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Recently we discussed the Renner-Teller effect in triatomic molecules �J. Chem. Phys. 125, 094102
�2006��. In that article the main message is that the Renner-Teller phenomenon, just like the
Jahn-Teller phenomenon, is a topological effect. Now we extend this study to a tetra-atomic system,
namely, the C2H2

+ ion, for which topological effects are revealed when one atom surrounds the
triatom axis or when two atoms surround �at a time� the two-atom axis. The present study not only
supports the findings of the previous study, in particular, the crucial role played by the topological
D matrix for diabatization, but it also reveals new features which are expected to be more and more
pronounced the larger the original collinear molecule. As already implied, shifting away two atoms
from the collinear molecular axis does not necessarily abolish the ability of the remaining two atoms
to form topological effects. Moreover, the study indicates that when the two hydrogens are shifted
away, the CC axis produces two kinds of topological effects: �1� a Renner-Teller effect
�characterized by a topological phase of 2�� which is revealed when the two hydrogens surround,
rigidly, this axis �as mentioned above�, and �2� a Jahn-Teller effect �characterized by a topological
phase of �� which is revealed when one of the hydrogens surrounds this axis while the other
hydrogen is clamped to its position. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2717934�

I. INTRODUCTION

Recently, while studying triatom molecules, we sug-
gested considering the Renner-Teller �RT� effect as a topo-
logical phenomenon caused by degeneracy points located
along the collinear axis of the studied molecule.1 As a first
example of such a treatment we chose the NH2 molecule for
which the degeneracy is formed along this axis by the two
degenerate � states 2B1 and 2A1.1,2 According to the Jahn-
Teller �JT� terminology such a line of degeneracy points is
called a seam and the topological phenomenon is revealed by
employing closed contours, �, that surround these seams.3 To
be more specific, just like in the study of the JT effect, we
calculate the corresponding electronic nonadiabatic coupling
terms �NACTs� and follow their behavior �as will be elabo-
rated below� along these open and closed � contours.

The main emphasis in the study of the RT effects is
usually on the �adiabatic� potential energy surfaces4 but is-
sues related to the NACTs are in most cases ignored and

therefore difficulties associated with the diabatization pro-
cess are not always properly treated. In order for the diaba-
tization to have a physical meaning the newly constructed
diabatic surfaces have to be single valued and this can be
guaranteed if the orbital �angular� quantum number � is an
integer �or half an integer�. It is well known that � is indeed
an integer for collinear configurations4–9 but it deviates from
an integer for other configurations.4,10–17 The main assump-
tion in such instances is that the deviations are not large and
can be ignored. Still, efforts were made to partly correct for
this mishap.10–12

In Ref. 2 we present a different approach to overcome
the above mentioned difficulty, an approach which is suc-
cessfully applied in the case of the JT intersection.18 It is
based on the fact that the RT phenomenon is, in many ways,
similar to the JT phenomenon.18–31 The similarity becomes
apparent due to the fact that, like the JT points of degeneracy
�that are distributed along infinite long seams�, the RT points
of degeneracy, which are distributed along segments of the
collinear molecular axis, also form infinite long seams. Thata�Electronic mail: michaelb@fh.huji.ac.il
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said, the two phenomena still differ to some extent �at least
in the case of planar molecules� because the JT intersection
is formed by states of the same symmetry whereas the RT
intersection is formed by states of different symmetries.
Other differences are discussed below.

Whereas the emphasis in our first publication is on the
triatomic systems1,2 the present study centers on tetra-atomic
systems.4,17 In particular, we show that difficulties in the dia-
batization as encountered for tetra-atomic systems can be
remedied in the same way as is done in triatomic systems.
However, having four atoms opens up numerous new and
interesting possibilities. These are not necessarily related to
the diabatization process itself but concern new features
formed by the RT intersection.

In 1934 Renner5 published a detailed study of a linear
polyatomic molecule, characterized by an electronic orbital
angular momentum component �� �where ��0� and by an
angular momentum component, ��, associated with the
bending vibrations of the molecule, both defined with respect
to the original �collinear� molecule axis, considered to be the
z axis.5 To be more specific, in that study Renner concen-
trated on those states that split to become two �coupled�
states when moving away from collinearity. Thus if we con-
sider, e.g., a � state characterized by the quantum number
�=1 and a single eigenfunction, ��=1�se �s�, then, after mov-
ing away from collinearity, one encounters two eigenfunc-
tions, namely, ��=1

± �se �s� related to the two decoupled states
�in this notation se and s stand for the collective electronic
and nuclear coordinates, respectively�. We do not intend to
elaborate any further on the Renner model �this was done in
Ref. 2� but immediately refer to the Born-Oppenheimer �BO�
treatment and continue our presentation employing the above
mentioned NACTs.30,31

The NACT in general is a vectorial entity that couples
two given electronic adiabatic states so that if � jk�s� is the
term that couples states j and k then it can be written as30

� jk�s� = �� j�se�s����k�se�s�� . �1�

In what follows we use cylindrical coordinates �q ,� ,z�
where q and � are the �planar� polar coordinates �q the radius
and � the angle� and z the coordinate perpendicular to this
plane. Of the various possible components of � jk�s� the ones
of main interest for us is the angular components related to a
rotation around the �collinear� molecular axis �which is as-
sumed to be located along the z axis�. If � is the angle
associated with this �nuclear� rotation then the corresponding
angular component can be written as �1/q���jk�s�, where

��jk�s� = �� j�se�s�	 	 �

��
�k�se�s�
 . �2�

Here, �i�se �s�; i= j ,k are the electronic eigenfunctions intro-
duced earlier and q is the radial coordinate that together with
� forms the two polar coordinates associated with the rota-
tion in a plane. In other words q is a distance from the col-
linear axis.

As mentioned earlier, in the present article we consider
the collinear tetra-atomic system C2H2

+ ion4,17,32 and conse-
quently all details to be mentioned are related to this ion.

As mentioned above we assume the four �collinear at-
oms� to be located along the z axis with the origin being at
some point along this axis �see Fig. 1�A��. Consequently the
coordinates of the four �collinear� atoms are s
= �z1 ,z2 ,z3 ,z4�. In all numerical treatments the two carbons
are clamped at the molecular axis and only the hydrogens, to
be labeled as H1 and H2, may be shifted from the axis. To
carry out the calculations of the angular NACT �see Eq. �2��
and later, the line integral, we distinguish between two situ-
ations, namely, �a� when one atom, H2, is shifted from the
axis and is allowed to surround the molecular axis �see Fig.
1�B�� and �b� when two atoms, H1 and H2, are shifted from
the axis and both surround that axis simultaneously �see Fig.
1�C��. In what follows the position of each of the two hydro-
gens H1 and H2 is described in terms of cylindrical coordi-
nates. This means that in addition to the z coordinate their
position is determined by the �polar� coordinates �q1 ,�1� and
�q2 ,�2�, respectively. From now on we refer to the general
coordinate s as �q ,�� thus ignoring the z coordinates alto-
gether.

Next we mention �briefly� one additional situation that
will be studied extensively, namely, the case where both hy-
drogens, H1 and H2, are shifted away from axis but only one
atom, H2, surrounds the �molecular� z axis �see Fig. 1�D��.

II. THEORY

A. Background comments

In Ref. 2 we presented in detail the connection between
the JT and RT frameworks while justifying the application of
the theory for the RT intersections, originally developed for
the JT intersections. This part will not be repeated here but,
for the sake of completeness, we just list the main expres-
sions.

Having the BO adiabatic �diagonal� potential matrix,
u�s�, the diabatic potential matrix W�s� is obtained following
the adiabatic-to-diabatic transformation �ADT� matrix A�s�,

FIG. 1. The various configurations of a tetra-atomic system treated in the
article: �A� the collinear tetra-atomic arrangement; �B� the symmetric case
formed by a single atom surrounding the triatom axis; �C� the symmetric
case formed by a rigid rotation of two atoms surrounding the C–C axis; �D�
the nonsymmetric case formed by one shifted �clamped� atom and one atom
surrounding the C–C axis.
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W�s� = A†�s�u�s�A�s� . �3�

The ADT matrix can be shown to be an orthogonal �unitary�
matrix that fulfills the following first order differential �vec-
tor� equation:33

�A�s� + ��s�A�s� = 0 , �4�

where ��s� is the nonadiabatic coupling matrix �NACM�
with the elements as defined in Eq. �1�. The solution of this
equation can be written as an exponentiated line integral,34

A�s�s0,�� = � exp�− �
s0

s

ds · ��s���
A�s0� , �5�

where � is the ordering operator, s0 is the initial point of
integration, � is the contour along which Eq. �4� is required
to be solved, the dot stands for a scalar product, and A�s0� is
the initial value of A�s� on �. In what follows A�s0� is as-
sumed to be the unit matrix. It is well noticed that the only
component of ��s� that contributes to the line integral is the
tangential component along the contour, �.

Another matrix of interest is the topological matrix D���
which is identical to the A matrix but is calculated along a
closed contour,18

D��� = A�s0�s0,�� = � exp�− �
�

ds · ��s���
 . �6�

The D matrix does not depend on any specific point along �
but on the contour as a whole. It can be shown that in order
for the diabatic potential matrix W�s� to be single valued in
the region of interest, the D matrix has to be diagonal for any
chosen closed contour � in the region. Since D��� �just like
A�s�� is unitary its elements are expected to be18

D jk��� = � jk exp�i	 j����, j = �1,N� , �7�

where 	 j���; j= �1,N� are real phases. In the case of real
eigenfunctions the phases become integer multiples of � so
that the D-matrix elements are

D jk��� = ± � jk, j = �1,N� . �8�

Next we briefly analyze what happens in case � is chosen to
be a circle defined by the position of its center and the rel-
evant radius q. In this situation the ADT matrix can be writ-
ten as

A���q,�� = � exp�− �
0

�

d������q,��
 , �9�

where we identify �1/q����� �q� as the angular component of
�. In the same way the topological matrix D takes the form

D�q,�� = � exp�− �
0

2�

d������q,��
 . �10�

Earlier we emphasized the fact that the condition for the
diabatic potentials to be single valued is the fulfillment of
Eq. �8�. Moreover, it is seen that the single valuedness is
solely determined by the NACM. Therefore in order to find
out if a group of N states is capable of yielding single-valued
diabatic potentials all that is necessary is to calculate the

corresponding N
N D matrix and see to what extent it is
diagonal.

In case of two states, Eqs. �9� and �10� simplify signifi-
cantly because any 2
2 orthogonal matrix can be written in
terms of

A�2���,q� = � cos��12��,q�� sin��12��,q��
− sin��12��,q�� cos��12��,q��


 , �11�

where �12�� ,q� is the ADT angle expressed in terms of a line
integral,

�12��,q� = �
0

�

��12���,q�d��. �12�

A similar expression is given for �12�q�, the topological
�Berry� phase, namely,

�12�q� = �
0

2�

��12���,q�d��. �13�

The corresponding D matrix is similar to the A matrix as
given in Eq. �11� but where �12�q� replaces �12�� ,q�,
namely,

D�2��q� = � cos��12�q�� sin��12�q��
− sin��12�q�� cos��12�q��


 . �14�

It is well noticed that the condition for the D matrix to
be diagonal is that

�12�q� = 2�n , �15�

where n is an integer or half an integer.
Comments. �1� We found that a group of N states yields

a single-valued diabatic potential if and only if this group is
approximately isolated with respect to the rest of the states
that form the complete Hilbert space. This happens when the
NACTs of the type � jk, that couple any state j within the
group of N states with any state k outside that group, are
negligibly small, i.e., �� jk��O�
�. In such a case this group
of N states forms a Hilbert subspace �more about this issue
can be found in Refs. 27�a� and 33�b��. �2� In what follows
we treat only the angular component of �. Consequently we
drop the subscript � so that � and � jk stand for �� and ��jk

,
respectively.

B. Treatment of symmetrical NACTs

One of the features that characterize the treatment of the
Renner-Teller intersection is that frequently their NACTs can
be chosen to be independent of the polar angle, �. This hap-
pens when the centers of the circular contours, �, are located
on the molecular axis. In such a case we find that, due to this
symmetry �see Fig. 1�B��, the integration in Eqs. �10� and
�13� can be carried out trivially.

In what follows we distinguish between the case where
the � matrix is of 2
2 dimension and the case where it is of
the 3
3 dimension �thus, the first case applies to the two-
state Hilbert subspace and the second to the three-state Hil-
bert subspace�.
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1. The two-state Hilbert subspace

In this case the � matrix is of the form

��q� = � 0 1

− 1 0

�12�q� , �16�

and since �12 does not depend on the angle � the correspond-
ing D matrix becomes �see Eq. �14��

D�2��q� = � cos�2��12� sin�2��12�
− sin�2��12� cos�2��12�


 . �17�

In order for the D matrix to be diagonal �12 has to fulfill the
condition

�12�q� = � n �18a�
�2n + 1�/2, �18b� �

where n is an integer. In other words, the two states under
consideration form a Hilbert subspace in a region defined by
q if and only if for each q value in that region n is an integer.
It is important to mention that case Eq. �18��a� applies to the
RT intersection and Eq. �18��b� to a �single� JT intersection.

2. The three-state Hilbert subspace

Here, like in the previous case, the �-matrix elements do
not depend on � so that the D matrix takes the form �see Eq.
�10��

D�q� = exp�− 2���q�� . �19�

To treat the three-state case we assume the 3
3 � ma-
trix to be of the form

��q� = � 0 �12�q� 0

− �12�q� 0 �23�q�
0 − �23�q� 0

� , �20�

so that �13�q� is assumed to be negligibly small. Next, sub-
stituting Eq. �20� in Eq. �19� yields, the following D
matrix:18

D�3��q� = �−2� �23
2 + �12

2 C �12�S �12�23�1 − C�
�12�S �2C − �23�S

�12�23�1 − C� �23�S �12
2 + �23

2 C
� ,

�21�

where

C = cos�2���, S = sin�2���, � = ��12
2 + �23

2 , �22�

and we recall that � jk=� jk�q�. It is well noticed that the D�3�

matrix in Eq. �21� becomes diagonal if and only if �=n,
where n is an integer. It is interesting to mention that the
eigenvalues of ��q� are �i� ,−i� ,0� and therefore if n=1 we
get that the eigenvalues of ��q� are �i ,−i ,0�.

Since our main concern are the diagonal elements of the
D�3� matrix we calculate them employing the following ex-
pressions:

�D11,D22,D33� = ��12
2 C + �23

2

�12
2 + �23

2 ,C,
�12

2 + �23
2 C

�12
2 + �23

2 
 . �23�

It is noticed that for those cases for which � is an integer all
three diagonal elements are equal to 1.

3. Summary

In Sec. II B we analyzed the two-state case and the
three-state case. For the two state-case we found that the
single-valued diabatization, in a given region, is valid as long
as �12�q�=n, where n is an integer—a result known for quite
some time.4–17 As for the three-state diabatization, here we
encountered a new condition. We found that a three-state
single-valued diabatization, in a given region, is valid if and
only if ��q�, as defined in Eq. �22�, is an integer.

Before concluding the discussion on these phenomena
we would like to briefly relate our work to studies carried out
two or three decades earlier on the RT intersections.4,10,14

Like in our case the main concern in these studies was to use
diabatization to eliminate the unpleasant singular NACTs.
The function to be used for this purpose has its origin in the
electronic eigenfunction exp�i���−	�� where � is an elec-
tronic coordinate �with respect to the molecular axis�, 	 is the
corresponding nuclear rotational coordinate, and � is an
integer.4,10,14 Following the integration over the electronic
coordinates we are left with a NACT of the kind
exp�−i�	� which is reminiscent of the expression we have,
i.e., exp�i�12	� �in case �12 is a constant�. Thus in the two-
state case the two approaches are similar as long as the nu-
merical treatment is carried out close enough to the molecu-
lar axis. As far as we can tell these earlier studies, when
carried out for three states, used different expressions than
the ordinary NACTs we apply �see Eq. �20��.

C. The two-shifted-atom configuration

For the two-shifted-atom configuration we distinguish
between two situations: �a� the situation where both atoms
follow a given contour simultaneously �namely, as a single,
rigid body� and �b� the situation where one atom is clamped
to its position and the other follows the given contour.

1. The ADT angle and the D matrix for the symmetrical
case: Simultaneous „rigid… two-atom rotation

The calculation of the NACTs for a rigid rotation of two
atoms located at positions s j; j=1,2 is based on the follow-
ing definition of the derivative for the eigenfunction,
�k�se �s1 ,s2� �see also Appendix A�:

�s�k�se�s1,s2� = lim
�s→0

�k�se�s1 + �s,s2 + �s� − �k�se�s1,s2�
�s

.

�24�

Consequently the corresponding NACT becomes

� jk
�s��s1,s2� = �� j�se�s1,s2���s�k�se�s1,s2�� , �25�

where the upper index on the left-hand side indicates that
both atoms are shifted simultaneously by an identical differ-
ential vectorial amount �s.
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Applying these expressions for the case of polar coordi-
nates: �� j ,qj�; j=1,2 we get for the respective angular com-
ponent the expression

� jk��1,q1,�2,q2�

= �� j�se��1,q1,�2,q2�	 	 �

��
�k�se��1,q1,�2,q2�
 .

�26�

Since we treat a rigid rotation of the two atoms, the corre-
sponding NACTs, like in the single atom case, are indepen-
dent of � and therefore Eqs. �16�–�23� apply for this case as
well.

2. The ADT angle and the topological phase for a
single-atom rotation: Theory for the nonsymmetrical
case

As is shown in Appendix A the �j ,k� NACT in Eq. �25�
can be written as a sum of two terms �see Eq. �A7��,

� jk
�s��s1,s2� = � jk

�s1��s1,s2� + � jk
�s2��s1,s2� . �27�

Equation �27� is, in particular, relevant �but requires ad-
ditional modifications� for cases where the rotation of the
two atoms is not necessarily rigid or when each atom is
rotating separately. To continue we write Eq. �27� in terms of
cylindrical �polar� coordinates,

��jk�q1,�1,q2,�2� = ��jk
��1��q1,�1,q2,�2�

+ ��jk
��2��q1,�1,q2,�2� . �28�

Equation �28� is used to prove that the ADT angle due to a
rigid rotation of two atoms is approximately equal to the sum
of the two ADT angles, each formed by a separate atom
�while following the same �angular� contour, ��.

To prove this statement we restrict ourselves to the two-
state system, return to Appendix A, and consider Eqs.
�A8�–�A12�, but employ polar coordinates.

The ADT angle �, due to a rotation of the two rigid
atoms along a given contour, �, is defined as �see Eq. �A8��

���1,�2��10,�20��� = �
��10,�20�

��1,�2�

�12
�����1��2����d� , �29�

where � is not necessarily identical to �1� or �2� but can be
shifted, at most, by a constant �see Eq. �A9��. From now on
q1 and q2 are ignored because they are held fixed. The �
angle, due to Eq. �29�, can also be written as a sum of two
angles �see Eq. �A10��,

���1,�2��10,�20��� = �1��1��10,�20���

+ �2��2��20,�10��� , �30�

where each of the angles is given as a separate line integral
�see Eq. �A11��,

�k��k��k0,� j0��� = �
�k0

�k

�12
��k���k�,� j����d�; j � k = 1,2.

�31�

Equation �31� is not yet in the appropriate form so that �k

can be considered as an ordinary �single atom� ADT angle.
In order to achieve that, the second angle in the integrand,
i.e., � j�, has to be replaced by a fixed value, namely, � j0.
Assuming that the two atoms are far apart �in the present
study they are �3.5 Å apart� and that the radii q1 and q2 are
small enough, we may replace � j� by �a fixed� � j0.

�k��k��10,�20��� = �
�k0

�k

�12
��k���,� j0���d�; j � k = 1,2.

�32�

Here �12
��k��� ,� j0 ���; �j ,k=1,2, but j�k� is the NACT re-

lated to the kth atom while the jth atom is clamped at its
position at �=� j0.

Following the analysis we performed so far we find that
the ADT angle for a rigid rotation of two atoms is approxi-
mately given in the form

���1,�2��10,�20��� � �1��1��10,�20���

+ �2��2��10,�20��� , �33�

where the ADT angles on the right-hand side of Eq. �33� are
given in Eq. �32�.

Equations �29�–�33� can also be applied for closed con-
tours so that the following equation is obtained:

��q1,q2��� � �1�q1,q2��� + �2�q1,q1��� , �34�

which leads to the following Lemma: The topological
(Berry) phase formed by the rigid motion of two atoms is
approximately equal to the sum of the topological phases
formed by each atom separately.

In case the two atoms are identical �and q1=q2=q� we
have �1�q�=�2�q� so that

��q� � 2�1�q1� . �35�

Equation �35� is of major importance because it leads to the
following result:

��q� = 2� ⇒ �1�q� = �2�q� � � . �36�

Equation �36� leads to the following Lemma: Consider the
configuration of two shifted atoms where any rigid rotation
around the molecular axis yields the RT topological (Berry)
phase i.e., �=2�. Next let one atom surround this axis while
the other atom is clamped. Equation (36) asserts that this
rotating atom yields the JT topological (Berry) phase. i.e.,
�=�.

In other words the resulting axis �formed by the two
carbons� does not serve as a seam of Renner-Teller degen-
eracy points as we know them but as a seam for a kind of
Jahn-Teller degeneracy point. This unexpected �but very rea-
sonable� finding is further discussed following the presenta-
tion of numerical results.
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III. NUMERICAL RESULTS

In this article is presented a detailed study of the C2H2
+.

Four types of results are discussed: �a� energy curves, �b�
nonadiabatic coupling terms, �c� ADT angles and topological
phases, and �d� D-matrix elements. The calculations are done
for three types of configurations as described in Figs.
1�B�–1�D� and as elaborated earlier in the theory chapter,
namely, in Secs. II A–II C. Therefore the present chapter is
constructed in a similar way. All calculated magnitudes are
presented as a function of cylindrical coordinates where the
z-coordinates for the four atoms are always fixed and there-
fore are ignored in the discussion.

The calculation of the energy curves and the �angular�
NACTs is carried out at the state-average complete active
space self-consistent-field �CASSCF� level, employing the
following basis functions: For the carbons as well as for the
hydrogens we applied s, p, and d functions, all from the
aug-cc-pVTZ set. We used the active space, including all
nine valence electrons distributed on ten orbitals. Five elec-
tronic states, including the three states specifically studied,
were computed by the state-average CASSCF level using the
6-311G** basis set with equal weights. In certain cases these
calculations were repeated with three/four states to check for
convergence. All calculations were done for the following
collinear configuration: the C–C distance, RCC=1.254 Å and
the �two� H–C distances, RHC=1.080 Å. The numerical treat-
ment is carried out employing the MOLPRO program.35

A. Treatment of the symmetrical case formed by a
single shifted hydrogen

A symmetrical case is formed by single shifted hydro-
gen, which is allowed to rotate along a circle with its center
on the triatom axis �see Fig. 1�B��. In Fig. 2�a� the energy
curves are presented as a function of q �the radius of the
circle�. The two lower curves stand for the two states, 1 2A�
and 1 2A�, that evolve from the collinear X 2�u state, and the
third curve is the one that evolves from the collinear 1 2�g

+

state and is labeled as 2 2A�.32�b� We use this notation to
emphasize the fact that A� states interact with A� states and
therefore 1 2A� is expected to interact with both 1 2A� and
2 2A�. This of course does not apply to the 1 2A� state which
interacts only with the 1 2A� state but not with the 2 2A� state
�thus the NACT term between these two states is identically
zero�.

Since the 1 2A� and 1 2A� curves in Fig. 2 are hardly
distinguishable they are presented again in Fig. 2�b� where
the energy scale is decreased so that the two curves are more
distinguishable. The energy difference between the two en-
ergy curves is presented in the insert, to provide a better view
of how these two curves evolve as q increases. It can be seen
that the 1 2A� curve is above the 1 2A� curve along the inter-
val q��0.0–0.905� Å but then the two intersect �at the point
�� and the order of the two curves is reversed. This intersec-
tion takes place without the formation of topological effects
or any other types of potential coupling. In other words it is
immaterial what happens these two curves continue to be

transparent to each other. In Appendix B this situation is
analyzed mathematically and the consequences of such an
intersection are summarized.

Figure 3�a� presents the three NACTs: �12�q�, �13�q�, and
�23�q�. It can be clearly seen that �12�q� differs from zero
along the whole studied interval. The only unusual behavior
to be seen is the sudden sign flip at q�0.905 Å which is
caused by the change of the order of the curves at the inter-
section point �as explained above�.

Another phenomenon that takes place at the intersection
point is the switch of roles between �23�q� with �13�q�. Along
the interval �0.0–0.905� Å the two states 1 2A� and 2 2A� are
coupled by �23�q� but along the interval q�0.905 Å, due to
the switch of the two states 1 2A� and 1 2A�, the same two
states are coupled by �13�q�. In Fig. 3�b� are presented the
two coupling terms: the upper curve stands for �12�q�, which
couples 1 2A� and 1 2A� �and ignores the sign flip�, and the
lower curve, which is due to the two terms �23�q� and �13�q�
that couple 1 2A� and 2 2A� �as explained�.

FIG. 2. Energy curves as a function of q �for the single-atom symmetric
case� related to three electronic states: the 1 2A� state, the 1 2A� state �both
evolving from the two degenerate X 2�u state�, and the state which evolves
from the �collinear� � state to become the 2 2A� state. These three states are
the lower ones for the collinear arrangement and at regions close to it. �a�
The three energy curves: �¯·�¯·�¯·�··� E1A��q�; �———� E1A��q�;
�-----� E2A��q�. The symbol � indicates the position of the intersection point
between the two curves. �b� The two lower curves E1A��q� and E1A��q�; for
a reduced scale. In the insert is given the energy difference
= �E1A��q�-E1A��q��. It is noticed that at the point � this difference flips its
sign.
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In Fig. 4 are presented the diagonal D-matrix elements.
One curve presents these elements for the two-state case and
the other for the three-state case. We remind the reader that
in order to have a single-valued diabatization the D matrix
has to be diagonal and its elements have to be equal to 1. In
other words the D matrix has to be the unit matrix.

We start the analysis for the two-state case. Following
Eq. �17� we note that, always, D11�q�=D22�q� �and therefore
only one curve is presented�. It is clearly seen that the values
of D11�q� are equal to 1 only along a short q range �q
�0.3 Å� and from there on the deviations increase signifi-

cantly as q gets larger. Thus at q�1.5 Å the value of D11�q�
is �0.80. The reason is the deterioration of �12�q� which is
expected to be 1 but, in fact, is �0.9 �see Fig. 3�b��.

A more encouraging situation follows when we consider
three states. Again only one curve is presented because all
three curves related to Djj�q��1; j=1,2 ,3 almost coalesce
along most of the studied interval and are �1. In other words
the three-state D matrix is very close to being a unit matrix.
From Eq. �23� it can be seen that in order for that to happen
the value of � defined as

� = ��12
2 + �23

2 �37�

has to be an � integer, i.e., ��n.
Summary. In this study we showed that in order to carry

out dynamical calculations for a case of a shifted hydrogen
we have to consider at least three states in order to guarantee
single-valued diabatic potential energy surfaces along the
whole mentioned interval ��1.5 Å�. A two-state diabatiza-
tion is valid for only a short interval ��0.3 Å�.

B. Treatment of symmetrical case formed by a pair of
„rigid… atoms

As already mentioned earlier this symmetrical case
�namely, the case where both the potential energy surfaces
and the NACTs are independent of the angle �� is formed by
rotating the two hydrogens as a single rigid body �see Fig.
1�C��. Consequently the only independent variables are q1

and q2. In the present article we refer to the case that q1

=q2�=q�.
In Fig. 5�a� are presented five potential energy curves as

a function of q: The two lower curves, i.e., EA1�q� and
EB1�q�, stand for the states 1 2A1 and 1 2B1, respectively, that
evolve from the collinear X 2�u state. The three additional
curves EA2, EB2�q�, and EA3�q� stand for the 1 2A2 state

FIG. 3. Ab initio q-dependent RT nonadiabatic coupling terms �for the
single-atom symmetric case�: �a� �



� ��12�q�; ������ ��23�q�;
������ ��13�q�. The symbol � indicates the position of the intersection
point between EA��q� and EA��q�� �see Fig. 2�. �b� �



� �12�q� �after
removing the sign flip�; ������ �23�q� �the physical NACT that couples
1 2A� and 2 2A� along the whole considered interval�. These two NACTs are
used for the calculations of the D-matrix elements �presented in Fig. 4�.

FIG. 4. The two-state and the three-state D-matrix elements: Two curves are
shown, one represents the �1,1� elements of D�2� and one represents the �1,1�
elements of D�3�: �



� D11

�2��q�; ������ D11
�3��q�.
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�which evolves from the collinear � state� and the 1 2B2 and
2 2A1 states that evolve from the 1 2�g state. Whereas the
two lower curves run parallel to each other and do not inter-
sect �EB1�q� is always the upper curve�, the next three curves
intersect each other several times and cause difficulties in
identifying the various states �we remind the reader that
these intersections are not accompanied by topological phe-
nomena or other types of coupling—see analysis in Appen-
dix B�.

In Fig. 5�b� we concentrate on the three upper curves in
order to identify them �using the corresponding NACTs as is
explained next�. It is now noticed that EA2�q� is the lowest
curve along the interval �0.0–0.905� Å but it then intersects
the EA3�q� curve at point Y and later the EB2�q� curve at
point Z. We also notice that along the interval �0.0–0.6� Å
the curve EA3�q� is above EB2�q� but they switch positions
after the intersection at point X.

In Fig. 6�a� are presented the corresponding NACTs
�12�q�, �23�q�, �24�q�, and �25�q�. Whereas the situation with

regard to �12�q� is clear and does not require any additional
explanation, the situation with regard to the other three
NACTs is somewhat confusing. If we ignore what happens at
the intersection points X, Y, and Z it is seen that the three
NACTs �23�q�, �24�q�, and �25�q� form a kind of two con-
tinuous curves. The upper curve is formed, along the interval
q= �0.0–0.905� Å by �23�q�, along the interval q
= �0.905–1.15� Å by �24�q�, and along the interval q
= �1.15–1.5� Å by �25�q�. In the same way the lower curve is

FIG. 5. Energy curves as a function of q �for the �rigid� two-atom symmetric
case� related to five electronic states, namely, 1 2B1 and 1 2A1 �evolving
from the X 2�u state� the 1 2A2 state evolving from the collinear � state and
the 1 2B2 and the 2 2A1 state �evolving the 1 2�g state�. These five states are
the lower ones for the collinear arrangement and at regions close to it. �a�
The five adiabatic energy curves; �b� the three upper �physical� RT energy
curves �----------� EA2�q�, �----� EB2�q�;�¯¯¯� EA3�q�; the letters X, Y, and
Z indicate the intersection points between EB2�q� and EA3�q� between EA3�q�
and EA2�q� and between EB2�q� and EA2�q�, respectively. On the right lower
corner are seen segments of the two lower RT energy curves: �¯¯·� EB1�q�;
�—� EA1�q�.

FIG. 6. Ab initio q-dependent RT nonadiabatic coupling terms �for the
�rigid� two-atom symmetric case�: �a� �



� ��12�q�; ������
��23�q�; ������ ��24�q�; �¯·�; for the meaning of X, Y, and Z see Fig.
5�b�. �b� �



� �12�q�; ������ �23�q� �the physical NACT that
couples 1 2B1 and 1 2A2 along the whole considered interval�. These two
NACTs are used for the calculations of the D-matrix elements �presented in
Fig. 7�.
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formed along the interval q= �0.0–0.65� Å by �25�q�, along
the interval q= �0.65–0.905� Å by �24�q�, and along the in-
terval q= �0.905–1.5� Å by �23�q�. It is quite clear that the
above switches are caused by the intersections of the three
energy curves and therefore the two resulting NACT curves
are in fact, the NACT between 1 2B1 and 1 2A2 �upper curve�
and between 1 2B1 and 2 2A1 �lower curve�.

In Fig. 6�b� are presented the two NACTs that are rel-
evant for the present study. As previously mentioned the up-
per curve presents �12�q�, and the lower curve presents the
coupling term between states 1 2B1 and 1 2A2 which, for the
forthcoming applications, is �redefined and� designated as
�23�q�.

Next we briefly refer to the two-state and three-state
D-matrix elements. These elements are presented in Fig. 7
and we encounter a similar situation as in the single rotating
atom case �see Fig. 4� with one exception. On the one hand
the deterioration of the two-state �diagonal� D-matrix ele-
ment is much faster in the present case, and therefore it
reaches smaller values �0.5 as compared to 0.8 in the single-
atom case�. On the other hand the three-state �diagonal�
D-matrix element is as stable as in the single atom case and
is �1 along the whole interval.

Short summary. In this study we showed that in order to
form a single-valued diabatic potential matrix for a case
where two rigid hydrogens are shifted from the collinear axis
in most cases we have to consider at least three states.

C. Treatment of the nonsymmetrical case

The nonsymmetrical case is described in Fig. 1�D� and
results are presented in Figs. 8 and 9. Here we treat a situa-
tion where the two carbons �as before� form the axis, one
off-axis hydrogen is clamped at a distance q1 from this axis

while the other off-axis hydrogen, at a distance q, is allowed
to surround the axis. In this way we create a situation where
the NACTs, due to the �single� surrounding atom, depend not
only on �q1 ,q2� but also on the angle �, which is the angle
between two planes, CCH1 and CCH2. However, it is also
expected that the larger the distance between these two hy-
drogens the weaker is this dependence.

FIG. 7. The two-state and the three-state D-matrix elements for the �rigid�
two-atom symmetrical case: �



� D11

�2��q� �represents the �1,1� elements
of the D�2� matrix�; ������ D11

�3��q� �represents the �1,1� elements of the
D�3� matrix�.

FIG. 8. Ab initio �-dependent RT nonadiabatic coupling term, �12�� �q1 ,q2�,
for the single-atom, nonsymmetric case �see case �D� in Fig. 1�: �a� Results
for the case q1=q2�=q�; �•••••� q=0.2 Å; �—� q=0.3 Å; �---� q=0.5 Å. �b�
Results for q1�q2�=q�: �---� �q1=0.3, q=0.5 Å�; �—� �q1=0.1, q2=0.5 Å�;
������ �q1=0.1, q2=0.8 Å�.
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In this section we concentrate on energy curves, NACTs
and ADT angles, related to the two lower states, 1 2A� and
the 1 2A�, calculated only as a function of � for several com-
binations of �q1 ,q2�. On this occasion we remind the reader
that along the collinear configuration the following distances
were assumed: RCC=1.254 Å and RHC=1.080 Å.

We start the analysis with the energy curves. In fact, we
do not show any results because we find, somewhat to our
surprise, that all the energy curves are independent of � �or
at most slightly dependent on ��. In other words they are
symmetric with regard to the C–C axis although the shifted
clamped atom H1 is expected to yield nonsymmetrical en-
ergy curves. The only explanation for this finding is that as
far as the energy curves are concerned H1 is too far from H2
�=�RCC+2RHC��3.41 Å� and therefore the nonsymmetric
structure essentially disappears. This result is also supported
by other studies.17

In Fig. 8 are presented NACTs and they show some de-
pendence on �. In Fig. 8�a� are presented NACTS for which
q1=q2�=q� and in Fig. 8�b� are presented NACTs for which
q1�q �=q2�. In Fig. 8�a� are shown three curves as calcu-
lated for q=0.2, 0.3, 0.5 Å. It is noticed that the curves os-
cillate to some extent in the vicinity of the value �12�q�
�0.5 rad−1. As q decreases the curves become less oscilla-
tory and tend to approach the value �12�q�=0.5 rad−1. In Fig.
8�b� are shown three curves as calculated for �q1 ,q�
��0.5,0.3� ; �0.5,0.1� ; �0.8,0.1� Å. It is noticed that in gen-
eral the curves keep their values close to �12�q��0.5 rad−1

and are weakly dependent on �. It turns out that more can be
said about these NACTs but this will be done in a subsequent
publication.

Next we refer to the ADT angles ��� �q1 ,q2� as calcu-
lated employing Eq. �12� �see also Eq. �32��. These are pre-
sented in Fig. 9 for the case that �10=�20=0. In Fig. 9�a� are
presented the ��� �q� angles for the cases that �q1=q2= � q
=0.2,0.3,0.5 Å and in Fig. 9�b� are presented the angles
��� �q1 ,q2� for the above-mentioned three cases for which
q1�q2 �=q�. It is noticed that all the curves are monotonic
increasing functions of � that start at �=0 and become �
�� once �=2�, irrespective of the values of q1 and q. This
result implies that the topological phase, ��q1 ,q2�, in all
studied cases is ��, as expected for Jahn-Teller intersections

The actual values of ��q1 ,q2� are listed in Figs. 9�a� and
9�b� and it can be seen that all of them are, indeed, close to
�. In addition we notice that the smaller the value of q
�=q2�, the closer is the value of ��q1 ,q2� to �. Thus, whereas
for q=0.5 Å we have the lowest value for �, i.e., �=3.01 we
get for q=0.1 Å the value �=3.12 which is much closer to �
�=3.14�. At the same time one notices that the dependence on
q1 �as opposed to q2 �=q�� is relatively weak.

In Sec. II C 2 we studied, theoretically, the nonsym-
metrical case and we were able to show that for the case
q1=q the corresponding topological phase is ��q��� �see
Eq. �36��. The numerical treatment indicates a more general
result, namely, that as long as both q1 and q2 differ from zero
the topological phase is ��. However, if either q1 or q2

becomes zero the corresponding topological phase changes
abruptly and becomes 2�.

IV. CONCLUSIONS

The study presented in this article can be considered as a
continuation of a previous study carried out for the triatom
HNH molecule.2 Although it is a tetra-atomic system, still
most of the findings that were revealed for the triatom sys-

FIG. 9. �-dependent RT ADT angle, ��� �q1 ,q2� as calculated for the single-
atom, nonsymmetric case �see case �D� in Fig. 1�: �a� Results for the case
q1=q2�=q�; �•••••� q=0.2 Å; �—� q=0.3 Å; �---� q=0.5 Å. �b� Results for
q1�q�=q2�: �---� q=0.3, q1=0.5 Å; �——� q=0.1, q1=0.5 Å; ������
q=0.1, q1=0.8 Å. At the bottom of each subfigure are listed values of the
corresponding topological �JT� phases ��q� and ��q1 ,q�, respectively.
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tem apply here as well. In particular, the present study
strengthened the importance of the D matrix for the study of
the diabatization process.

The fact that a tetra-atomic system provides additional
possibilities makes the study of such a molecule more inter-
esting. In the case of a triatomic system, topological effects
are revealed when one atom surrounds the axis formed by the
two other atoms.2 In the case of tetra-atomic systems, topo-
logical effects are revealed when one atom surrounds the
triatom axis or when two atoms surround �at a time� the
two-atom axis. In other words it is shown that for a tetra-
atomic system not only a triatom axis but even a two-atom
axis forms a seam that contains degeneracy points. This find-
ing can be expressed also in a third way, namely, shifting
away two atoms from the collinear axis is not enough to
abolish the topological effects produced by the original tria-
tom axis. This feature probably can be found in larger col-
linear molecules where a group of n atoms �n�2� are al-
lowed to surround an axis formed by the remaining atoms.

We already know that along the collinear axis of the
tetra-atomic molecule are distributed poles �or degeneracy
points� responsible for the RT effect. However, in the present
study we revealed an additional phenomenon, namely, that
the same axis �or nearby lines that run parallel to it� serves
also as a source for poles that produce JT effects. These are
formed when two atoms are shifted away from the collinear
axis but only one atom is allowed to surround this axis,
whereas the other is clamped to its position �see Fig. 1�D��.
These are pseudo JT effects because the intersections that
lead to these effects are between A� and A� states and not like
in the case of the ordinary JT effect which is produced by
two states with the same symmetry. Still the topological
�Berry� phase is � and not 2�. This rather surprising finding
requires more study that will be reported in one of our forth-
coming articles.

In conclusion, in this study we exposed one of the more
dramatic features in quantum chemistry, namely, the abrupt
transition from a Jahn-Teller intersection to a Renner-Teller
intersection �or vice versa�, both formed along the same
seam.
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APPENDIX A: DERIVATION OF THE NACTs AND THE
ADT ANGLE FOR TWO SHIFTED RIGID AND
NONRIGID ATOMS

Assume two atoms P1 and P2 connected rigidly to each
other, located at points s1 and s2. We start with the general
definition of the �j ,k� NACT, � jk

�s��s�

� jk
�s��s� = �� j�se�s���s�k�se�s�� , �A1�

where the grad operator stands for a vectorial differentiation
with respect to the nuclear coordinates s �se is the electronic
coordinate�. In the case of two rigid atoms located at s1 and
s2 this differentiation takes the form

�s�k�se�s1,s2� + lim
�s→0

�k�se�s1 + �s,s2 + �s� − �k�se�s1,s2�
�s

,

�A2�

so that the corresponding NACT becomes

� jk
�s��s1,s2� = �� j�se�s1,s2���s�k�se�s1,s2�� . �A3�

Next it is shown that this NACT can be presented as the
sum of two NACTs where each NACT is related to one of
the atoms. For this purpose we add to the denominator in Eq.
�A2� two identical terms with opposite signs,

� lim
�s→0

� �k�se�s1 + �s,s2 + �s� − �k�se�s1,s2 + �s�
�s

+
�k�se�s1,s2 + �s� − �k�se�s1,s2�

�s
� . �A4�

Without losing the generality, Eq. �A4� can be written also as

� lim
�s1→0

�s2→0

� �k�se�s1 + �s1,s2 + �s2� − �k�se�s1,s2 + �s2�
�s1

+
�k�se�s1,s2 + �s2� − �k�se�s1,s2�

�s2
� . �A5�

Activating the limit process on the first term with respect to
�s2 and on the second term with respect to �s1, Eq. �A5�
simplifies as follows:

� lim
�s1→0

�k�se�s1 + �s1,s2� − �k�se�s1,s2�
�s1

+ lim
�s2→0

�k�se�s1,s2 + �s2� − �k�se�s1,s2�
�s2

, �A6�

so that we finally get

� jk
�s��s1,s2� = � jk

�s1��s1,s2� + � jk
�s2��s1,s2� . �A7�

In what follows we show that the ADT angle � due to a
motion of the two rigid atoms along a given contour is equal
to the sum �1+�2 where �1 and �2 are calculated, indepen-
dently.

The ADT angle �, due to a motion of the two rigid atoms
along a given contour, is defined as

��s1,s2�s10,s20��� = �
�s10,s20�

�s1,s2�

�12
�s��s1�,s2��ds , �A8�

where in general sk�=sk��s�, but in our particular case

sk� = s + sk0; k = 1,2. �A9�

Equation �A8� can also be written as �see Eq. �A7��
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��s1,s2�s10,s20��� = �
s10

s1

�12
�s1��s1�,s2�� · ds

+ �
s20

s2

�12
�s2��s2�,s1�� · ds . �A10�

Writing the angle � as a sum of two angles

��s1,s2�s10,s20��� = �1�s1�s10,s20��� + �2�s2�s20,s10��� ,

�A11�

it is straightforward to notice �recalling Eq. �A10�� that �1

and �2 are given as follows:

�k�sk�sk0,s j0��� = �
sk0

sk

�12
�sk��sk�,s j�� · ds; j � k = 1,2.

�A12�

Here �12
�sk��sk ,s j�; �j ,k=1,2 but j�k� is the NACT related to

the kth atom while the j atom is at s j.

APPENDIX B: ON THE NONTOPOLOGICAL
DEGENERACY

The connection between the NACTs and typical molecu-
lar magnitudes is given in the form36

� jk =
�� j��He��k�

uk − uj
. �B1�

In what follows we briefly elaborate on the meaning of
Eq. �B1� particularly in the vicinity of a degeneracy point. In
order to do that in a simple way, we consider a molecular
system characterized by a line of degeneracy points. Next we
define a plane which does not contain the line and consider a
contour in this plane that surrounds the line. Assuming �, as
the intersection point of the line with the plane, this contour
also surrounds �. To continue we define on this plane a
system of coordinates—with its origin at �—so that any
point, P, on this plane is defined in terms of two polar coor-
dinates �q ,��, where q measures the distance between P and
�. In what follows we concentrate on the angular component
of Eq. �B1�. Since the angular component of � is �� /q and
the angular component of the grad operator is �1/q��� /���,
the angular component can be written in the form

1

q
��jk =

1

q

�� j��/��He��k�
uk − uj

. �B2�

Next we assume that uk�q ,�� and uj�q ,�� behave at the vi-
cinity of q�0, in the following way:

lim
q→0

ui � u0��� + �i���qm + O�qm+1�; i = j,k , �B3�

where m is an integer and u0��� and �i���; i= j ,k are analytic
functions. In the same way we assume that

lim
q→0
�� j	 �

��
He	�k
 � � jk���qn + O�qn+1� , �B4�

where � jk��� is an analytic function of �. In order for the
expression in Eq. �B2� to be a pole we have to have m=n and
indeed in cases where a Jahn-Teller or a Renner-Teller inter-

section is encountered we expect this equality to be fulfilled.
However, if n�m no pole is encountered at � which implies
that ���0.

At this stage we make two comments: �1� At the above
defined point � we may encounter a JT or a RT degeneracy.
The JT effect is formed by a seam not located in the plane of
the molecule and therefore the contour chosen to surround
this seam can be assumed to be in the plane. In the same way
the RT effect is usually formed by a seam located in the
plane of the molecule �e.g., the axis of the molecule� and
therefore the contour chosen to surround this seam has to be
outside of the plane. �2� Therefore at the point � the relation
n=m can be satisfied for the JT intersection �and then we
have a JT topological effect� but not necessarily for the RT
intersection, which means that the intersection does not yield
a RT topological effect.
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