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Abstract

In the ground state the pair density can be determined by solving a single

auxiliary equation of a two-particle problem. A novel method for determining

the Pauli potential entering this equation is presented and, starting from a

reliable description of the pair density, an analytical expression is derived for

atomic systems. Test calculations are presented for Be and isoelectronic C2+

and O4+ ions.

1 Introduction

Generalized density functional theories have received a growing importance in recent

years. For electron systems, the interest has been posed on the pair density as the

fundamental variable instead of the one particle density. It turned out that there

exist a variational principle for the pair density (analogous to the Hohenberg-Kohn

theorems of the density functional theory). It has been shown that - instead of

Kohn-Sham equations - in the pair density functional theory [1–4] the ground state
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problem of an arbitrary system is reduced to a two-particle problem. The two-

particle equation is written [1–4] as

[

−
1

2
∇2

1 −
1

2
∇2

2 + v(r1) + v(r2) +
N − 1

r
+ vP (r1, r2)

]

χ(r1, r2)

= µχ(r1, r2) , (1)

where v is the external potential, N is the number of electrons and the notation

r = |r1 − r2| is used. The ground-state eigenfunction for this equation, χ̃0 say,

corresponds to the pair density amplitude and is related to the pair density n of the

real system as

n =
N(N − 1)

2
|χ̃0|

2 . (2)

Eq. (1) contains an unknown term, vP , of completely kinetic origin. After a density

functional analogy vP is called Pauli potential. Eq. (1) is analogous to the density

functional equation for the square root of the density (which dates back to Thomas

and Fermi [5] and is analyzed by Levy, Perdew and Sahni [6]).

The pair density can be numerically calculated either on the Hartree-Fock level

or on highly correlated level. The pair density can also be determined from Eq. (1)

in a rather straightforward way if the Pauli potential is known. However, there

are no data for the Pauli potential in the literature, yet. Although recently, the

electron-electron cusp condition and asymptotic behaviour for the Pauli potential

have been derived [7], much work is called for to completely understand how such a

potential could be modellized in analogy with the Kohn-Sham potential in ordinary

density functional theory (DFT). Considering the present knowledge, this kind of

work appears extremely difficult. We believe that an important first step, in order

to gain more insight in this direction, is the reconstruction of the Pauli potential
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from a reliable pair density form for some realistic tractable electron system. For

these cases, a six variable functional form for vP should be, in principle, obtained.

This function, at this point, should be viewed as a source of information expecially

with the aim of finding those properties that can be transferred to other systems for

which the pair density is unknowm.

Motivated by the above consideration, in this paper we present model Pauli

potential for the Be atom and isoelectronic atomic ions C2+ and O4+. The method,

which is intended to capture the main features of vP , is based on an ansatz on

the form of the pair density amplitude. We generalize the method of Amovilli et

al. [8]. The original method was used to obtain the exact Hamiltonian for an analytic

ground-state wave function for He-like ions. Here, a generalization is presented for

producing the Pauli potential from a model pair density amplitude.

The paper is organized as follows: In section 2 the pair density functional the-

ory is reviewed. In section 3 a model pair density amplitude and the corresponding

potential is presented. Section 4 describes numerical examples: the Be and some

isoelectronic atomic ions. The last section is devoted to discussion.

2 The pair density functional theory

First, the pair-density functional theory [1–3] is summarized. Consider the many

electron Hamiltonian H,

Ĥ = T̂ + V̂ee +
N
∑

i=1

v(ri) , (3)
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where

T̂ =
N
∑

i=1

(−
1

2
∇2

i ) (4)

is the kinetic energy operator,

V̂ee =
N
∑

i<j

1

|ri − rj|
(5)

is the electron-electron repulsion energy operator and v(r) is a local external poten-

tial. For convenience we consider an even number of particles. The second-ordered

reduced density matrix is defined as

n2(x1,x2;x
′
1,x

′
2) =

N(N − 1)

2

∫

Ψ(x1,x2,x3...,xN)Ψ∗(x′
1,x

′
2,x3...,xN )dx3...dxN , (6)

where xi stands for the spatial and the spin coordinates: ri, σi and the integral sym-

bol when referred to spin denotes summation. The diagonal of the spin-independent

second-ordered density matrix

n(r1, r2) =
∑

σ1,σ2

n2(r1, σ1, r2, σ2) (7)

also called pair density is the key quantity.

It is convenient to introduce new position variables

qJ = (rj, rj′) = (qJ1, qJ2, qJ3, qJ4, qJ5, qJ6) , (8)

i.e. the pairs will be denoted by capital indices while the particles in each pair will

be identified by the corresponding unprimed and primed letters. With the above

notation the number of variables is the same as that of the initial system. Each

particle is associated with a single pair, i.e. the number of indices J is N/2. The

’internal’ potential for the particles in pair J is given by

ṽ(qj) = ṽ(rj, rj′) =
1

|rj − rj′|
. (9)
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while the interaction between pairs I and J is

WIJ = W (qI ,qJ) = W (ri, ri′; rj, rj′) =
1

|ri − rj|
+

1

|ri − rj′|
+

1

|ri′ − rj|
+

1

|ri′ − rj′|
.(10)

The energy of the pairs due to the external potential is

Û =
M
∑

I=1

u(qJ) =
N
∑

I=1

(v(rj) + v(rj′)) . (11)

Defining the operator L̂ representing the internal energy of pairs

L̂ =
M
∑

I=1

(−
1

2
∇2

I + ṽ(qI)) , (12)

the initial Hamiltonian can be expressed as

Ĥ = L̂ + Ŵ + Û , (13)

where

Ŵ =
1

2

M
∑

I 6=J

WIJ (14)

is the interaction energy between different pairs (M = N/2).

Ĥ is the same as the initial Hamiltonian, but now it is written in terms of pairs

of particles, with L̂+Û representing the Hamiltonian of independent (noninteracting

with each other) pairs and Ŵ representing the interpair interaction.

The Laplacian in the kinetic energy operator can also be written as

∇2
I = ∇2

qI
= ∇2

i + ∇2
i′ =

6
∑

α=1

∂2

∂q2
Iα

. (15)

The energy of the independent pairs has the form

Q[n] = min
Ψ→n

〈Ψ|L̂ + Ŵ |Ψ〉. (16)
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The search of the minimum is over all antisymmetric wave functions Ψ which yield

the given n. Then the ground state energy can be written as

E = min
n

{

1

N − 1

∫

u(r1, r2)n(r1, r2)dr1dr2 + Q[n]
}

. (17)

The factor 1/(N − 1) comes from the normalization of n. The density of pair I

n(qI) = n(ri, ri′) =
∑

σi,σi′
n2(ri, σi, ri′, σi′) (18)

is the pair density in the original space.

The Hohenberg-Kohn theorems [10] have been generalized for the pair density

[11, 12] of the original space. The ground state inequality is

1

N − 1

∫

n(q)u(q) + Q[n] ≥ E0 . (19)

where E0 and n0 are the ground-state energy and the diagonal of the spin indepen-

dent second-order density matrix, respectively.

In the pair density functional theory the adiabatic connection is defined by the

parametrized Hamiltonian

Ĥα = L̂ + αŴ + Ûα , (20)

where Ûα =
∑

I uα
I (q) is given by the condition that the pair density n(q), of

the original space keeps being independent of α. For α = 0 the ’non-interacting

Hamiltonian’

Ĥα=0 = L̂ + Ûα=0 =
∑

I=1

hα=0
I (21)

is obtained. In this auxiliary system the interaction between the pairs is zero and

the auxiliary equations have the form

Ĥ0Ψ0 = E0Ψ0 . (22)
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The wave function in this auxiliary system can be written as a symmetrized

expression of antisymmetric two-particle functions χI :

Φ0(x1, ...,xN) = Ŝ (χ1(x1,x2)...χM(xN−1,xN )) . (23)

Ŝ =
1

N !

∑

P

P̂ (24)

is the symmetrizer operator. P is the permutation operator and the sum is over all

permutation of the electron pairs. This wave function is antisymmetric with respect

to the exchange of the variables of a single pair and symmetric with respect to the

exchange of the pairs. The disadvantage of the present notation is that it does not

allow transposition of variables belonging to two different pairs. In the ground state

n(q) = N
N − 1

2

∑

σ

|χ0(x1,x2)|
2 = N

N − 1

2
|χ̃0(q)|2 , (25)

where the two-particle function χ̃0 satisfy the eigenvalue equation

h0(q)χ̃0(q) =
[

−
1

2
∇2

q
+ veff (q)

]

χ̃0(q) = ε0χ̃0(q) , (26)

We mention in passing that it is possible to write the pair density in terms of

geminals. The present version of the pair density version of theory has the advantage

that the calculation of n is always reduced to the solution of a two-particle equation

that is the N-body problem can be reduced to a two-body problem. It has been

proved [1] that the auxiliary potential is uniquely determined by the diagonal form

of the spin independent second-order density matrix and the effective potential is of

the form

veff(q) = v(r1) + v(r2) +
N − 1

r12
+ vp , (27)
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where

vp = (N − 1)
δTP

δn
(28)

and

TP = T − T 0 (29)

is the difference of the kinetic energies of the real system (T = 〈Ψ|T̂ |Ψ〉) and the

auxiliary system

T 0 =
M
∑

I=1

∫

χ∗
I(x1,x2)[−

1

2
∇2

q
]χI(x1,x2). (30)

By a density functional analogy the functional TP [n] is called Pauli energy. The

total energy has the form

E[n] = T 0[n] + T P [n] +
∫

n(q)

r12

dq +
1

N − 1

∫

n(q)u(q)dq . (31)

The disadvantage of the present treatment is that it is hard to capture the

fermionic structure of an electronic system with a single effective potential. However,

we have always a two-particle problem to solve independently of the number of

electrons. It is worth to make efforts to find adequate approximation for the Pauli

potential in order to utilize this benefit. The present study is a step in this direction.

The auxiliary equations can also be derived by constrained search [1,13]. The

two-particle equation (26) was later derived [14] in a different way which is not

restricted to even number of electrons.
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3 A model pair density amplitude and the corre-

sponding potential

As it was shown in the first paper [1] the Pauli potential is uniquely determined by

the pair density. That is, from the knowledge of n, vP can be given by inverting Eq.

(1)

vP (r1, r2) = −Kloc(r1, r2) − w(r1, r2) , (32)

where

Kloc(r1, r2) = −
1

2χ̃0(r1, r2)

[

∇2
1 + ∇2

2

]

χ̃0(r1, r2) (33)

and

w(r1, r2) = v(r1) + v(r2) +
N − 1

r
− µ. (34)

We have recently proved [7] that the Pauli potential asymptotically behaves

as

vP → (N − 2)
(

1

r1
+

1

r2
−

1

r

)

(35)

when r1 → ∞, r2 → ∞ and r → ∞. The electron-electron cusp condition has the

form:

vP =
2 − N

r
(36)

as r → 0.

With the aim to reconstruct vP in some functional form, we start out from a

model unnormalized pair density amplitude in the form

χ = χHF (λr1, λr2)(1 + g(r)) , (37)
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where χHF is the Hartree-Fock (HF) pair density amplitude and g(r) a reliable

correlation function. The variables inside the HF function are properly scaled in

accord with a study [9], performed on two electron model atoms, in which it has

been shown that the exact ground state wave function for the systems treated can

be related to the HF one by a length scaling transformation followed by the insertion

of a pair correlation factor. The importance of scaling has been also pointed out in

our previous paper on pair density amplitude equation [3]. Eq. (37) above can be

used, in principle, for any molecular system. However, in this work, we limit the

attention to four electron atomic ions as a starting point.

In order to be used in some analytical tractable form, the HF pair density

amplitude is here expanded in terms of Slater functions, namely

χHF =
∑

kl

Ωklr
pk

1 rpl

2 exp (−αkr1 − αlr2) , (38)

where the coefficients Ωkl and the exponents αk are determined by means of some

fitting procedure and the sum is truncated to few terms.

Now, we follow a recent method [8] to obtain the potential exactly from the

given wave function. From Eqs. (37) and (38) we are led to

1

2

(∇2
1 + ∇2

2)χ

χ
= V1(r1, r2) + V2(r1, r2) + V3(r1, r2), (39)

where

V1(r1, r2) = ν(r1, r2) + η(r1, r2) + ζ(r1, r2), (40)

ν(r1, r2) =
1
2

∑

kl(ᾱ
2
k + ᾱ2

l )Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
∑

kl Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
, (41)
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η(r1, r2) = −

∑

kl

[

ᾱk(pk+1)
r1

+ ᾱl(pl+1)
r2

]

Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
∑

kl Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
, (42)

ζ(r1, r2) =

∑

kl

[

pk(pk+1)
2r2

1

+ pl(pl+1)
2r2

2

]

Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
∑

kl Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
, (43)

V2(r1, r2) =
d2g
dr2 + 2

r
dg
dr

1 + g
, (44)

and

V3(r1, r2) =
2

r

dg

dr
×

∑

kl

[(

pk

r1

− ᾱk

)

(r1 − µ̃r2) +
(

pl

r2

− ᾱl

)

(r2 − µ̃r1)
]

Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)

(1 + g)
∑

kl Ω̄klr
pk

1 rpl

2 exp (−ᾱkr1 − ᾱlr2)
. (45)

µ̃ denotes the cosine of the angle between r1 and r2

µ̃ =
r1 · r2

r1r2

, (46)

while, accordingly to the length scaling requirements, in Eqs. (41–45) we have

Ω̄ij = Ωijλ
pi+pj (47)

and

ᾱi = αiλ . (48)

The Schrödinger equation that the model pair density amplitude satisfies is

Hχ(r1, r2) =
[

−
1

2
∇2

1 −
1

2
∇2

2 + V (r1, r2)
]

χ(r1, r2)

= µχ(r1, r2). (49)

Thus, the potential energy V (r1, r2) in the exact Hamiltonian H has the form

V (r1, r2) = const +
1

2

(∇2
1 + ∇2

2)χ

χ
. (50)
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We can readily see that, if we consider the Hartree-Fock case, g = 0 and the potential

V reduces to V1 (V2 = V3 = 0). To analyze the terms in the potential V we

consider the asymptotic behaviour of these terms. We can immediatelly notice that

the constant term in Eq. (50) comes from ν, that is, µ in Eq. (1) is equal to

−ᾱ2
s, where ᾱs is the smallest parameter in the exponent in Eq. (38) and ps = 0.

Terms proportional to r−1
1 , when r1 → ∞, are coming from η (Eq.(42)). That is,

−ᾱs(ps + 1)/r1 should give the corresponding asymptotic limit: (−Z + N − 2)/r1.

Consequently, the relation ᾱs(ps + 1) = Z −N + 2 should hold to insure the correct

asymptotic behaviour (35). We are led, of course, to the same relation cosidering

the limit r2 → ∞. We have to select a correlation function g that the relations (35)

and (36) are satisfied as r → ∞ and r → 0. With the choice

g(r) =
1

2

r

(1 + ar)
(a > 0) (51)

the asymptotic relations are fulfilled.

In the next section, we will show a procedure to find reliable values for the

parameters a and λ for Be isoelectronic atomic ions.

4 Numerical examples: the Be atom and some

isoelectronic atomic ions

By way of example, we have performed some calculation of the total energy for Be

atom and isoelectronic atomic ions C2+ and O4+ by using the model pair density

amplitude defined in eqn(37) and the derived Pauli potential.
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In an earlier paper [3] we showed that the total energy can be given as

E = E0 + Tp −
∫

n(r1, r2)
δTp

δn
dr1dr2, (52)

where

E0 =
N

2
µ , (53)

the Pauli energy Tp being defined as Tp = T − Tw, where

Tw == T0 =
1

N − 1

∫

n1/2(r1, r2)
(

−
1

2
∇2

1 −
1

2
∇2

2

)

n1/2(r1, r2)dr1dr2 (54)

is a Weizsäcker-like kinetic energy expression. Ayers [15] has shown that such kind

of generalized Weizsäcker-type kinetic energies satisfies a set of bounds in the form

T (1)
w ≤ T (2)

w ≤ ...T (N)
w ≤ Tex (55)

where Tex is the exact electronic total kinetic energy and the superscript (j) refers

to the order of the particle density used to compute Tw. From the definition of vP

in terms of Tp, namely

vP = (N − 1)
δTp

δn
, (56)

and from the virial theorem [3], the total energy becomes

E =
1

N − 1

∫

n(r1, r2)
[

µ − vP −
1

2
(r1 · ∇1 + r2 · ∇2) vP

]

dr1dr2 . (57)

This integral can be evaluated by means of the Monte Carlo method by sampling

the two electron configurations according to the distribution n. In this case we can

rewrite the energy as the following mean value

E =
N

2
〈µ − vP −

1

2
(r1 · ∇1 + r2 · ∇2) vP 〉 . (58)
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Subsuming the constant µ in the costant of the effective potential defined in Eq.

(50), the following expression can easily be derived

E =
N

2
〈−VL −

1

2
(r1 · ∇1 + r2 · ∇2) VL +

1

2

(

−
Z

r1
−

Z

r2
+

N − 1

r

)

〉 . (59)

which is valid for atoms and where VL(r1, r2) is simply the second term of Eq. (50),

namely that containing the Laplacian of the pair density amplitude. The Eq. (59)

above is the most direct route to get the total energy for an atom within the present

pair density functional theory, provided some form of the pair density amplitude is

given. We have applied such equation to the isoelectronic systems Be, C2+ and O4+.

We have calculated the HF pair density starting from an even tempered basis set of

30 Gaussian type orbitals with exponents αβk−1 (1 ≤ k ≤ 30) where α = 0.00015

and β = 2. This basis set is good enough to approach, for these systems, the

HF energy limit within an error of about 10−5 Hartree. For comparison purposes,

together with the energy, we have also evaluated the mean values of some powers of

the interelectronic distance r. For these moments, and for the systems considered

in this work, various data can be found in the literature [16–18] both for HF and

correlated wave functions. Some agreement with these data is requested in order

to validate any model pair density amplitude for applications like that presented in

this work. The calculation of the aforementioned properties needs the evaluation

of the spherically averaged intracule density. The spherically and system-averaged

pair density is defined as

f(r) =
∫

n(r,R)
dΩr

4π
dR, (60)

where

R =
1

2
(r1 + r2) . (61)
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pk αk(Be) αk(C
2+) αk(O

4+)
0 3.97651 5.96857 8.06190
0 3.00734 4.98239 7.20878
0 1.00912 1.49111 2.27612
0 0.43883 0.68890 1.47129
1 1.02059 1.26348 2.27198
1 0.69171 1.01522 1.96012
1 — — 1.28699
2 1.07922 1.45413 3.14449
3 1.11755 1.70673 —

Table 1: Powers and exponents of the Slater-type orbitals used to fit the model pair
density amplitude used in this work for Be, C2+ and O4+.

This is the spherically averaged intracule density. With our model pair density

amplitude this function takes the simple form

f(r) = N [1 + g(r)]2 fHF (λr) (62)

where fHF (r) is the spherically averaged intracule density from the HF wave function

and N is a normalization constant.

The present approximation is similar to the lowest order approximation for

the short range correlation given by Dal Ri et al [19] and rediscussed very recently

by Higuchi and Higuchi [20] in the framework of pair density functional theory. It

differs in the precise form of g(r), here taken as defined in Eq.(51). Long range

correlation is here in part considered by the renormalization of χ after the insertion

of the factor (1+g) and in part by the length scaling transformation. A more refined

treatment with the inclusion of long range correlation will be an objective of future

work.

Turning to the three atomic systems studied in this paper, we show in Tab.1 the

parameters defining the Slater-type orbitals used to construct the HF pair density
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a λ E Tp < r−2 > < r−1 > < r > < r2 > < r3 >
4 0.9835 –14.660(4) 0.878(3) 9.319 4.279 15.537 54.485 232.96
5 0.9847 –14.669(4) 0.864(3) 9.541 4.320 15.469 54.107 230.88
6 0.9860 –14.669(4) 0.855(3) 9.701 4.349 15.418 53.815 229.23

HF(a) –14.573 1.005 10.536 4.489 15.120 51.956 218.11
corr(b) –14.667 — 9.536 4.337 15.272 52.854 222.48

(a) In the Tp column is reported the difference Tex − T (1)
w and moments

are from refs. [16, 18].
(b) Moments from [18].

Table 2: Total energy (E), Pauli kinetic energy (Tp) and some moments < rk >
for Be atom for different choices of the correlation function parameter a and the
scaling constant λ calculated in this work and comparison with HF and correlated
literature data. Data are in atomic units.

a λ E Tp < r−2 > < r−1 > < r > < r2 > < r3 >
5 1.00090 –36.538(9) 3.253(8) 25.37 7.540 8.013 14.031 29.466
6 1.00063 –36.538(9) 3.226(8) 25.35 7.577 7.997 13.991 29.369
7 1.00055 –36.539(9) 3.204(8) 25.94 7.604 7.985 13.961 29.296

HF(a) –36.408 3.475 27.06 7.716 7.945 13.863 29.06
corr(b) –36.534 — 25.50 7.548 8.118 14.502 31.14

(a) In the Tp column is reported the difference Tex − T (1)
w and moments

are from refs. [16, 18].
(b) Moments from [16].

Table 3: Total energy (E), Pauli kinetic energy (Tp) and some moments < rk > for
C2+ atomic ion for different choices of the correlation function parameter a and the
scaling constant λ calculated in this work and comparison with HF and correlated
literature data. Data are in atomic units.

amplitude as they result from a fitting of the same accurate function. The complete

definition of χ̃0 depends at this point by the parameter a entering the correlation

function g(r) and the scaling factor λ. We made different choices of such parameters

for all the three cases and the final results are collected in Tabs. 2,3,4.

The main problem encountered in the calculation of the total energy by Monte

Carlo method has been related to the high variance of the function to be averaged

16



a λ E Tp < r−2 > < r−1 > < r > < r2 > < r3 >
7 1.00005 -68.40(1) 6.91(1) 49.11 10.712 5.492 6.534 9.280
8 1.00003 -68.40(1) 6.91(1) 49.45 10.741 5.486 6.522 9.260
9 1.00003 -68.41(1) 6.90(1) 49.73 10.763 5.481 6.513 9.244

HF(a) -68.257 7.374 51.8 10.887 5.455 6.469 9.167
corr(b) -68.411 — 49.17 10.694 5.570 6.769 9.843

(a) In the Tp column is reported the difference Tex − T (1)
w and moments

are from refs. [16, 18].
(b) Moments from [16].

Table 4: Total energy (E), Pauli kinetic energy (Tp) and some moments < rk > for
O4+ atomic ion for different choices of the correlation function parameter a and the
scaling constant λ calculated in this work and comparison with HF and correlated
literature data. Data are in atomic units.

which is defined in Eq. (59). This requires a long simulation to achieve an energy

mean value with an accuracy of the order of some mHartree. The same occurs for

Tp.

Looking at the results of Tabs. 2,3,4, it is evident that the optimal values of

the parameters a and λ must be found by searching for a compromise between the

need of getting reliable values of the moments < rk > and the best energy. The

results show also that a considerable fraction of correlation energy has been taken

into account. It is also important to notice that the variance becomes larger when

the nuclear charge increases but also that our approximation, mainly based on short

range correlation, should works better in such cases.

It is also interesting to look at the values of Tp. From the bounds on the

generalized Weizsäcker-type kinetic energy introduced by Ayers [15] it follows that

0 ≤ Tp ≤ Tex − T (1)
w . (63)

Looking at our results, this inequality is satisfied in the range of a values consid-
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ered here. Deviations from this behavior must lead to considerations related to

N-representability.

Finally, it is worthwhile to look at the plots of the effective potential derived by

the approximate pair density amplitude. This has been done for the contributions

V1(r1, r2) and V2(r) while V3(r1, r2, r) cannot be easily shown being dependent on

three independent variables. For this purpose, and only for Be, we plot V1(r1, r2) in

Fig.1 and V2(r) in Fig.2. From Fig.1, it is clear that V1 is dominated by the external

nuclear potential when r1 or r2 tends to 0 while is about constant for both large r1

and r2, being −µ the limit in this case. The ripples of the two dimensional surface of

Fig.1 are instead a consequence of the exchange interaction and determine the shell

structure of the one particle density of Be atom. Finally, V2, shown in Fig.2, is always

repulsive. For small r, it behaves as the electron-electron interaction potential while

it goes to zero more rapidly for large r. The ripples of V1, the long range behavior

of V2 and the contribution V3 are special features of vP .

5 Conclusions

In this work, we have illustrated a method to reconstruct the Pauli potential of pair

density functional theory for four electron atomic ions. The potential is derived by

inverting the effective two electron equation involving the pair density amplitude

assuming that the pair density itself can be written in an analytical tractable form.

Cusp and asymptotic conditions have been satisfied and appropriate adjustable pa-

rameters have been used in order to reproduce, within a reasonable accuracy, the

total energy and some lower moment of the intracule density. Some interesting fea-
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tures of the Pauli potential have been found for the systems treated here. These

features are contained in the expressions (40), (44) and (45) for V1, V2 and V3. V1 and

V2 include also the nuclear and the electron-electron electrostatic potential energies.

Some illustrations are given also in Figures 1 and 2.

We would like to emphasize that the present method is not restricted to four-

electron sytems. In the the pair density theory one has to solve an effective two

electron equation independently on the number of electrons. That is, the novel

method introduced here to invert the effective two electron equation can always be

applied if the the pair density (or the the pair density amplitude) is available.

For the future, it will be interesting to analyze in details each individual term in

order to find a generalization of the above expressions for all polyelectronic systems

in a form which does not require the inversion of the effective two electron equation

worked here.

About V2, we would like to refer briefly to the ’average-pair-density theory’

of Gori-Giorgi and Savin. In this theory the spherically and system-averaged pair

density f(r) is determined by simple radial equations conjectured by Gori-Giorgi

and Savin [21]:

[

−∇2
r + weff(r)

]

φi(r) = εiφi(r), (64)

the solutions of which give f(r) as

∑

i

θi|φi(r)|
2 = f(r), (65)

that is, f(r) is given by a weighted sum of the square of some orthogonal ’effective’

geminals φi with weighting factors of ’occupancy’ θi. The potential weff(r) in Eq.
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(64) was approximated as

weff(r) = w
(0)
eff(r) + wc

eff (r), (66)

where

w
(0)
eff(r) =

∇2f
1/2
KS

f
1/2
KS

(67)

and

wc
eff(r) =

(

1

r
+

r2

2r3
s

−
3

2rs

)

θ(rs − r). (68)

θ(rs − r) is the Heaviside step function and

rs =
(

4π

3
%
)−1/3

, (69)

where % is the average electron density. The correlation potential wc
eff(r) originally

proposed by Overhauser [22], has been used to solve Eq. (64) for the uniform electron

gas [21, 23]. It leads to an accurate description of the short-range part of f . Our

potential V2(r1, r2) (44), using the expression (51) for g, has the form

V2(r1, r2) =
1

r(1 + ar)2(1 + (a + 1/2)r)
. (70)

We immediatelly notice that the dominant term in (70) for small r is 1/r. It is

the same as the first term in the Overhauser potential, which is also the dominant

part of the Overhauser potential for small r. Thus the potential V2(r1, r2) has some

resemblance to the Overhauser potential. The 1/r term in the Overhauser potential

comes from the cusp condition on f(r) [21]. The dominant term in (70) for small r

has the same origin.

We also mention in passing that it was derived via a double adiabatic connec-

tion by one of the present authors [4] that the square root of the spherically and
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system averaged pair density is the solution of a simple radial equation, that is, con-

trary to the theory of Gori-Giorgi and Savin, it is possible to obtain f(r) through

a solution of a single equation. If a single geminal is used the fermionic character

should be reflected in the potential which is consequently more complicated. If more

than one geminals are used the spherically and system averaged pair density has a

more complicated form but the potential can be more easily approximated. The

number of geminals N(N − 1)/2 depends on the number of electrons. Therefore a

single geminal approach might gain an important role as the number of electrons

increases.

In the density functional theory there has been a growing interest in deter-

mining the exact exchange, exchange-correlation and Kohn-Sham potentials in the

knowledge of the density. Several methods have been worked out [24–29]. The ex-

act potentials are very useful, for example to check the accuracy of approximate

methods. An analogous problem in the pair density functional theory is to obtain

the Pauli potential in the knowledge of the pair density as here the electron-electron

iteraction is exactly treated, but the kinetic energy functional is unknown. The prob-

lem here is more complicated in the sense that a two-particle potential vP should be

calculated, instead of a one-body exchange-correlation potential of the density func-

tional theory. On the other hand, it is also simpler as only a single equation has to

be inverted instead of several Kohn-Sham eguations in the density functional theory.

The accurate form of the Pauli potential obtained by the present method can be

used later to find approximate expressions for it. One has to be, however, extremely

careful in the construction because of the N-representability problem [11,15,30–43].

Dal Ri et al. [19] derived density matrices from Jastrow-type trial wave func-

21



tions. The pair density used in this work can be considered as the lowest order

approximation to the general, N-representable pair density presented by Dal Ri et

al. Consequently, our pair density is, at least approximately , N-representable.
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