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Stimulated by the difficulty of deriving effective kinetic energy functionals of the electron density,

the authors consider using the local kinetic energy as the fundamental descriptor for molecular

systems. In this ansatz, the electron density must be expressed as a functional of the local kinetic

energy. There are similar results for other quantities, including the local temperature and the

Kohn-Sham potential. One potential advantage of these approaches—and especially the approach

based on the local temperature—is the chemical relevance of the fundamental descriptor. © 2007

American Institute of Physics. �DOI: 10.1063/1.2718950�

I. MOTIVATION

Although the Kohn-Sham approach to density-functional

theory �DFT� is now well established it bears remembering

that almost 40 years separate the seminal papers of Thomas

and Fermi from the breakthrough of Kohn and Sham.
1–3

Even with the rise of the Kohn-Sham approach, “orbital-

free” computational techniques have never entirely vanished

from the scene because orbital-free DFT is much faster than

conventional Kohn-Sham calculations. In orbital-free DFT

one only varies a single function of the three spatial coordi-

nates �the electron density� instead of using N three-

coordinate functions �orbitals� or one six-coordinate function

�the density matrix�. �N is the number of electrons.� At

present, however, orbital-free calculations are not really

more “efficient” than Kohn-Sham calculations because while

orbital-free calculations are computationally inexpensive,

they are also very inaccurate. The problem is that the ap-

proximate kinetic energy functionals are ordinarily inad-

equate for describing bond breaking and other chemical pro-

cesses in molecular systems. �Orbital-free methods have had

more success in solid state materials, although seemingly

only in cases where the electron density is low �most of the

electrons are treated with a pseudopotential�.4� Kohn-Sham

theory circumvents the problem of evaluating the kinetic en-

ergy directly: instead the electron density is used to evaluate

the Kohn-Sham potential, which is used to evaluate the

Kohn-Sham orbitals, which are then used to evaluate the

kinetic energy of the reference system of noninteracting elec-

trons,

Ts��� = �
i

ni��i�vKS�����− �2

2
��i�vKS����� . �1�

Although Ts��� is usually slightly smaller than the true ki-

netic energy, the Kohn-Sham kinetic energy functional is N

representable by construction and, as such, avoids the “varia-

tional catastrophes” that afflict ordinary orbital-free DFT.
5–7

The 80 years that has elapsed since the original paper of

Thomas testifies to the fact that expressing the kinetic energy

as a functional of the electron density is extraordinarily dif-

ficult. This raises the question: might it be easier to express

the electron density as a functional of the local kinetic energy

or another similar quantity—like the local temperature or the

Kohn-Sham potential—that determines the kinetic energy?

We do not yet know whether or not it is easier to express the

electron density as a functional of these descriptors, but we

can establish that it is possible. This is the purpose of this

paper.

• The local kinetic energy determines every property of a

molecule, including its electron density. �See Sec. II for

details and restrictions.�

• The local temperature determines every property of a

Coulomb system, including its electron density. �See

Sec. III for details and restrictions.�

• The Kohn-Sham effective potential determines every

property of a Coulomb system, including its electron

density. �See Sec. IV for details and restrictions.�

Because the Kohn-Sham potential can be determined �up to a

trivial additive constant� from any single Kohn-Sham orbital

vKS�r� =
��2/2��i�r�

�i�r�
, �2�

this last result implies that any single Kohn-Sham orbital—

occupied or unoccupied—determines the total electron den-

sity of any Coulomb system. �This extends the known result,

which states that the frontier Kohn-Sham orbitals determine

the total electron density and the density matrix.
8,9�a�
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One can add to these results the recent proof:

• The shape function �the density per particle� determines

every property of a Coulomb system, including its elec-

tron density.
10

This paper is patterned after that result, which seems to be of

conceptual
11–15 �and perhaps even computational

16,17� utility

as an alternative formulation of density-functional theory.

This general sort of result can also be viewed as a “general-

ized density-functional theory,” in which some other function

replaces the electron density as the fundamental descriptor of

molecular systems.
18–20

It is clear from the preceding summary of our main re-

sults that this paper focuses on Coulomb systems, that is,

systems where the external potential is due to a collection of

point charges,

v�r� = �
�

− q�

	r − R�	
. �3�

Molecules arise as the special case where all the point

charges are positive integers. This class of systems is quite

general, however. For any external potential that has only

simple poles, one can construct the charge density,

q
v
�r� =

− 1

4�
�2

v�r� , �4�

generating that external potential. Approximating this charge

density using a numerical integration method automatically

leads to a result with the desired form,

v�r� =
 q
v
�R�

	r − R	
dR � �

�

w�q
v
�R��

	r − R�	

= �
�

�− w�/4����2
v�R���

	r − R�	
. �5�

This implies that for any external potential that is not too

singular, the effects of that external potential can be accu-

rately approximated by a collection of point charges. Al-

though our primary interest is in molecular electronic struc-

ture, the ability to accurately approximate the effects of

almost any external potential using point charges suggests

that our results have broad relevance.

II. LOCAL KINETIC ENERGY AS A DESCRIPTOR OF
MOLECULAR SYSTEMS

The most general expression for the local kinetic energy

employs the quasiprobability distribution f�r ,p� for observ-

ing an electron at r with momentum p. Specifically,

t�r� =
 1

2p2f�r,p�dp . �6�

However, because there are many ways to define f�r ,p�, this

does not fully specify the local kinetic energy.
21,22

Recom-

mended by its simplicity and conceptual clarity is the posi-

tive semidefinite form
23

t+�r1� = N
 
 ¯
 	�r1
��r1,r2 . . . rN�	2

2
dr2dr3 . . . drN.

�7�

More generally, Cohen has shown that the entire family of

kinetic energy densities,

t��r� = t+�r� + ��2��r� , �8�

come from the same simple family of quasiprobability

distributions.
22

Near a point charge t+�r� and ��r� are composed of con-

tributions from orbitals with the exponential dependence

e−Zr, where r is the distance from the point charge being

considered. As long as ��0, the form of t��r� near the point

charge is dominated by a singularity from the Laplacian con-

tribution,

t��r� � ���0��2e−2Zr

= ���0�
1

r2

�

�r
r2

�

�r
e−2Zr

=

r→�

− �
4Z��0�

r
+ 4�Z2��0� . �9�

Far from a molecule, all of the natural orbitals have a char-

acteristic exponential decay, e−r2IP, determined by the ion-

ization potential of the system. The local kinetic energy has a

similar exponential decay,

t��r� � �1 + 8��IPe−2r2IP, �r → �� . �10�

The ionization potential of a system can be determined from

the asymptotic decay of the local kinetic energy.

The main result from this section is that all of the prop-

erties of a neutral molecule in its equilibrium geometry can

be determined from its local kinetic energy. Here we will use

the local kinetic energy defined by Eqs. �7� and �8�, with �

�0. To show this, we need to establish that �a� the local

kinetic energy determines the location and type of atomic

nuclei in a molecule and �b� the local kinetic energy deter-

mines the number of electrons in a molecule.

The reason we restricted ourselves to ��0 is because

then the local kinetic energy has a simple pole at the location

of the atomic nuclei,

t��r� � �
− 4Z���R��

	r − R�	
. �11�

�Cf. Eq. �9�.� If we knew the electron density at the atomic

nuclei, ��R��, then this equation would also suffice to deter-

mine the atomic number Z�. While the electron density at an

atomic nucleus usually changes slightly upon molecule for-

mation, the “deformation” in the electron density upon form-

ing a molecule is concentrated in the valence regions.
24

The

contribution to the electron density at the atomic nucleus is

dominated by the core orbitals; these orbitals are essentially

nonbonding in character and they are insensitive to the mo-

lecular environment. This suggests that we can approximate

the electron density at the nucleus with the free atom density,

i.e.,

144108-2 P. W. Ayers and A. Nagy J. Chem. Phys. 126, 144108 �2007�

Downloaded 18 Apr 2007 to 165.123.34.86. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



��R�� � �Z�
�R�� . �12�

Substituting the approximation in Eq. �12� into Eq. �11�
should suffice to determine the atomic number for molecular

kinetic energy densities. �A more elaborate treatment would

seem to be required for molecular cations with extremely

positive charges, but those problematic molecules are not

expected to be stable. Similarly, the approximation in Eq.

�12� will not be accurate near the united atom limit, but such

molecules have extremely high energies.�
With the external potential now determined, the

Schrödinger equation can be solved for N=1,2 , . . . electrons.

The ionization potentials

IPN = Eg.s.�v,N − 1� − Eg.s.�v,N� �13�

are then determined. The ionization potential is a strictly

decreasing function of the number of electrons, so the num-

ber of electrons can be determined by finding the ionization

potential that matches the characteristic asymptotic decay of

the local kinetic energy.

Since the local kinetic energy determines both the exter-

nal potential �through its characteristic singularities� and the

number of electrons �from its asymptotic decay�, the local

kinetic energy suffices to determine all of the properties of a

molecular system.

Further comment on the decreasing nature of the ioniza-

tion potentials seems to be warranted. It has never been

proven that the ionization potentials decrease as the number

of electrons increase. This is an important open question in

density-functional theory, since it bears on the convexity of

the energy as a function of the number of electrons and

therefore on the existence of the Legendre transform used to

define the grand canonical ensemble.
25

Several authors have

advanced plausibility arguments for the decrease in the ion-

ization potentials,
10,25,26

and there is also some numerical

evidence.
27,28

The result has so far resisted proof, however,

even by extremely competent mathematicians.
26

One reason

this result is so hard to prove is that it is not generally true:

for systems where the repulsion between particles is non-

Coulomb �either hard-sphere-like
26

or harmonic-oscillator-

like
29�, exceptions are known.

For atoms, one can make “plausibility” arguments for

the decrease of the ionization potential with increasing elec-

tron number using, for example, the N /Z expansion of March

and White. Lieb and Perdew et al. noted that for systems of

noninteracting fermions, the ionization potential never in-

creases as the number of electrons increases. �For noninter-

acting electrons, the total energy is the sum of orbital ener-

gies, and no additional electron can occupy an orbital lower

in energy than the previous electron.
25,26� The result can also

be motivated without the use of Fermi statistics. Adopting a

simple model where the energy of an N-electron system is N

times the expectation value of the “one-electron operator,”

ĥ�r�=−�i
2 /2+v�ri� plus N�N−1� /2 times the expectation

value of the “two-electron operator,” v̂ee=1/ 	ri−r j	, then the

ionization potentials of the N−k electron systems increase

according to the formula IPN−k=−�ĥ�− �N−1−k��v̂ee�. In this

argument, convexity arises because the number of electron-

electron repulsions grows quadratically with the number of

electrons. �This rationalization would hold even for charged

bosons. For fermions, there is an additional effect because

the Pauli exclusion principle indicates that there will be at

most two electrons in each orbital, and so the orbital energy

of the most easily ionized electrons increases as the number

of electrons increases.�

III. LOCAL TEMPERATURE AS A DESCRIPTOR OF
COULOMB SYSTEMS

The local kinetic energy theory is not entirely satisfac-

tory because it is restricted to molecular systems, that is,

systems with external potentials from a collection of

positive-integer point charges,

vmol�r� = �
�

− Z�

	r − R�	
, Z� = 1,2, . . . . �14�

We can generalize the theory to other Coulombic systems

�where the point charges can be any real number�

vCoul�r� = �
�

− q�

	r − R�	
, q� � R �15�

by using the local temperature.
30,31

The local temperature was introduced to density-

functional theory by Ghosh et al. in their reformulation of

electronic density-functional theory into a formalism with

the same structure as classical statistical mechanics.
30,31

They defined the local temperature T��r� through the equa-

tion

t��r� = ��r�� 3

2kBT��r�� = ��r�� 3

2���r�� . �16�

Here t��r� is the local kinetic energy from Eq. �8� and ���r�
is the local temperature measured in units where the Boltz-

mann constant is unity. The local temperature can be used to

elucidate the electronic structure of molecules. In particular,

because localized electrons are comparatively “hot,” the lo-

cal temperature provides a measure of the “nighness” of the

electrons in an electron pair.
23,32

The local temperature determines all properties of Cou-

lomb systems because the local temperature determines the

external potential and the number of electrons for this type of

system. To determine the external potential, the asymptotic

form local temperature near a point charge is used to deter-

mine the position and the charge of the point charges in the

external potential. The asymptotic decay of the local tem-

perature is then used to determine the ionization potential,

which is used to determine the number of electrons in the

system.

We will now present this construction in more detail.

Step 1: Determine the locations of the point charges,

�R��. If ��0, then the point charges are located where

���0�r� has a singularity.

Step 2: Determine the change on each point charge,

�q��. The charges themselves are determined by the strength

of the singularity,
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���r� �
	r−R�	→0

�
− 8q�

3	r − R�	
. �17�

This follows from the cusp conditions on the local kinetic

energy
33

and the cusp conditions on the electron density.
34–36

Step 3: Determine the ionization potential. The ioniza-

tion potential can be determined from the asymptotic value

of the local temperature,

t��r� �
r→�

2

3 �1 + 8��IP. �18�

Using the external potential determined in steps 1 and 2 and

repeatedly solving the Schrödinger equation for N

=1,2 ,3 , . . . electrons, one can determine the unique value of

the ionization potential that corresponds to the system of

interest.

A theory based on the local temperature �a local kinetic

energy based treatment would be similar� would have the

same cost advantages as orbital-free DFT, since the energy

would be a �hopefully� simple expression with the form

E
v
�t� =
 ���;r�� 3

2��r� + v�r��dr + J������

+ Vxc�����,�� . �19�

The first term �kinetic energy� and second �electron-nuclear

interaction energy� contributions to this expression are writ-

ten using the density as a functional of the local temperature,

��� ;r�. The third term is the classical Coulomb repulsion

energy between the electrons,

1

2

 
 ��r���r��

	r − r�	
drdr�. �20�

The last term is the potential contribution to the exchange-

correlation energy �Vxc=Exc−Tc�. �Notice that meta-GGAs

�i.e., exchange-correlation energy functionals that are bifunc-

tionals of the electron density and the local kinetic energy

density� are very natural functionals in this approach!
37–47

We can include the correlation-kinetic contribution to the

energy in the kinetic-energy term of Eq. �19�, include it in

the exchange-correlation energy, or treat it separately.�
The proposed method assumes that it is easier to ap-

proximate the electron density as a functional of the local

temperature, ��� ;r�, than it is to approximate the local tem-

perature as a functional of the electron density, ��� ;r�. At

this stage in our research, it is impossible to say whether this

is true. Eighty years of failure at developing density func-

tionals for the kinetic energy suggests, however, that it can

scarcely be more difficult to obtain accurate approximations

to ��� ;r�.

IV. KOHN-SHAM POTENTIAL AS A DESCRIPTOR FOR
COULOMB SYSTEMS

As a final alternative, we consider using the Kohn-Sham

potential

vKS�r� = v�r� + vJ��;r� + vxc��;r� �21�

as a descriptor for Coulomb systems. Neither the Coulomb

potential

vJ��;r� =
 ��r��

	r − r�	
dr� �22�

nor the exchange-correlation potential

vxc��;r� =
	Exc���

	��r�
�23�

is singular at atomic nuclei.
48,49 �More generally, it seems

that neither function is singular except possibly where the

electron density is singular, which never occurs in molecular

systems.� Since the only singularities in the Kohn-Sham po-

tential of a Coulomb system are those associated with the

point charges in the external potential, the external potential

is readily determined from the Kohn-Sham potential.

The number of electrons is also readily determined. First

add up all of the point charges,

qtot = �
�

q�. �24�

Far from a molecule, the Kohn-Sham potential assumes the

asymptotic form

vKS�r� �
− qtot + N − 1

r
. �25�

The number of electrons is then readily expressed using a

“sum rule” for the Kohn-Sham potential,

N =
− 1

4�

 �2

vKS�r�dr + qtot + 1. �26�

�This sum rule is a simple consequence of Poisson’s equation

for the external potential and the Coulomb potential and the

sum rule for the exchange-correlation potential.
50–52

It is

readily proved using Gauss’s theorem and the asymptotic

decay of the Kohn-Sham potential in Eq. �25�.�
There is another way to prove this result. First use the

Kohn-Sham potential to determine the number of electrons

�Eq. �26��. Then solve the Kohn-Sham equations and con-

struct the electron density by occupying the N lowest-energy

Kohn-Sham spin orbitals,

��r� = �
i=1

N

	�i�r�	2. �27�

All the observable properties are then determined by the

Hohenberg-Kohn theorem. This result has an interesting for-

mal implication. Given any Kohn-Sham potential, one can

solve the Kohn-Sham equations and construct the electron

density for N=1,2 ,3 , . . . electrons. These electron densities

are �assuming v-representability� ground-state electron

densities for a sequence of external potentials,

v1�r� ,v2�r� ,v3�r� , . . .. Our result indicates that at most one of

these external potentials is Coulombic.

The fact that vKS�r� can be used as a fundamental de-

scriptor for Coulomb systems may have interesting implica-

tions in formal �and also practical� density-functional theory.

For example, the importance of Kohn-Sham potential for de-

scribing Coulomb systems has recently been emphasized by

Theophilou and co-workers, who expressed the Kohn-Sham

potential as a functional of the external potential.
53–55 �A

144108-4 P. W. Ayers and A. Nagy J. Chem. Phys. 126, 144108 �2007�

Downloaded 18 Apr 2007 to 165.123.34.86. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�purely formal� link between the Kohn-Sham potential and

the external potential can also be obtained directly from the

adiabatic connection formulation in the potential

representation.
56�

It may also be possible to design practical computational

schemes in which vKS�r� is the fundamental variable. One

can evaluate the Kohn-Sham kinetic energy directly using

the virial relation

Ts�vKS� =
1

2

 ��vKS;r�r · �vKS�r�dr . �28�

This gives an explicit formula for the energy without refer-

ence to the Kohn-Sham orbitals,

E
v
�vKS� = Ts�vKS� +
 ��vKS;r�v�r�dr + J���vKS��

+ Exc���vKS�� . �29�

Analogous to the formulation based on the local temperature

�cf. Eq. �19��, a functional for the electron density as a func-

tional of the Kohn-Sham potential is needed.

One advantage of using the Kohn-Sham potential as the

fundamental descriptor of Coulomb systems is that one al-

ready knows how to determine the electron density from the

Kohn-Sham potential �just solve the Kohn-Sham equations!�.
If one does this, then Eq. �29� is just a reformulation of the

conventional Kohn-Sham procedure. If one is seeking a

method that is more efficient than the usual Kohn-Sham ap-

proach, then it might be more interesting to consider the

Kohn-Sham potential in conjunction with the proposed

Christoffel-Darboux formulas for the electron density.
8,57

Note that since any Kohn-Sham orbital determines the

Kohn-Sham potential �just invert the Kohn-Sham equation�,
one could also use a single Kohn-Sham orbital as the de-

scriptor of a Coulomb system.

V. CONCLUDING REMARKS

Over the last several years, these authors and others have

considered a variety of approaches that might be classified as

“generalized density-functional theories.” Some of these

theories seek to use not only the electron density but also

additional information �values of certain properties,
58–60

in-

formation about the pair density,
20,61–64

information about the

local kinetic energy �or equivalently, the local

temperature�,23,37,65
etc.� That class of generalized density-

functional theories seeks to achieve greater accuracy at

greater computational cost than the conventional Kohn-Sham

approach. Other sorts of generalized density-functional theo-

ries are designed for cases where less accuracy would be

acceptable, provided that the method was less computation-

ally expensive than an ordinary Kohn-Sham calculation. In

such cases one is interested in descriptors that contain less

information than the full electron density �the density-per-

particle �shape function�,10
frontier orbitals,

8,9
etc.� are used.

Despite the large amount of recent work in this latter area,

there do not seem to have been any major breakthroughs.

Perhaps the only way to accelerate Kohn-Sham calculations

without unacceptable loss of accuracy is to use semiempir-

ical approaches.

Nonetheless, these authors have not given up on this

problem quite yet and the present paper is an effort in this

direction. This paper provides theoretical “permission” for

researchers to rewrite density functionals as functions of the

local temperature, local kinetic energy density, or the Kohn-

Sham potential alone, without any explicit information about

the number of electrons. Based on our previous work, one

can also write functionals of the shape function
10

or any

Kohn-Sham orbital or orbital density �since the Kohn-Sham

orbitals and orbital densities determine the Kohn-Sham

potential�.8 There are two conceivable advantages to these

approaches. In some cases, it may be easier to write func-

tionals in terms of one descriptor than another. �There is

some evidence, for example, that the periodic trends in the

atoms are more readily described by a descriptor that does

not depend explicitly on the number of electrons.
16� It is also

advantageous when the fundamental descriptor of the system

has clear chemical relevance.
66

This, for example, is one of

the reasons the frontier-orbital descriptor approach has at-

tracted interest.
8,9

The local kinetic energy is related to the

width of the exchange-correlation hole
67,68

and the local tem-

perature is directly related to the “correlation length” be-

tween electron pairs. This means that the local temperature is

a measure of nighness
23

and can be used in the same way

other “electron localization functions” are.
67,69

If useful ap-

proximations to the energy can be written as functionals of

the local temperature, then a “local-temperature functional

theory” would possibly be preferable to conventional

density-functional theory because the local temperature—

unlike the electron density—provides direct access to the

conceptually useful “Lewis structure” of electron pairs.

If one accepts this philosophy, then it will be interesting

to attempt to prove analogous results for other functions of

chemical relevance. For example, one might attempt to ex-

tend these results to the local ionization potential
70

and the

reactivity indicators associated with density-functional

theory.
71,72

As a first result along these lines, we can state

that the Fukui functions
73

determine all the properties of

Coulomb systems. �This can be proved using the methods in

this paper, along with known results for �a� the cusp condi-

tions of the Fukui functions
74

and �b� the characteristic

asymptotic decay of the Fukui functions.
74�

Finally, we note that the results on the asymptotic form

of the local kinetic energy density and the electron density

near point charges �“cusp conditions”�10,33,75–77
and far from

the system �“decay conditions”�10,78
can be generalized to

excited states. For this reason, it may be possible to construct

“excited-state” generalizations of DFT that use the character-

istic features of, for example, the local temperature of ex-

cited states. Results of this type are known for the electron

density
79–81

and the shape function,
10

for example.
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