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bstract

The aim of this study was to investigate whether primary vestibular afferent fibers establish direct connections with the motor and sensory
rigeminal system in the brainstem of the frog. The experiments were carried out on Rana esculenta. In anaesthetized animals the trigeminal
nd vestibular nerves were prepared, and their proximal stumps were labeled either with fluorescein binding dextran amine (trigeminal nerve)
r tetramethylrhodamine dextran amine (vestibulocochlear nerve). With a confocal laser scanning microscope we could detect close connections
etween the vestibular fibers and branches of the dorsal dendritic array of the jaw-closing motoneurons, suggestive of monosynaptic contacts. In
he other parts of the brainstem, vestibular terminals were detected in the termination areas of the mesencephalic trigeminal nucleus and of the
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asserian (Vth) ganglion and they were probably involved in polysynaptic connections. In agreement with the results obtained in mammalian
pecies, the present findings suggest that the vestibulotrigeminal relationship is quite complex and uses multiple pathways to connect the vestibular
pparatus with the motor and sensory nuclei of the trigeminal nerve in the anurans as well.

2007 Published by Elsevier Inc.

eywords: Neuronal labeling; Confocal laser scanning microscope; Brainstem; Vestibular nuclei; Trigeminal motoneurons

. Introduction

During head movements the maintenance of jaw position and
aw muscle tone is controlled by the activity of the proprio-
eptors and vestibular receptors. Previous physiological studies
n mammalian species revealed that the vestibular stimulus
esulted in excitatory influence on the motoneurons of trigeminal
erve innervating the jaw muscles [3,4,13,14]. The properties
f the vestibular-evoked motor trigeminal response suggested
hat the activity of vestibular receptors is mediated indirectly
o motoneurons by way of polysynaptic pathways. In rats,
ransneuronal tracing with pseuodorabies virus also provided
vidence of a multisynaptic pathway in vestibulotrigeminal con-
ections via neurons of medial and inferior vestibular nuclei
5]. In non-mammalian species, neuronal circuitry between the

∗ Corresponding author at: Department of Anatomy, Histology and Embry-
logy, University of Debrecen, Medical and Health Science Center, Nagyerdei
rt. 98, H-4012 Debrecen, Hungary. Tel.: +36 52 416 392; fax: +36 52 432 290.

E-mail address: matesz@chondron.anat.dote.hu (C. Matesz).

vestibular and trigeminal system has not yet been investigated, 37

albeit the previous neuronal labeling experiments are suggestive 38

of the influence of vestibular input to the trigeminal system. With 39

various neuronal labeling techniques, terminals of the afferent 40

vestibular fibers were found in the principal and spinal nucleus 41

of the trigeminal nerve in the frog [7] and in the spinal nucleus 42

of trigeminal nerve of lizard [1] and lamprey [6]. In other exper- 43

iments, primary afferent trigeminal fibers were followed into 44

the ventral and caudal octaval nuclei of the vestibular nuclear 45

complex of the frog [11]. Extension of dendrites of trigeminal Q3 46

motoneurons into the vestibular nuclear complex may indicate 47

the monosynaptic vestibulotrigeminal connection in the frog 48

[7,8]. In this study we have examined the possible anatomical 49

substrates underlying the vestibulotrigeminal neuronal circuitry 50

in the frog. 51

2. Materials and methods 52

The experiments were carried out on six common water frogs, Rana escu- 53

lenta in accordance with European Community guidelines and state regulations 54

and with the approval of the University Animal Care Committee. The animals 55

361-9230/$ – see front matter © 2007 Published by Elsevier Inc.
oi:10.1016/j.brainresbull.2007.10.049
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were anaesthetized with 0.01% MS 222 (tricaine methane-sulfonate, SIGMA).56

The vestibular and trigeminal nerves were prepared from an oropharyngeal57

approach by an incision of the mucosa on the roof of oral cavity. The cra-58

nial cavity was opened by removal of part of the parasphenoidal bone. After59

incision of the dura mater the trigeminal and vestibular nerves were prepared60

and transected proximal to the ganglion prooticum commune (the equivalent61

of the Gasserian ganglion in mammals) and the vestibulocochlear ganglion.62

Crystals of fluorescein binding dextran amine (FDA, 3000 MW, Molecular63

Probes) were applied to the trigeminal nerve and the tetramethylrhodamine64

dextran amine (RDA, 3000 MW, Molecular Probes) was put on the vestibu-65

locochlear nerve of the same animal. The frogs were kept in a refrigerator66

for 5 days, reanaesthetized and transcardially perfused with isotonic saline for67

2–3 min, and fixed by 4% paraformaldehyde in 0.1 M phosphate buffer (pH68

7.4). Transverse sections of the brainstem were made with a Vibratome at a69

thickness of 50 �m. Images were recorded with an Olympus FV1000 confo-70

cal laser scanning microscope (40× oil immersion objective, NA = 1.3). For71

the latter analysis we used series of 1 �m thick optical slices. We carefully72

examined the whole XYZ image series. Close appositions were considered73

if the contact surfaces were at the same focal plane and if there was no74

discernable gap between the two profiles [15,17]. Because of the optical res-75

olution of the objective lens the distance between the surfaces was less than76

0.3 �m. After recording the images we did not use any further image process-77

ing.

3. Results 78

Application of FDA to the trigeminal nerve resulted in label- 79

ing of sensory fibers and motoneurons similarly to that of the 80

cobalt labeling experiments [8], while RDA was detected in 81

the central terminals of afferent fibers and efferent vestibular 82

neurons in agreement with the earlier results [2,7]. Combina- 83

tion of images displayed overlapping areas of labeled trigeminal 84

and vestibular neurons in different structures of the brainstem. 85

One of them was found in the rostral part of the rhomben- 86

cephalon at the level of the root of trigeminal nerve. The labeled 87

lateral branches of the dorsal dendritic array of the trigem- 88

inal motoneurons extended into the superior (SVN), medial 89

(MVN) and descending (DVN) vestibular nuclei, whereas the 90

vestibular fibers were followed medially and distributed among 91

the dorsal dendritic branches of the trigeminal motoneurons 92

(Fig. 1A). With a confocal laser scanning microscope, we could 93

detect close appositions between the vestibular terminals and the 94

motoneuron dendrites. The closeness of neighboring profiles is 95

Fig. 1. (A–C) Transverse sections of the brainstem, after labeling of trigeminal nerve with fluorescein binding dextran amine (green) and of the vestibulocochlear
nerve with tetramethylrhodamine binding dextran amine (red). (A) At the level of rostral part of the motor trigeminal nucleus the encircled areas with different color
show the termination area of the descending limb of the mesencephalic nucleus of trigeminal nerve, as well as the principal nucleus of trigeminal nerve, descending
(DVN), medial (MVN) and superior (SVN) vestibular nuclei. The asterisk shows the axons of trigeminal motoneurons. Vmot: motor nucleus of trigeminal nerve.
(B) At the level of the rostral part of the ambiguus nucleus the labeled vestibular fibers (arrows) are distributed within the termination area of the descending limb of
the mesencephalic nucleus of trigeminal nerve (Vmes). V: Descending tract of trigeminal nerve; VIII: vestibular nuclear complex. (C) At the level of the hypoglossal
nucleus vestibular fibers are shown in the spinal nucleus of trigeminal nerve (nspV). (D and E) Confocal photomicrographs, showing the close appositions (arrows)
between trigeminal motoneuron dendrites (green) and vestibular fibers (red). Calibration bars = 50 �m (A–C) and 1 �m (D and E).
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and physiological experiments showing a significant overlap 128

of the vestibular and trigeminal input in different parts of the 129

thalamus of the frog [10,11,16]. In agreement with the results 130

obtained on mammalian species the present findings suggest that 131

the vestibulotrigeminal relationship is quite complex and uses 132

multiple pathways to connect the vestibular apparatus with the 133

motor and sensory nuclei of trigeminal system in the anurans 134

as well (Fig. 2). The possible monosynaptic and polysynaptic 135

connections between the primary vestibular afferents and the 136

trigeminal system may be one of the underlying mechanisms of 137

a very quick response during the head movements. 138
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