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Abstract

The curse of dimensionality is a major problem for large scale simulations. One way
to tackle this problem is the sparse grid combination technique. While a full grid
requires O

(
h−d

n

)
grid points the sparse grid combination technique needs significantly

less points.

In contrast to the traditional combination technique, which combines solution functions
themselves, this work puts its focus on the combination technique with quantities of
interest and their surpluses. After introducing the concept of surpluses that describe
how much the solution changes if the grids are refined, we defined the combination
technique as a sum of these surpluses. We show how the concept of surpluses can
be utilized to deduce error bounds for the quantity of interest and helps to adapt the
combination technique to problems with different error models. To improve the error
bound we introduce a new extrapolated version of the combination technique and see
how the surpluses are affected.

To evaluate our theoretical results we perform numerical experiments where we consider
integration problems and the gyrokinetic plasma turbulence simulation GENE. The
experimental results for the integration problems nicely confirm our derived theoretical
results.
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1 Intro

Energy consumption and the number of unknowns become major challenges when
computing large scale simulations. However, large simulations are often needed to
give high accuracy solutions for the problem at hand. In physics, large simulations are
required to resolve fine grained effects that might have an impact on the overall solution.
This causes high accuracy simulations to become quite expensive. Other simulations
run on a large simulated area, which naturally leads to a large number of unknowns if
one does not aggressively simplify the discretization. For simulations that are integrated
over the time, accurate solutions for each time step are even more important, as the
error accumulates over time. The more accurate the solutions are computed for each
time step, the more steps one can simulate until the errors become to large.

So how do we get high accurate solutions for our problem? The most straight for-
ward answer is to simply increase the grid resolution for the numerical approximation.
However, increasing the grid resolution quickly becomes unfeasible, especially for high
dimensional problems. This is due to the fast increasing computational power and
memory requirements for solving the problem on a fine grid. As an example, assume
that the number of grid points in each dimension is proportional to the parameter n,
which controls the accuracy of the solution. The total number of grid points for a full
grid solution in d dimensions is then of order O

(
nd
)

for increasing n. As the memory
requirement is typically at least of the same order as the number of grid points, this soon
becomes a major limitation for further refinements. A similar problem arises with the
computational complexity, which usually increases even faster than the number of grid
points. This problem is often referred to as the curse of dimensionality.

These issues illustrate the need for other methods that reduce the complexity. Examples
are extrapolation methods or the combination technique [GSZ92].

Throughout this work we focus on the combination technique. The rough idea is to
split the full grid solution into a sum of so called surpluses. These surpluses describe the
difference between consecutive full grid solutions. Instead of using all surpluses of the
full grid solution, we reduce the computational effort by using only those surpluses that
contribute the most to the solution.

In this work we present an alternative view on the combination technique. We take
the focus off the solutions for individual component grids and define the combination
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1 Intro

technique in terms of surpluses instead. Furthermore we do not consider solutions
functions in different functions spaces, which are combined in case of the traditional
combination technique. Instead we deal with certain properties of these solutions, which
we refer to as quantities of interest. Now we first compute the quantities of interest
on different component grids and combine the results in a second step. This is due
to the fact that one often is not interested in the actual solution itself, but in certain
properties of this solution. While the solution is usually a function over a grid, like
an electric potential or distribution function, quantities of interest are scalar values
derived from this solution. Examples for quantities of interest are integrals over the
function, the average and minimal value, moments like the variance and skewness or
even eigenvalues [HGC07].

We will first consider integration problems, where the quantity of interest is the integral
over a fixed integration area. Finally we focus on quantities of interest computed
by the plasma turbulence simulation GENE [GM13], which are deduced by a particle
distribution function.

Additionally we present a new method, which aims to combine the properties of extrap-
olation with the combination technique. This method performed particularly well in
experiments with different integration methods.

Overview

In chapter 2 we first discuss extrapolation methods. As we consider integration problems
as a sample problem within this work we first do some ground by revisiting the Euler-
Maclaurin formula, which gives us an error expansion for the trapezoidal rule. This
error expansion will not only allow us to extrapolate the trapezoidal rule, but will
also help us to understand the combination technique later throughout this work. The
error expansion plays an important role to understand the behavior of the surpluses
that are crucial for the combination technique in the next chapter. Based on the error
expansion we then define the Romberg extrapolation and deduce a generalization for
two dimensions. These extrapolation methods are then used in chapter 4 to deduce a
combination technique working on extrapolated values. This chapter also includes the
first part of my propaedeutic, which is section 2.1 about the Euler-Maclaurin formula.

In chapter 3 we present a novel, alternative view on the combination technique for
quantities of interest. We first define the combination technique in terms of surpluses,
based on their decay. In case of integration problems, this decay depends on the Euler-
Maclaurin formula from the previous chapter. We then deduce error bounds for different
types of surpluses. Unlike existing approaches that combine the solution functions, we
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do not assume anything about the underlying function spaces on which the solution was
computed. Instead we only assume a certain type of decay for the surpluses. We end
this section with a short overview of variations of the combination technique in section
3.5, which forms the second part of my propaedeutic.

In chapter 4 we introduce a new method, which tries to combine the best of combina-
tion technique and Romberg extrapolation, based on our results of the two previous
chapters. By mixing both methods we get a very accurate result. Additionally we reduce
the computational effort compared to the two dimensional extrapolation due to the
combination technique.

In chapter 5 we present results of numerical experiments to verify our theoretical
results of all previous chapters. We consider both, integration problems and the plasma
turbulence simulation GENE. For them we discuss the behavior of surpluses and problems
that arise when applying the combination technique to quantities of interest with
GENE.
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2 Extrapolation

We start with a chapter on extrapolation methods. In this chapter we first deduce the
Euler-Maclaurin formula, which leads to an error expansion for the trapezoidal rule. This
error expansion is not only for the Romberg method but is also important to understand
the combination technique and its error in chapter 3. The Romberg method will then be
used in chapter 4 to introduce a combination technique using extrapolated results.

But first we consider an easy example to explain the fundamental idea of extrapolation
methods.

Assume a numerical method to compute a quantity of interest q(h) with a parameter h,
which controls the accuracy of the method. Often this parameter is the grid resolution
and controls how fine the grid used by the method is. Further, assume that the error
e(h) = q(h) − q is known to be of the form

e(h) := c2h
2 + c4h

4 + c6h
6

with unknown coefficients c2,c4 and c6, which are all independent of h. We clearly see
that the method is of second order as the lowest order terms is h2. For a known solution
q(h1) the error is given by e(h1). However, assume that this error is known to be too
large and we are interested in a better approximation. Choosing h2 < h1 clearly gives a
better approximation. Reducing h1 to one half should decrease the error by one fourth.
But we can do better than this if we use two solutions for different h1 ̸= h2. For each hi

we get a solution with a different error

q(h1) = q + e(h1) = q + c2h
2
1 + c4h

4
1 + c6h

6
1

q(h2) = q + e(h2) = q + c2h
2
2 + c4h

4
2 + c6h

6
2

with the same three unknown constants for each solution. This actually looks like a
system of equations for ci. As the system is undetermined we cannot solve it for the
coefficients, but we know enough to cancel out one of the terms. Canceling out the
second order term should be the best choice, as for small values of h we can assume
that h2 ≪ h4. This increases the order of the method from second order to fourth
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2 Extrapolation

order. Multiplying the the second equation by α−2 = h2
1/h2

2, subtracting the results and
substituting α gives

q(h1) − h2
1

h2
2
q(h2) =

(
1 − h2

1
h2

2

)
q + c4

(
1 − h2

1
h2

2

)(
h4

1 − h4
2

)
+ c4

(
1 − h2

1
h2

2

)(
h6

1 − h6
2

)
=
(
1 − α−2

)
q +

(
1 − α−2

) (
1 − α4

)
c4h

4
1

+
(
1 − α−2

) (
1 − α6

)
c6h

6
1

in which only the fourth and sixth order terms remain. This already looks promising,
however, as we can see by the factor in front of q, we no longer approximate the exact
solution. This is easily fixed by multiplying the equation by (1 − α²)−1 and we have

q(h1) − α−2q(αh1)
1 − α−2 = q + 1 − α4

1 − α−2 c4h
4
1 + 1 − α6

1 − α−2 c6h
6
1,

which now approximates q correctly. This means that we are able to get a higher
(fourth) order approximation for q by using a linear combination of two lower (second)
order approximations. We can now compare this new approximation to our initial
second order approximation. For small values of h1 and α = 1/2, which is h2 = 1/2h1,
we can approximate the error to be e(h1) = −5/16c4h

4
1 + O(h6

1). The error without
the extrapolation would be e(h) = c2h

2 + O(h4). This shows that we have to choose
h =

√
c4/c2h2

1 to get an error similar to the extrapolation method. A comparison of
grids needed for the extrapolation and the non-extrapolated method shows that the
non-extrapolated method needs a much finer grid: For the extrapolation method we
need two solutions with h = h1 and h = 1/2h1, while we need only one solution with
h =

√
c4/c2h2

1 for the non-extrapolated method to obtain a similar error. It should become
clear that for small errors and therefore for small values of h1 the non-extrapolated
method needs a much finer grid to get an error of the same order as the extrapolated
method. As the computational complexity usually increases with at least h−1 this implies
that using the extrapolated method for small values of h yields better results for the
same computational effort.

Quantities of interest like spacial, temporal or phase space averages and moments like
the variance often contain some sort of integral. In the next chapters we therefore focus
on calculating the integral q =

´ 1
0 f(x) dx, using the trapezoidal rule. In order to perform

the extrapolation we first discuss how to get an error expansion for the trapezoidal
rule, which leads to the Euler-Maclaurin formula. We then discuss how to use the error
expansion to further increase the order of the method. We do this by using the Romberg
method to approximate the integral using multiple trapezoidal rules to eliminate more
error terms.
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2.1 The Euler-Maclaurin Formula

Eventually, we relate this method to the surpluses of the combination technique to
increase its order and discuss how the extrapolation affects the surpluses.

2.1 The Euler-Maclaurin Formula⋆

In the introduction we showed how an error expansion can be used to cancel error
terms. However, to apply extrapolation methods the error expansion has to be known.
As we consider integration problems as sample problem, we first have to find an error
expansion for the trapezoidal rule. We now deduce the Euler-Maclaurin formula, which
gives us an error expansion for the trapezoidal rule.

We first assume that our quantity of interest is the one dimensional integral q = I =´ 1
0 f(x) dx for a given function f . To approximate the integral we use the trapezoidal

rule

q(h) = T (h) = f(0)
2 h +

n−1∑
i=1

f(ih)h + f(1)
2 h

with n grid points xi = ih for i = 0, . . . , n. As we have n intervals, the grid resolution h

is given by h = 1/n.

Next we derive a one dimensional error expansion for smooth functions f and later
discuss a formula for the two dimensional case.

2.1.1 The One Dimensional Case

We now derive the Euler-Maclaurin formula in one dimension. The following proof is
based on [Lyn65] where the function f is assumed to be analytic. As this is rarely the
case, we generalize the result for p + 1 times differentiable functions f ∈ Cp+1 [−h, h].

As the trapezoidal rule is composed of many small trapezoids we first focus on the error
of each trapezoid on it’s interval. Afterwards we sum up all the errors to get an error for
the trapezoidal rule on the entire interval.

The trapezoidal rule for a single trapezoid over the interval [−h, h] is given by

T (h) = 2h
f(−h) + f(h)

2 .

⋆This chapter is part of the propaedeutic.
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2 Extrapolation

We can now use the Taylor expansion of f at x0 = 0 to rewrite f(−h) and f(h) as

f(h) = f(0) +
p∑

k=1

f (k)(0)
k! hk + r(h)

f(−h) = f(0) +
p∑

k=1
(−1)k f (k)(0)

k! hk + r(−h)

with the remainder term r ∈ O(hp+1) for h → 0. We now substitute the trapezoidal rule
and have

T (h) = 2h

f(0) +
p/2∑

k=1

f (2k)(0)
(2k)! h2k + r̃(h)

 (2.1)

with the new remainder term r̃(h) = 1
2 (r(h) + r(−h)) ∈ O(hp+1). Note that the sum

only contains even exponents of h as the odd terms canceled out.

To calculate the error for the single trapezoid approximation, we now rewrite the exact
integral in terms of a Taylor expansion. After substituting the expansion of f in in the
integral, we can integrate the sum term term-wise:

I =
ˆ h

−h

f(x) dx =
ˆ h

−h

f(0) +
p∑

k=1

f (k)(0)
k! xk + r(x) dx

= 2h

f(0) +
p/2∑

k=1

f (2k)(0)
(2k + 1)!h

2k

+
ˆ h

−h

r(x) dx. (2.2)

Note that only the even exponents contribute to the integral, while the odd exponents
vanish as we integrate over a symmetric interval. As the remainder term r(x) is O(xp+1),
the integral over the remainder from −h to h is of order O(hp+2).

Substituting the the results for the trapezoid (2.1) and the integral (2.2) we can calculate
the error as

e(h) = T (h) − I

= 2h

p/2∑
k=1

((
1

(2k)! − 1
(2k + 1)!

)
f (2k)(0)h2k

)
+ O

(
hp+2

)
(2.3)

and see that the error only contains even powers of h, too.

Before we calculate the error for the composed trapezoidal rule, we first rewrite the
derivatives in the equation above in terms of integrals over derivatives. This is important,
as we don not only consider single trapezoids but the trapezoidal rule consisting of
many trapezoids. In its current form the error for the trapezoidal rule would contain
derivative terms in the center of each single sub-interval. This means that the number
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2.1 The Euler-Maclaurin Formula

of evaluations of derivative terms changes if we change h and therefore the number
of sub-intervals, too. By rewriting the derivatives in terms of integrals over the sub-
intervals, we can later combine all the integrals over the smaller intervals into bigger
integrals over the entire interval. Changing h, or respectively the number of intervals
used by the trapezoidal rule, still leads to more and smaller sub-intervals. However, the
small integrals can always be combined into integrals over the entire interval and are
therefore explicitly independent of h.

Similar to (2.2) we can rewrite the derivatives f (k)(0) using the Taylor expansion of f

and it holds

ˆ h

−h

f (k)(x) dx = 2h

f (k)(0) +
p−k∑
i=1
even

f (i+k)(0)
(i + 1)! hi

+
ˆ h

−h

rk(x) dx

with a remainder term rk(x) ∈ O
(
xp−k+1

)
. For k = 2 we can substitute f (2)(0) in (2.3)

and have

T (h) − I = h2
( 1

2! − 1
3!

)ˆ h

−h

f (2)(x) dx

+ 2h

p/2∑
k=2

((
1

(2k + 1)! − 1
(2k)! − 1

(2k + 1)!

( 1
2! − 1

3!

))
f (2k)(0)h2k

)
+ O

(
hp+2

)
.

We now repeat this step for all higher derivatives, where each derivative only adds terms
to higher order terms. This process leads to the one dimensional error expansion for the
trapezoid in integral form

I(f) − T (f, h) =
p/2∑

k=1
c2kh2k

ˆ h

−h

f (2k)(x) dx + O
(
hp+2

)
(2.4)

for some coefficients c2k ∈ R. These coefficients do depend on neither f or h. Further
information on how to calculate these coefficients can be found in [Lyn65]. For our
purpose the exact value is of no further importance.

2.1.2 The Two Dimensional Case

The steps for higher dimensions are similar to the steps for the one dimensional error
expansion.
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2 Extrapolation

Similar to our previous procedure we assume f ∈ Cp+1 and use the multidimensional
Taylor expansion for f

f(x, y) = f(0, 0) +
1∑

i=0

∂f

∂xi

xi + 1
2!

1∑
i=0

1∑
j=0

∂2f

∂xi∂xj

xixj

+ 1
3!

1∑
i=0

1∑
j=0

1∑
k=0

∂3f

∂xi∂xj∂xk

xixjxk + . . .

and for its integral

I(f) =
ˆ hy

−hy

ˆ hx

−hx

f(x, y) dxdy

= 4hxhy

(
f(0, 0) + 1

3!
∂2f

∂x2 h2
x + 1

3!
∂2f

∂y2 h2
y

+ 1
5!

∂4f

∂x4 h4
x + 1

9
4
4!

∂4f

∂x2∂y2 h2
xh2

y + 1
5!

∂4f

∂y4 h4
y + . . .

)

where all the derivatives are evaluated at (x, y)T = (0, 0)T to make the formula more
readable. As f is smooth and therefore its derivatives are continuous, the Schwarz’
theorem can be applied to swap the order of differentiation for the mixed derivatives.

Again, note that all Taylor terms containing an odd power of either x or y did not
contribute to the integral.

Rewriting the trapezoid rule in terms of the Taylor expansion gives

T (hx, hy, f) = 4hxhy
f(−hx, −hy) + f(−hx, hy) + f(hx, −hy) + f(hx, hy)

4

= 4hxhy

(
f(0, 0) + 1

2!
∂2f

∂x2 h2
x + 1

2!
∂2f

∂y2 h2
y

+ 1
4!

∂4f

∂x4 h4
x + 6

4!
∂4f

∂x2∂y2 h2
xh2

y + 1
4!

∂4f

∂y4 h4
y + . . .

)
in which all the Taylor terms with an odd exponent in either hx or hy cancel out.

The two dimensional error expansion for an individual trapezoid can then be calculated
as

I(f) − T (hx, hy, f) =

4hxhy

(( 1
3! − 1

2!

)
∂2f

∂x2 h2
x +

( 1
3! − 1

2!

)
∂2f

∂y2 h2
y +

( 1
5! − 1

4!

)
∂4f

∂x4 h4
x

+
(1

9
4
4! − 6

4!

)
∂4f

∂x2∂y2 h2
xh2

y +
( 1

5! − 1
4!

)
∂4f

∂y4 h4
y + . . .

)
.
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2.1 The Euler-Maclaurin Formula

which is very similar to the one dimensional case.

Again, similar to the one dimensional case, we substitute the derivatives for the Taylor
expansion of the integrated derivative to get the two dimensional error expansion

I(f) − T (hx, hy, f) =
p∑

i=2
even

i∑
k=0
even

ck,i−khk
xhi−k

y

ˆ hy

−hy

ˆ hx

−hx

∂k∂i−k

∂xk∂yi−k
f(x, y) dxdy + R (2.5)

with a high order remainder term R.

2.1.3 Error Expansion for the Trapezoidal Rule

We now use the error expansions we deduced for single trapezoid approximations to
get an error expansion for the trapezoidal rule. As the trapezoidal rule only consists of
subdividing the interval and applying the single trapezoid approximation on each of the
subintervals, all we have to do is to sum up the errors done on each subinterval:

As before we consider a function f ∈ Cp+1 [0, 1]. Let Ii and Ti be the integral and the
trapezoid approximation over the ith interval [2ih, 2 (i + 1) h]. The error for the trapezoid
rule is then given by by the sum of the errors on each interval

I − T (h) =
n−1∑
i=0

(Ii − Ti(h)) .

Furthermore, let fi be the transformed function fi(x) := f(x + 2ih + h), which maps the
center of the ith interval to the origin. Now, we rewrite the error on each subinterval in
terms of fi and it holds

Ii − Ti(h) =
ˆ 2(i+1)h

2ih

f(x) dx − 2h
f(2ih) + f(2(i + 1)h)

2

=
ˆ h

−h

fi(x) dx − 2h
fi(−h) + fi(h)

2 .

Substituting our error expansion (2.4) we get

. . . =
p/2∑

k=1
c2kh2k

ˆ h

−h

f
(2k)
i (x) dx + O

(
hp+2

)

=
p/2∑

k=1
c2kh2k

ˆ 2(i+1)h

2hi

f (2k)(x) dx + O
(
hp+2

)
.
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2 Extrapolation

Note that we found the coefficients ck to be independent of the integrand and therefore
independent of the interval i. We now substitute the error for the trapezoidal rule and
obtain the Euler-Maclaurin formula for the trapezoidal rule

I − T (h) =
n−1∑
i=0

p/2∑
k=1

c2kh2k

ˆ 2(i+1)h

2hi

f (2k)(x) dx + O
(
hp+1

)

=
p/2∑

k=1
c2kh2k

ˆ 1

0
f (2k)(x) dx + O

(
hp+1

)
. (2.6)

We see, that the error expansion for the trapezoidal rule only contains even powers of h,
too.

The same argument can be applied to the two dimensional case for a function f ∈
Cp+1,p+1 [0, 1]2, which is p + 1 times differentiable in each dimension. For a grid with
the resolution hx in the x-direction and resolution hy in the y-direction we get the
Euler-Maclaurin formula

I(f)−T (hx, hy, f) =
p∑

i=2
even

i∑
k=0
even

ck,i−khk
xhi−k

y

ˆ b

−b

ˆ a

−a

∂k∂i−k

∂xk∂yi−k
f(x, y) dxdy+O

(
hp+1

x + hp+1
y

)

for the two dimensional trapezoidal rule.

2.2 Romberg Quadrature

In the previous section we deduced an error expansion for the one and two dimensional
trapezoidal rule T (h), which showed that the expansions only consists of even powers of
h. We will now use this knowledge to define the Romberg quadrature [DR06]. The idea
of the Romberg quadrature is to repeatedly apply the extrapolation scheme we discussed
in the last chapter, to cancel more and more error terms of the error expansion for the
trapezoidal rule. This leads to an sequence of quadrature rules of increasing order.

2.2.1 How it Works

As shown in (2.6) the error expansion for the trapezoidal rule T (h) for a function
f ∈ C2p+2 only contains even powers of h. With the Euler-Maclaurin formula (2.6) we
found

T (h) − I =
p∑

k=1
c2kh2k + O

(
h2p+2

)
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2.2 Romberg Quadrature

for some coefficients ck, which are independent of h. We now follow the same steps as
in the introduction, but repeat them multiple times in order to cancel more than just
one error term.

Suppose two grids with a different grid widths h0 = h and h1 = αh. The order of the
quadrature can then be increased by combining the two error expansions

T (h0) − I(f) = c2h
2
0 + c4h

4
0 + · · · + c2ph2p

0 + O
(
h2p+2

0

)
T (h1) − I(f) = c2h

2
1 + c4h

4
1 + · · · + c2ph2p

1 + O
(
h2p+2

1

)
= c2α

2h2
0 + c4α

4h4
0 + · · · + c2pα2ph2p

0 + O
(
h2p+2

0

)
such that the h2 term gets eliminated. As the coefficient c2 is the same for both quadra-
tures (they are independent of h), the exact value is no special importance. Eliminating
the h2

0 term as before gives

T (h0) − α−2T (h1)
1 − α−2 − I(f) = 1 − α2

1 − α−2 c4h
4
0 + · · · + 1 − α2p−2

1 − α−2 c2ph2p
0 + O

(
h2p+2

0

)
.

Note the increased order of the new quadrature rule T
(1)
0 = T (1)(h0). For h1 = 1/2h0

the new quadrature rule is the Simpson rule written as the linear combination of two
trapezoidal rules.

Further error terms can be eliminated by adding more trapezoidal rules. Using h2 =
αh1 = α2h0 and the corresponding trapezoidal rule, the same steps can be repeated with
h1 and h2 and we get two quadrature rules of fourth order:

T (1)(h0) = T (h0) − α−2T (h1)
1 − α−2 − I(f)

= 1 − α2

1 − α−2 c4h
4
0 + · · · + 1 − α2p−2

1 − α−2 c2ph2p
0 + O

(
h2p+2

0

)
T (1)(h1) = T (h1) − α−2T (h2)

1 − α−2 − I(f)

= 1 − α2

1 − α−2 c4h
4
1 + · · · + 1 − α2p−2

1 − α−2 c2ph2p
1 + O

(
h2p+2

1

)
We see that for both quadrature rules the coefficients are the same. We now substitute
h1 = αh0 and eliminating the h4

0 term as before and get a new quadrature rule

T
(2)
0 = T (1)(h0) − α−2T (1)(h1)

1 − α−2 ,

which is of sixth order. Note that this new quadrature rule with α = 1/2 is equivalent to
Boole’s rule.
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2 Extrapolation

This procedure can be continued for every new grid resolution where each new grid
resolution cancels one more error term in the Euler-Maclaurin formula. For each new
grid hi+1 = αhi we calculate

T (1)(hi) = T (hi+1) − α−2T (hi)
1 − α−2 (2.7)

and then repeat this procedure for each pair T (k)(hi), T (k)(hi+1), which cancels one more
term of the error expansion. Each new grid therefore allows to cancel one further term.
Note that this can only done until all terms are eliminated. This means that for smoother
functions f more error terms can be eliminated.

A nice property of the Romberg quadrature is that it can be applied on the (scalar)
results of different trapezoidal rules as a post-processing step. This can be done without
changing the way the trapezoidal rules are evaluated, as long as the integrand is smooth
enough.

If hierarchical trapezoidal rules with hi = 2−ih are used, the computation of the trape-
zoidal rules can be optimized further. In this case the grid points for the different grid
widths hi are nested, which means that function evaluations can be reduced by reusing
potentially expensive evaluations using evaluations form previous grids. Each new
trapezoidal rule can be written using the result from the previous trapezoidal rule

T (hi) = hi

(
1
2f(0) +

ni−2∑
i=1

f(ihi) + 1
2f(0)

)

such that the new trapezoidal rule only has to take those grid point into account that
are not contained in the previous grid:

T (hi

2 ) = hi

2

1
2f(0) +

2ni−3∑
j=1

f(ihi

2 ) + 1
2f(0)


= 1

2T (hi) +
ni−1∑
j=0

f((1 + 2i)hi

2 )

= 1
2T (hi) +

ni−1∑
j=0

f(hi

2 + jhj).

This reduces the computational costs for each trapezoidal rule to about one half.

To do the Romberg steps on N trapezoidal rules T
(0)
i = T (hi) with i = 0, . . . , N − 1 one

can then use the iteration formula

T
(n+1)
i (h) = T

(n)
i (h) − 4n+1T

(n)
i+1(h)

1 − 4n+1 (2.8)
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2.2 Romberg Quadrature

for n = 0, . . . , N − 1 and i = 0, . . . , N − 1 − n. This iteration leads to the following
pattern:

T0

↘
T1 → T

(1)
0

↘ ↘
T2 → T

(1)
1 → T

(2)
0

↘ ↘ ↘
T3 → T

(1)
2 → T

(2)
1 → T

(3)
0

This extrapolation scheme is obviously not tied to quadrature problems, but can be used
with any quantity of interest with as similar error expansion.

2.2.2 Tensor Romberg Method in Two Dimensions

In two dimensions we use a tensor product version of the Romberg method introduced
in the previous section. This means that we will first apply the one dimensional Romberg
method along the first axis and then apply the Romberg method a second time on the
result along the second axis.

To be more specific, suppose the solution for the two dimensional trapezoidal rule
T (hi, hj) for different grid resolutions in each dimension.

First, we apply the Romberg method along the first dimension. This means that for each
hj in the y dimension we consider Tj(hi) := T (hi, hj) with a fixed value of j. On Tj(hi) we
now apply the Romberg method (2.8) using different values for hi. The grid resolution
hj therefore acts like a constant. This leads to the extrapolated results T

(i)
j (hi) of order i

in the x dimension, which is the extrapolation using the grid resolutions h0, . . . , hi. For
each hj in y direction we now have a sequence of extrapolation results Tj(h0, . . . , hi)
where larger values of i cancel more and more error terms in the x dimension.

As a second step we now repeat this procedure along the other dimension. For each
hi in x dimension we now fix i and consider T (i)(hj) := Tj(h0, . . . , hi). Now i acts as a
constant. Similar to before we apply the one dimensional Romberg method on T (i)(hj)
and get T (i)(h0, . . . , hj) using the grid resolutions h0, . . . , hj. Larger values of j now
cancel more error terms in the y dimension.

This new extrapolated result T (i,j) = T (h0, . . . , hi, h0, . . . , hj) := T (i)(h0, . . . , hj) depends
on all results with grid resolutions (hk, hl) with k = 0, . . . , i and l = 0, . . . , j and was
extrapolated i times in the x dimension and j times in the y dimension.
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2 Extrapolation

The reader should be sufficiently confused by now. To illustrate the method we con-
sider the following example step by step: Assume the trapezoidal rue with the error
expansion

T (hi, hj) = I + c2,0h
2
i + c0,2h

2
j + c4,0h

4
i + c2,2h

2
i h

2
j + c0,4h

4
j

where we omitted a remainder terms, for the sake of clarity. To apply the Romberg
method in the first dimension we fix j and consider Tj(hi) := T (hi, hj). We now apply
the Romberg method (2.8) on Tj(hi), which cancels error terms in the first dimension:
For the zeroth Romberg step in the first dimension we do nothing at all and have

Tj(h0) = I + c2,0h
2
0 + c0,2h

2
j + c4,0h

4
0 + c2,2h

2
0h

2
j + c0,4h

4
j .

The next Romberg step in the first dimension cancels all the h2
i terms:

Tj(h0, h1) = I + c0,2h
2
j + 1 − α2

1 − α−2 c4,0h
4
0 + c0,4h

4
j .

Remember that hj can be considered as a constant and thus the mixed term h2
i h

2
j cancels

out, too. The next Romberg step in the first dimension cancels all the h4
i terms and we

have

Tj(h0, h1, h2) = I + c0,2h
2
j + c0,4h

4
j .

For each j we now have different Tj(h0, . . . , hi), which differ in the terms in the first
dimension but still contain all terms hj in the second dimension. We now aim to cancel
some of the remaining hj terms in the second dimension. Therefore we now consider
T (i)(hj) := Tj(h0, . . . , hi). Analogous to the steps before we now apply the Romberg
method for different values of i. For i = 0 we get the following series

T (0,0) = T (0)(h0) = I + c2,0h
2
0 + c0,2h

2
0 + c4,0h

4
0 + c2,2h

2
0h

2
0 + c0,4h

4
0

T (0,1) = T (0)(h0, h1) = I + c2,0h
2
0 + c4,0h

4
0 + 1 − α2

1 − α−2 c0,4h
4
0

T (0,2) = T (0)(h0, h1, h2) = I + c2,0h
2
0 + c4,0h

4
0

where we cancel an increasing number of error terms in the second dimension. For i = 1
we have

T (1,0) = T (1)(h0) = I + c0,2h
2
0 + 1 − α2

1 − α−2 c4,0h
4
0 + c0,4h

4
0

T (1,1) = T (1)(h0, h1) = I + 1 − α2

1 − α−2 c4,0h
4
0 + 1 − α2

1 − α−2 c0,4h
4
0

T (1,2) = T (1)(h0, h1, h2) = I + 1 − α2

1 − α−2 c4,0h
4
0.
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2.2 Romberg Quadrature

Note that due to the error cancellation in the first dimension, this result does not contain
any h2

i terms. And for i = 2 we have

T (2,0) = T (2)(h0) = I + c0,2h
2
0 + c0,4h

4
0

T (2,1) = T (2)(h0, h1) = I + 1 − α2

1 − α−2 c0,4h
4
0

T (2,2) = T (2)(h0, h1, h2) = I.

The important point is that in general T (i,j) will only contain error terms that are of higher
order than 2i in the first dimension and of higher order than 2j in the second dimension.
The highest order extrapolation in this example is T (2,2), which was extrapolated twice
in each dimension. Hence, T (2,2) is the most accurate result.

A big advantage of this method is that it goes along very nicely with the combination
technique discussed in the next section. Later we discuss how we can combine this
method with the combination technique to improve the error and approximate a full
tensor Romberg solution T (n,n).
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3 Combination Technique

In this chapter we discuss the combination technique [GSZ92] based on surpluses as
introduced in [HHK+16]. But first we consider a basic, one dimensional example to to
explain the idea behind the combination technique. Even though the one dimensional
case does not have any real applications it is well suited to explain the general idea of
the method.

Assume a quantity of interest qi depending on i, which controls the accuracy of the
numerical method used to calculate the value. Furthermore, assume that the sequence
qi converges to the exact solution q for i → ∞. The error for each i is then given by
ei = qi − q or qi = q + ei. As qi converges to q the error converges to zero for i → ∞.

Consider the series qi = q + c2−2i. In this case the error is given by ei = c2−2i with an
unknown coefficient c. As the exact solution q is unknown we want to choose i such
that qi is a good approximation of q. Choosing i such that |ei| ≤ ε clearly gives a good
approximation, but as c is not known this cannot be solved for i. Instead of ei = qi − q,
the difference

wi+1 := qi+1 − qi

might be a good surrogate. For our example it holds wi = c2−2i
(

1
4 − 1

)
= −3

4c2−2i =
−3

4ei. Choosing i to satisfy |wi| ≤ ε implies |ei| ≤ 4
3wi. This means even without knowing

the exact error we are able give a bound on the error that is based on the difference
wi+1 = qi+1 − qi.

This motivates to focus more on the differences wi, which we will refer to as surpluses
from now on. Instead of looking at the sequence qi we now look at the series qc

i =∑i
k=0 wk and truncate the sum depending on the value of the surpluses. If all truncated

surpluses wk with k > i are small and decay fast enough, their contribution to the
solution qc

i is rather small. The error ei is then given by the truncated part of the series:
ei = ∑∞

k=i+1 wk. In the case of our example this series becomes a geometric series and
we can calculate the error as

ei = 3
4c

(
(1/4)i+1

1 − 1/4

)
.
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3 Combination Technique

In one dimension the truncated series qc
i = ∑i

k=0 wi with w0 = q0 is equivalent to qi

itself and the combination technique does not add any new advantages or seems to be
particularly interesting. However, this should give an idea about what the combination
technique is all about: truncating a series of surpluses

∑i
k=0 wk such that the error is

small enough. If the surpluses decay fast enough this leads to a good approximation for
the full grid solution.

We will now generalize this idea to higher dimensions, where the advantages of the
combination technique become more apparent. After a more detailed definition of
surpluses and an introduction to the combination technique, we discuss the relation
between error and surpluses more deeply in section 3.2.2. We then analyze the error of
the combination technique for specific error models in section 3.2.3.

3.1 Defining the Surpluses for Higher Dimensions

For higher dimensional problems the quantities of interest depend on multiple param-
eters l⃗ ∈ Nd

0, which control the accuracy of each dimension. To simplify the following
explanations we now restrict ourself to the two dimensional case where the quantity of
interest qi,j only depends on two parameters l⃗ = (i, j). Higher dimensions can be dealt
with in a similar way.

In more than one dimension it is not immediately apparent how the surpluses should
be defined. In one dimension we could just take the difference of a solution and its
predecessor. However, in multiple dimensions each solution q⃗l has multiple predecessors.
Namely both qi−1,j and qi,j−1 are predecessors of qi,j in the two dimensional case. Using
the constraint that each solution q⃗l contains all surpluses with a smaller multi-index,
that is

q⃗l =
∑
k⃗≤⃗l

wk⃗, (3.1)

one can calculate the surpluses. One possibility to calculate the surpluses is to solve the
linear system of equations q = Mw for w where q and w are vectors containing all the
quantities of interest q⃗l and surpluses w⃗l. Each row of M represents (3.1) for a different
level l⃗. The surpluses are then defined by

w := M−1q. (3.2)
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3.1 Defining the Surpluses for Higher Dimensions

In two dimensions for the first 3 solutions in each dimensions this gives this nice looking
system of equations

q0,0

q0,1

q0,2

q1,0

q1,1

q1,2

q2,0

q2,1

q2,2



=



1
1 1
1 1 1
1 1
1 1 1 1
1 1 1 1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1





w0,0

w0,1

w0,2

w1,0

w1,1

w1,2

w2,0

w2,1

w2,2


and the solution

w0,0

w0,1

w0,2

w1,0

w1,1

w1,2

w2,0

w2,1

w2,2



=



+1
−1 +1

−1 +1
−1 +1
+1 −1 −1 +1

+1 −1 −1 +1
−1 +1
+1 −1 −1 +1

+1 −1 −1 +1





q0,0

q0,1

q0,2

q1,0

q1,1

q1,2

q2,0

q2,1

q2,2


where it becomes apparent how the surpluses have to be calculated [HHK+16]. We see
that we have

wi,j =



qi,j − qi−1,j − qi,j−1 + qi−1,j−1 i, j ̸= 0
q0,j − q0,j−1 i = 0, j ̸= 0
qi,0 − qi−1,0 i ̸= 0, j = 0
q0,0 i, j = 0

(3.3)

for the surpluses in two dimensions. This also holds if one considers more than just the
first nine surpluses. The procedure to find the surpluses for higher dimensions is very
similar. First, one defines a new matrix M that describes which surpluses each solution
qi,j contains. This leads to a similar result for the surpluses by inverting the matrix.
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3 Combination Technique

3.2 How does the Combination Technique Work?

Now as we defined the surpluses for higher dimensions, we can explain the combination
technique for higher dimensions. But first let us recapitulate what we got so far: We
have a problem, which can be solved at different levels of accuracy and we defined
surpluses, which describe how much the solution changes between different solutions.
Furthermore we can write each quantity of interest as a sum of surpluses. In the one
dimensional case we choose an index i based on the decay of the surpluses to truncate
the series such that we skipped surpluses, which did not contribute enough to the final
solution.

We now try to do something similar for higher dimensional problems: Based on the
decay of the surpluses we only select those surpluses that contribute most to the final
solution and skip surpluses that are smaller to reduce unnecessary computations.

First consider the two dimensional case with the surpluses

wi,j = ci,j2−(i+j)

where |ci,j| ≤ M are unknown constants, which are bounded by M ≥ 0. According to
(3.1) the quantity of interest qn,n is then computed by qn,n = ∑

k,l≤n wk,l = ∑n
k=0

∑n
l=0 wk,l.

Looking at the decay of the surpluses we see that they decrease in in each dimension,
and that all wk,l with the same value n = k + l should have a similar value |wk,l| ≤ M2−n.
To reduce unnecessary computations we skip small surpluses |wk,l| ≤ M2−n < ε. Hence
we truncate all surpluses from our sum for which n = k + l > − log (ε/M) holds. This
gives qc

n = ∑
k+l≤n wk,l, which is the classical combination technique. As we only included

a subset of the surpluses that make up qn,n we introduced an additional error, which
we discuss in greater detail in section 3.2.3. The difference of the included surpluses is
shown in figure 3.1.

In general, assuming that the surpluses decay fast for increasing |⃗l| and satisfy∣∣∣w⃗l

∣∣∣ ≤ M2−βf(|⃗l|)

for a monotonically increasing function f and a constant M we truncate the multidimen-
sional sum and define the classical combination technique as

qc
n :=

∑
|⃗l|≤n

w⃗l, (3.4)

which basically truncated the sum along a hyperplane. Here we assumed that w⃗l decays
at the same rate in each dimension (hence f(|⃗l|) in the exponent). If this is not the case
and w⃗l decreases at a different speed in different dimension, e.g. wi,j = ci,j2−(i+2j), the
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3.2 How does the Combination Technique Work?

full grid

j

x

+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +

−−−−−−−−−−−−−−−−−−−−−−−→
i

combination technique

j

x

+
+ +
+ + +
+ + + +
+ + + + +

−−−−−−−−−−−−−−−−−−−−−−−→
i

Figure 3.1: Surpluses for the full grid quantity of interest q4,4 (left) and for the combined
quantity of interest qc

4. Plus marks surpluses included in the sum.

sum can be adjusted accordingly. For this example
∑

2i+j≤n wi,j might be a better choice
to balance the error in each dimension. We see that depending on the decay of surpluses
other variations of the combination technique are feasible. In section 3.5 we give a short
overview over other common variations.

3.2.1 Convergence of the Combination Technique

Now as we defined the classical combination technique it is important to show under
which conditions this technique still converges. In order to make sure everything is well
defined we assume that the series over the surpluses is absolutely convergent, which
is ∑

l⃗∈Nd
0

|w⃗l| < ∞.

We now discuss, how fast the surpluses must decay such that the sum converges, and
how it depends on the number of dimensions of the considered problem.

Let qn := qn⃗ with n⃗ = n1⃗. The error en for the full grid solution

qn =
∑
l⃗≤n⃗

w⃗l

is then given by all the surpluses that are not included in the sum:

en = qn − q =
∑
l⃗>n⃗

w⃗l.
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3 Combination Technique

Similarly, the error for the combination technique

qc
n =

∑
|⃗l|≤n

w⃗l

is then given by

ec
n = qc

n − q =
∑

|⃗l|>n

w⃗l.

Under the assumption of absolute convergence it becomes clear that if qn converges
to q, the combined solution qc

n does so too and vice versa: One can just think of qc
n as

a reordering of the summed surpluses of qn. The rearrangement theorem states that
rearranging the order of the terms in an absolute converging series does not change the
value of the series [AE07]. However, this does not give any information on how fast
the error decreases for n → ∞. We will discuss more explicit error bound in the next
section.

Further assume that the surpluses are bound by a function only depending on on the
level |⃗l|: w⃗l ≤ Mf(|⃗l|). In the next section 3.2.2 we deduce this function f for the case
that there exists an error expansion for the quantity of interest.

We can now estimate the error for the combination technique as

ec
n =

∑
|⃗l|>n

w⃗l ≤ M
∑

|⃗l|>n

f(|⃗l|).

On each level of surpluses with a constant value of |⃗l| different multi-indices contribute
the same value f(|⃗l|) multiple times to the sum. Therefore we now count the number of
indices on each level

Nl =
∣∣∣{⃗l ∈ Nd

0 | |⃗l| = l
}∣∣∣

and sum up all values level wise:

ec
n ≤ M

∞∑
l=n+1

Nlf(l).

As the number of indices on each level in d dimensions has the order Nl ∈ O
(
ld−1

)
for

n → ∞ the error converges to zero if and only if

∞∑
l=0

ld−1f(l)

converges to a finite value. This directly implies that f has to converge to zero to satisfy
this condition. Note that this explicitly depends on the dimensionality of the problem.
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3.2 How does the Combination Technique Work?

The higher dimensional the problem is, the faster the surpluses have to decay. This
means that for a specific function f like f(l) = 1/l4 the series converges for d ≤ 2 but
diverges for higher dimensional problems.

We now discuss different kinds of f for which the this sum converges, which implies the
convergence of qc

n.

Decay of Surpluses

Assuming a general function f(k) there is no general rule to tell whether the series

∞∑
k=0

kd−1f(k)

converges or not. This is due to the fact that there is no universal function one could
compare the series against. However, we can provide some examples of functions f for
which the convergence of

∑∞
k=1 kd−1f(k) can be determined. For the sake of simplicity

in the following discussion we will start the series from k = 1 to avoid cases with
logarithms or fractions. There one has to add an offset to the indices in order to avoid
problems for k = 0, which would only obfuscate the formulas.

We first consider the previous example for f(k) = 1/kp. It follows that for p > d the
series converges and for p ≤ d the series diverges. Substituting f gives

∑∞
k=1

1/kp−d+1.
Comparing this to the well known series

∑∞
k=1

1/n1+εthat converges for all ε > 0 and
diverges for ε = 0 gives our proposition.

Now consider f(k) = e−βg(k) for different functions g. It is clear that if g(k) is a
polynomial the series converges. Furthermore we have following proposition:

Theorem 3.1. Consider the series
∑∞

k=1 kd−1e−βg(k) for d ≥ 1 and β > 0. For g(k) = p
√

k

the series converges for all p > 0 and β > 0. For g(k) = ln p
√

k the series converges for all
d < β/p and it diverges for d ≥ β/p. For g(k) = ln ln k the series diverges.

Proof. The first property is shown by comparing e−β
p√

k < e−γ ln k = k−γ for all γ > 0 and
for large values of k. Choosing γ > d and substituting the series gives

∑∞
k=1 kd−1e−β

d√
k <∑∞

k=1 kd−11/kγ < ∞, which means that the series converges for all β > 0.

We show the second property by comparing the series to
∑∞

k=1
1/n1+ε once again. Rewrit-

ing the series as
∑∞

k=1 kd−1e−β ln p√
k = ∑∞

k=1 kd−1k−β/p = ∑∞
k=1 kd−1−β/p we see that for

d < β/p the series converges and diverges otherwise.

The last property is shown by using (ln k)β < k for all β > 0 and large values of k:∑∞
k=1 kd−1e−β ln ln k = ∑∞

k=1 kd−1 (ln k)−β >
∑∞

k=1 kd−2 >
∑∞

k=1 k−1 as d ≥ 1. □
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3 Combination Technique

These functions can be seen as some examples for functions whose convergence or
divergence can be used to determine the behavior of other functions by comparing them:
As the series diverges for g(k) = ln ln k it also diverges for any slower growing g. As the
series converges with g(k) = p

√
k for all β > 0, it also converges for any faster growing g

like polynomials.

3.2.2 Effect of an Error Expansion for q on the Surpluses

In the previous section 3.2.1 we assumed that the decay for the surpluses is known.
Usually this is not the case. More often error bounds for the quantities of interest are
known instead that depend on the method used to calculate the solutions.

We now consider the two dimensional combination technique for quantities of interest.
Assuming that an error expansion for the quantity of interest

ei,j = qi,j − q =
s∑

k=0

t∑
l=0

ck,lh
k
x,ih

l
y,j + Ri,j

is known we now investigate how this error expansion relates to the surpluses wi,j. Here
we consider an error expansion containing all powers of the grid resolutions. In case of
more specific expansions like the Euler-Maclaurin formula for the trapezoidal rule, the
error expansion only contains even powers of the grid resolutions. In this case one can
just set some of the coefficients to zero.

For i ̸= 0 and j ̸= 0 the wi,j is given by

wi,j = qi,j − qi−1,j − qi,j−1 + qi−1,j−1.

Substituting the error expansion all the q terms cancel out and we get

wi,j = ei,j − ei−1,j − ei,j−1 + ei−1,j−1

=
s∑

k=0

t∑
l=0

ck,lh
k
x,ih

l
y,j + Ri,j −

s∑
k=0

t∑
l=0

ck,lh
k
x,i−1h

l
y,j − Ri−1,j

−
s∑

k=0

t∑
l=0

ck,lh
k
x,ih

l
y,j−1 − Ri,j−1 +

s∑
k=0

t∑
l=0

ck,lh
k
x,i−1h

l
y,j−1 + Ri−1,j−1

=
s∑

k=0

t∑
l=0

ck,l

(
hk

x,ih
l
y,j − hk

x,i−1h
l
y,j − hk

x,ih
l
y,j−1 + hk

x,i−1h
l
y,j−1

)
+ R′

i,j
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3.2 How does the Combination Technique Work?

where R′
i,j = Ri,j − Ri−1,j − Ri,j−1 + Ri−1,j−1. By splitting the error expansion in mixed

and non-mixed terms we can further simplify this expression into

wi,j =
s∑

k=0
ck,0

(
hk

x,i − hk
x,i−1 − hk

x,i + hk
x,i−1

)

+
t∑

l=0
c0,l

(
hl

y,j − hl
y,j − hl

y,j−1 + hl
y,j−1

)

+
s∑

k=1

t∑
l=1

ck,l

(
hk

x,ih
l
y,j − hk

x,i−1h
l
y,j − hk

x,ih
l
y,j−1 + hk

x,i−1h
l
y,j−1

)
+ R′

i,j

=
s∑

k=1

t∑
l=1

ck,l

(
hk

x,ih
l
y,j − hk

x,i−1h
l
y,j − hk

x,ih
l
y,j−1 + hk

x,i−1h
l
y,j−1

)
+ Ri,j − Ri−1,j − Ri,j−1 + Ri−1,j−1

and see that only the mixed terms contribute to the expansion for the surpluses. Again,
this only holds if i ̸= 0 and j ̸= 0. If either i or j is zero, non-mixed terms are still
present in the expansion for the surplus wi,j. For i = 0 and j > 0 it holds

w0,j = e0,j − e0,j−1

=
s∑

k=0

t∑
l=0

ck,lh
k
x,0

(
hl

y,j − hl
y,j−1

)
+ R0,j − R0,j−1

and

wi,0 =
s∑

k=0

t∑
l=0

ck,l

(
hk

x,i − hk
x,i−1

)
hl

y,0 + Ri,0 − Ri−1,0

and for i = j = 0 it holds

w0,0 = q0,0 = q +
s∑

k=0

t∑
l=0

ck,lh
k
x,0h

l
y,0 + R0,0.

However, these expansions result in a telescope sum when summing over i or j, which
means that only the first and the last terms remain in

∑n
j=0 w0,j and

∑n
i=0 wi,0 respec-

tively.

It is important to note that the cancellation of non-mixed error terms for the surpluses
cannot be directly applied to the combination technique. Surpluses with i = 0 or j = 0
still contain non-mixed terms, which do not cancel out when we combination technique
is applied.

Furthermore, the cancellation of non-mixed terms also supports our previous assumption
that the value of the surpluses are similar for all wi,j with the same value of i + j.
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3 Combination Technique

Assuming an error expansion of the form

ei,j = qi,j − q =
s∑

k=2
even

k∑
l=0
even

ck,k−lh
k
i hk−l

j + Ri,j

with hi = 2−i as we have for the trapezoidal rule the lowest order error term is

c2,2h
2
i h

2
j = c2,22−2i2−2j = c2,24−(i+j)

and we see that the error only depends on the level i + j in the lowest order.

3.2.3 Error of the Combination Technique

Now that we have a general combination technique qc
n for a quantity of interest it is of

major interest how large the error is and how it compares to qn.

Based on the results from the previous chapter we now assume that with hi = 2−i the
surpluses satisfy

wi,j =
s∑

k=2

s∑
l=2

ck,l2−(ik+jl) = c2,24−(i+j) + o
(
4−(i+j)

)

for i → ∞ and j → ∞. As we showed before only mixed terms remain in the expansion.
Hence, we can estimate the surpluses with

|wi,j| ≤ M4−(i+j)

for a nonnegative constant M .

Theorem 3.2. Consider surpluses |wi,j| ≤ M4−(i+j) and the combination technique qc
n =∑

i+j≤n wi,j. Then it holds for the difference between the full grid solution qn,n and the
combination technique qc

n

|qn,n − qc
n| ≤ M

3 4−nn. (3.5)

Proof. We can calculate the additional error for the combination technique over qn,n by
summing up all surpluses that are included in qn,n but not qc

n:

|qn,n − qc
n| =

∑
k+l>n
k,l≤n

wk,l ≤ M
∑

k+l>n
k,l≤n

4−(k+l).
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3.2 How does the Combination Technique Work?

We now sum up all the surpluses level-wise

· · · = M
2n∑

l=n+1
(2n − l + 1) 4−l

using that on each level l = k + l > n there are 2n − l + 1 surpluses with a similar value.
Evaluating the geometric sum leads to

. . . = M

9 4−n
(
3n − 1 + 4−n

)
≤ M

3 4−nn.

Substituting hn = 2−n then gives

|qn,n − qc
n| ≤ M

9 h2
n (−3 log2 hn − 1 + hn)

≤ −M

3 h2
n log2 hn

= M

3 h2
n log2 h−1

n .

□

We see that the error decreases quickly for increasing n. Note that this result is very
similar to the result based on the traditional pointwise error splitting assumption for a
solution in [GSZ92], which also leads to a pointwise convergence order of O (h2

n log2 h−1
n ).

The traditional proof does not only work for the combination of functions, but can also
be applied to quantities of interest with a similar error splitting assumption. However,
we only focused on properties of surpluses to deduce similar error bounds. This surplus
based approach can also be applied to the combination of solution functions: For each
point x one defines the quantity of interest q := f(x) with the numerical approximations
qi,j = fi,j(x) ≈ f(x) for which the pointwise error splitting holds

|q − qi,j| = C1(hi)h2
i + C2(hj)h2

j + D(hi, hj)h2
i h

2
j

with the bounded functions C1, C2 and D. As the coefficient functions are bounded, we
estimate them by M and get

|q − qi,j| ≤ Mh2
i + Mh2

j + Mh2
i h

2
j .

Due to our previous result that surpluses only contain mixed error terms, we estimate
the surpluses as

|wi,j| ≤ Mh2
i h

2
j = M4−(i+j)
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3 Combination Technique

for hi = 2−i and hj = 2−j. We see that we can now apply our error estimation for the
combination technique based on the surpluses. In contrast to the traditional approach
this formula gives an estimation for the difference between the full grid solution and the
combined solution |qn,n − qc

n| in stead of the total error |q − qc
n|. However, as the error

|q − qi,j| is of order O
(
h2

i + h2
j

)
, which vanishes faster than |qn,n − qc

n| ∈ O(h2
n log2 h−1

n )
for increasing grid resolutions the overall order for the error of the combined solution
does not change.

Note that this error bound holds without any further assumptions. This is unlike existing
convergence proofs for the combination of the solution (not the quantity of interest),
which assume hierarchical function spaces for the sparse grid approximation [Gar12].

Up to now we assumed that surpluses decrease in both dimensions, which generally
might not be the case. Therefore we now consider surpluses

|wi,j| ≤ M2−(αi+βj)

which decrease at a non-uniform rate. With α = β = 2 we essentially have our previous
assumption. However, if α ̸= β the level on which all surpluses have a similar value is
no longer given by i + j = const. Instead the two coefficients move the plane, such that
surpluses of similar value now satisfy αi + βj ≈ const.

3.2.4 Error of the Combination Technique with Spectral Expansions

So far we assumed that the error for both dimensions is of the form

ei =
r∑

k=1
ckhk

i + R.

An example for which this is true is the trapezoidal rule to approximate an integral. In
this case the error is given by the Euler-Maclaurin formula. However, there also exist
other expansions like a Taylor series or a Fourier series, where the length of the series
is varied instead of h. In case of a Taylor series this leads to an point-wise error of the
form

ei = −
r∑

k=i+1
ckhk − R

for a point h = x − x0 with the coefficients ck = f (k)(x0)/k!. Note hat even though the two
expansions look very similar they behave very differently. In contrast to the previous
sum, the index i now appears in the lower bound for the sum, while in the former sum,
i controlled the size of hi.
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3.2 How does the Combination Technique Work?

To investigate how the error of the combination technique behaves with these kind of
expansions, we first calculate what the surpluses look like. In one dimensions we defined
the surpluses wi as

wi = qi − qi−1

for 0 < i < r. Substituting qi = q + ei gives

wi = q −
r∑

k=i+1
ckhk − R − q +

r∑
k=i

ckhk + R

= cih
i = f (i)(x0)

i! hi

which shows that the ith surplus is just given by the ith element of the Taylor expansion.

Now consider the case that one dimensions has an error expansion as before, but the
second dimension has a Taylor-like expansion. Assume that the surpluses are given by

wi,j = 4−i h
j

j! ci,j

for bounded coefficients ci,j ≤ M . An example for surpluses like this is the quantity of
interest q =

´ 1
−1 f(h, y) dy for a fixed value of h, where the integral is approximated by

a trapezoidal rule and f(h, ·) is approximated by using a Taylor expansion. It should
be clear that a finer grid for the trapezoidal rule results in a better approximation for
the integral. This is the 4−i term. But the further away from the expansion point we
evaluate the integral, the worse the results become. This is the hj/j! term.

With these surpluses we get the following result.

Theorem 3.3. Consider surpluses |wi,j| ≤ M4−i hj

j! and the combination technique qc
n =∑

i+j≤n wi,j. Then it holds for the difference between the full grid solution qn,n and the
combination technique qc

n

|qn,n − qc
n| ≤ M

3 e4h4−n (3.6)

and with hn = 2−n it holds

|qn,n − qc
n| ≤ M

3 e4hh2
n.

Proof. To calculate the additional error of the combination technique we sum up the
surpluses which were truncated from qn:

|qn,n − qc
n| ≤

n∑
j=1

n∑
i=n−j+1

wi,j

≤ M
n∑

j=1

n∑
i=n−j+1

4−i h
j

j! .
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3 Combination Technique

Using the geometric sum to calculate the sum over i we get

. . . = M
n∑

j=1

hj

j!
4−(n−j+1) − 4−(n+1)

1 − 4−1 = M
n∑

j=1

hj

j! 4−n 4j − 1
4 − 1

= M

3 4−n
n∑

j=1

(
(4h)j

j! − hj

j!

)
.

We can estimate the first term in the sum by e4h, as it is the first part of the power
expansion ex = 1 +∑∞

k=1
xk/k!. For the second part we just skip all but the last term of

the sum with j = n. This leads to

. . . ≤ M

3 4−n

(
e4h − 1 − hn

n!

)
≤ M

3 e4h4−n

and

. . . = M

3 e4hh2
n

with hn = 2−n. □

Comparing this error bound to the error bound for exponential decay in both dimensions
3.5 we see that the additional error decreases faster: We now have the factor 4−n instead
of n4−n. This is exactly the same order we assumed for the j-axis, which became the
dominant error. This shows that the error in the i-dimension must decrease faster than
the error along the j-axis.

We now adjust the combination technique to balance the error in both dimensions,
such that no error dominates the error in the other dimension. In the previous chapter
we assumed that the error decays with 4−i and 4−j in each dimension respectively. To
balance the order of the errors we demanded

4−i4−j = 4−n = const

which leads to i = n − j and therefore the classical combination technique

qc
n =

∑
i+j≤n

wi,j =
n∑

j=0

n−j∑
i=0

wi,j.

We now try to do something similar for wi,j = 4−ihj/j!. To balance the error orders we
demand

4−i h
j

j! = 4−c = const,
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3.3 Evaluating the Combination Technique

which leads to

i = j log4 h − log4 j! + c.

Approximating the logarithm of the factorial with Stirling’s formula we have

i ≈ j log4 h − j log4 j + c = j log4
h

j
+ c,

which describes a border for the surpluses. Surpluses below this line are included in the
sum. Surpluses above this line are considered too small. The constant can be determined
with the additional constraint that i = n for j = 0, which leads to c = n. The adapted
combination technique is then defined by

qc′

n =
n∑

i=0

max{0,j log4
h
j

+n}∑
j=0

wi,j.

3.3 Evaluating the Combination Technique

The combination technique, as we defined in (3.4), is a sum of surpluses. This formula
is important to understand the combination technique and methods like thresholding
[HHK+16]. However, the combined solution can be computed differently, especially
when using the classical combination technique. In this case the initial calculation of all
surpluses can be avoided and the solution is evaluated directly as a linear combination
on the solutions q⃗l.

Using the definitions from section 3.1 we defined the combination technique (3.4) as

qc
n =

∑
|⃗l|≤n

w⃗l.

We now introduce weights

c
(w)
l⃗ =

1 |⃗l| ≤ n

0 otherwise

masking elements that are included in the combination technique. The sum above is
then equivalent to

qc
n =

∑
l⃗≤n1⃗

c
(w)
l⃗ w⃗l = cT

ww
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surpluses

j

x

+
+ +
+ + +
+ + + +
+ + + + +

−−−−−−−−−−−−−−−−−−−→
i

quantites of interest

j

x

+
− +

− +
− +

− +
−−−−−−−−−−−−−−−−−−−→

i

Figure 3.2: The coefficients for the combination technique for qc
4. Left: Coefficients for

the surpluses wi,j. Right: Coefficients for the quantities of interest qi,j. Plus stands for
positive one, minus stands for minus one.

where cw is the vector of c
(w)
l⃗ and w the vector of w⃗l. Substituting the definition of the

surpluses (3.2) we get

qc
n = cT

ww = cT
w

(
M−1q

)
=
(
cT

wM−1
)

q.

Thus the coefficients for the solutions cq are therefore given by

cT
q = cT

wM−1.

In two dimensions this leads to the weights

c
(q)
i,j =


1 i + j = n

−1 i + j = n − 1
0 otherwise

for the classical combination technique, which results in the more common definition

qc
n =

∑
i,j≤n

c
(q)
i,j qi,j =

∑
i+j=n

qi,j −
∑

i+j=n−1
qi,j (3.7)

as it is seen in literature [Gar12; GSZ92; Har16]. The emerging pattern for the weights
is illustrated in figure 3.2. Summing up all the unknowns on each grids shows that the
combination technique uses much less grid points than the full grid solution. While
the full grid solution uses O(n2) grid points, the combination technique only uses
O(2n log n) grid points spread over multiple grids [BG04; Pfl10].

For higher dimensional problems the combination technique is given by

qc
n⃗ =

d−1∑
k=0

(−1)k

(
d − 1

k

) ∑
|⃗l|=n−k

f⃗l
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as given in [HGC07; Pfl10].

To compute the combination technique it is therefore not necessary to calculate all the
surpluses first, as each solution is a sum of surpluses itself. It is sufficient to calculate
only the solutions for the highest levels and combine them with the right coefficients.
This avoids computations on smaller grids.

The same approach can also be used for more general combination techniques. Given a
finite set of indices I ⊆ Nd

0 we can define the combination technique as

qc
I =

∑
k⃗∈I

wk⃗.

Defining the weights c
(w)
k⃗ = χi(k⃗) for each surplus by the characteristic function of the

set of indices we can apply the same steps as before and get weights cT
q = cT

wM−1 for
the solutions such that

qc
I =

∑
k⃗∈I

c
(q)
k⃗ qk⃗.

3.4 Discussion

With the combination technique we presented a way to reduce the costs of a full grid
solution at the cost of an additional error.

We showed how an error expansion influences the decay of the surpluses. Depending
on the decay of the surpluses we then defined the combination technique. With an
double-exponential and a exponential-spectral decay we gave two new alternative proofs
for the error bounds of the combination technique for quantities of interest. Moreover
we used the exponential-spectral decay to show the importance of balancing the errors
in each dimension, as the error along the spectral axis decays at a faster rate than
the exponential error axis. This information can then be used to define an alternative
combination technique, which suits the decay of the surpluses.

Using the combination technique one has to compute many coarser component grids
instead of one fine grid. For example, in two dimensions this reduces the total number
of grid points from O(n2) on the full grid to O(n log n) [BG04]. This makes larger
computations possible even if the full grid becomes too large due to computational
complexity or even memory constraints. Furthermore this also adds a new layer of
parallelism. As all computations on the individual component grids are independent
they can easily be run in parallel. This can be used to further reduce the wall time
needed for the combined solution.
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3.5 Variations⋆

In the introduction we defined the combination technique as

qc
n :=

∑
|k⃗|≤n

wk⃗

assuming a specific error model in which the surpluses decay at the same rate in both
dimensions. However in the following chapters we gave different examples where it is a
good idea to use an alternative version of the combination technique. Examples for this
are cases in which surpluses decay at a different rate in each dimension. In this case
the constraint to balance the error in each dimension directly leads us to alternative
combination techniques. In a more abstract way we can therefore see the combination
technique just as a sum of a set of surpluses. The selection of surpluses, which are
summed up then depend on a specific combination technique and can be adjusted to
match the problem at hand. Hence we introduce the index set I ⊂ Nd

0, which contains all
multi-indices for the surpluses in the sum [HHK+16]. The combination technique in
terms of this index set is then described by

qc
I :=

∑
k⃗∈I

wk⃗.

The index set In corresponding to the classical combination technique is given by the

In =
{
k⃗ ∈ Nd

0 | |k⃗| ≤ n
}

.

We basically just moved the bounds from the sum into the curly braces of the index set.
An equivalent definition would be

In =↓
{
k⃗ ∈ Nd

0 | |k⃗| = n
}

with the downset

↓ A =
{
k⃗ ∈ Nd

0 | ∃a⃗∈A k⃗ ≤ a⃗
}

.

We give a short overview of some alternative combination techniques for different kind
of problems. For all methods an example is given in figure 3.3 to illustrate the differences
visually.

⋆This chapter is part of the propaedeutic.
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Figure 3.3: Comparison of different combination techniques with n = 4. The Plus stands
for a factor of plus one in the sum, minus stands for minus one. The truncated version
uses m⃗ = (2, 2), which is marked with □. The anisotropic grids use n⃗ = (4, 2) and ANOVA

uses m = 1.
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3.5.1 Truncated Combination Technique

For many applications including GENE a minimal grid resolution is needed for some
dimensions, as otherwise the solver cannot calculate a solutions for grids that are very
coarse in one dimension. The solution for this problem becomes apparent when looking
at the combination pattern for quantities of interests in figure 3.2. As computations
with one index close to zero cannot be computed we take the combination technique
corresponding to a larger full grid and skip all computations that are too small to
compute. This looks like cutting the corners of the triangular area. We can compute the
surpluses belonging to this method by using the results from section 3.3. This gives the
index set for the truncated combination technique [BBNS12; BP12]

I(tr)
n =↓

{
k⃗ ∈ Nd

0 | |k⃗| ≤ n + max(m⃗) ∧ m⃗ ≤ k⃗ ≤ n⃗
}

with n⃗ = n · 1⃗ and a multi-index m⃗ describing the minimal resolution needed in each
dimension. As the Gene simulations in chapter 5 need a minimal resolution in each
dimension we used the truncated combination technique to combine the results of the
component grids.

The classical index set is therefore equivalent to the index set of the truncated combi-
nation technique with m⃗ = 0⃗. With m⃗ = n · 1⃗ the truncated combination technique is
equivalent to the full grid solution.

Using a truncated version with m⃗ ̸= 0⃗ increases the computational effort, as the sizes
for the needed grids increase. For m⃗ = (d − 1)n · 1⃗ the combination technique becomes
identical to solving the n⃗-grid directly. However, while the error decreases as we use
more surpluses, the convergence of the solution function remains unchanged [Har16].
A conclusion from proposition 4.5 in [Har16] shows that the truncated combination
technique converges at the same rate to the exact solution as the classical combination
technique for increasing n.

3.5.2 Anisotropic Grids

For problems, where different resolutions are required in each dimension, these def-
initions can be further generalized. As one is interested in a solution using a higher
resolution in one dimension it makes sense to take more surpluses in this direction into
account. An example for an index set with these properties is

In⃗ =
{
k⃗ ∈ Nd

0 | |k⃗| ≤ max(n⃗) ∧ k⃗ ≤ n⃗
}

.
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Combining these different index sets is also an possible. A truncated version with a
minimum level of m⃗ can then be defined as

I
(tr)
n⃗ =↓

{
k⃗ ∈ Nd

0 | |k⃗| ≤ max
i,j≤d

(n⃗i + m⃗j) ∧ m⃗ ≤ k⃗ ≤ n⃗
}

.

These two definitions are generalizations of the two former definitions. For n⃗ = n · 1⃗
these index sets are equivalent to In and I(tr)

n respectively.

However, this uses quite a lot surpluses in one dimension. An other alternative is to
define a hyperplane, such that the index set contains all surpluses below this plane:

I a⃗
n⃗ =

{
k⃗ ∈ Nd

0 | k⃗ ≤ |a⃗ · n⃗|
}

.

The skewness of the plane is thereby controlled by the muti-index a⃗, which can be seen
as a vector of weights applied to n⃗. For a⃗ = 1⃗ this is equivalent to In.

3.5.3 Analysis of Variance (ANOVA)

The combination technique is also very similar to a so called ANOVA decomposition of a
function, which can be used to estimate the variance of a function as shown in [ES81].
A function depending on random variables x1, . . . , xn is thereby decomposed into a sum
of functions, each depending only on m ≤ n variables while holding all other variables
constant. These functions are uncorrelated and have mean zero [ES81]. Usually only
the low-order interactions with m ≪ n are used. This simplifies the analysis as the
remaining functions have much less arguments than the initial function. For example,
the decomposition for a function with 3 arguments looks as follows

f(x, y, z) = µ + f1(x) + f2(y) + f3(z)
+ f12(x, y) + f13(x, z) + f23(y, z)
+ f123(x, y, z)

which is then approximated with m = 1 as

f(x, y, z) ≈ µ + f1(x) + f2(y) + f3(z).

This method corresponds to a combination technique using only the surpluses wi,0,0,
w0,j,0 and w0,0,k. The grid resolutions then control how good the solution functions fi(xi)
are approximated.

The index can therefore be described as [HHK+16]

Ianova
n⃗,m =

{
k⃗ ∈ Nd

0 | |supp k⃗| ≤ m ∧ k⃗ ≤ n⃗
}
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3 Combination Technique

where |supp k⃗| is the number of nonzero entries in k⃗. For m = d the ANOVA method
becomes equivalent to the full grid solution.

The ANOVA has also applications outside the field of statistics. For example, this de-
composition can be used to analyze error bounds for quadrature rules as shown in
[Hic96]. In case the magnitude of the individual ANOVA effects is known, one can draw
conclusions on the performance of the quadrature rules and reduce the error by choosing
an appropriate quadrature rule.

3.5.4
√

h Sparse Grids/Two Scale Combination

While sparse grids reduce the number of unknowns for a problem, they usually converge
slower than full grid solutions. An other combination technique uses

√
h sparse grids

[LZ06]. The total number of unknowns is with O
(
h−d/2

n

)
higher than usual sparse grids,

but still significantly lower than a full grid with O
(
h−d

n

)
. However for a specific class of

PDEs the solution functions converge with O(h2
n), which is the same order as full grids

[Pfl10]. The corresponding index set is given by

I(
√

h)
n =

{⃗
l ∈ Nd

0 | ∃k l⃗k ≤ n ∧ ∀r ̸=k l⃗r ≤
⌊

n

2

⌋}
which means that all but one entry of the multi-indices in the set must be smaller than
⌊n/2⌋.
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4 A Combination Technique for the
Romberg Method

In section 2.2.2 we showed a way to use standard extrapolation rules to improve higher
dimensional solutions. While this leads to higher accurate approximations this method
is quite expensive as all solutions qk⃗ with |k⃗| ≤ n are needed to compute an extrapolated
qn,n. With the combination technique in chapter 3 we introduced a way to reduce the
costs of normal solutions by just using a subset of the surpluses, which only leads to a
slightly worse error. We now try to combine the best of both ideas in a new “extrapolated”
combination technique, which has similar asymptotic error bound as the extrapolation
method. At the same time it uses significantly less effort to calculate than the tensor
Romberg method and thus is closer to the computational effort needed for the traditional
combination technique.

This method is based on the tensor extrapolation scheme introduced in section 2.2.2.
Instead of the quantities of interest we considered before, we now consider the extrapo-
lated quantities of interest. In the context of integration problems, these quantities of
interest are the extrapolated trapezoidal rules qi,j := T (i,j). Each solution qi,j is therefore
the result of an extrapolation in both dimensions. Based on the extrapolated qi,j we then
calculate surpluses and apply the combination technique as we did before.

In the following we first investigate how the new surpluses decay. We then use this
knowledge to deduce error bounds for the difference between the full extrapolation
qn,n = T (n,n) and the combined result qc

n using the extrapolated quantities of interest.

4.1 Effect of the Extrapolation on the Surpluses

In order to estimate the error for this technique, we first investigate how the tensor
Romberg method affects the surpluses. Starting with the one dimensional case we
denote the extrapolated quantity of interest as q

(e)
i with the surpluses w

(e)
i . For i = 0 we

just have w
(e)
0 = q

(e)
0 = q0 as before. For i = 1 we have

w
(e)
1 = q

(e)
1 − q

(e)
0 = 4

3q1 − 1
3q0 − q0 = 4

3 (q1 − q0) = 4
3w1.
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4 A Combination Technique for the Romberg Method

Otherwise, using the definition of the surpluses (3.2) and substituting the one dimen-
sional Romberg method (2.7) we have

w
(e)
i+1 = q

(e)
k+1 − q

(e)
k

= 4
3qk+1 − 1

3qk − 4
3qk + 1

3qk−1

= 4
3 (qk+1 − qk) − 1

3 (qk − qk−1)

= 4
3wk+1 − 1

3wk

and we see that the extrapolation on the quantity of interest corresponds directly to the
extrapolation of the surpluses. This also holds for higher extrapolation orders, as for
each new order a similar pattern to (2.8) can be applied to the previous extrapolation
level. This means that we can eliminate further terms from the expanded form of the
surpluses. However, as each new extrapolation level contains one less extrapolated
quantity of interest, we shift the indices by one such that the first surpluses remain
unchanged.

In two dimensions we apply the one dimensional Romberg method on each dimension
separately and get the same result by rearranging the terms

w
(e)
i,j = q

(e)
i,j − q

(e)
i−1,j − q

(e)
i,j−1 + q

(e)
i−1,j−1

= 16
9 (qi,j − qi−1,j − qi,j−1 + qi−1,j−1)

− 4
9 (qi−1,j − qi−2,j − qi−1,j−1 + qi−2,j−1)

− 4
9 (qi,j−1 − qi−1,j−1 − qi,j−2 + qi−1,j−2)

+ 1
9 (qi−1,j−1 − qi−2,j−1 − qi−1,j−2 + qi−2,j−2)

= 16
9 wi,j − 4

9wi−1,j − 4
9wi,j−1 + 1

9wi−1,j−1

which corresponds to the first extrapolation step in two dimensions. The coefficients
come from the tensor product of the weights (4/3, −1/3) with themselves. Again, the fact
that the extrapolation applied to the quantities directly applies to the surpluses, still
holds in higher dimensions due to the tensor product properties of our method.
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To perform the one dimensional extrapolations we can use a similar scheme as for the
quantities of interest and apply the scheme directly to the old surpluses:

w0 = w
(1)
0 = w

(2)
0 = w

(3)
0

↘
w1 → w

(1)
1 = w

(2)
1 = w

(3)
1

↘ ↘
w2 → w

(1)
2 → w

(2)
2 = w

(3)
2

↘ ↘ ↘
w3 → w

(1)
3 → w

(2)
3 → w

(3)
3

where w
(k)
i are the kth extrapolated surpluses and wi the non extrapolated surpluses.

After the extrapolation we have the new extrapolated surpluses we
i := w

(i)
i , which we

denote by wi or wi,j in two dimensions in this chapter. Hence we can directly deduce the
extrapolated surpluses w

(e)
i,j from the original surpluses wi,j by applying the extrapolation

scheme.

4.2 Error for the Combined Romberg Method

In the previous chapter we showed that the extrapolation for the quantities of interest
directly trickles down to the surpluses. This means that after the extrapolation the
surpluses are of increasing order in each dimension.

The extrapolation as presented earlier only makes sense if the error expansion for the
quantity of interest only contains even exponents. By adjusting the steps in section 2.2.1,
one could easily adjust the method to work with an error expansion containing odd
coefficients as well. However for surpluses that decay in a spectral way like for a Taylor
expansion, the Romberg method is less effective.

Therefore, we now consider a quantity of interest with an error expansion of the form

qx,y − q =
∞∑

i=2
even

i∑
k=0
even

ck,i−khk
xhi−k

y

which is similar to the two dimensional Euler-Maclaurin formula we discussed in section
2.1.2. As shown in 2.2.1 each one dimensional extrapolation step is given by

T (k)(h) = T (k−1)(h) − α−2kT (k−1)(αh)
1 − α−2k

if T satisfies the error expansion. Each extrapolation step does not only cancel one
additional error term from the error expansion but also modifies the coefficients for
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all higher order error terms. We now investigate how the coefficients for the highest
remaining error terms change over multiple extrapolation steps. This helps us to calculate
how fast the extrapolated quantities of interest converge. As shown in the previous
section, the extrapolation on the quantity of interest corresponds to extrapolating the
surpluses. Once we know the decay for the surpluses, we can estimate the error for our
method similar to 3.2.3 by summing up the surpluses.

4.2.1 Decay of the Extrapolation Coefficients

To calculate the decay of the coefficients we first focus on the one dimensional case and
a quantity of interest q with an error expansion

q(h) − q =
p∑

i=2
even

cih
i.

We now denote the kth extrapolation with a fixed α as q(k)(h). The extrapolation does
not only cancel error terms but also changes the coefficients of the remaining error
terms. In order to estimate the error of the extrapolated results we now investigate how
the coefficients change for increasing extrapolation orders. Therefore we write the error
expansion of q(k) as

q(k)(h) − q =
p∑

i=2(k+1)
even

d
(k)
i cih

i

where the coefficients are changed by an additional factor d
(e)
i . In particular d

(k)
2k+2 is

of special interest, as it is the additional factor for the lowest order term of the kth

extrapolation. The following lemma gives a bound for these additional factors:

Lemma 4.1. Consider a quantity of interest with an error expansion of the form

q(h) − q =
p∑

i=2
even

cih
i

and the extrapolated quantities of interest q(k) with an error expansion

q(k)(h) − q =
p∑

i=2(k+1)
even

d
(k)
i cih

i. (4.1)

The factors d
(k)
2k+2 for the extrapolated quantity of interest with α = 1/2 satisfy∣∣∣d(k)

2k+2

∣∣∣ ≤ 2−(k2+k) ∈ O
(
2−k2)

.
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Proof. As the 0th extrapolation corresponds to the initial quantity of interest we have
d

(0)
i = 1 for all i. After the first extrapolation step the h2 error term is eliminated, which

means that d
(1)
2 = 0. For all other terms in the error expansion we have

d
(1)
i = αi−2 − 1

α−2 − 1

for i = 4, 6, . . . according to the extrapolation formula. For the second extrapolation
step it holds

d
(2)
i =

0 i ∈ {2, 4}
αi−4−1
α−4−1 d

(1)
i i = 6, 8, . . .

where we eliminate the h4 error term. Continuing this pattern gives

d
(k)
i =

0 i = 2, 4, . . . , 2k
αi−2k−1
α−2k−1 d

(k−1)
i i = 2k + 2, 2k + 4, . . .

which gives us a recursive formula for the non-zero values. We can write the non-zero
values for i ≥ 2k + 2 as

d
(k)
i =

n∏
e=1

d
(e)
i =

n∏
e=1

αi−2e − 1
α−2e − 1 .

Note that all factors d
(k)
i have an absolute value smaller one. We know that the kth

extrapolation eliminates all terms hi with i ≤ 2k and that the the lowest order term
remaining is d

(k)
2k+2c2k+2h

2k+2. We are therefore interested in the factor d
(k)
2k+2 to estimate

the error. Using the previous formula we see

d
(k)
2k+2 =

k∏
i=1

d
(i)
2i+2 =

k∏
i=1

α2k+2−2i − 1
α−2i − 1 .

As the absolute value of each numerator is smaller than one we can estimate the
coefficients with α = 1/2 as

∣∣∣d(k)
2k+2

∣∣∣ ≤
k∏

i=1

1
4k − 1 ≤

k∏
i=1

1
4k

= 4−
∑k

i=1 i ∈ O
(
2−k2)

for k → ∞. □

While the error for the original quantity of interest q(h) behaves like∣∣∣q(2−kh) − q
∣∣∣ ≤ C2−2kh2
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for a constant C, it holds∣∣∣q(k)(h, 2−1h, . . . , 2−kh) − q
∣∣∣ ≤ C(e)2−k2

h2k+2

for the extrapolated quantity of interest and an new constant C(e). We see that the
extrapolated quantities decay much faster for increasing k. As shown before the extrapo-
lation for the quantity of interest this is equivalent to applying the extrapolation to the
surpluses for which a similar formula holds.

4.2.2 Calculating the Error

We now apply the combination technique to the extrapolated surpluses and calculate
some error bounds. Based on the result of the previous section and the tensor product
properties of applying the extrapolation on each dimension individually we now assume
that our surpluses satisfy

|wi,j| ≤ M2−(i2+j2)

for a two dimensional problem and a nonnegative constant M . Note that we assumed
|wi,j| ≤ M2−(i+j) in section 3.2.3 where we discussed the error for the normal combi-
nation technique without extrapolation. In figure 4.1 is shown how levels of similar
absolute value behave for each kind of decay.

Once again we are interested in the difference between the full grid solution qn,n and
the combined solution qc

n, which now uses the extrapolated results. Here the full grid
solution corresponds to the full extrapolated solution using the tensor Romberg method.
The following theorem gives an error bound for the additional error.

Theorem 4.2. Consider the extrapolated surpluses |wi,j| ≤ M2−(i2+j2) and the combina-
tion technique qc

n = ∑
i+j≤n wi,j. Then it holds for the difference between the extrapolated

full grid solution qn,n and the combination technique qc
n

|qn,n − qc
n| ≤ Mπ

4 ln 22− 1
2 n2

.

Proof. The difference between the solutions can be estimated by

|qn,n − qc
n| =

∑
k+l>n
k,l≤n

|wk,l| ≤ M
∑

k+l>n
k,l≤n

2−(i2+j2).
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Figure 4.1: Levels, on which surpluses have a similar value. Left: levels with i+j = const

form lines. Right: levels with i2 + j2 = const form circles.

However, we cannot sum up the surpluses level-wise as before as the solution for
i2 + j2 = const are circles, which does not map nicely to our discrete values of i and j.
We therefore approximate the sum by an integral, which is easier to calculate:

· · · ≤ M

ˆ n

0

ˆ n

n−x

2−(x2+y2) dydx.

We now switch to polar coordinates and generously estimate the triangular integration
region by a torus part covering the triangle and we have

. . . ≤ M

ˆ √
2n

1
2

√
2n

ˆ π
2

0
2−r2

r dφdr

= M
π

2

ˆ √
2n

1
2

√
2n

r2−r2 dr

= Mπ

4 ln 2
(
2− 1

2 n2 − 2−2n2)
≤ Mπ

4 ln 22− 1
2 n2

where we use the fact that all the surpluses along a circle around the origin have similar
absolute values. □
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In contrast to the combination technique without the extrapolation, which decays
proportional to n2−n, we now observe a decay proportional of 2− 1

2 n2
, which should be

significantly smaller for reasonably big values of n.

Based on the observation that surpluses on a circle around the origin are similarly sized,
we can define an alternative combination technique qc′

n , which gets rid of the 1/2 factor
in the exponent at the cost of using some more surpluses:

qc′

n =
∑

k2+l2≤n2

wk,l.

Note that we now use k2 + l2 ≤ n2 as an upper bound for the indices instead of k + l ≤ n.
This implies that all surpluses on this boundary have a similar absolute value. We
calculate the additional error as before and find∣∣∣qn,n − qc′

n

∣∣∣ ≤ M

ˆ √
2n

n

ˆ π
2

0
2−r2

r dφdr

= Mπ

4 ln 2
(
2−n2 − 2−2n2)

≤ Mπ

4 ln 22−n2
.

However this alternative combination technique qc′
n uses about 1/4πn2−1/2n2

n2/2
≈ 57% more

surpluses than qc
n.

Instead of adding more surpluses to improve the error bounds, we can also remove
surpluses while maintaining the error bounds of qc

n. In the error estimation for qc
n we

loosely estimated the triangular integration region by an torus segment. We can now
define another alternative combination technique

qc′′

n =
∑

k2+l2≤ n2
2

wk,l

where we adapt the set of used surpluses such that they resemble the torus estimation
much better. We now have an error bound of∣∣∣qn,n, − qc′′

n

∣∣∣ ≤ Mπ

4 ln 22− 1
2 n2

while reducing the amount of used surpluses by approximately 1/4π(n/
√

2)2−1/2n2

n2/2
≈ −21%.

It is important to note that these percentage numbers do not relate to the computational
complexity or similar things as the cost for calculating the individual surpluses can vary
a lot. Many different factors like the used grid sizes and the complexity of the solver
have an effect on the total cost. The numbers are only given for a very rough idea of
how much the amount of surpluses differ for each version and to give an example of
things to consider when deciding which surpluses one wants to use.
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4.3 Discussion

While this method achieves similar results to the full tensor Romberg method with much
less surpluses (see chapter 5), both have some shortcomings. Similar to the normal one
dimensional Romberg extrapolation for integration problems these methods strongly
depend on the smoothness of the function. If the error expansion does not hold or is too
short for the degree of extrapolation, these methods can lead to large errors or totally
wrong results. For high extrapolation degrees these methods additionally become very
prone to small inaccuracies such as rounding errors. This can make high extrapolation
errors unfeasible. However, due to the good approximation order of the extrapolation,
lower order extrapolations might give results that are good enough.

An alternative similar method described in [Har16] and [Rei04] uses the calculated
solutions to generate many first or second order extrapolations, which are then combined
with the combination technique. While this method does not have such a high approxi-
mation order it is much more robust with respect to rounding errors and improves the
accuracy of the final result. Thanks to our previous work we can even estimate the error
quite easily. As a first order extrapolation cancels all h2

i terms in the expansion for both,
quantity of interest and the surpluses, we estimate the new surpluses as wi,j ≤ M2−4(i+j)

and repeat the steps from section 3.2.3.
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5 Numerical Results

After we discussed many different theoretical aspects of the combination technique and
the surpluses, we now present some numerical results for different test cases. Namely
we test our results with different artificial integration problems, where the quantity of
interest is the integral over a two dimensional function. Also we test our methods for
various quantities of interests calculated by the plasma turbulence simulation GENE.

5.1 Experimental Setup

5.1.1 Integration Problems

For some easy to verify experiments we used various two dimensional integration
problems. A big advantage of this is that the exact solution is often known analytically
and therefore the error and convergence of the methods can easily be verified. As
quantities of interest we calculated

q1(f) =
ˆ 1

0

ˆ 1

0
f(x, y) dxdy

q2(f) =
ˆ 1

0

ˆ 1

0
(f(x, y))2 dxdy

for different functions and calculated the surpluses and analyzed the convergence
behavior. To calculate numerical results for the quantities of interest different integration
methods were used. Besides a hierarchical and non-hierarchical trapezoidal rule with
2k + 1 and 2k grid points respectively, other methods like Gauss-Legendre, Clenchaw-
Curtis, truncated Taylor series and a least-squares polynomial approximation were used.
Additionally noise was added on the grid points for some of the methods to investigate
the effect. In this work we will only discuss the results of the normal trapezoidal rules,
as they nicely show our theoretical results due to their error expansion. The evaluation
of other methods is beyond the scope of this work.
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To use the trapezoidal rule we first have to discretize the integration area Ω = [0, 1]2.
For the trapezoidal rule we choose different equidistant grids in each dimension:

Gi,j =
{

(x, y) ∈ Ω | x = k

Ni

, y = l

Nj

, k = 0, . . . , Ni, l = 0, . . . , Nj

}

with Nk = 2k for the hierarchical and Nk = 2k − 1 for the non-hierarchical trapezoidal
rule. On Gi,j the trapezoidal rule is then defined as

Ti,j(f) = 1
Ni

1
Nj

Ni∑
k=0

Nj∑
l=0

ck,lf

(
k

Ni

,
l

Nj

)

with the weights

ck,l =


4 k = 1, . . . , Ni − 1 ∧ l = 1, . . . , Nj − 1
1 k = 0, Ni ∧ l = 0, Nj

2 otherwise.

The combination technique is then applied over the results of the trapezoidal rules
qi,j = Ti,j(f) as quantity of interest with different numbers of grid points in each
dimension.

We use these integration problems to verify our theoretical results on the behavior of
the surpluses and the error in the next chapter.

5.1.2 GENE

To apply the combination technique to a real world example we used the gyrokinetic
plasma turbulence simulation GENE [GM13]. GENE was initially developed by F. Jenko
et al. [JDKR00] and successively improved by others. It solves the nonlinear gyrokinetic
equations, but also contains a switch to only use the linear part of the equation.

In this work we consider GENE as a black box, which runs a simulation for a given set
of grid parameters and outputs a set of quantities of interests. For a more in depth
explanation of GENE and the underlying physics we refer to the manual [GM13] and
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the dissertations of Dannert [Dan05] and Grler [Gör10]. The quantities of interest we
consider are all integrals over the velocity space d3v:

n1 =
ˆ

vf1 d3v Qes =
ˆ 1

2mv2f1vD d3v

u1∥ = 1
n0

ˆ
v∥f1 d3v Qem = 0

T1∥ = m

n0

ˆ (
v∥ − u1∥

)2
f1 d3v − T0

n1

n0
Γes =

ˆ
f1vD d3v

T1⊥ =
ˆ

v v2
⊥f1 d3v − T0

n1

n0
Γem = 0

with the particle distribution function f1, particle density n1, parallel velocity v∥, drift
velocity vD, parallel and perpendicular temperature T∥ and T⊥, the electrostatic and
electromagnetic particle flux Γes and Γem and the electrostatic and electromagnetic
heat flux Qes and Qem. Each property is then averaged over the simulation volume
and normalized to a reference value [GM13]. The symbols for the different physical
properties were chosen to match the symbols in the GENE manual.

This also shows the general importance of considering integration problems as all
quantities of interest contain some sort of integral.

For our experiments we considered linear runs with an equidistant µ-grid, nonlinear runs
with an equidistant µ-grid and nonlinear runs with an Guass-Laguerre µ-grid. Multiple
simulations were run with different grid resolutions. The resolutions in the spacial
dimensions x, y and z were kept constant while the resolutions in the dimensions v

(parallel velocity v∥) and w (magnetic moment µ) were varied. The number of grid
points in the velocity and magnetic dimension was chosen to be 2k for the equidistant
grids and k for the Gauss-Laguerre grid. As GENE fails to run for to small grids, k has
to be at least 3 and at least 4 for the w dimension as the solutions for the quantities of
interest collapse to zero otherwise. Therefore, all GENE plots contain an offset and start
at k = 3. The parameter files with further settings for the simulations can be found in
the Appendix.

We then applied the combination technique on the different solutions and analyzed the
result.

5.2 Results for Integration Problems

We now present our results with different integration problems and check if they confirm
our theoretical results of the previous chapters.
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5 Numerical Results

Figure 5.1: Logarithmic absolute value for the error of the quantity of interest q1(f)
(left) and the surpluses (right) for the two dimensional integral with the trapezoidal
rule for f(x, y) = x (x − 1) y (y − 1). The parameters i and j effect the grid resolution in
each dimension. Increasing i or j doubles the amount of grid points in x or y dimension
respectively.

5.2.1 Effect of the Error Expansion on the Surpluses

In chapter section 3.2.2 we assumed a general error expansion for a quantity of interest
and concluded that the expansion for the surpluses only contains terms of the form hk

xhl
y

with k, l ≥ 1. That means non-mixed terms like hk
x or hl

y are not present any more, even
though the error expansion for the quantity of interest can contain these terms.

This effect can clearly be seen in our experiments. In figure 5.1 this effect can be seen
for a two dimensional integration problem. Lines on which the calculated quantity of
interest (the value of the integral approximated by a trapezoidal rule) has similar values
are L-shaped. The lines on which the surpluses have similar values form parallel lines
going from the upper left to the lower right. This is a direct consequence of the error
expansions by examining the most significant error terms:

As the quantity of interest is calculated using the trapezoidal rule the lowest order error
terms are h2

x and h2
y. The value of the error mostly depends on max

{
h2

x, h2
y

}
. As hx ∝ 2−i

and hy ∝ 2−j are monotonically decreasing the levels of similar values are described by
min {i, j} = const, which leads to the L-shaped levels. Note that the highest mixed term
is h2

xh2
y and is therefore of higher order.

As shown in section 3.2.2 calculating the surpluses cancels out all non-mixed terms like
from the error expansion. The h2

x and h2
y terms are therefore no longer present in the

surpluses and the lowest order term h2
xh2

y is proportional to 2−i2−j = 2−(i+j). For the
surpluses, levels of similar values are therefore lines with i + j = const, which leads to
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5.2 Results for Integration Problems

the parallel lines from the upper left to the lower right. Summing up only the surpluses
with the larges values therefore leads to the combination technique qc

n := ∑
|⃗l|≤n w⃗l as

defined in 3.4.

5.2.2 Error of the Combination Technique

We now revisit the error estimations for the combination technique. As the expansion
for the surpluses for the trapezoidal rule only contains mixed terms of at least second
order in each grid resolution it holds

|wi,j| ≤ M4−(i+j).

In (3.2.3) we discussed the error for the combination technique and showed that

|qn,n − qc
n| ≤ M

3 n4−n

holds according to equation (3.5).

The results for one of the integration problems is shown in figure 5.2. The plots show
the measured additional error |qn,n − qc

n| and an approximation for the upper bound
M
3 n4−n. The upper bound was calculated using Mmax = maxi,j (4i+j |wi,j|) for all known

surpluses. As the surpluses decay quickly, this should be a good approximation for
M . The results shown in figure 5.2 are particularly interesting, as the measured error
|qn,n − qc

n| is just slightly smaller then upper bound M
3 n4−n, which shows that the given

formula for the upper bound is a good approximation.

5.2.3 Effects of Extrapolation on the Surpluses

In section 4.1 we discussed the effect of the extrapolation on the surpluses and found
that the extrapolating the quantity of interest is equivalent to extrapolating the surpluses
that therefore decay much faster. Furthermore we found that surpluses on a circular line
around the origin have similar absolute values. The results for the integration problems
in figure 5.3 show this effect: While the surpluses for the extrapolated combination
technique are slightly larger close to the origin they decay significantly faster than the
standard combination technique due the performed extrapolation.

The actual rate at which the surpluses decrease are shown in figure 5.4. The surpluses
for the combination technique clearly show that the absolute value decay by an factor of
2−4 every time the number of grid pints doubles in both dimensions. This directly relates
to the results from section 3.2.2 saying that the surpluses only contain mixed terms. In
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5 Numerical Results

Figure 5.2: Additional error |qn,n − qc
n| for the two dimensional trapezoidal rule with

f(x, y) = x (x − 1) y (y − 1) as quantity of interest: Measured error (blue line) and
approximated upper bound (red dots). The upper bound was approximated, by using
the maximum M for all known surpluses. Note that both values are discrete values
drawn continuously to show the effect more clearly.

Figure 5.3: The logarithmic absolute value of the surpluses for the combination tech-
nique (left) and the combination technique with extrapolation (right) using the non-
hierarchical trapezoidal rule for sin(x + y).
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5.2 Results for Integration Problems

Figure 5.4: Decay of the absolute value of the surpluses wn,n for the combination
technique (green) and the combination technique with extrapolation (red) using the
non-hierarchical trapezoidal rule for sin(x + y). The dashed black line is the expected
decay c2−(n2+n2) as a reference.

case of the error expansion for the trapezoidal rule the lowest order term remaining is
h2

xh2
y. Doubling the number of grid points then gives (2−1hx)2(2−1hy)2 = 2−4hxhy. The

extrapolated surpluses are slightly larger at first but start decreasing much faster than
the original surpluses. This is due to the fact that the extrapolated surpluses decay like
2−(i2+j2) for i, j → ∞ while the original surpluses decay like 4−(i+j) as shown in section
4.1 and section 3.2.2. The larger surpluses for the extrapolated version, which can be
seen at higher levels, are probably artifacts of rounding errors and the high extrapolation
order.

5.2.4 Error for the Combination Technique with Extrapolation

In chapter 4 we introduced a combination technique built on top of an extrapolation
method to improve the error bounds of the method. We found that

∣∣∣qn,n − qc′

n

∣∣∣ ≤ Mπ

4 ln 22− 1
2 n2

holds for the additional error for a constant M , which should lead to significantly better
results than the normal combination technique. In our experiments with the extrapolated
combination technique we used the adjusted version

qc′

n =
∑

k2+l2≤n2

wk,l,
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5 Numerical Results

Figure 5.5: Comparison of or different methods for the hierarchical trapezoidal rule
for f(x, y) = sin (3x + 5y): Left: Error of the full grid solution (black), combination
technique (green), full tensor Romberg method (blue), Combined Romberg method
(red). Right: Difference between the full grid solution and the combined solution for
the combination technique (green) and the Combined Romberg method (red). The
dashed black line is an example for the expected decay c2−1/2n2 as a reference. Note that
the corresponding full grid solution for the Combined Romberg Method is the tensor
Romberg method.

which matches the decay of the surpluses. The resulting errors for the function f(x, y) =
sin(3x + 5y) can be seen in figure 5.5. On can see that the error for the Romberg
versions decreases much faster than the error for the standard combination technique.
For each versions of the normal and the extrapolated techniques achieve both, the full
grid solution and the combined solution, similar convergence order. Also the difference
between the full grid solution and the combined solution look as out theory suggested.
While the difference for the normal combination technique decreases exponentially, the
Romberg version decreases even faster than 2−(i2+j2). Besides the fact that we only gave
an upper bound for the error, one further reason for this might be that the coefficients
ci,j in front of the error terms in (4.1) on page 50 decay, too. As mentioned before the
increasing error for n > 7 might be an error due to rounding errors.

5.3 Plasma Turbulence Simulation GENE

In the previous section it was quite easy to apply our results to different integration
problems. However, for GENE this turned out to be more challenging.
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5.3 Plasma Turbulence Simulation GENE

As mentioned before, GENE has two simulation modes: a linear mode and a non-linear
mode. However for the linear mode the quantities of interest diverges exponentially
to infinity for large simulation times as shown in figure 5.6. The rate at which the
quantities increase can still give interesting physical insight [GM13]. The fact that the
computed quantity of interest drops towards zero might be due to overflow effects in
the solver.

In case of the nonlinear run the growth of the quantity of interest is dominated by the
linear part for the first few second where one can see the exponential growth once
again. Afterwards the nonlinear part shows effect and the solution fluctuates around a
constant level. These fluctuations make it difficult to apply the combination technique
over different solutions as the extend is quite large even on smaller time scales: If one
takes one point in time and measures the quantity of interest the value might differ a
lot to the value of the quantity of interest a few seconds later. Changes in the scale of
2500 in about 20 seconds can be observed, which is a lot compared to an average value
of about 4500. Also the standard deviation is quite large with a value of 720, which
is equivalent to a variance of 5200. The trend for a nonlinear run with average and
standard deviation is shown in figure 5.6. For both the mean

µ = 1∑n
i=1 wi

n∑
i=1

wixi

and the variance [Pri72]

σ2 =
∑n

i=1 wi

(∑n
i=1 wi)2 −∑n

i=1 w2
i

n∑
i=1

wi (xi − µ)2

we used a weighted version of the formulas where the weights for each data point is the
length of each time step simulated.

Due to the high fluctuations the surpluses for the quantities of interest are very noisy and
the quality of the result of the combination technique is not clear. One possibility to tackle
this problem is to say that one is not interested in the exact values of the simulations but
rather the temporal average of the nonlinear part of the solution. The different surpluses
for the non averaged and averaged methods can be seen in figure 5.7.

This approach was expected to be more robust under the effect of fluctuations. However,
while the surpluses for the averaged method seem to be much smaller than for the non
averaged method both surpluses do not seem to have a specific trend and look rather
noisy. The high values for the surpluses on the left are because the GENE cannot simulate
the quantities of interests properly for only 8 grid points in the v dimension, which
causes in a huge initial increase of the values up to a magnitude of 108, followed by a
decay of similar size and large fluctuations.
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5 Numerical Results

Figure 5.6: Top: Particle density for a linear (left) and nonlinear (right) GENE run
with an equidistant µ-grid. Bottom: Particle density for a nonlinear Gene run with a
Gauss-Laguerre grid. Red lines mark the average value for the time after the red dot.
The red dashed line is the average plus minus the standard deviation for the same time
interval.

While the surpluses in our experiments do not seem to converge due to very different
results for different grid resolutions, ongoing experiments by Mario Heene suggest that
for finer grids the solutions seem to converge. Here, further work is needed to verify
this.
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5.3 Plasma Turbulence Simulation GENE

Figure 5.7: Top: Logarithmic surpluses for particle density for the nonlinear runs using
a Gauss-Laguerre grid in the w dimension. Left: Sampling the last simulated value.
Right: Using the average over the last 300s of simulated time.
Bottom: Logarithmic surpluses for particle density for the linear runs. One can see, that
the surpluses are much more regular than the nonlinear runs.
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6 Conclusion

In this work we presented an alternative view on the combination technique. While most
existing literature defines the combination technique as linear combination of different
solution functions, we took a slightly different approach. We skipped the constraint on
the hierarchical properties and shifted the focus away from the solutions themselves
towards the surpluses. Based on an error model we defined the combination technique
to only include the largest surpluses. In this process we skipped small surpluses that
do not contribute much to the solution. This reduced the number of grid points from
O(h−2

n ) to O(h−1
n log h−1

n ) for two dimensional problems [BG04], but also introduced
an additional error. To quantify this error we used the surpluses with different error
models. In case of the trapezoidal rule we found that the additional error is of order
O(h2

n log h−1
n ), which is not much worse than the full grid solution with an error of

O(h2
n). Our focus on quantities of interest also allowed to use extrapolation methods

to improve the accuracy of our method. By combining the Romberg method with the
combination technique we were able to improve the performance of our methods.

GENE proved itself to be a bigger problem for the combination technique. While
we avoided high fluctuations by averaging the quantity of interest over time, large
differences between the component grids remained. Hence, the quantity of interest did
not show any convergence behavior. Further work is required to apply the combination
technique to GENE and averaged quantities of interest.

In the theory part we focused on two dimensional integration problems an related error
estimations. These insights are an example where profit from the combination technique.
The error bounds and, more importantly, the general idea of the methods should be
easily expansible to higher dimensions.

Using the concept of surpluses makes it more natural to define the combination technique
for different decay models. It is intuitive to take the largest surpluses to get a good
approximation for the full grid solution and simultaneously reduce the computational
complexity. Furthermore, reasoning about the additional error simply comes down to
summing up the surpluses excluded by the combination technique. This demonstrates
that surpluses describe a key principle of the combination technique.
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A.1 Parameter Files for GENE

A.1.1 Linear Run with Equidistant Grids

&parallelization

!n_procs_s = 1

!n_procs_v = 1

!n_procs_w = 8

!n_procs_x = 1

!n_procs_y = 1

!n_procs_z = 1

!n_procs_sim = 8

/

&box

n_spec = 1

nx0 = 24

nky0 = 1

nz0 = 24

nv0 = 96

nw0 = 16

kymin = 0.2000

lv = 3.00

lw = 9.00

adapt_lx = T

ky0_ind = 1

mu_grid_type = ’equidist’

/

&in_out

diagdir = ’./’

chptdir = ’./’

read_checkpoint = F

write_checkpoint = T

istep_field = 100

istep_mom = 100

istep_nrg = 10

istep_omega = 20

istep_vsp = 500

istep_schpt = 5000

istep_energy = 500

write_std = T

write_h5 = F

chpt_h5 = F

momentum_flux = F

/

&general

nonlinear = F

comp_type = ’IV’

!perf_vec = 2 2 1 1 1 2 1 1 2

!nblocks = 16

arakawa_zv = T

arakawa_zv_order = 4

hypz_opt=F
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timescheme = ’RK4’

dt_max = 1.0E-03

calc_dt = T

timelim = 64500

ntimesteps = 100000

omega_prec = 0.1000E-03

beta = 0.0000000

debye2 = 0.0000000

collision_op = ’none’

init_cond = ’alm’

hyp_z = 0.2500

hyp_v = 0.2000

perf_tsteps = 20

/

&geometry

magn_geometry = ’s_alpha’

q0 = 1.4000000

shat = 0.7960

trpeps = 0.18000000

major_R = 1.0000000

norm_flux_projection = F

/

&species

name = ’ions’

omn = 2.2200000

omt = 6.8900000

mass = 1.0000000

temp = 1.0000000

dens = 1.0000000

charge = 1

/

&info

step_time = 0.0009

number of computed time steps = 699

time for initial value solver = 0.637

!calc_dt = T ! original

calc_dt = F

init_time = 2.7914

n_fields = 1

n_moms = 6

lx = 4.18760

ly = 20.9440

PRECISION = DOUBLE

ENDIANNESS = LITTLE

OMP_NUM_THREADS = 1

SVN_REV = 3943M

RELEASE = 1.6 - alpha 0

/

&units

/

&scan

scan_dims = 18

par_in_dir = ’./out/scanfiles0000/in_par’

/

A.1.2 Nonlinear Run with Equidistant Grids

&parallelization

n_procs_s = 1

n_procs_v = 1

n_procs_w = 8

n_procs_x = 1

n_procs_y = 1
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n_procs_z = 1

n_procs_sim = 8

/

&box

n_spec = 1

nx0 = 8

nky0 = 16

nz0 = 24

nv0 = 64

nw0 = 64

kymin = 0.5000E-01

lv = 3.00

lw = 9.00

lx = 125.628

nexc = 5

adapt_lx = F

mu_grid_type = ’equidist’

/

&in_out

diagdir = ’./nv0-64_nw0-64_/’

read_checkpoint = F

write_checkpoint = T

istep_field = 0

istep_mom = 0

istep_nrg = 10

istep_vsp = 0

istep_schpt = 0

write_std = T

/

&general

nonlinear = T

comp_type = ’IV’

perf_vec = 2 2 1 1 1 1 1 1 1

nblocks = 12288

arakawa_zv_order = 2

timescheme = ’RK4’

dt_max = 0.4331E-01

courant = 1.25

timelim = 86000

ntimesteps = 4000

simtimelim = 0.1000E+05

beta = 0.0000000

debye2 = 0.0000000

collision_op = ’none’

init_cond = ’ppj’

hyp_z = -1.000

hyp_v = 0.2000

/

&geometry

magn_geometry = ’s_alpha’

q0 = 1.4000000

shat = 0.7960

trpeps = 0.18000000

major_R = 1.0000000

dpdx_term= ’gradB_eq_curv’

dpdx_pm = 0.0000000

norm_flux_projection = F

/

&species

name = ’ions’

omn = 2.2200000

omt = 6.9600000

mass = 1.0000000

temp = 1.0000000

dens = 1.0000000

charge = 1
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/

&info

step_time = 6.4009

number of computed time steps = 4000

time for initial value solver = 25603.473

calc_dt = T

hypz compensation = T

init_time = 189.0467

n_fields = 1

n_moms = 0

nrgcols = 10

lx = 125.628

ly = 125.664

PRECISION = DOUBLE

ENDIANNESS = LITTLE

OMP_NUM_THREADS = 1

SVN_REV = Unversioned director

RELEASE = 1.8 - alpha 0

/

&units

/

A.1.3 Nonlinear Run with Gauss-Laguerre Grid in the µ-Dimension

&parallelization

n_procs_s = 1

n_procs_v = 1

n_procs_w = 9

n_procs_x = 1

n_procs_y = 1

n_procs_z = 2

n_procs_sim = 18

/

&box

n_spec = 1

nx0 = 8

nky0 = 16

nz0 = 24

nv0 = 512

nw0 = 9

kymin = 0.5000E-01

lv = 3.00

lw = 9.00

lx = 125.628

nexc = 5

adapt_lx = F

mu_grid_type = ’gau_lag’

/

&in_out

diagdir = ’./nv0-512_nw0-9_/’

read_checkpoint = F

write_checkpoint = T

istep_field = 0

istep_mom = 0

istep_nrg = 10

istep_vsp = 0

istep_schpt = 0

write_std = T

/

&general

nonlinear = T

comp_type = ’IV’

perf_vec = 2 1 2 1 1 1 2 1 2

nblocks = 256

arakawa_zv_order = 2

timescheme = ’RK4’
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dt_max = 0.1851E-01

courant = 1.25

timelim = 86000

ntimesteps = 20000

simtimelim = 0.1000E+05

beta = 0.0000000

debye2 = 0.0000000

collision_op = ’none’

init_cond = ’ppj’

hyp_z = -1.000

hyp_v = 0.2000

/

&geometry

magn_geometry = ’s_alpha’

q0 = 1.4000000

shat = 0.7960

trpeps = 0.18000000

major_R = 1.0000000

dpdx_term= ’gradB_eq_curv’

dpdx_pm = 0.0000000

norm_flux_projection = F

/

&species

name = ’ions’

omn = 2.2200000

omt = 6.9600000

mass = 1.0000000

temp = 1.0000000

dens = 1.0000000

charge = 1

/

&info

step_time = 0.9569

number of computed time steps = 20000

time for initial value solver = 19138.734

calc_dt = T

hypz compensation = T

init_time = 17.0150

n_fields = 1

n_moms = 0

nrgcols = 10

lx = 125.628

ly = 125.664

PRECISION = DOUBLE

ENDIANNESS = LITTLE

OMP_NUM_THREADS = 1

SVN_REV = Unversioned director

RELEASE = 1.8 - alpha 0

/

&units

/
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