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Abstract	
Accurate	prediction	of	medical	outcomes	is	important	for	diagnosis	and	prognosis.	The	
standard	requirement	in	major	medical	journals	is	nowadays	that	validity	outside	the	
development	sample	needs	to	be	shown.	Is	such	data	splitting	an	example	of	a	waste	of	
resources?	In	large	samples,	interest	should	shift	to	assessment	of	heterogeneity	in	
model	performance	across	settings.	In	small	samples,	cross-validation	and	
bootstrapping	are	more	efficient	approaches.	In	conclusion,	random	data	splitting	
should	be	abolished	for	validation	of	prediction	models.		
	
	
Box	
Key	findings	

• Independent	 validation	 in	 small	 samples,	 such	 as	 with	 3	 events	 among	 10	
patients,	is	merely	window-dressing	

• Simulations	confirm	that	at	least	100	events	and	100	non-events	are	required	for	
reliable	assessment	of	predictive	performance	

• In	very	large	samples,	overall	independent	validation	is	of	minor	relevance,	since	
we	 should	 be	 interested	 in	 assessment	 of	 heterogeneity	 in	model	 performance	
across	settings	rather	than	the	average	

	
What	this	adds	to	what	was	known?	

• Prediction	 models	 often	 perform	 poorly	 when	 assessed	 in	 external	 validation	
studies	

• Independent	 validation	 is	 often	 performed	 by	 randomly	 splitting	 a	 data	 set	 to	
assess	validity	in	independent	data	

• Such	 split	 sample	 validation	 is	 performed	 while	 it	 is	 known	 to	 be	 inefficient,	
reflecting	 insufficient	 perception	 of	 the	 goals	 of	 validation	 in	 small	 and	 large	
samples	

	
What	is	the	implication	and	what	should	change	now?	

• Independent	validation	should	be	abolished	for	validation	of	prediction	models	
• In	small	samples,	we	should	accept	that	small	size	studies	on	prediction	merely	

are	 exploratory	 in	 nature.	 We	 should	 use	 cross-validation	 and	 bootstrapping	
should	as	more	efficient	approaches	to	assess	average	model	performance.	

• In	large	samples,	heterogeneity	of	model	performance	should	be	assessed	across	
settings.	
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Main	text	
The	interest	in	accurate	prediction	of	medical	outcomes	is	increasing,	either	in	a	
diagnostic	or	prognostic	setting.	We	also	realize	increasingly	that	many	prediction	
models	perform	poorly	when	assessed	in	external	validation	studies	1	2.	In	response	to	
this	concern,	the	standard	requirement	in	major	medical	journals	is	nowadays	that	
validity	outside	of	the	development	sample	needs	to	be	shown.	Researchers	hereto	often	
split	their	data	in	a	development	(or	training)	part,	and	a	validation	(or	test)	part.	We	
see	this	practice	with	very	small	and	with	very	large	sample	sizes.	Is	such	data	splitting	
an	example	of	a	waste	of	resources?	
	
Large	sample	validation	
Examples	with	large	sample	size	for	development	and	validation	are	found	in	virtually	
all	prediction	models	coming	from	the	QResearch	general	practices	resulting	in	Q	score	
algorithms	3.	These	can	be	seen	as	big	data	approaches.	Here,	routinely	collected	data	
from	hundreds	of	general	practices	are	used	for	model	development	and	hundreds	for	
validation.	Such	a	split	sample	approach	is	attractive	for	its	simplicity	in	providing	
independent,	and	hence	unbiased	assessment	of	model	performance.	The	main	
drawback	is	that	such	split	sample	validation	is	inefficient.	We	do	not	need	this	variant	
of	validation	to	estimate	average	performance	if	the	sample	size	is	enormous	relative	to	
the	complexity	of	the	modeling.	The	optimism	in	average	model	performance	is	
negligible	in	situations	with	>100,000	events	and	<100	predictors	4.	More	interesting	
analyses	include	the	evaluation	of	between	practice	performance	with	random	effect	
modeling	5	6,	or	variants	of	internal	–	external	validation,	where	parts	of	the	data	set	are	
iteratively	left	out	of	the	development	data	set	7.	These	analyses	quantify	the	
heterogeneity	in	performance,	rather	than	estimating	average	performance.	Overall,	
some	may	argue	that	split	sample	validation	in	large	data	sets	is	inefficient,	but	innocent.	
On	the	other	hand,	the	push	for	showing	validity	in	independent	patients	also	reaches	
situations	with	small	sample	sizes	8.		
	
Small	sample	validation	
A	recent	and	rather	extreme	example	of	data	splitting	was	the	evaluation	of	the	
prognostic	value	of	single	cell	analyses	in	leukemia	9.	To	predict	relapse	a	prediction	
model	was	developed	in	54	patients	with	leukemia	(80%	of	patients	for	training,	n	=	44),	
with	validation	the	remaining	20%	of	patients	(n	=	10).	Discriminative	performance	was	
assessed	by	a	standard	measure,	the	C-statistic	4	10.	The	study	found	that	there	were	3	
relapses	among	the	10	patients	in	the	validation	cohort,	with	perfect	separation:	the	3	
relapses	occurred	in	a	‘high	risk’	group,	and	no	relapses	were	found	among	7	‘low	risk’	
patients.	This	seems	too	good	to	be	true.	One	does	not	have	to	be	a	theoretical	
statistician	to	understand	that	validation	with	3	events	is	associated	with	enormous	
uncertainty,	implying	that	a	highly	cautious	interpretation	of	such	small	sample	
validation	is	needed.	It	has	been	suggested	that	at	least	100	events	are	required	for	
reliable	assessment	of	predictive	performance	11	12,	while	others	suggested	lower	
required	sample	sizes	13.	The	uncertainty	in	performance	assessment	can	be	studied	
well	with	simulation	in	small	to	large	sample	sizes	to	examine	two	hypotheses:	

1. validation	with	3	events	is	merely	window-dressing		
2. validation	with	at	least	100	events	is	reasonable	

	



Simulation	study	
A	simulation	study	was	designed	with	3	sample	sizes	and	a	30%	event	rate	(as	in	the	
leukemia	study):	extremely	small	(10	patients,	3	events),	moderate	(333	patients,	100	
events),	large	(1667	patients,	500	events).	We	examine	the	variability	of	3	different	
prediction	models	(or	‘classifiers’)	by	simulation,	assuming	that	the	true	C-statistic	of	
the	prediction	model	would	be	0.7;	0.8;	or	0.9	(Figure).	We	find	that	with	only	3	events,	
a	substantial	fraction	of	validations	would	show	perfect	separation	(C=1),	i.e.	in	6,	15,	
and	35%	of	validations	with	true	C-statistics	of	0.7,	0.8,	and	0.9	respectively.	On	the	
other	hand,	poorer	than	chance	prediction	(C<0.5)	is	expected	for	15,	5,	and	1%	of	the	
validations,	respectively,	while	the	true	C-statistics	are	far	above	0.5.	The	95%	ranges	
start	at	C=0.29,	0.43,	0.62,	respectively,	and	end	at	C=1.0	for	each	setting.	With	100	
events,	the	95%	ranges	are	[0.64-0.76],	[0.75-0.85],	[0.86-0.93]	for	true	c=0.7,	0.8,	and	
0.9	respectively.	These	ranges	are	smaller	with	500	events:	[0.67-0.73],	[0.78-0.82],	
[0.88-0.92]	for	true	c=0.7,	0.8,	and	0.9	respectively.	These	results	support	hypothesis	1:	
validation	with	3	events	among	10	patients	is	merely	window-dressing,	with	perfect	
separation	likely	even	if	the	true	C-statistic	is	0.7	(6%	chance	of	observing	c=1).	The	
second	claim	on	having	at	least	100	events	is	more	debatable;	the	uncertainty	is	still	
substantial	with	95%	ranges	of	+/-	0.05	around	the	true	value,	e.g.	0.75-0.85	for	a	true	C-
statistic	of	0.8.	With	500	events,	more	reliable	assessment	is	achieved.		
	
Implications	
From	the	above,	three	implications	can	be	learned	for	the	practice	of	validation	of	
prediction	models:	
1) In	the	absence	of	sufficient	sample	size,	independent	validation	is	misleading	and	

should	be	dropped	as	a	model	evaluation	step	14.	It	is	preferable	to	use	all	data	for	
model	development	with	some	form	of	cross-validation	or	bootstrap	validation	for	
the	assessment	of	the	statistical	optimism	in	average	predictive	performance	15.		

2) Basically,	we	should	accept	that	small	size	studies	on	prediction	are	exploratory	in	
nature,	at	best	show	potential	of	new	biological	insights,	and	cannot	be	expected	to	
provide	clinically	applicable	tests,	prediction	models	or	classifiers	16	17	18.	After	small	
development	studies,	validation	studies	will	generally	show	less	positive	results	1	2.	
For	example,	the	Mammaprint	is	a	70-gene	classifier,	which	had	a	relative	risk	(RR)	
of	18	in	the	initial	Nature	publication	with	n=78	for	model	development	and	n=19	
for	independent	validation	19.	These	findings	were	gross	exaggerations	according	to	
later,	larger	validation	studies,	with	RR=5.1	in	295	women	20,	and	RR=2.4	in	a	
prospective	trial	with	6693	women	21.	Validation	studies	of	adequate	size	are	hence	
essential	in	providing	realistic	estimates	of	what	may	be	expected	from	new	
prediction	models,	biomarkers	and	classifiers	in	moving	research	from	the	computer	
to	the	clinic.		

3) Validation	studies	should	have	at	least	100	events	to	be	meaningful	(8)	11	12,	and	
preferably	more,	not	less	events	13.	Moreover,	if	we	attempt	to	assess	performance,	
we	should	provide	confidence	intervals	to	indicate	the	uncertainty	of	the	estimates	
rather	than	focus	on	p-values	22.	The	aim	of	validation	in	Big	Data,	with	large	sample	
sizes,	should	shift	to	quantifying	heterogeneity	in	model	performance	rather	than	a	
naïve	search	for	confirmation	of	average	performance,	which	could	also	be	estimated	
without	data	splitting.	
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• In	the	absence	of	sufficient	sample	size,	independent	validation	is	misleading	and	
should	be	dropped	as	a	model	evaluation	step		

• We	should	accept	that	small	size	studies	on	prediction	are	exploratory	in	nature,	
at	best	show	potential	of	new	biological	insights,	and	cannot	be	expected	to	
provide	clinically	applicable	tests,	prediction	models	or	classifiers.	

• Validation	studies	should	have	at	least	100	events	to	be	meaningful.	In	Big	Data,	
heterogeneity	in	model	performance	rather	than	average	performance,	which	
could	also	be	estimated	without	data	splitting.	

	
	
	
		
	



	
Figure	 Estimates	of	C-statistics	in	100,000	simulations	of	validation	of	a	prediction	

model	with	a	true	C-statistic	(indicating	discriminative	ability)	of	either	0.7,	0.8,	
or	0.9,	in	a	situation	with	500	events	(1167	non-events),	100	events	(233	non-
events),	or	3	events	(7	non-events).	We	note	an	extremely	wide	distribution	of	
estimates	with	3	events,	with	a	spike	at	1.0.	

	



# Simulation, May 2018 
library(rms) 
 
i <- 100000 # sufficient precision 
Results  <- matrix(nrow=i, ncol=3) 
set.seed(1) 
 
for (j in 1:i) { # start simulation 
n0 <- 7 
n1 <- 3 
X0 <- rnorm(n0 , 0, 1) # controls, no event 
X1.7 <- rnorm(n1 , 0.7416145, 1) # true c = 0.7 
X1.8 <- rnorm(n1 , 1.190232, 1)  # true c = 0.8 
X1.9 <- rnorm(n1 , 1.812388, 1)  # true c = 0.9 
 
## ROC area ### 
Results[j, 1] <- rcorr.cens(x=c(X0,X1.7), S=c(rep(0,n0), rep(1,n1)), outx=F)[1] 
Results[j, 2] <- rcorr.cens(x=c(X0,X1.8), S=c(rep(0,n0), rep(1,n1)), outx=F)[1] 
Results[j, 3] <- rcorr.cens(x=c(X0,X1.9), S=c(rep(0,n0), rep(1,n1)), outx=F)[1] 
} # end simulation 
 
# Count complete separation 
mean(Results[,1]==1) # 6.2% 
mean(Results[,2]==1) # 14.8% 
mean(Results[,3]==1) # 35.4% 
############################# 
 
## Repeat with 100 events 
# Simulation 
i = 100000 
Results100  <- matrix(nrow=i, ncol=3) 
set.seed(1) 
 
for (j in 1:i) { # start simulation 
  n0 <- 233 
  n1 <- 100 # 0.3 event rate 
  X0 <- rnorm(n0 , 0, 1) 
  X1.7 <- rnorm(n1 , 0.7416145, 1) 
  X1.8 <- rnorm(n1 , 1.190232, 1) 
  X1.9 <- rnorm(n1 , 1.812388, 1) 
   
  ## ROC area ### 
  Results100[j, 1] <- rcorr.cens(x=c(X0,X1.7), S=c(rep(0,n0), rep(1,n1)), outx=F)[1] 
  Results100[j, 2] <- rcorr.cens(x=c(X0,X1.8), S=c(rep(0,n0), rep(1,n1)), outx=F)[1] 
  Results100[j, 3] <- rcorr.cens(x=c(X0,X1.9), S=c(rep(0,n0), rep(1,n1)), outx=F)[1   
} # end simulation 
# summarize results 
describe(as.data.frame(Results)) 
describe(as.data.frame(Results100)) 
 
apply(Results, 2, function(x)mean(x<.5)) #15, 5, 0.6% 
apply(Results, 2, function(x)quantile(x, probs = c(0.025, 0.975))) # lower limits 0.29, 0.43, 
0.62 
apply(Results100, 2, function(x)quantile(x, probs = c(0.025, 0.975))) 
 
## Same for 500 events ## 
 
##################################### 
# Plot results for 3 and 100 events # 
library(lattice)  
Results.combi <- c(Results[,1], Results[,2], Results[,3], 
                       Results100[,1], Results100[,2], Results100[,3]) 
Results.combi <- as.data.frame(cbind(c(rep(3, 3* i), rep(100, 3* i)),  
                                     c(rep(0.7, i), rep(0.8, i), rep(0.9, i), 
                                       rep(0.7, i), rep(0.8, i), rep(0.9, i)), Results.combi)) 
 
dimnames(Results.combi)[[2]] <- c("Events", "AUC", "Estimates") 
 
Results.combi[,1] <-factor(Results.combi[,1],levels=c(3,100),labels=c("3 events","100 
events")) 
Results.combi[,2] <-factor(Results.combi[,2],levels=c(0.7, 0.8, .9), 
labels=c("C=0.7","C=0.8","C=0.9"))  
                                                       
histogram(~ Estimates | AUC + Events, data = Results.combi, xlim=c(0.25,1.06), nint = 22) 
 
densityplot(~ Estimates | AUC + Events, data = Results.combi, plot.points = F, 
            xlim=c(0.25,1.06) ) 
# End simple simulation study #	  
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