2(rN−1, rN) ,(29)

where vP is the Pauli potential. Comparing Eqs. (3), (11) and (29) we are led to

the relation

vP = ṽeff − N − 2

rN−1,N
. (30)
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Eqs. (28) and (30) lead to the asymptotic form of the Pauli potential:

vP → (N − 2)

(
1

rN−1

+
1

rN

− 1

rN−1,N

)
. (31)

3 Electron-electron cusp condition for the Pauli

Potential

To derive the electron-electron cusp condition for the Pauli Potential first the two-

particle equation (29) is written as

[
−1

2
∇2

N−1 −
1

2
∇2

N + v(rN−1) + v(rN) +
N − 1

rN−1,N
+ vP (rN−1, rN)

]
χ̃0(rN−1, rN)

= µχ̃0(rN−1, rN) , (32)

where the two-particle function χ̃0 is related to the pair density n as

n = N
N − 1

2
|χ̃0|2 . (33)

Now, we intoduce relative and centre of mass coordinates as

r = rN − rN−1. (34)

and

Rc =
1

2
(rN + rN−1) . (35)

The wave function χ̃0 can be written as

χ̃0(r, Ω,Rc) =
∑

lm

Rlm(r,Rc)Ylm(Ω) , (36)

where Ylm are the spherical harmonics. The expansion of the Pauli potential vP

around r = 0 leads to

vP (r, Ω,Rc) =
v−1

P (Rc)

r
+
∑

lm

vP
lm(r,Rc)Ylm(Ω) , (37)
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where

vP
lm(r,Rc) = Alm(Rc) + Blm(Rc)r + Clm(Rc)r

2 + ... (38)

For the Coulomb external potential the expansions

−Z
1

rN−1
= −Z

1

|Rc + r/2| = −Z
∑

l,m

4π

2l + 1

(r/2)l

Rl+1
c

Y ∗
lm(R̂c)Ylm(−̂r/2) (39)

and

−Z
1

rN

= −Z
1

|Rc − r/2| = −Z
∑

l,m

4π

2l + 1

(r/2)l

Rl+1
c

Y ∗
lm(R̂c)Ylm(r̂/2) (40)

can be applied for small r. Substituting the radial functions

Rlm(r,Rc) = c
(0)
lm(Rc)r

l + c
(1)
lm(Rc)r

l+1 + c
(2)
lm(Rc)r

l+2 + ... (41)

and expressions (36)-(41) into the two-particle equation (32) and equating the coef-

ficients of r−1 to zero, we arrive at the equation

2c
(1)
00 −

(
v−1

P + N − 1
)
c
(0)
00 = 0. (42)

Now, the expansion (36) for wave function χ̃0 is substituted into the pair density

(33) and the spherical average of the pair density is taken around r = 0

n̄|r=0 =
N(N − 1)

2

1

4π
|c(0)

00 |2. (43)

The derivative of the spherical average of n is

∂n̄

∂r

∣∣∣∣∣
r=0

=
N(N − 1)

2

1

4π
2c

(0)
00 c

(1)
00 . (44)

Eqs. (43), (44) and (42) lead to the electron-electron cusp condition for the pair

density:

∂n̄
∂r

∣∣∣
r=0

n̄|r=0

= v−1
P + N − 1. (45)
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On the other hand, it is well-known that the electron-electron cusp condition for the

pair density has the form [7]:

∂n̄
∂r

∣∣∣
r=0

n̄|r=0

= 1. (46)

Eqs. (45) and (46) result

v−1
P = 2 − N (47)

Consequently, for small r the Pauli potential should behave as

vP =
2 − N

r
(48)

4 Discussion

The Pauli energy of the pair density functional theory was introduced by a density

functional analogy: the difference of the kinetic energy and a Weizsäcker-like ex-

pression [9] (constructed from the pair density instead of the density)[1]. The Pauli

potential is the functional derivative of the Pauli energy with respect to the pair den-

sity. For a two-electron system the Pauli potential disappears. Both the asypmtotic

form (31) and electron-electron cusp condition (48) give this property correctly. It

might be useful to write the asypmtotic form (31) with relative and centre of mass

coordinates. Expanding the terms 1
rN−1

and 1
rN

we obtain the following forms:

vP → (N − 2)
(

2

Rc

− 1

r

)
, (49)

if Rc > r/2 and

ṽP → (N − 2)
3

r
, (50)
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if Rc < r/2.

As the exact form of the Pauli potential is not known we have to find approxi-

mate expressions for numerical calculations. Exact relations that the Pauli potential

should satisfy could be very useful in construction approximate formulae. Earlier we

derived virial theorem and hierarchy of equations. These relations together with the

presently derived asypmtotic form (31) and electron-electron cusp condition (48) give

possibility to obtain appropriate expression for the Pauli potential. That will be the

subject of futher future research. A fundamental problem in the density matrix the-

ory is the N-representability problem [7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

An approximate functional does not generally satisfy N-representability. It is sup-

posed that the fulfillment of the above mentioned exact relations is important from

the point of view of N-representability, too.

References
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