
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Modeling Recommendations for
Pattern-based Mashup Plans

Somesh Das

Course of Study: Computer Science

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang

Supervisor: Dipl.-Inf. Pascal Hirmer

Commenced: October 17, 2017

Completed: April 17, 2018

CR-Classification: H.2.8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/160827568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Data mashups are modeled as pipelines. The pipelines are basically a chain of data
processing steps in order to integrate data from different data sources into a single one.
These processing steps include data operations, such as join, filter, extraction, integration or
alteration. To create and execute data mashups, modelers need to have technical knowledge
in order to understand these data operations. In order to solve this issue, an extended data
mashup approach was created–FlexMash developed at the University of Stuttgart–which
allows users to define data mashups without technical knowledge about any execution
details. Consquently, modelers with no or limited technical knowledge can design their
own domain-specific mashup based on their use case scenarios.

However, designing data mashups graphically is still difficult for non-IT users. When users
design a model graphically, it is hard to understand which patterns or nodes should be
modeled and connected in the data flow graph. In order to cope with this issue, this master
thesis aims to provide users modeling recommendations during modeling time. At each
modeling step, user can query for recommendations. The recommendations are generated
by analyzing the existing models. To generate the recommendations from existing models,
association rule mining algorithms are used in this thesis. If users accept a recommendation,
the recommended node is automatically added to the partial model and connected with
the node for which recommendations were given.

3

Contents

1 Introduction 15

2 Fundamentals 17
2.1 Association Rules . 17

2.1.1 Basics . 18
2.1.1.1 The Process . 19

2.1.2 Binary Association Rules . 19
2.1.3 Quantitative Association Rules . 20
2.1.4 Algorithms for Finding Association Rules 21

2.1.4.1 Apriori . 22
2.1.4.1.1 Discovering Frequent Itemsets 23
2.1.4.1.2 Discovering Association Rules 24

2.1.4.2 Frequent Pattern Growth (FP-Growth) 24
2.1.4.2.1 Preprocessing the Data 25
2.1.4.2.2 Constructing the FP-Tree 25
2.1.4.2.3 Mining the FP-Tree using FP-Growth 27

2.2 FlexMash . 28

3 Related Work 31

4 Modeling Recommendations for Pattern-based Mashup Plans 35
4.1 Overview of the approach . 35
4.2 Step 1: Creation of the mashup plan . 36
4.3 Step 2: Creation of underlying canonical model and transformation 37

4.3.1 Transform . 37
4.3.2 Store . 40

4.4 Step 3: Algorithm selection for analysis . 40
4.4.1 Experimental Evaluation . 42

4.4.1.1 Result Discussion . 42
4.4.2 Analysis . 44

4.4.2.0.1 Frequent Itemsets Generation 45
4.4.2.0.2 Generating Association Rules 45

4.5 Step 4: Integration with FlexMash . 46

5 Prototypical Implementation 49
5.1 Adaptation of Technologies . 49
5.2 Architecture . 50

5

5.3 Database Design . 52
5.3.1 Tables . 53

5.3.1.1 Connections . 53
5.3.1.2 Association_Rules . 53

5.4 The Modeling Recommendation Service . 54
5.4.1 Model Transformer . 55
5.4.2 Data Mining Process . 56

5.4.2.1 Step 1 : Write ARFF File . 57
5.4.2.2 Step 2 : The Data Mining Process 59

5.4.2.2.1 Filter . 60
5.4.2.2.2 Build Association 60
5.4.2.2.3 Build JSON of Generated Association Rules 62

5.4.2.3 Step 3 : Map JSON and Store 62
5.5 Integration into FlexMash . 63

5.5.1 Node Recommendation Dialog . 63
5.5.2 Model Completion . 65
5.5.3 Merge Node Dialog . 66
5.5.4 Toggle Recommendation . 66
5.5.5 Model Widget . 66

6 Conclusion and Future Work 69
6.1 Conclusion . 69
6.2 Future Work . 69

Bibliography 71

6

List of Figures

2.1 Representation of the itemsets [HGN00] . 22
2.2 Systematization of Algorithms [HGN00] . 23
2.3 FP-Tree [HGN00] . 26
2.4 Screen Shot of FlexMash Application . 29

4.1 Overall Approach of the Thesis . 36
4.2 A Simple Model Designed in FlexMash . 36
4.3 Comparison of Execution Time Based on Number of Instances 43
4.4 Comparison of Execution Time Based on Different Confidence Levels 43
4.5 Frequent Itemset Generation . 45
4.6 Integration into FlexMash . 46

5.1 Architecture of the Modeling Recommendation Service Specific to the Imple-
mentation Scenario . 50

5.2 Entity Relationship Diagram of the Modeling Recommendation Service 52
5.3 Processing Steps of the Data Mining Process 57
5.4 Node Recommendation Dialog . 64
5.5 Merge Node Dialog . 66
5.6 Top Panel of Model Widget Dialog . 67
5.7 Middle Panel of Model Widget Dialog . 67
5.8 Bottom Panel of Model Widget Dialog . 68

7

List of Tables

2.1 Sample Database . 20
2.2 Mapping Table . 21
2.3 Notation . 23
2.4 FP-Growth Preprocessing . 26
2.5 Conditional Pattern Bases . 27

4.1 Database Table Structure with Example Records to Store Canonical Models 40
4.2 Comparison between Apriori and FP-Growth 41
4.3 Execution Time for Different Number Of Instances 42
4.4 Execution Time for Different Confidence Level 44
4.5 An Example Table Storing Canonical Models 44
4.6 Generated Association Rules out of Frequent itemsets 46

5.1 Description of Methods Provided by the Modeling Recommendation Service . 54
5.2 Table Storing Canonical Models . 56
5.3 Table Storing Association Rules . 63

9

Listings

4.1 JSON Representation of the Model . 38

5.1 Model Transformer Code Snippet . 56
5.2 Example of Attribute-Relation File Format [wik] 58
5.3 Code Snippet for Writting ARFF File . 59
5.4 Example of Attribute-Relation File Format of the Canonical Models 59
5.5 Code Snippet for Applying StringToNominal Filter 60
5.6 Code Snippet for Applying NominalToBinary Filter 60
5.7 Code Snippet for Build Association Rules Using Apriori 61
5.8 Code Snippet for Build Association Rules Using FP-Growth 61
5.9 Output of Apriori . 61
5.10 Output of FP-Growth . 62
5.11 JSON Representation of Association Rules Generated by the Wrapper class . 62
5.12 JSON Representation of Association Rules Sent by the Modeling Recommen-

dation Service . 64

11

List of Algorithms

2.1 Apriori algorithm Candidate Generation [AS94] 24
2.2 Apriori algorithm Association Rule Generation [YKTZ11] 25
2.3 FP-Growth algorithm [HPY99] . 28

4.1 Algorithm for Transformation . 39

13

1 Introduction

Mashup plans that were introduced by Hirmer et al. [HRWM15], are graphical models that
enable domain-specific modeling of data mashups. Based on Mashup plans an approach
named FlexMesh is introduced by Hirmer et al. [HM16], that allows modeling and pattern
based execution of data mashups. FlexMash provides a non-technical, domain-specific
model where users can define data processing and integration scenarios based on their use
case scenarios without the need of any implementation and execution details. This relieves
non-technical users from the technical challenges that arise during implementing their own
data processing and integration scenarios.

However, in FlexMash, designing a model graphically is difficult for domain-users who
do not have enough technical knowledge. For example, non-technical users who want to
design their own use case specific scenarios but do not know which patterns or nodes to
use during the design of the graphical models. They might have a lack of knowledge which
patterns or nodes they need in order to achieve their desired model. It might happen that,
users do not know about the functionalities of the nodes offered by FlexMash. Typically,
what people do, when they need a solution for a modeling problem, they ask more skilled
people for help or search the internet. In this case, models that have been executed
successfully in the past, could be the most useful information. Existing models could be
analyzed to know which node to use in the model.

To solve this challenge, this master thesis aims to offer recommendations interactively
to users during each step of their model design. These kinds of recommendations are
generated by analyzing existing models. At each step, users can query for recommendations
which node to use.

The goal of this thesis is to assist users during development of mashup models in a model-
ing environment as provided by FlexMash by recommending nodes similar to Amazon’s
recommendation feature that recommends products that other customers bought as well.

In this thesis, the FlexMash application is extended by implementing the modeling recom-
mendation feature. An interactive recommendation feature is built in the original FlexMash
application to assist users during mashup model development. The main goals of this thesis
are:

• Increase usability of FlexMash for domain users.

• Increase the flexibility of the mashup model development.

15

1 Introduction

• Assist users by providing node recommendations. And also automatically add the
recommended node, selected by users into the modeling canvas on behalf of the
users.

A key component that is most important in order to achieve these goals is, the algorithm
for generating recommendations. In this thesis, association rule mining algorithms are
used for this. Another important task is to transform all models into a generic modeling
structure.

The thesis document has provides the following structure:

• Chapter 2 provides the fundamentals needed to understand the concepts of this
thesis including basic concepts of association rules mining and an overview of the
FlexMash application.

• Chapter 3 discusses the related work for this thesis.

• Chapter 4 describes the conceptual overview of this thesis, the different steps taken
in order to achieve the goals, such as creation of canonical models, selection of
algorithms, approach for generating association rules, and integration into FlexMash.

• Chapter 5 describes the implementation details of this work. It includes the descrip-
tion of the technologies used, code snippets, and screenshots of the developed user
interfaces.

• Chapter 6 discusses the overall summary of this thesis work and future works.

16

2 Fundamentals

In this chapter, the basic fundamentals that are needed for this thesis are described. This
thesis work is done based on the concept of Association Rules. The chapter summarizes
the theoretical concepts related to Association Rules and the algorithms for generating
Association Rules. An overview of the FlexMash application is also given in this chapter.

2.1 Association Rules

The identification of association rules is a very important task in the field of data mining.
It was first introduced by Agrawal et al. [AIS93]. The main objective behind association
rules is to identify frequent patterns, associations or interesting correlations within the
data stored in transactional databases. The idea of association rules is frequently used in
many areas, such as market basket analysis, telecommunication networks, and inventory
controls.

The most common example of association rules mining is market basket analysis. In market
basket analysis, different buying habits of customers are discovered and analyzed to find
out the associations between items that customers bought. Association rules mining helps
the seller to figure out different types of marketing plans and inventory management
strategies. Items that are frequently bought together can be placed in a bundle offer. For
example, if the customer who buys bread also wants to buy cheese at the same time, the
seller can offer a reduced prices for buying both bread and cheese together. These may help
to increase the sale of both items. A simple association rule can be defined as follows:

Bread → Cheese[support = 0.2, confidence = 0.7].

This rule expresses a relationship between Bread and Cheese. The support measure defines
that Bread and Cheese appeared together in 20% of all transactions. The possibilities of a
transaction involving Bread also involving Cheese within the same transaction is defined
by confidence measure. In this case, 70% of all recorded transactions involving Bread also
involved Cheese. So It can be assumed that customers who buy Bread are also likely to buy
Cheese.

Association rule mining is user-centric because its objective is to investigate interesting
rules which can be used to discover knowledge. The meaning of interestingness of rules is
that they are non-trivial and significant. These rules can be used for further interpretation
by the user.

17

2 Fundamentals

Argawal et al. in [AIS93] [AS94] described an algorithm for mining association rules. The
fundamentals of association rules mining and itemset identification are well established
and accepted.

2.1.1 Basics

The mining association rules problem can be stated as follows: Let, a set of items is
I= {i1, i2, i3,, im} and a set of transactions is T = {t1, t2, t3,tn}. Each transaction
contains items of the itemset I. So, each transaction ti is a set of items such that ti ⊆ I.
An association rule is an implication of the form: X → Y , where X ⊂ I , Y ⊂ I and
X ∩ Y = ∅. X(or Y) is a set of items, called an itemset [Liu11]. For example, a simple
association rule can be defined as {bread} → {cheese}.

Assume an association rule of the form X → Y , where X is called antecedent and Y is
called consequent. It is obvious that the value of consequent is the implication of the value
of antecedent. The antecedents are also called “left-hand side” of the rule, it can consist of
either one item or a whole set of items. The consequents are called “right-hand side” and it
also can be a single item or a whole set of items.

In the whole association rule mining process, the most complicated task is to generate
frequent itemsets. Many different combinations of items have to be identified which
requires computation-intensive tasks, especially in large databases. It requires an efficient
algorithm that can extract itemsets in a minimal time. Often, between exploring all itemsets
and computation time, a compromise has to be made. Generally, only those itemsets are
taken into account that have certain support. Confidence and support are the two important
measures for evaluation of the interestingness of a rule.

• Support : The support of the rule X → Y is defined by the percentage of transactions
in T with X ∪ Y . How frequent a rule is applicable to the transaction set T is
determined by the support of this rule. The formula for representing support is,
defined as follows :

support = (X ∪ Y) · count

n

Support represents the frequency of the occurrence of the rule. The rules that cover
only a few transactions might not be useful.

• Confidence : The confidence of a rule represents the percentage of transactions in
T which contains X and also Y . It measures the conditional probability, Pr(Y | X)
[Liu11]. It is computed as follows:

confidence = (X ∪ Y) · count

X · count

This is an important measurement for calculating interestingness of a rule. It searches
in all transactions which contain a certain item or itemset defined by the antecedent
of the rule [Hel07]. Then, it calculates the percentage of the transactions which are
also including all the items contained in the consequent.

18

2.1 Association Rules

2.1.1.1 The Process

The process of mining of association rules includes two main parts. First, identifying
frequent itemsets in the data. Second, generation of rules from the identified frequent
itemsets.

• Mining Frequent Patterns In this step, all the itemsets that appear as frequent as
the minimum support specified by the user needs to be discovered. Computation
time is an important issue because in case of large databases, lots of possible itemsets
need to be evaluated. There are different algorithms for finding frequent patterns
efficiently. Some of those are discussed in Section 2.1.4.

• Discovering Association Rules After generation of all patterns according to min-
imum support requirements, rules can be generated. A minimum confidence is
required to do so. All possible rules have to be generated out of the frequent itemsets
and their confidence has to be compared with the minimum confidence defined by
the user. The rules which meet this requirement are considered as interesting. At
the end, all the discovered rules can be presented to the user with their support and
confidence values.

2.1.2 Binary Association Rules

The term binary association rules indicates the classical association rules in market basket
analysis. Here, it is possible to define with a boolean value whether a product is in a
transaction or not (true or false, represented by 1 and 0). Therefore, every transaction can
be represented as a binary attribute with domain {0, 1}. The formal model is represented
in [AIS93] as follows: “Let I = i1, i2, ..., im be a set of binary attributes, called items. Let
T be a database of transactions. Each transaction t is represented as a binary vector, with
t[k] = 1if t bought the item ik , and t[k] = 0 otherwise. There is one tuple in the database for
each transaction. Let X be a set of some items in I . We say that a transaction t satisfies X if
for all items ik ∈ X , t[k] = 1 .”

As already discussed, an association rule is an implication of the form X → Y where X

and Y are itemsets that are contained in itemsets I and X does not include Y. A rule in
transactions T with the confidence factor 0 ≤ c ≤ 1 is called satisfied if the percentage of
transactions, contained in T that support X also support Y , is equal to the factor c [Hel07].
The notation X → Y | c can be used to represent the rule with the confidence factor of c.

In [AIS93], Argawal et al. divided the problem of rule mining into two subproblems:

• All combination of items containing support above user-defined minimum support
have to be identified. The sets of itemsets which show sufficient support are called
large or frequent itemsets and the itemsets which do not shows sufficient support
are called small itemsets. It is also possible to consider syntactic constraints, for
example, only those rules are taken into consideration that contain a certain item in
the antecedent or the consequent [Hel07].

19

2 Fundamentals

ID Age Salary

101 18 9000
102 35 15000
103 26 21000
104 39 25000
105 31 11000

Table 2.1: Sample Database

After discovering the itemsets that meet the minsupport requirements, it is also
necessary to check whether it meets the requirement of the confidence factor c. At
this stage, only the large itemsets that were defined previously have to be considered.
The confidence is the ratio of the support of the whole itemset and the support of the
antecedent.

• After solving the first problem, the solution of the second subproblem is quite straight-
forward. The Apriori algorithm was developed as first and best-known algorithm
nowadays for mining association rules. The Apriori and FP-Growth algorithms are
discussed in detail in Section 2.1.4

2.1.3 Quantitative Association Rules

An overview of binary association rules is given in the previous section, where boolean
values are used to represent the items. However, in reality, databases not only contain
boolean attributes but also quantitative or categorical ones that cannot be mined using
the classical technique. Identifying rules in such kind of data can be represented as the
quantitative association rules problem [SA96]. To deal with quantitative attributes a
possible approach is replacing them with several boolean attributes. It is straightforward to
map quantitative attributes into binary values if they are categorical or if there are only a
few values.

For example, the value of boolean field corresponding to (attribute1, value1) would be "1"
if attribute1 had value1 in the original data, and "0" otherwise [SA96]. This only works if
the original data has a very small number of values. It is required to split the values into
intervals and map each attribute to the corresponding new boolean attribute when the
number of different values increases. Now, to identify association rules, a binary algorithm
can be used.

In Table 2.1, a sample database is shown. Here we can see that all the attributes are
numeric so it is important to create intervals for all attributes. For each record of the
table, an appropriate interval needs to be chosen. Then, each record is mapped to the
corresponding new binary attribute. The number of columns in the new table is equal to
the number of intervals chosen for each attribute. A mapping table with sample intervals
chosen for each attribute is shown in Table 2.2.

20

2.1 Association Rules

ID Age:
<20

Age: 20-
32

Age:
>32

Sal:
<10000

Sal:10000-
19999

Sal:
>19999

101 1 0 0 1 0 0
102 0 0 1 0 1 0
103 0 1 0 0 0 1
104 0 0 1 0 0 1
105 0 1 0 0 1 0

Table 2.2: Mapping Table

With this mapping method, two problems arise [SA96]:

• “MinSupport” : If the interval count for a single quantitative attribute is high, there
could be a single interval which has low support. It is necessary to take larger intervals,
otherwise, some existing rules containing this attribute may not be identified because
they lack minimum support.

• “MinConfidence”: If a larger interval is taken in order to solve the first problem,
another problem arises. The rate of information loss increases if the interval sizes
become larger. Then, the appearance of determined rules might be different to the
original data.

If the intervals are too large, it might not be possible to reach the minimum confidence, if
they are too small, it might not be possible to achieve minimum support. The “MinSupport”
problem can be solved by considering all potential continuous ranges over the ranges
of the quantitative attribute. Increasing the number of intervals, without encountering
the “MinSupport” problem, could be a solution for the “MinConfidenece” problem. By
increasing the number of intervals and combining adjacent intervals simultaneously, creates
two new problems:

• “ExecTime”: By using the above method, the number of items per record increases,
so the execution time will increase as well.

• “ManyRules”: If a value has minimum support, any range that contains this value
will also have minimum support. Hence, the number of rules will increase and many
of them will not be interesting.

There is a trade-off between the above mentioned problems. If more intervals are built to
cope with the “MinConfidence” problem, then execution time will increase and additionally,
many rules might be generated which are not interesting.

2.1.4 Algorithms for Finding Association Rules

Since the introduction of the Apriori algorithm [AIS93], several algorithms have been
developed. Those algorithms focus on the efficiency of finding a frequent pattern or

21

2 Fundamentals

Figure 2.1: Representation of the itemsets [HGN00]

association rule identification. Apriori provides solutions for both problems. In this section,
a brief overview of some important mining algorithms is given. Most of the algorithms
work with binary association rules, but they also work with the quantitative association
rules as well.

For developing an association rule mining algorithm there exist two main approaches,
one is called breadth-first search (BFS) and depth-first search (DFS)[HGN00]. A lattice
including all possible combinations of an itemset is shown in Figure 2.1.

The border between frequent and infrequent itemsets is represented by the bold line. All the
items that lie above the border satisfy the minimum support requirements. The algorithms
locate this border. In BFS, first, the support is computed for all itemsets in a specific level
of depth, whereas DFS recursively subsides the structure by several depth levels. The
algorithms for association rule mining can be systematized as depicted in Figure 2.2.

2.1.4.1 Apriori

The Apriori algorithm was the first developed algorithm for mining association rules out of
a large dataset. It has been first introduced by Agrawal et al. [AS94]. The algorithm can
find frequent patterns and generates association rules out of the frequent patterns.

22

2.1 Association Rules

Figure 2.2: Systematization of Algorithms [HGN00]

k -itemset An Itemset having k items

Lk "Set of large k -itemsets (those with mini-
mum support). Each member of this set has
two fields: i) itemset and ii) support count."

Ck "Set of candidate k -itemsets (potentially
large itemsets). Each member of this set
has two fields: i) itemset and ii) support
count. "

Table 2.3: Notation [AS94]

2.1.4.1.1 Discovering Frequent Itemsets A fact that is used to generate frequent item-
sets is that any subset of large itemset must also be large as well. The size of an itemset is
determined by the number of items contained in the itemset, an itemset is called k−itemset

where k is the size. The items in the itemset are stored in lexicographic order. The notation
shown in Table 2.3 is used to represent the algorithm.

Each itemset associates a count field where the value of support is stored. Algorithm 2.1
shows the pseudocode of the Apriori algorithm. At first, the database is supplied for
counting the occurrences of single elements. If the support value of a single element is
below the minimum support that is defined by the user, it is not taken into consideration
anymore. A subsequent pass k is composed of two phases:

• To generate the candidate itemsets, Ck for the current pass, the discovered large
itemsets of pass k-1 , are used.

23

2 Fundamentals

Algorithm 2.1 Apriori algorithm Candidate Generation [AS94]

1: Fl=(Frequent itemsets of cardinality 1);
2: for (k = 1; Fk ̸= ϕ; k + +) do
3: Ck+1 = apriori-gen(Fk); // New Candidates
4: for all transactions t ∈ Database do
5: C ′

t = subset(Ck+1, t); // Candidates contained in t
6: for all candidates c ∈ C ′

t do
7: c.count++;
8: end for
9: Fk+1 = {C ∈ Ck+1|c.count ≥ minimumsupport};

10: end for
11: end for
12: Answer ∪kFk

• The database is searched again determining the support for the candidate itemsets Ck.
The candidates which have a support above the minimum support will be included
to the large itemsets. To prevent a long counting duration, identifying the right
candidates is important.

The function apriori-gen shown in Algorithm 2.1 takes the itemsets of the previous iteration
as an input. These itemsets are joined together, composing itemsets with one more item
than in the previous step. Then in the prune step, those itemsets will be removed whose
sub-combinations have not been part of the discovered sets in previous iterations. A hash-
tree is used to store the candidate sets. This tree can either have a list of itemsets, called a
leaf node, or a hash table, which is called an interior node.

The function subset starts traversing the hash-tree from the root node and traverses until
the leaf nodes for finding all candidates that are in a transaction t. The function will ignore
the itemsets which start with an item that is not in t.

2.1.4.1.2 Discovering Association Rules Association rules can have multiple elements
in the antecedent and also in the consequent. To generate the association rules, only large
itemsets are used. The first step of the procedure is to find all possible subsets of the large
itemset l. A rule is defined in the form a → (l − a) for each of those identified subsets.
If the confidence of the rule is greater than the user-defined minimum confidence, then
the rule is considered as interesting. All subsets of l are discovered so that any possible
dependencies are not missed. The algorithm for generating association rules is shown in
Algorithm 2.2.

2.1.4.2 Frequent Pattern Growth (FP-Growth)

The FP-Growth algorithm generates frequent itemsets. It tries to avoid generating a large
candidate set like the Apriori algorithm. The basis of this algorithm is a solid representation

24

2.1 Association Rules

Algorithm 2.2 Apriori algorithm Association Rule Generation [YKTZ11]

1: for each frequent itemsets ik (k ≥) do
2: H1 = {h ∈ lk}|cf(lk − {h} ⇒ {h}) ≥ min_cf

3: Call Ap-GENRULE(lk, H1);
4: end for
5: procedure AP-GENRULE(lk, Hm)
6: if k > m + 1 then
7: Hm+1 = apriori_gen(Hm);
8: for all hm+1 ∈ Hm+1 do
9: cf = sp(lk)/sp(lk − hm+1)

10: if cf ≥ min_cf then
11: else Hm+1 := Hm+1 − {hm+1};
12: end if
13: Ap-GENRULE(lk, Hm+1);
14: end for
15: end if
16: end procedure

of the original data set without losing any information. This is done by constructing a
tree, using the data. This tree is called the Frequent Pattern Tree, FP-Tree in short. The
FP-Growth algorithm has been introduced in [HPY99]. Here, the FP-Tree is constructed out
of the original data set first, and then the frequent patterns are generated from the tree.
Before applying the algorithm, the data should be preprocessed in order to minimize the
execution time.

2.1.4.2.1 Preprocessing the Data The FP-Growth algorithm applies following prepro-
cessing steps for efficiency [Bor05]:

• First, the initial dataset is scanned and for each item, the support is calculated. Then,
all items that have a support below the user defined minimum support are discarded
from the transactions.

• The remaining items are stored in a decreasing order according to their support.

Although, the algorithm works fine without sorting, it works much faster after sorting
[Bor05]. If increasing order is used instead of decreasing order, it performs worse than
using a random order [Bor05]. Table 2.4 provides an example of preprocessing steps for a
transaction of the FP-Growth algorithm.

2.1.4.2.2 Constructing the FP-Tree An FP-Tree can be constructed out of the prepro-
cessed data. A scan over the database is done for adding each itemset to the tree. The first
branch of the tree will be the first itemset. In case of the transaction shown in Table 2.4,
the items b,d and a would be the first branch. The second transaction has the prefix bd
which already exists in a set of the tree. In this case, the count of each node along the path

25

2 Fundamentals

OriginalDB PreprocessedDB

abd support(b)=6 bda
bcde support(d)=5 bde
bd support(e)=5 bd
ade support(a)=4 dea
ab support(c)=2 ba
abe bea
cde minsupport=3 dec
be be

Table 2.4: FP-Growth Preprocessing

Figure 2.3: FP-Tree [HGN00]

of the common prefix is increased by one, and for the remaining items, new nodes will be
created and linked as a child. In case of the example shown in Table 2.4, only a new node
for e will be created and linked as a child of d. For the transaction database of Table 2.4,
the generated tree is shown in Figure 2.3. It represents the database without losing any
information.

Each node of the FP-Tree has three fields [HPY99]:

• item-name: The name of the item representing the node is stored in this field.

• count: The accumulated support of the node within the current path is represented
by the count field.

26

2.1 Association Rules

item conditional pattern base

a {⟨b, e : 1⟩, ⟨b, d : 1⟩⟨d, e : 1⟩}
e {⟨b : 2⟩, ⟨b, d : 1⟩⟨d : 1⟩}
d {⟨b : 3⟩}
b {∅}

Table 2.5: Conditional Pattern Bases

• node-link: It represents the link between the nodes. It stores the ancestor of the
current node, and null in case there is none.

After building the FP-Tree, the database is not required anymore for mining. Now the
FP-Tree can be used. The support of an itemset can easily be calculated by traversing the
path and using the minimum value of count from the nodes. For example, the support of
itemset {b, e} will be 2 and the support of itemset {b, e, a} will be 1.

2.1.4.2.3 Mining the FP-Tree using FP-Growth The FP-Tree provides an efficient struc-
ture for mining, however one may still encounter the combinatorial problem of candidate
generation which needs to be solved. For identifying all frequent itemsets, the FP-Growth
algorithm takes a look at each level of depth of the tree [PEl16]. It starts from the bottom
and generates all possible itemsets that include nodes in that specific level. After generating
frequent patterns for each level, they are stored in the complete set of frequent patterns.
The procedure of the algorithm is shown in Algorithm 2.3.

The algorithm is executed at each of these levels. The tree is first checked for the number
of paths it contains for finding all the itemsets containing a level of depth. If the tree is a
single path tree, all possible combinations of the items contained in it will be generated
[PEl16]. Then, these will be added to the frequent itemsets.

If the tree has more than one path, then for the specific depth, a conditional pattern is
constructed. In FP-Tree of Figure 2.3, for the depth level a, the conditional pattern base
will consist of the following itemsets : ⟨b, e : 1⟩ , ⟨b, d : 1⟩ and ⟨d, e : 1⟩ . The item set is
determined by traversing each path in an upward direction. The conditional pattern for all
depth levels of the tree is shown in Table 2.5.

From the conditional pattern base, a conditional FP-Tree is built. This is done in the same
way as the construction of the initial tree. The only difference is now that, the conditional
pattern base is used instead of a transactional database. After having the conditional
FP-Tree, the FP-Growth function is called recursively. This is done until the tree has only
a single path or it is empty. At the end, all the items in the various condition FP-Tree are
stored. Then, these items are returned as a list of frequent itemsets in the FP-Tree as well
as in the database, respectively.

27

2 Fundamentals

Algorithm 2.3 FP-Growth algorithm [HPY99]

procedure F(P)-Growth (Tree, α)
if Tree contains a single path P then

for all combination (denoted as β) of the nodes in the path P do
generate pattern β ∪ α with support = minimum support of nodes in β ;

end for
for all ai in the header of Tree do

generate pattern β = ai ∪ α with support=ai . support ;
construct β ’s conditional pattern base and then β ’s conditional FP-Tree Treeβ;
if Treeβ ̸= ∅ then

call FP-growth(Treeβ, β)
end if

end for
end if

end procedure

2.2 FlexMash

In recent times, the data processing and integration is becoming complex because of an
increasing size of IT systems used in enterprises and a growing connectivity between the
corresponding data sources. This leads to high communication effort between domain-
specific users, such as business persons and IT experts who implement the data processing.
In most cases, this result in non-flexible solutions that work only for specific use cases.
To solve this issues, a solution is required that allows users to define data processing and
integration scenarios without defining any execution details.

Mashup plans that were introduced by Hirmer et al. [HRWM15], are graph-based models
that enable domain-specific modeling of data mashups. Based on this Mashup plan, an
approach named FlexMash is introduced by Hirmer et al. [HM16] that allows modeling
and pattern based execution of data mashups. This tool transforms the Mashup Plans into
an executable solution based on requirements defined by the use case scenario. Figure 2.4
shows a high-level view of the FlexMash tool.

First of all, a modeling of the Mashup Plan is required that describes the processing and
integration of data. Then, a pattern is selected by the user that defines the requirements for
mashup execution. Based on this selected pattern, the defined Mashup plan is transformed
into an executable representation. Finally, the executable representation is executed in a
suitable engine. It is possible to store and visualize the result of execution for later use.

This tool enables a flexible solution for data mashup execution that is specific to user
requirements and uses transformation patterns selected by the user. Figure 2.4 shows a
screen shot of the FlexMash application.

28

2.2 FlexMash

Figure 2.4: Screen Shot of FlexMash Application

29

3 Related Work

Rodríguez et al. [RCD+14] introduced an approach named Assisted Mashup Development.
In this work, they use Yahoo! Pipes, a web-based mashup editor, as a mashup model
development tool. They aim to assist users by recommending development knowledge.
By mining existing mashup models, a set of composition patterns is discovered. These
composition patterns are then interactively recommended to the users during mashup
development. A canonical mashup model is described that is able to formalize different
data flow mashup languages into a single modeling formalism. A set of composition patterns
is then extracted out of this canonical mashup model. For each of the discovered patterns,
a respective pattern mining algorithm is implemented that discovers the composition
knowledge as reusable mashup patterns out of the stored mashup models. Finally, these
patterns are recommended to the users based on the user actions on the modeling canvas.
An automatic weaving of recommended patterns is also included. In this approach, they
focus on how to automatically discover patterns from existing mashup models, recommend
the discovered patterns fastly to the users, and automatically weave the recommended
patterns into mashup models.

The goal of this thesis is to assist users to define a mashup plan for execution in the
FlexMash environment. A set of transformation patterns is already introduced in FlexMash
which users can select during the design of the model as a node. All data sources and
operations are represented as nodes in FlexMash. The user can select data sources as well
as operations from the node catalog. So pattern selection is out of the scope of this thesis.
Instead of implementing a separate algorithm for each pattern, a common mining algorithm
is used in this work which recommends the frequently used nodes together. It happen
that, the Mashup modeler is a business user who does not have technical knowledge which
nodes to model. In that case, the models that have been executed successfully in past can
be analyzed to recommend the users which node or pattern to use. A canonical model is
used to convert different models into a single modeling structure. Based on this canonical
model, a data mining algorithm is used to generate the recommendation. The model
designed in FlexMash is captured by the recommendation application during execution
and converted into the canonical model. The Assisted Mashup Development approaches
do focus on recommendation of composition patterns. They discover a set of composition
patterns and design separate mining algorithms for each discovered pattern. However,
the aim of this thesis is not only recommending the patterns but also the data sources
that have been used previously. The work done in this thesis also provides an interactive
recommendation feature. The difference is that, it is not only recommending nodes but
also automatically completes the whole model using the top recommended nodes. So the
user does not always need to have modeling knowledge. In addition, it also has a modeling

31

3 Related Work

widget feature which can be used to design a partial model using the recommendation
feature and weave this partial model into the main model in the modeling canvas. The
recommendation is updated each time a mashup model is executed.

Roy Chowdhury at el. [CRDC12] introduced Baya, an extension of Yahoo! Pipes, for
speeding up development by interactively recommending composition knowledge. It has
two parts: one is the Baya recommendation server and the other is the Baya Firefox
extension. The Baya recommendation server first takes the native models designed in the
mashup tool and converts them into a canonical mashup model which is able to describe a
different kind of similar mashup languages in a generic manner. Then a pattern miner runs
a set of pattern mining algorithms on the canonical model to discover a set of patterns.
Currently, Baya supports the following composition patterns: Parameter value pattern,
Connector pattern, Connector co-occurrence pattern, Component co-occurrence pattern,
Component embedding pattern, Multi-component pattern. These discovered patterns are
stored in a canonical pattern database. A data transformer transforms and stores them
into a persistent knowledge base. The Baya Firefox extension is composed of two main
components: a recommendation engine and a pattern weaver. The recommendation engine
communicates between client and recommendation server. The pattern weaver weaves
the selected recommendation into a partial mashup model in the modeling canvas. After
weaving of a pattern from recommendation, the knowledge base is updated. This updated
metadata again is used for future recommendation.

In contrast to their work, the main focus of this thesis is modeling node recommendations
in pattern-based mashup environments where a set of transformation patterns is already
defined and represented as a node in a node catalog with other data source nodes. This
thesis offers a recommendation of frequently co-occurred nodes together because both
patterns and data sources are represented as a node in FlexMash. So there is no need to
capture modeling actions that occurred in the modeling canvas. In addition, an interactive
recommendation feature is offered in this thesis which is not present in the work of Roy
Chowdhury at el. The system not only recommends the nodes but also places the node in
the modeling canvas upon user selection. It also offers a modeling widget for designing a
partial model and users can also toggle the recommendations.

Roy Chowdhury at el. [CTN+13] introduced an approach OMELETTE, a hybrid devel-
opment assistance system. The system is developed on top of the open source mashup
platform Apache Rave. It has two parts: the Automatic Composition Engine (ACE) which
addresses users who have no or very little knowledge in mashup development and the
Pattern Recommender (PR) which targets users who are already familiar with the com-
position environment. The ACE helps users to specify their goals using a dialog-based
interface in an interactive manner. The dialog shows up in a question-answer manner out
of which the system refines user goals. It helps users to choose and configure widgets out
of a large collection of potentially incompatible components in an interactive way. The
PR helps users by recommending existing composition knowledge stored in a knowledge
base (KB). Currently, it supports two composition pattern types: widget co-occurrence and
multi-widget patterns. Based on user modeling actions on widgets, the PR reacts during
composition. The recommendation engine uses an event listener to capture the modeling

32

action and its object during each interaction. This information is then used to query the
recommended patterns from the KB. The resulting patterns are filtered and ranked based
on current composition context and are rendered in the recommendation panel. The user
can select recommended patterns from the recommendation panel and upon selection of a
pattern, the PR applies the pattern to the current workspace model automatically.

In this thesis, the main goal is to recommend possible nodes that are used frequently by the
users for each node that is placed in the modeling canvas. For each placed node, users can
see the recommendations by calling the recommendation dialog. The recommendation ap-
plication recommends the nodes used frequently with the placed nodes based on association
rules techniques. The recommendations are ranked based on the confidence level. Upon
user selection, the selected node from the recommendation dialog is automatically placed
in the modeling canvas and connected to the placed node. The main key difference with
their approach is that they recommend composition patterns of a widget of Apache Rave
whereas the approach, proposed in this thesis, recommends the frequently co-occurred
nodes because patterns are represented as nodes in FlexMash. Another key difference is
that a good interactive recommendation feature is provided which recommends nodes at
each step of modeling based on user selection. It also automatically completes the whole
model using top recommended nodes from the recommendation server.

Roy Chowdhury at el. [RDC11] proposed an approach for efficient and faster retrieval of
a ranked list of development recommendations. They model the problem of interactively
recommending composition knowledge as pattern matching and the retrieval problem in the
context of data mashups and visual modeling tools. They propose a solution for the problem
of matching a partial mashup model with a repository of composition patterns. In order to
achieve this, they transform the graph-like data structure into an optimized structure which
is directly mapped to the recommendations to be provided. They also have an efficient
similarity search algorithm for complex pattern matching with the recommended pattern
repositories.

In this thesis, the models designed in FlexMash are transformed into a canonical model.
This canonical model stores the information about each connection of the model supplied by
FlexMash. A data mining process is applied to this canonical model to generate association
rules. Each association rule is a connection that occurred frequently in the repository of
canonical models. In this approach, a unique id of each node is provided by FlexMash
which is used to retrieve the recommended nodes from the repository of association rules.

33

4 Modeling Recommendations for
Pattern-based Mashup Plans

In this chapter, the overall architecture of the master thesis, the different components that
were developed in order to extend the FlexMash application with recommendation facilities
is described. The architecture of the recommendation application and how to integrate it
with the existing FlexMash application are also explained in detail.

Through the development of this thesis, an application for generating recommendations
is developed which includes a set of services. This set contains services for processing
and storing data that comes from FlexMash and for generating recommendations. It is
important to highlight that the application is centralized and all models that are executed
by any instance of FlexMash will be captured by the application in order to do the analysis
for recommendation generation.

4.1 Overview of the approach

In this section, the overall approach to achieve the goal of the thesis is described. In order
to assist users by recommending nodes during modeling, the FlexMash application needed
to be extended to make it compatible with the recommendation application. Furthermore,
for designing the recommendation application, the underlying canonical model and an
appropriate mining algorithm have to be defined.

After developing the recommendation application, it needs to be adjusted with FlexMash
to get recommendations during modeling. The work done in this thesis consists of:

• Creation of the training data, i.e., the flow models from FlexMash.

• Creation of the underlying canonical model for analysis.

• Analysis and selection of a suitable analytics algorithm to generate the recommenda-
tions.

• Design of the repository for storing the canonical model and the generated recom-
mendations.

• Design of a data transformer that transforms the flow models supplied by FlexMash
to the canonical model.

• Creation of the services to interact with the recommendation application.

35

4 Modeling Recommendations for Pattern-based Mashup Plans

Figure 4.1: Overall Approach of the Thesis

• Integration into FlexMash in order to enable the interactive recommendation feature.

Figure 4.1 shows an overview of the approach. The whole approach is subdivided into four
steps: (i) Creation of the mashup plan, (ii) Creation of an underlying canonical model,
transformation of the mashup plan and storing, (iii) Algorithm selection, analysis and
storage of results, and (iv) integration with FlexMash.

4.2 Step 1: Creation of the mashup plan

The first step, the creation of mashup plans is already done in the existing FlexMash
application. Users can model a mashup plan in FlexMash that defines data as well as how
it is processed and integrated. After that, the mashup plan is executed. The model is sent
to the recommendation application during the execution. Each model that is executed
in FlexMash will be captured by the recommendation application for analysis. A model
designed in FlexMash is shown in Figure 4.2. In the next step, a canonical model needs to
be defined and the model needs to be transformed into the defined canonical model.

Figure 4.2: A Simple Model Designed in FlexMash

36

4.3 Step 2: Creation of underlying canonical model and transformation

4.3 Step 2: Creation of underlying canonical model and
transformation

To generate recommendations, a canonical model is needed which contains only basic and
unique information about the models generated by FlexMash. In the model that is shown
in Figure 4.2, each node is connected with others by a connection. So each connection has
a source node and a target node. As already mentioned, in this thesis, association rules
technique is used to generate recommendation. The basic idea behind association rules is
to identify frequent patterns as already discussed in Section 2.1. How frequently one node
is used with others can be found by storing the connections between nodes used in each
model that is sent from FlexMash.

The canonical model used in this work for analysis can be expressed as a tuple
m = ⟨id, sourceId, targetId⟩ where :

• id is the connection id which will be auto generated,

• sourceId is the id of the source node which is a unique id of the node in FlexMash.

• targetId is the unique id of the target node.

The mashup model sent by FlexMash needs to be transformed into this canonical model.
Each tuple in the canonical model can be considered as a transaction for association rules
analysis.

4.3.1 Transform

The transformation is done using the JSON format that is sent by the FlexMash application
to the canonical model introduced in the previous section. The JSON format is depicted in
Listing 4.1.

After executing the designed model, the JSON representation of the model is sent from
the FlexMash application through HTTP. The JSON data sent by FlexMash contains the
id of the nodes and the connections between nodes. The recommendation application
extracts the relevant data from the file in order to transform it into the canonical model.
For the transformation, the unique id of the nodes in the model and connections between
the nodes are needed. The other data is ignored since it is not needed.

The model depicted in Listing 4.1 can be represented using the following mathematical
construct:

M = ⟨Nx, Ny, Nz⟩

Where Nx, Ny and Nz are nodes that are contained in the model.

37

4 Modeling Recommendations for Pattern-based Mashup Plans

{

"Nodes":

[

{

"guiId":"4c7c775e-5922-463e-8f80-9719e9b8d5da",

"serviceId":"849AFDC4-45A1-3700-AB70-2A32E650C9EA",

"Properties":[],

"Target":

[

"b7e3465d-f12d-490c-adef-d3a3036a22fa",

"b868a562-f84c-414a-85f3-f359c4449c95"

]

},

{

"guiId":"b7e3465d-f12d-490c-adef-d3a3036a22fa",

"serviceId":"3601AFC0-13B3-2BA7-B428-747F02A8BD89",

"Properties":[],

"Target": []

},

{

"guiId":"b868a562-f84c-414a-85f3-f359c4449c95",

"serviceId":"5AE4C8CA-D491-224F-A78C-4578F69896AF",

"Properties":[],

"Target": []

}

],

"Identifier":"6f2e2a9f-2b74-462c-9503-8608db791c4b"

}

Listing 4.1: JSON Representation of the Model

Each node of the model can be represented as:

Nx = ⟨gx, sx, Px, Tx⟩

Where, gx is the guiId, sx is the serviceId, Px represents the Properties and Tx is the list of
Target nodes in the model for the node Nx. And

Tx = ⟨gy, gz⟩,

where, gy and gz is the guiId of target nodes of the source node Nx.

The other nodes in the model can be represented as follows:

Ny = ⟨gy, sy, Py, Ty⟩ and Ty = ∅,
Nz = ⟨gz, sz, Pz, Tz⟩ and Tz = ∅.

To transform the FlexMash model into the canonical model we need only guiId, serviceId
and Target of each node, the Properties can be discarded as it is not needed for our canonical
model defined in Section 4.3.

Let, first consider the node Nx. The sx is the serviceId of the node Nx which is the unique
id of this node in FlexMash. The target nodes of the node Nx are gy and gz, where gy and

38

4.3 Step 2: Creation of underlying canonical model and transformation

Algorithm 4.1 Algorithm for Transformation

1: Nodes=Parse JSON array of Nodes;
2: for (i = 1; i ≥ Nodes.length; i + +) do
3: sourceID = Nodes[i]["serviceID"];
4: Targets = Nodes[i]["target"];
5: for (k = 1; k ≥ Targets.length; k + +) do
6: initialize connection object;
7: set sourceID as connection source;
8: map Targets[k]["guiID"] to Nodes[i]["serviceID"];
9: set connection target;

10: end for
11: end for

gz are the guiId of the node Ny and Nz, respectively. So, there are two connections, one
between node Nx and Ny, and the other between Nx and Nz.

The canonical model contains tuples of connections in the model and is represented as:

m = ⟨id, sourceID, targetID⟩

So, the above mentioned mathematical representation of the model can be transformed
into the canonical model as follows:

m1 = ⟨id, sx, sy⟩,
m2 = ⟨id, sx, sz⟩

Where, id is the unique identifier for the connection m1, sx is the serviceId of the node Nx

and sy is the serviceId of the node Ny. For connection m2, sx is the serviceId of node Nx

and sz is the serviceId of the node Nz.

The nodes Ny and Nz have no target nodes, so these are the end nodes. There are no
outgoing connections from these nodes, so we do not have to transform these nodes.

Algorithm 4.1 outlines the approach for model transformation. Here, first the JSON array
is parsed and added into Nodes. Then, by iterating over all items of the Nodes array, the
source and the target of a connection are extracted.

39

4 Modeling Recommendations for Pattern-based Mashup Plans

id sourceId targetId

1 849AFDC4-45A1-3700-AB70-
2A32E650C9EA

3601AFC0-13B3-2BA7-B428-
747F02A8BD89

2 849AFDC4-45A1-3700-AB70-
2A32E650C9EA

5AE4C8CA-D491-224F-A78C-
4578F69896AF

Table 4.1: Database Table Structure with Example Records to Store Canonical Models

4.3.2 Store

The above mentioned canonical model needs to be stored in a relational database. The
design of the relational database used in this work is discussed in Section 5.3 in detail. All
models coming from FlexMash are transformed into the canonical model and are stored in
a table of a relational database. The analysis is done based on this table. Each time a model
is executed in FlexMash, it is captured by the recommendation application, transformed
into the canonical model and stored in the database. The analysis is run on all data stored
in the canonical model table and updates the result of the analysis. Table 4.1 shows the
structure of the database table with some example canonical model records to store the
canonical models.

Next, a suitable algorithm needs to be selected for association rules analysis.

4.4 Step 3: Algorithm selection for analysis

In this section, the selection of a suitable algorithm for association rules analysis is discussed.
The algorithms discussed in Section 2.1.4 are compared based on several parameters. Based
on this performance comparison, a suitable algorithm is selected for analysis.

There are two disadvantages of the Apriori algorithm that has been discussed in Sec-
tion 2.1.4.1. One is the complex process of candidate generation that uses most of the
time, space, and memory. Another disadvantage are the multiple scans of the database. FP-
Growth solves these two disadvantages of Apriori. FP-Growth generates frequent itemsets
with only two passes over the database and without any candidate generation process. By
doing so, it solves one disadvantage of the apriori algorithm. In FP-Growth, the frequent
patterns generation consists of two sub-processes: construction of FP-Tree, and generation
of frequent patterns from the FP-Tree.

The FP-Growth algorithm is efficient because of three reasons. First, the FP-Tree constructed
by the algorithm is the compressed representation of the actual database because only
frequent items are used to generate the tree, other irrelevant data are discarded. Also, the
overlapping parts appear only once with different support count by ordering the items
according to their supports. Secondly, this algorithm scans the database only twice. The

40

4.4 Step 3: Algorithm selection for analysis

generated FP-Tree contains patterns with the specified suffix from which frequent patterns
can be easily generated. Also, the cost of computation decreases. Third, The FP-Tree uses a
divide and conquer method which reduces the size of the subsequent conditional FP-Tree.

In data mining, one critical aspect is the number of disk accesses because the I/O operation
takes more time than the memory operation. So, minimizing the disk access can be a reason
for faster execution. The Apriori algorithm scans the whole database k-times for finding
k-frequent itemset. The number of times the algorithm reads the database is dependent on
the size of the longest itemset. In contrast, the FP-Tree algorithm scans the database only
twice.

However, FP-Growth is difficult to use in an interactive mining system. In the interactive
mining process, users may change the threshold of the support according to the rules. In
case of FP-Growth, if the user changes the threshold of the support, the whole mining
process will be repeated. FP-Growth is also not suitable for incremental mining. Since

Parameter Apriori FP-Growth

Storage structure Array based Tree based
Search type Breadth First

Search
Divide and con-
quer

Technique Join and prune Constructs condi-
tional frequency
pattern tree which
satisfy minimum
Support

Number of
Database scans

K+1 scans 2 scans

Memory utiliza-
tion

Large mem-
ory (candidate
generation)

Less memory (No
candidate genera-
tion)

Database Sparse/dense Large and
medium data
sets

Run time More time Less time
Accuracy Less More Accurate
Data Structure
and mining
methods

Easy to use More complicated

Generating Fre-
quent itemsets

Fast Comparatively
Slow

Table 4.2: Comparison between Apriori and FP-Growth

41

4 Modeling Recommendations for Pattern-based Mashup Plans

databases keep growing, new datasets may be added into the database. The whole process
may repeat because of those additions, in case the FP-Tree algorithm is used.

Table 4.2 summarizes the difference between Apriori and FP-Growth based on literature
review [SS13].

4.4.1 Experimental Evaluation

I tested the performance of the Apriori and FP-Growth algorithms in Weka1. Weka is an
open source software that consists of a collection of open source machine learning and
data mining algorithms. It also includes preprocessing of data, classification, clustering,
and association rule extraction. The performance evaluation of both algorithms is done
based on execution time. I used supermarket data included in Weka as sample data. The
execution time is measured for the different number of records, support and confidence
level. For efficiency evaluation, I used GUI based WEKA application.

4.4.1.1 Result Discussion

In this section, the result of the experimental evaluation done for both Apriori and FP-
Growth is discussed.

Table 4.3 shows the result of the execution time analysis of Apriori and FP-Growth for a
different number of instances. It can be seen that the execution time of both algorithms
decreases when the number of instances decreases. Apriori takes 48 seconds when the
number of instances is 3629. For the same number of instances, FP-Growth needs only 4
seconds for constructing association rules.

In Figure 4.3, the performance of Apriori and FP-Growth is compared based on execution
time. Each algorithm is executed on different data sets with sizes of 3629, 1688 and 942.
Here, the number of instances in the dataset is represented by the x-axis and execution
time is represented by the y-axis. The figure shows that for any number of instances the
execution time of the FP-Growth algorithm is less than the Apriori. So, the FP-Growth

Number of instances Execution Time(in seconds)
Apriori FP-Growth

3629 48 4
1688 26 3
942 8 2

Table 4.3: Execution Time for Different Number Of Instances

1https://www.cs.waikato.ac.nz/ml/weka/

42

4.4 Step 3: Algorithm selection for analysis

Figure 4.3: Comparison of Execution Time Based on Number of Instances

executes faster than Apriori.

Table 4.4 shows the execution time taken by both Apriori and FP-Growth for different
confidence levels. The execution time of both algorithms is high when the confidence level

Figure 4.4: Comparison of Execution Time Based on Different Confidence Levels

43

4 Modeling Recommendations for Pattern-based Mashup Plans

Confidence Execution Time(in seconds)
Apriori FP-Growth

0.5 16 2
0.7 19 3
0.9 57 4

Table 4.4: Execution Time for Different Confidence Level

is high. When the confidence level is 0.9, Apriori takes 57 seconds and FP-Growth takes 4
seconds to generate association rules.

Figure 4.4 shows the graphical representation of the relationship between time and confi-
dence. The confidence is represented by the x-axis and execution time is represented by
the y-axis. It shows that the execution time of FP-Growth is less than the Apriori for any
confidence.

From the above discussion and result analysis, it is proven that FP-Growth performs faster
than Apriori. However, for providing a flexible solution, in this thesis, both algorithms are
used for analysis and results of this analysis is stored separately. The users can select which
algorithm to use according to their use case.

4.4.2 Analysis

In this section, the Apriori algorithm is used to generate association rules from the canonical
models stored in the database. An example canonical model instance is shown in Table 4.5.
This table represents a model designed in FlexMash.

As already discussed in Section 2.1.4.1, the Apriori algorithm has two steps: (i) Frequent
itemsets generation, and (ii) Association rules generation using the frequent itemset.

id sourceId targetId

1 849AFDC4-45A1-3700-AB70-
2A32E650C9EA

5AE4C8CA-D491-224F-A78C-
4578F69896AF

2 5AE4C8CA-D491-224F-A78C-
4578F69896AF

B4652E72-1F34-69D5-BC35-
6AEDA218B0C5

3 B4652E72-1F34-69D5-BC35-
6AEDA218B0C5

A203915A-39C0-7CF1-92F6-
81B6A42C4BF4

4 A203915A-39C0-7CF1-92F6-
81B6A42C4BF4

DDCB56F7-D526-E011-936C-
177094DDA67B

Table 4.5: An Example Table Storing Canonical Models

44

4.4 Step 3: Algorithm selection for analysis

Item Sup.
Count

9EA 1/4

6AF 2/4

0C5 2/4

BF4 2/4

67B 1/4

Itemset Sup.
Count

{9EA, 6AF} 1/4

{9EA, 0C5} 0

{9EA, BF4} 0

{9EA, 67B} 0

{6AF, 0C5} 1/4

{6AF, BF4} 0

{6AF, 67B} 0

{0C5, BF4} 1/4

{0C5, 67B} 0

{BF4, 67B} 1/4

Itemset Sup. Count

{9EA, 6AF} 1/4

{6AF, 0C5} 1/4

{0C5, BF4} 1/4

{BF4, 67B} 1/4
Frequent
1-itemsets

Frequent 2-itemsets

L1

1st
scan

2nd
scan

Item Sup.
Count

9EA 1/4

6AF 2/4

0C5 2/4

BF4 2/4

67B 1/4

L2

Figure 4.5: Frequent Itemset Generation

4.4.2.0.1 Frequent Itemsets Generation The data represented in Table 4.5 is consid-
ered as transactional data to generate frequent itemsets using Apriori. Here, four con-
nections are represented. I assume that, the minimum support is 25% (i.e. 1/4) and the
confidence is 40%.

A high-level illustration of the frequent itemset generation using Apriori is depicted in
Figure 4.5. Here, the last three digits of nodeID are used to represent the nodes. At first,
each node is considered as a frequent 1-itemset. Then, the support is calculated for each
item in the transactions. The support is calculated using the following formula :

support(9EA)=
transactions_containing_node_9EA

total_number_of_transactions

In L1, the overall support count is above the minimum support (25% i.e. 1/4), so all
items can be considered for the next iteration. In the next iteration, to generate frequent
2-itemsets, the Apriori algorithm uses L1 Join L1. Then, the support count for each itemset
is calculated which is shown in the third table of Figure 4.5. After that, the set of frequent
2-itemsets, L2, is determined by discarding the items which have a support count below
minimum support. The itemsets shown in table L2 of Figure 4.5 are the frequent itemsets
which can be used to generate association rules.

4.4.2.0.2 Generating Association Rules To generate association rules from frequent
itemsets, for each frequent itemset, the confidence is calculated. The formula for calculating
the confidence is given below:

For example, if A → B is a frequent itemset then

45

4 Modeling Recommendations for Pattern-based Mashup Plans

Association Rules Support(A,B) Support(A) Confidence

9EA → 6AF 1/4 1/4 1
6AF → 0C5 1/4 2/4 1/2
0C5 → BF4 1/4 2/4 1/2
BF4 → 67B 1/4 1/4 1

Table 4.6: Generated Association Rules out of Frequent itemsets

confidence(A → B) =
number_of_transactions_containing_both_A_and_B

number_of_transaction_containing_A

The generated association rules are shown in Table 4.6. As all rules have confidence level
above minimum confidence, all rules can be considered.

4.5 Step 4: Integration with FlexMash

One of the main goals of this thesis is to assist users in the FlexMash application by providing
modeling recommendations. In order to achieve this goal, the recommendation service
needs to be integrated into the existing FlexMash application. Figure 4.6 shows how the
integration is done between the Recommendation service and the FlexMash application.

Figure 4.6: Integration into FlexMash

46

4.5 Step 4: Integration with FlexMash

In the first step, the model designed in FlexMash is sent to the Recommendation Service
during the execution of the model. The Recommendation Service has a component which
transforms the model into a canonical model. This canonical model is then stored in the
repository. The analysis process will use all the stored canonical models for generating
association rules. Then, the result of the analysis are stored in the repository. This model
transformation and analysis is done during each execution of the model in FlexMash. After
that, FlexMash can query for recommendations for a specific node. The Recommendation
Service sends all available association rules for this specific node to FlexMash.

A set of User Interfaces needs to be implemented inside FlexMash in order to provide an
interactive recommendation feature during modeling.

47

5 Prototypical Implementation

The implementation details of this thesis work are discussed in this chapter which includes
the approach discussed in the previous chapter. To generate recommendations by analyzing
existing models, a web service named Modeling Recommendation Service is implemented.
The chapter describes how to transform the models into a canonical model, how the analysis
process is done and how the service is integrated into FlexMash. This chapter also outlines
the required user interface implementation in the FlexMash frontend in order to achieve
the interactive recommendation feature. FlexMash is an open source application so the
work done in this thesis is also open source.

5.1 Adaptation of Technologies

The section states the technologies needed for the implementation of the recommendation
service.

• Node.js : The Recommendation service implemented for this thesis is developed in
Node.js which is a JavaScript runtime built on Chrome’s V8 JavaScript engine.It is
lightweight and efficient because it uses an event-driven, non-blocking I/O model.
Node.js allows the creation of Web servers and networking tools using JavaScript and
a collection of "modules" that handle various core functionalities. Node.js applications
can run on Linux, MacOS, Microsoft Windows and Unix servers.

• JAVA : The data mining process in this work is implemented in JAVA which is a
concurrent, class-based object-oriented programing language. JAVA is used to handle
the open source library Weka which consists of a collection of machine learning
algorithms for data mining tasks.

• MySQL: The repository used in this work for storing canonical models and analysis
results is implemented in MySQL. It is one of the most popular relational database
management systems.

• TypeScript: The FlexMash application is implemented in TypeScript which is an open
source programing language developed and maintained by Microsoft. TypeScript is a
superset of JavaScript.

49

5 Prototypical Implementation

Figure 5.1: Architecture of the Modeling Recommendation Service Specific to the Implemen-
tation Scenario

• HTML/CSS/jQuery : This thesis uses HTML and CSS to implement additional user
interfaces inside FlexMash for the interactive recommendation feature. Along with
these, this thesis also uses libraries like Bootstrap, jQuery, etc.

5.2 Architecture

This section gives an insight into implementation details. An overview of the architecture
specific to the implementation for the work done in this thesis is depicted in Figure 5.1.
The Modeling Recommendation Service is hosted as a web service. It can be easily accessed,
deployed, and scaled.

The Architecture of the Modeling Recommendation Service consists of two main processes.
First, the Model Transformer, that transforms the model sent by the FlexMash application
into a canonical model and stores it into the database. Second, the Data Mining Process
which includes two subprocesses: (i) Transform canonical models into the Attribute-
Relation File Format (ARFF) [wik], and (ii) the Mining process that mines the supplied
ARFF dataset using the data mining algorithms Apriori and FP-Growth. The result of the
data mining process (association rules) is stored in the database.

The database consists of two core models : (i) Canonical models, (ii) Association Rules.
The database is described in more detail in Section 5.3.

50

5.2 Architecture

During the execution of a model in FlexMash, the JSON representation of the model is
sent to the Modeling Recommendation Service using an HTTP request. The service receives
the request and extracts the data. Then, the transformer transforms the JSON data into a
canonical model object and stores this object in the database. After that, the data mining
process starts mining. The process first retrieves all the canonical models stored in the
database and writes them to an ARFF file. The ARFF file is then used as the input dataset
for running the mining algorithms. Finally, the generated association rules are stored in
the database.

In FlexMash, when users request the recommendations for a specific node, the request is
sent as an HTTP request to the Modeling Recommendation Service with the unique id of this
node. The service retrieves all the association rules from the database associated with this
node id. The service builds a JSON representation of resultant association rules and replies
back to FlexMash using HTTP. FlexMash gets the reply, maps the JSON string, extracts the
recommended nodes and shows them in a dialog.

51

5 Prototypical Implementation

Figure 5.2: Entity Relationship Diagram of the Modeling Recommendation Service

5.3 Database Design

In this section, the design of the database used in this work is discussed in detail.

A relational database is used in this thesis to store canonical models and analysis results.
The relational database is important because deletion of a node in FlexMash has impact on
the recommendation generation. More precisely, if one node is deleted from the FlexMash
database, the corresponding information associated with this node must be deleted from
the recommendation database as well. Otherwise, the user will get recommendations for
nodes which does not exist in the FlexMash database. The FlexMash application will fail to
map these nodes. In order to enable consistency of data, a relational database is important
in this work.

In this thesis, MySQL is used. Figure 5.2 shows the entity relationship diagram of the
database used in this thesis. The database consists of two tables: (i) Connections which
is used to store canonical models, and (ii) Association_Rules which is used to store the
generated association rules by the data mining process.

As already mentioned, in this thesis, both Apriori and FP-Growth algorithms are used for
data mining. The association rules generated by these algorithms are stored separately. So,
in this work, two tables are used to store generated association rules by the Apriori and
FP-Growth algorithms. For better understanding, one table “Association_Rules” is shown in
the Figure 5.2. This same structure is used to store the association rules generated by two
algorithms. Depending on the user selection, the association rules can be retrieved from
the corresponding tables.

In the next sections, the tables shown in Figure 5.2 are explained with the field descrip-
tion.

52

5.3 Database Design

5.3.1 Tables

In this section, the tables which are used to store information in this work are described.

5.3.1.1 Connections

This table is used to store the canonical model, introduced in Section 4.3. Each row
represents a connection between two nodes. It has three fields :

• id is the primary key of the table and will be auto-generated,

• sourceId is a VARCHAR field, the unique id of a node which represents the source
node of a connection.

• targetId is a VARCHAR field, which represents the target node id of a connection.

5.3.1.2 Association_Rules

This table is used to store the generated association rules by the data mining process. Each
record in this table represents an association rule. It has six fields:

• ID is the primary key of the table and is auto generated.

• sourceId represents the left-hand-side (LHS) of the association rules which is source
node id.

• targetId represents the right-hand-side (RHS) of the association rules which is target
node id.

• Confidence defines the confidence of a rule.

• Lift indicates the lift of a rule. Given a rule X → Y , lift is the ratio of the probability
that X and Y occur together to the multiple of the two individual probabilities for X

and Y , i.e.,

lift = Pr(X, Y)
Pr(X).P r(Y) . (5.1)

• Leverage indicates the leverage of the rule. The leverage is calculated by subtracting
the independent probabilities of each X and Y (from the above example) from the
probability of co-occurrences of X and Y , i.e.,

leverage = Pr(X, Y) − Pr(X).P r(Y). (5.2)

• Conviction is similar to lift, but it measures the ratio of the expected frequency that
X occurs without Y . So, conviction is measured as:

conviction = Pr(X).P r(notY)
Pr(X, Y) . (5.3)

53

5 Prototypical Implementation

5.4 The Modeling Recommendation Service

In this section, the web service developed for generating modeling recommendations in
this thesis is described in detail.

In order to implement the Modeling Recommendation Service, a RESTful API is developed
using Node.js. The RESTful application usees HTTP requests to perform CRUD1 operations.
CRUD consists of four operations: (i) C:create, (ii) R:read, (iii) U:update, and (iv) D:delete.
Create or update is done using the HTTP POST method, and read is done by the HTTP GET
method.

The Modeling Recommendation Service offers a number of both POST and GET methods.
The available methods offered by the service implemented in this thesis is described in
Table 5.1.

The aim of having the Modeling Recommendation Service as RESTful application is to provide
the recommendation service as an independent application. This RESTful application can
be deployed in a server and can be accessed without any authentications. The FlexMash
application can be easily integrated by calling the methods provided by the Modeling
Recommendation Service.

Method Signa-
ture

Method Type Parameter/Data Functionality

addConnections POST JSON representa-
tion of models

Converts the
JSON represen-
tation of models
into the canonical
model, stores the
canonical model,
and runs the data
mining process

getAssociationRule GET sourceID Returns all the
association rules
matched with the
sourceID.

getCompleteModel GET sourceID Returns a com-
plete model which
starts with sour-
ceID.

Table 5.1: Description of Methods Provided by the Modeling Recommendation Service

1https://en.wikipedia.org/wiki/Crud

54

5.4 The Modeling Recommendation Service

5.4.1 Model Transformer

In this section, the implementation details of the model transformer implemented in this
thesis is discussed.

In the FlexMash frontend, when a model is executed, it generates a JSON representation of
the model. This JSON representation of the model is sent to the Modeling Recommendation
Service using a HTTP request by calling the method addConnections. addConnections is a
POST method and the JSON data is included in the request body. The JSON representation
of the model has the information about the nodes contained in the model. An example of
the JSON representation of the model can be found in Listing 4.1

Listing 4.1, contains an array of nodes and an identifier of the model. Each node in the
array of nodes has the following informations:

• guiId is the instance id of the node in the modeling canvas in FlexMash.

• serviceId is the unique identifier of the node.

• Target is a string array which contains the guiId of the nodes that are connected as a
target with the node.

• Properties is an array representing properties of the node.

For the model transformation, the guiId, serviceId and Target are needed, other information
can be discarded because the canonical model does not need the properties of the node
and the identifier of the model.

As already mentioned in Section 4.3, the canonical model represents each connection in the
model and is a tuple of, m = ⟨id, sourceId, targetId⟩. So, the list of connections occurred
in the model has to be extracted from the JSON data.

The model transformer implemented in this work extracts a list of connections from
the JSON data. An object-oriented approach is used to build a connection object. The
connection object has three properties: id, sourceId, targetId.

In the nodes array, each node can be considered as a source of a connection and target
can be extracted from the Target array. The serviceId of the node is the sourceId of the
connection and each item of the Target array is the target of the connection. To make it
more clear, for example, if there are two items in the Target array, then there will be two
connections. The source of these connections is the same. In the JSON data, the Target
array contains the guiId of nodes. The guiId in the Target array has to be mapped to the
guiId of each node of the Nodes array. Then, the corresponding serviceId can be retrieved
from the list of nodes in the JSON model. The node that does not have any target is the end
node and the node which is not a target of any node is the start node. The transformation
process is written in Node.js and shown in Listing 5.1.

55

5 Prototypical Implementation

id sourceId targetId

1 849AFDC4-45A1-3700-AB70-
2A32E650C9EA

3601AFC0-13B3-2BA7-B428-
747F02A8BD89

2 849AFDC4-45A1-3700-AB70-
2A32E650C9EA

5AE4C8CA-D491-224F-A78C-
4578F69896AF

3 5AE4C8CA-D491-224F-A78C-
4578F69896AF

DDCB56F7-D526-E011-936C-
177094DDA67B

Table 5.2: Table Storing Canonical Models

mapJSONStringtoObject : function (jsonString,callback)

{

list=[];

var obj=JSON.parse(jsonString.body["flow"]);

for (var i=0; i<obj.nodes.length; i++)

{

let conn=new Connection();

var sourceID = obj.nodes[i]["serviceId"];

var keysArray = obj.nodes[i]["target"];

for (var j = 0; j < keysArray.length; j++)

{

var value1=(keysArray[j]);

conn.sourceID=sourceID;

var rta = obj.nodes.find(

(it) => {

return it["guiId"] === value1;

}

);

conn.targetID=rta["serviceId"];

list.push(conn);

}

}

callback(list);

},

Listing 5.1: Model Transformer Code Snippet

After mapping of JSON data into a list of connection objects, it is stored in the database.
The table storing connections is shown in Table 5.2

5.4.2 Data Mining Process

In this section, the data mining process implemented in this thesis for generating association
rules is described. This is the main part of the implementation. The canonical models
implemented in the previous section is used as data source for the data mining process.
Both the Apriori and FP-Growth algorithms have been used for the data mining process, as

56

5.4 The Modeling Recommendation Service

Figure 5.3: Processing Steps of the Data Mining Process

already mentioned. The users can select one of these two algorithms based on their use
case.

For implementing the data mining algorithms, the open source library Weka2 is used. Weka
contains a collection of machine learning algorithms that are used for data mining tasks.
Apriori and FP-Growth are used for the data mining process in this thesis.

Weka is a JAVA library, so a wrapper class is implemented to use the functionalities of Weka.
This wrapper class takes a data source and the algorithm to use as input, and gives JSON
output of generated association rules. The structure of the processes implemented for the
data mining process is shown in Figure 5.3. Weka uses an ARFF (Attribute-Relation File
Format) [wik] file as a data source. An ARFF file is supplied to the wrapper class as input,
the wrapper class processes the input, runs the data mining algorithms, and returns a JSON
format of generated association rules as output. This output is then mapped onto an object
using an object-oriented approach and inserted into the database.

The whole data mining process can be subdivided into three steps: (i) Step 1: Writing to
ARFF file, (ii) Step 2: Running the data mining process (iii) Step 3: Mapping JSON results
and storage.

In the next sections, these processing steps are described in detail.

5.4.2.1 Step 1 : Write ARFF File

An ARFF file is a text file based on the ASCII standard which describes a list of instances
containing a set of attributes [wik]. ARFF files contain two parts: Header information and
Data information. The ARFF Header section of the file is composed of relation declarations

2https://www.cs.waikato.ac.nz/ml/weka/

57

5 Prototypical Implementation

and attribute declarations. The name of the relation is defined at the first line of the ARFF
file. The format is:

@relation <relation-name>

where <relation-name> is a string. If the relation name includes spaces, then it must be
defined using quotes. Attribute declarations are done in an ordered sequence of @attribute
statements. In the data set, each attribute has its own @attribute statement that uniquely
defines the name and data type of that attribute. The order of the attribute declarations
indicates the column position in the data section of the file. The @attribute statement is
defined as:

@attribute <attribute-name> <datatype>

where <attribute-name> must start with a string. If the attribute name includes spaces
then it must be defined using quotes. Weka supports four data types: numeric, string,
nominal and date.

The @data declaration is a single line which denotes the start of the data segment in the
file. Each instance in the file is defined in a single line and a carriage returns at the end of
each line which denotes the end of instances. For each instance, the attribute values are
delimited by commas or tabs. The attribute values must be defined in the order in which
they were declared in the header section. The missing values are represented by a question
mark. An example of an ARFF file is shown in Listing 5.2.

@relation LCCvsLCSH

@attribute LCC string

@attribute LCSH string

@data

AG5, ’Encyclopedias and dictionaries.;Twentieth century.’

AS262, ’Science -- Soviet Union -- History.’

AE5, ’Encyclopedias and dictionaries.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Phases.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Tables.’

Listing 5.2: Example of Attribute-Relation File Format [wik]

In this work, all data in the table storing the canonical models are used to write the ARFF
file. The node package “arff-utils” 3 is used to create ARFF files. The relation name is
“connections” and the attribute names are “sourceID” and “targetID”.

At first, all data from the table storing canonical models are retrieved. An ARFF file is
created using the relation name and then attribute names are added. After that, the data
has been added to the file by traversing the data fetched from the database. The process

3https://www.npmjs.com/package/arff-utils

58

5.4 The Modeling Recommendation Service

implemented for writing ARFF files is shown in Listing 5.3.

var ArffUtils = require(’arff-utils’);

database.getAllConnections(connection,function(err,list){

if(err) {

console.log("Error in getting connections");

} else

{

var stream = ("myarff.arff");

var arffutils = new ArffUtils.ArffWriter("connection",

ArffUtils.MODE_OBJECT);

arffutils.addStringAttribute("sourceID");

arffutils.addStringAttribute("targetID");

var fite =’’ ;

for(var i = 0; i < list.length; i++)

{

arffutils.addData({

sourceID: list[i].sourceID,

targetID: list[i].targetID

});

}

arffutils.writeToFile(stream,function (err){

if (err)

return console.log(err);

});

});

Listing 5.3: Code Snippet for Writting ARFF File

The output ARFF file for the data shown in Table 5.2 is shown in Listing 5.4.

@relation connections

@attribute sourceID string

@attribute targetID string

@data

849AFDC4-45A1-3700-AB70-2A32E650C9EA,3601AFC0-13B3-2BA7-B428-747F02A8BD89

849AFDC4-45A1-3700-AB70-2A32E650C9EA,5AE4C8CA-D491-224F-A78C-4578F69896AF

5AE4C8CA-D491-224F-A78C-4578F69896AF,DDCB56F7-D526-E011-936C-177094DDA67B

Listing 5.4: Example of Attribute-Relation File Format of the Canonical Models

5.4.2.2 Step 2 : The Data Mining Process

In this section, the details about the wrapper class implemented for the data mining process
is discussed. The whole process is implemented in JAVA with the help of the Weka library.

In Figure 5.3, it can be seen that the process is done in three steps : (i) Filter, (ii) Building
Association, and (iii) Building JSON representation of generated association rules.

59

5 Prototypical Implementation

5.4.2.2.1 Filter The data mining algorithms implemented in Weka support only specific
types of attributes. In order to do mining using the algorithms provided by Weka, the
attributes of the input data set should be converted to the supported types. In this thesis,
the Apriori and FP-Growth algorithms are used from Weka.

The Apriori implementation of Weka supports nominal, binary and unary attributes. Weka
also provides Filter to convert attributes of the data set. The ARFF file shown in the table
contains only string attributes. Weka provides a filter “StringToNominal” which converts
string attributes to nominal attributes. This filter is used in this work to convert the
string attributes of the input ARFF file to the nominal attributes so the Apriori algorithm
implemented by Weka can handle the data. This is done as shown in Listing 5.5

StringToNominal stringToNominal = new StringToNominal(); // new instance of filter

stringToNominal.setAttributeRange("first-last"); // range of the attributes

stringToNominal.setInputFormat(data);

Instances dataNominal = Filter.useFilter(data, stringToNominal);

Listing 5.5: Code Snippet for Applying StringToNominal Filter

The FP-Growth implementation of Weka supports binary and unary attributes. So the
string attributes shown in Listing 5.4 must be converted to binary or unary attributes.
However, Weka does not provide any filter to convert string attributes to binary or unary
attributes. Weka provides a filter “NominalToBinary” which converts nominal attributes
to binary attributes. In this work, first the “StringToNominal” filter is applied then the
“NominalToBinary” filter is applied. This is done as shown in Listing 5.6

StringToNominal stringToNominal = new StringToNominal(); // new instance of filter

stringToNominal.setAttributeRange("first-last");

stringToNominal.setInputFormat(data);

Instances dataNominal = Filter.useFilter(data, stringToNominal);

NominalToBinary nominalToBinary = new NominalToBinary(); // new instance of filter

nominalToBinary.setInputFormat(dataNominal);

Instances dataBinary = Filter.useFilter(dataNominal, nominalToBinary);

Listing 5.6: Code Snippet for Applying NominalToBinary Filter

After applying the filter, the data is ready for mining. Now the Apriori and FP-Growth
algorithms can be applied to the filtered data sets. In the next section, the process of
applying the Apriori and FP-Growth algorithms on the filtered data set for generating
association rules is discussed.

5.4.2.2.2 Build Association Both the Apriori and the FP-Growth implementation of
Weka provide different attributes which can be used to adjust the outcome, such as the
minimum support, the minimum confidence, etc. Each of the attributes has a default value.
If the attributes are not set then the default value will be assigned during the generation of

60

5.4 The Modeling Recommendation Service

association rules. In this thesis, for the simplicity of the implementation, the attributes are
not set and default values are used. With the default value of confidence level (0.9) and
minimum support level (0.1), both the Apriori and FP-Growth generates at least 10 rules.
This is done as shown in Listing 5.7 and Listing 5.8

Apriori apriori = new Apriori();

apriori.buildAssociations(dataApriori);

Listing 5.7: Code Snippet for Build Association Rules Using Apriori

FPGrowth fpGrowth = new FPGrowth();

fpGrowth.buildAssociations(dataFPGrowth);

Listing 5.8: Code Snippet for Build Association Rules Using FP-Growth

The output of the Apriori and FP-Growth is shown in Listing 5.9 and 5.10

Apriori

=======

Minimum support: 0.1 (6 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 18

Generated sets of large itemsets:

Size of set of large itemsets L(1): 11

Size of set of large itemsets L(2): 7

Best rules found:

1. targetID=5AE4C8CA-D491-224F-A78C-4578F69896AF 10 ==>

sourceID=849AFDC4-45A1-3700-AB70-2A32E650C9EA 10 <conf:(1)> lift:(3.53) lev:(0.12) [7]

conv:(7.17)

2. sourceID=6637B801-5673-61F5-A4C0-30C9D3812EB3 8 ==>

targetID=A203915A-39C0-7CF1-92F6-81B6A42C4BF4 8 <conf:(1)> lift:(4.29) lev:(0.1) [6]

conv:(6.13)

3. targetID=3601AFC0-13B3-2BA7-B428-747F02A8BD89 7 ==>

sourceID=849AFDC4-45A1-3700-AB70-2A32E650C9EA 7 <conf:(1)> lift:(3.53) lev:(0.08) [5]

conv:(5.02)

4. sourceID=2CC8355C-3CE5-43F7-82A8-196D33B81D8B 6 ==>

targetID=DDCB56F7-D526-E011-936C-177094DDA67B 6 <conf:(1)> lift:(3.53) lev:(0.07) [4]

conv:(4.3)

Listing 5.9: Output of Apriori

61

5 Prototypical Implementation

FPGrowth found 4 rules (displaying top 4)

1. [sourceID=2CC8355C-3CE5-43F7-82A8-196D33B81D8B=t]: 6 ==>

[targetID=DDCB56F7-D526-E011-936C-177094DDA67B=t]: 6 <conf:(1)> lift:(3.53) lev:(0.07)

conv:(4.3)

2. [targetID=5AE4C8CA-D491-224F-A78C-4578F69896AF=t]: 10 ==>

[sourceID=849AFDC4-45A1-3700-AB70-2A32E650C9EA=t]: 10 <conf:(1)> lift:(3.53) lev:(0.12)

conv:(7.17)

3. [targetID=3601AFC0-13B3-2BA7-B428-747F02A8BD89=t]: 7 ==>

[sourceID=849AFDC4-45A1-3700-AB70-2A32E650C9EA=t]: 7 <conf:(1)> lift:(3.53) lev:(0.08)

conv:(5.02)

4. [sourceID=6637B801-5673-61F5-A4C0-30C9D3812EB3=t]: 8 ==>

[targetID=A203915A-39C0-7CF1-92F6-81B6A42C4BF4=t]: 8 <conf:(1)> lift:(4.29) lev:(0.1)

conv:(6.13)

Listing 5.10: Output of FP-Growth

5.4.2.2.3 Build JSON of Generated Association Rules After the data mining process
is done, the generated association rules are written into a JSON data structure and sent back
to the Modeling Recommendation Service. This is done so that the Modeling Recommendation
Service can easily parse the JSON data into an object-oriented structure and store it in the
database. An example of a generated JSON output is shown in Listing 5.11

{

"rules":

[

{

"sourceID":"6637B801-5673-61F5-A4C0-30C9D3812EB3",

"leverage":"0.1",

"targetID":"A203915A-39C0-7CF1-92F6-81B6A42C4BF4",

"confidence":"1",

"lift":"4.27",

"conviction":"6.13"

}

]

}

Listing 5.11: JSON Representation of Association Rules Generated by the Wrapper class

5.4.2.3 Step 3 : Map JSON and Store

The Modeling Recommendation Service maps the JSON string sent by the wrapper class into
an object-oriented structure and stores it in the database. The table storing association
rules is shown in Table 5.3

62

5.5 Integration into FlexMash

id sourceId targetId Confidence Lift Leverage Conviction

1 849AFDC4-45A1-
3700-AB70-
2A32E650C9EA

5AE4C8CA-D491-
224F-A78C-
4578F69896AF

1 3.53 0.12 7.17

2 6637B801-5673-
61F5-A4C0-
30C9D3812EB3

A203915A-39C0-
7CF1-92F6-
81B6A42C4BF4

1 4.29 0.1 6.13

3 849AFDC4-45A1-
3700-AB70-
2A32E650C9EA

3601AFC0-13B3-
2BA7-B428-
747F02A8BD89

1 3.53 0.08 5.02

4 2CC8355C-3CE5-
43F7-82A8-
196D33B81D8B

DDCB56F7-D526-
E011-936C-
177094DDA67B

1 3.53 0.07 4.3

Table 5.3: Table Storing Association Rules

5.5 Integration into FlexMash

In this section, it is discussed how the developed Modeling Recommendation Service is
integrated into the FlexMash application. The user interfaces developed for providing an
interactive recommendation feature are also discussed in this section.

As already mentioned, the Modeling Recommendation Service is a RESTful application and
is hosted on a server, so it can be accessed by calling the methods provided by the service
from the FlexMash application.

When a model is executed in FlexMash, it will send the JSON representation of the model
to the Modeling Recommendation Service using an HTTP request by calling the method
addConnection. The method addConnection transforms the JSON into the canonical model,
stores the canonical model in the database, and runs the data mining process on existing
canonical models. After that, the generated association rules are stored in the database.
The whole process runs silently without any user interaction or acknowledgments.

To provide an interactive recommendation feature in the FlexMash application, a couple of
user interfaces have been developed in this thesis. In the next sections, these user interfaces
are discussed in detail.

5.5.1 Node Recommendation Dialog

A Node recommendation dialog is designed to show the list of recommended nodes for
a particular node. When users click on the connection port of a node, the node recom-
mendation dialog pops up. The dialog shows the list of recommended nodes for this
particular node. This is done by calling the method getAssociationRule provided by the

63

5 Prototypical Implementation

Modelling Recommendation Service. The unique ID of the node is sent as a parament of
this GET method. The Modeling Recommendation Service returns a JSON reply containing
a list of association rules where this node ID appeared as source ID. An example of the
JSON reply sent by the Modeling Recommendation Service is shown in Listing 5.12. Then
FlexMash parses the JSON and extracts all target IDs. After that, the node information are
extracted from the FlexMash database using the target ID extracted form the association
rules. Finally, the list of recommended nodes is shown in the dialog. The user can select the
node from the dialog. The selected node is automatically placed in the modeling canvas
and connected with the node for which the recommendations were shown. A screenshot of
the designed Node Recommendation dialog is shown in Figure 5.4

{

"AssociationRules":

[

{

"sourceID": "849AFDC4-45A1-3700-AB70-2A32E650C9EA",

"targetID": "5AE4C8CA-D491-224F-A78C-4578F69896AF",

"confidence": "0.91",

"lift": "3.23",

"leverage": "0.11",

"conviction": "3.95"

}

]

}

Listing 5.12: JSON Representation of Association Rules Sent by the Modeling
Recommendation Service

Figure 5.4: Node Recommendation Dialog

64

5.5 Integration into FlexMash

5.5.2 Model Completion

A model completion feature is also implemented in FlexMash. If the user is a business
user who does not have enough technical knowledge to design a model, then this feature
will complete the model using the top recommended nodes. To implement this feature, a
new menu item named “Complete Model” is implemented. When users place a node in
the modeling canvas and click on the “Complete Model” menu item, FlexMash will call the
method getCompleteModel provided by the Modeling Recommendation Service with the node
ID (placed in the canvas) as parameter in the request. This method first retrieves the top
one association rule ordered by the confidence level where the node ID that is sent in the
request is source ID. Then the target ID of the retrieved association rule is considered again
as source ID to retrieve the association rules. This process is recursively called until there is
no association rule found for a node. The resultant list of association rules is then sent back
to FlexMash in a JSON structure via the HTTP response. FlexMash then parses the JSON
and extracts the source ID and target ID. Finally, using these node informations, a model
is drawn in the modeling canvas. An example of a JSON response sent by the Modeling
Recommendation Service that contains a complete model is shown in Listing 5.13.

[

[

RowDataPacket

{

id: 231,

sourceID: ’849AFDC4-45A1-3700-AB70-2A32E650C9EA’,

targetID: ’A203915A-39C0-7CF1-92F6-81B6A42C4BF4’,

confidence: ’1’,

lift: ’4’,

leverage: ’0.19’,

conviction: ’1.5’

}

],

[

RowDataPacket

{

id: 237,

sourceID: ’A203915A-39C0-7CF1-92F6-81B6A42C4BF4’,

targetID: ’DDCB56F7-D526-E011-936C-177094DDA67B’,

confidence: ’1’,

lift: ’4’,

leverage: ’0.19’,

conviction: ’1.5’

}

]

]

Listing 5.13: JSON Representation of a Complete Model Sent by the Modeling
Recommendation Service

65

5 Prototypical Implementation

Figure 5.5: Merge Node Dialog

5.5.3 Merge Node Dialog

This dialog is designed to ask users whether a recommended node should be merged with
an existing node or not. If a selected recommended node already exists in the modeling
canvas then the Merge node dialog pops up asking the user whether the recommended
node should be merged with the existing one or not. If users choose “Merge” then the
source node is connected to the existing one instead of placing a new instance of the
recommended node. If users choose “Create” then the recommended node will be placed
in the modeling canvas and connected to the source node as usual. A screenshot of the
merge node dialog is shown in Figure 5.5.

5.5.4 Toggle Recommendation

Sometimes, users do not want to see modeling recommendations. This feature is imple-
mented to turn off the recommendation feature. A menu item "Toggle Recommendation" is
implemented. The recommendation feature will work if the "Toggle Recommendation" is
checked otherwise it will not work.

5.5.5 Model Widget

A model widget is developed where users can design partial models using modeling
recommendation features. This widget has three parts. In the top panel of the widget, all
the available nodes in FlexMash are shown. Users can select a node category, then the
nodes corresponding to this category will be shown. A screenshot of the top panel of the
model widget is shown in Figure 5.6.

In the middle panel, a modeling canvas is provided, where users can drag a node from the
available nodes panel and drop it into the modeling canvas. This modeling canvas works

66

5.5 Integration into FlexMash

Figure 5.6: Top Panel of Model Widget Dialog

as the main modeling canvas of FlexMash. Users can delete nodes and can merge node
with existing nodes. The middle panel is shown in Figure 5.7.

The bottom panel shows the recommended nodes. When users drag and drop a node
from the available nodes then the recommended node panel is updated using the list of
recommended nodes for the dropped node. The users can select a recommended node

Figure 5.7: Middle Panel of Model Widget Dialog

67

5 Prototypical Implementation

Figure 5.8: Bottom Panel of Model Widget Dialog

which is then automatically placed in the modeling canvas and connected with the source
node. Figure 5.8 shows the screenshot of the bottom panel of the model widget.

Finally, if users click on the button “Save”, the partial model is placed into the main
modeling canvas. After that, users can add more nodes or remove nodes from the partially
designed model.

68

6 Conclusion and Future Work

The chapter summarizes the thesis work. Some possible future works are also discussed in
this chapter.

6.1 Conclusion

The thesis work aims to assist users in mashup development environments like FlexMash.
A generalized recommendation service is implemented in this work which can be used in
multiple mashup platforms. A canonical model is described which can be used to represent
different modeling constructs in a common modeling structure. The thesis also describes
the recommendation generation strategy using the association rule mining techniques and
how to present recommendations to the users interactively.

Although, the model generated using the recommended nodes does not always represents
a valid model, but it shows how nodes have been composed in past. This helps a user with
a limited technical knowledge to implement his own domain specific model. This improves
the flexibility of the FlexMash application.

The algorithms used in this work to generate association rules uses the default values for
the minimum support (0.1) and confidence (0.9) level which is a limitation of this thesis
work. The expert users might want to change this values. So, a user interface needs to be
implemented to set up the parameters of the algorithms.

The main contribution of this thesis is to assist users in pattern-based mashup development.
The work is done to increase the flexibility of FlexMash. Users with no or limited technical
knowledge can now develop their mashup model using the recommendation feature.

6.2 Future Work

The work done in this thesis can be enhanced further. Currently, there is no implementation
for setting up the parameters of the data mining algorithms. Integrating a user interface for
setting parameters, such as minimum support and confidence, could be helpful for skilled
people to customize the association rule generation algorithms.

The addition of the recommended node to the modeling canvas works linearly one after
another which sometimes goes out of the modeling canvas. An enhancement could be done
in future on that issue by calculating the position of all nodes in the canvas.

69

6 Conclusion and Future Work

One possible extension could also be checking for semantical errors in the model. After
completion of model design, the model can be validated based on the existing models.
Another extension could be, providing suggestions to improve the current model, e.g.,
replacing a node with a suggested node which is the best fit based on previous models.

Currently, we are considering only models designed in FlexMash to generate recommen-
dations. In the future, we can also learn from the execution of models. Suggestions can
be provided to users to improve current models based on execution details of existing
models.

70

Bibliography

[AIS93] R. Agrawal, T. Imielinski, A. Swami. “Mining Association Rules between
Sets of Items in Large Databases.” In: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data (1993) (cit. on pp. 17–19,
21).

[AS94] R. Agrawal, R. Srikant. “Fast Algorithms for Mining Association Rules.” In:
Proc. 20th Int. Conf. Very Large Data Bases, VLDB (1994) (cit. on pp. 18,
22–24).

[Bor05] C. Borgelt. “An Implementation of the FP-growth Algorithm.” In: ACM Press,
New York, NY, USA (2005) (cit. on p. 25).

[CRDC12] S. Chowdhury, C. Rodriguez, F. Daniel, F. Casati. “Baya: Assisted mashup
development as a service.” In: (Apr. 2012) (cit. on p. 32).

[CTN+13] S. Chowdhury, A. Tschudnowsky, M. Niederhausen, S. Pietschmann,
P. Sharples, F. Daniel, M. Gaedke. Complementary Assistance Mechanisms
for End User Mashup Composition. May 2013 (cit. on p. 32).

[Hel07] B. L. Helm. “Fuzzy Association Rules An Implementation in R.” In: (Aug.
2007) (cit. on pp. 18, 19).

[HGN00] J. Hipp, U. Guentzer, G. Nakhaeizadeh. “Algorithms for Association Rule
Mining - A General Survey and Comparison.” In: ACM SIGKDD Explorations
Newsletter (2000) (cit. on pp. 22, 23, 26).

[HM16] P. Hirmer, B. Mitschang. “FlexMash - Flexible Data Mashups Based on Pattern-
Based Model Transformation.” Englisch. In: Communications in Computer
and Information Science 591 (Feb. 2016), pp. 12–30. DOI: 10.1007/978-3-
319-28727-0_2 (cit. on pp. 15, 28).

[HPY99] J. Han, J. Pei, Y. Yin. “Mining Frequent Patterns without Candidate Genera-
tion.” In: 2000 ACM SIGMOD Intl. Conference on Management of Data, ACM
Press (1999) (cit. on pp. 25, 26, 28).

[HRWM15] P. Hirmer, P. Reimann, M. Wieland, B. Mitschang. “Extended Techniques for
Flexible Modeling and Execution of Data Mashups.” Englisch. In: Proceedings
of the 4th International Conference on Data Management Technologies and
Applications (DATA). Ed. by M. Helfert, A. Holzinger, O. Belo, C. Francalanci.
Colmar: SciTePress, July 2015, pp. 111–122. ISBN: 978-989-758-103-8 (cit.
on pp. 15, 28).

71

https://doi.org/10.1007/978-3-319-28727-0_2
https://doi.org/10.1007/978-3-319-28727-0_2

[Liu11] B. Liu. Association Rules and Sequential Patterns. Springer Nature, 2011. ISBN:
978-3-642-19459-7. DOI: https://doi.org/10.1007/978-3-642-19460-3_2
(cit. on p. 18).

[PEl16] D. K. P.Elango. “Fuzzy FP-Tree based Data Replication Management System
in Cloud.” In: (June 2016) (cit. on p. 27).

[RCD+14] C. Rodríguez, S. R. Chowdhury, F. Daniel, H. R. M. Nezhad, F. Casati. “Assisted
Mashup Development: On the Discovery and Recommendation of Mashup
Composition Knowledge.” In: Web Services Foundations. Ed. by A. Bouguet-
taya, Q. Z. Sheng, F. Daniel. New York, NY: Springer New York, 2014, pp. 683–
708. ISBN: 978-1-4614-7518-7. DOI: 10.1007/978-1-4614-7518-7_27. URL:
https://doi.org/10.1007/978-1-4614-7518-7_27 (cit. on p. 31).

[RDC11] S. Roy Chowdhury, F. Daniel, F. Casati. “Efficient, Interactive Recommenda-
tion of Mashup Composition Knowledge.” In: Service-Oriented Computing:
9th International Conference, ICSOC 2011, Paphos, Cyprus, December 5-8,
2011 Proceedings. Ed. by G. Kappel, Z. Maamar, H. R. Motahari-Nezhad.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 374–388. ISBN:
978-3-642-25535-9. DOI: 10.1007/978-3-642-25535-9_25. URL: https:
//doi.org/10.1007/978-3-642-25535-9_25 (cit. on p. 33).

[SA96] R. Srikant, R. Agrawal. “Mining Quantitative Association Rules in Large
Relational Tables.” In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (1996) (cit. on pp. 20, 21).

[SS13] M. S.Mythili, M. Shanavas. “Performance Evaluation of Apriori and FP-Growth
Algorithms.” In: 79 (Oct. 2013), pp. 34–37 (cit. on p. 42).

[wik] wikispaces. wikispaces. URL: https://weka.wikispaces.com/ARFF+%28book+
version%29 (cit. on pp. 50, 57, 58).

[YKTZ11] Y. Yin, I. Kaku, J. Tang, J. Zhu. Association Rules Mining in Inventory Database.
Springer, London, 2011. ISBN: 978-1-84996-338-1. DOI: 10.1007/978-1-
84996-338-1 (cit. on p. 25).

All links were last followed on March 30, 2018.

https://doi.org/https://doi.org/10.1007/978-3-642-19460-3_2
https://doi.org/10.1007/978-1-4614-7518-7_27
https://doi.org/10.1007/978-1-4614-7518-7_27
https://doi.org/10.1007/978-3-642-25535-9_25
https://doi.org/10.1007/978-3-642-25535-9_25
https://doi.org/10.1007/978-3-642-25535-9_25
https://weka.wikispaces.com/ARFF+%28book+version%29
https://weka.wikispaces.com/ARFF+%28book+version%29
https://doi.org/10.1007 / 978-1-84996-338-1
https://doi.org/10.1007 / 978-1-84996-338-1

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals
	2.1 Association Rules
	2.1.1 Basics
	2.1.1.1 The Process

	2.1.2 Binary Association Rules
	2.1.3 Quantitative Association Rules
	2.1.4 Algorithms for Finding Association Rules
	2.1.4.1 Apriori
	2.1.4.1.1 Discovering Frequent Itemsets
	2.1.4.1.2 Discovering Association Rules

	2.1.4.2 Frequent Pattern Growth (FP-Growth)
	2.1.4.2.1 Preprocessing the Data
	2.1.4.2.2 Constructing the FP-Tree
	2.1.4.2.3 Mining the FP-Tree using FP-Growth

	2.2 FlexMash

	3 Related Work
	4 Modeling Recommendations for Pattern-based Mashup Plans
	4.1 Overview of the approach
	4.2 Step 1: Creation of the mashup plan
	4.3 Step 2: Creation of underlying canonical model and transformation
	4.3.1 Transform
	4.3.2 Store

	4.4 Step 3: Algorithm selection for analysis
	4.4.1 Experimental Evaluation
	4.4.1.1 Result Discussion

	4.4.2 Analysis
	4.4.2.0.1 Frequent Itemsets Generation
	4.4.2.0.2 Generating Association Rules

	4.5 Step 4: Integration with FlexMash

	5 Prototypical Implementation
	5.1 Adaptation of Technologies
	5.2 Architecture
	5.3 Database Design
	5.3.1 Tables
	5.3.1.1 Connections
	5.3.1.2 Association_Rules

	5.4 The Modeling Recommendation Service
	5.4.1 Model Transformer
	5.4.2 Data Mining Process
	5.4.2.1 Step 1 : Write ARFF File
	5.4.2.2 Step 2 : The Data Mining Process
	5.4.2.2.1 Filter
	5.4.2.2.2 Build Association
	5.4.2.2.3 Build JSON of Generated Association Rules

	5.4.2.3 Step 3 : Map JSON and Store

	5.5 Integration into FlexMash
	5.5.1 Node Recommendation Dialog
	5.5.2 Model Completion
	5.5.3 Merge Node Dialog
	5.5.4 Toggle Recommendation
	5.5.5 Model Widget

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

