
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Extension of an Evaluation
Testbed for Fog Computing

Infrastructures and Applications

Robin Finkbeiner

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dr. Kurt Rothermel

Supervisor: Dipl.-Inf. Ruben Mayer

Commenced: 2017-11-13

Completed: 2018-05-13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/160827567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Fog computing is an emerging system architecture in the cloud and Internet of Everything
realm. It aims to distribute computing, storage, and control closer to the user. In the last few
years work in this field has gained traction. Publications and research projects are increasing
and just recently work on an open standard has been started. The research community and
industry are proposing new approaches, algorithms, and system–architectures on a very
fast pace. However, it remains difficult to evaluate and test these proposals. Particularly,
because real–world testbeds are expensive and hard to set up.

This work is continuing the development of the open source project EmuFog. EmuFog is an
extensible and scalable emulation framework for fog computing infrastructures. It supports
researchers, system–architects and developers by providing a framework to test application
behavior in fog architectures. Furthermore, evaluation of algorithms for edge identification,
fog node, and application placement can be carried out on large systems.

This work extends the previous system architecture to enable multi–tiered fog nodes. That
is, the ability to run multiple applications on a single fog node instance. Furthermore,
usage of custom placement algorithms is simplified. Additionally, groundwork for resource
management was introduced to the system architecture.

3

Kurzfassung

Fog Computing ist eine aufkommende System–Architektur im Cloud und Internet of Ev-
erything Umfeld. Fog Computing zielt darauf ab, Rechenleistung, Datenspeicher und
Kontrollinstanzen näher zu den Nutzern zu bringen. In den letzten Jahren hat Forschung
in diesem Kontext stark zugenommen. Insbesondere die Anzahl an Forschungsprojekten
und Veröffentlichungen. Zusätzlich wird an einem gemeinsamen Standard gearbeitet. Die
Forschergemeinde und die Industrie schlagen neue Lösungsansätze, Fog Algorithmen und
System–Architekuren mit hoher Frequenz vor. Allerdings ist es schwierig diese Vorschläge
zu evaluieren. Insbesondere sind Testumgebungen auf echter Hardware für Fog Computing
teuer, umständlich und selten.

Diese Arbeit setzt die Entwicklung des open-source Projekts EmuFog fort. EmuFog ist ein
erweiterbares, flexibles und skalierbares Emulations–Framework um Fog Computing Infras-
trukturen zu testen. Es unterstützt Forscher, System Architekten und Entwickler, indem es
Nutzern ermöglicht, Software Anwendungen in Fog Architekturen zu testen. Zusätzlich
ist es möglich Algorithmen für Netzwerkkantenerkennung, Fog Knoten Platzierung und
Anwendungsplatzierungen auf großen Netzwerken zu evaluieren.

In dieser Arbeit wurde die vorherige System–Architektur erweitert, um multi–tiered Fog
Knoten zu ermöglichen. Multi–tiered Fog Knoten ermöglichen es, mehr als eine Applikation
pro Instanz auszuführen. Außerdem wurde die Ausführung von Placement Algorithmen
vereinfacht und Grundlagen für Ressourcen Verwaltung wurde zu der Sytem–Architektur
hinzugefügt.

4

Contents

1 Introduction 15

2 Background 19
2.1 Fog Computing . 19
2.2 Network Emulation . 22
2.3 EmuFog a Testbed for Fog Computing . 24
2.4 Related Work . 25
2.5 State of the Art Technologies . 26

2.5.1 Topology Generation . 26
2.5.2 Container–based Virtualization . 26

3 Objectives 27

4 Concept 29
4.1 Input Topologies . 30
4.2 Topology Representation . 30

4.2.1 Edge Abstractions . 31
4.2.2 Node Abstractions . 31

4.3 Placement Algorithms . 33
4.3.1 Edge Identification . 33
4.3.2 Device Distribution . 37
4.3.3 Fog Layout Creation . 38
4.3.4 Application Assignment . 40

4.4 Output Generation . 40

5 Implementation 41
5.1 System Architecture . 41

5.1.1 Input Domain . 42
5.1.2 Placement Domain . 43
5.1.3 Export Domain . 43

5.2 Contribution . 44
5.2.1 Input Configuration . 44
5.2.2 Topology Representation . 45
5.2.3 Multi–Tier Node Abstraction . 46
5.2.4 Containernet Output . 47

6 Evaluation 49
6.1 Evaluation Preparations . 50

5

6.2 Evaluation Setup . 51
6.2.1 Centralized Layout Measurements 52
6.2.2 Multi Fog Node Layout Measurement 53
6.2.3 Edge Fog Layout Measurements . 54
6.2.4 Larger Topologies . 55

6.3 Results and Discussion . 56

7 Conclusion 57

A How To Use EmuFog 59

Bibliography 65

6

List of Figures

2.1 Fog computing system architecture. 20

4.1 Overview of the workflow. 29
4.2 Internal topology representation . 30
4.3 Formal graph definition . 30
4.4 Entity relationship diagram for fog and device nodes 31

5.1 EmuFog system architecture. 41
5.2 Sequence diagram for topology creation . 45
5.3 Multi-tier node abstraction . 46

6.1 Input classification . 51
6.2 Centralized fog node layout measurements 52
6.3 Multi Fog Node Layout . 53
6.4 Edge fog node layout . 54
6.5 Workload F: Read–Modify–Write with consistency level one 55

7

List of Listings

5.1 Multi Tier Node in Containernet . 47
A.1 Input and Output Settings . 59
A.2 Basic Settings . 60
A.3 Specification of Device Node Types . 60
A.4 Specification of Fog Node Types . 61
A.5 Specification of fog and device applications 61
A.6 An exemplary launch of EmuFog . 62
A.7 Run EmuFog in a Container . 62
A.8 Start the Ryu controller . 63

9

List of Algorithms

4.1 Edge identification algorithm . 34
4.2 Mark AS Edge Nodes . 34
4.3 Convert High Degree Nodes . 35
4.4 Build Single Backbone . 36
4.5 Convert Remaining Routers . 37
4.6 Identify Fog Nodes . 39
4.7 Determine Candidate Routers . 39

11

List of Abbreviations

BRITE Boston Representative Internet Topology Generator. 26

DDS Distributed Data Stores. 25

IoE Internet of Everything. 15

JSON JavaScript Object Notation. 44

MQTT Message Queue Telemetry Transport. 21

QoS Quality of Service. 22

YAML Yet Another Markup Language. 26

YCSB Yahoo Cloud Serving Benchmark. 25

13

1 Introduction

Today the cloud is everywhere, many companies and users move their data and applications
to the cloud, utilizing the benefits of a centralized architecture. This system architecture
marginalizes the operational cost per user and allows individuals and companies access
to computational power previously exclusive to very few. Many large service providers,
competing in a fast–growing and competitive market, offer fast, scalable, secure and easy
to manage cloud solutions for almost every use case. The cloud has proven to be an
economical solution for many scenarios. [Sat17].

At the moment many new digital innovations are emerging. Smart Cities, Smart Cars, and
many more Internet of Everything (IoE) [DLYE] technologies are under development. In
the years to come, we will see how augmented and virtual reality, artificial intelligence,
and autonomous driving change the way we live. All the aforementioned technologies will
produce a great amount of data and network traffic while simultaneously demanding fast
response times. Cisco is predicting that "a city of one million will generate 200 million
gigabytes of data per day by 2020." [Ind16]

This explosion of traffic leads to several problems. First, centralized cloud solutions will
suffer from congested network links. Second, many of those emerging technologies like
autonomous driving, smart factories, and intelligent buildings impose high requirements on
network latency. Such applications are dependent on secure, fault-tolerant connections with
low round–trip latencies. In their work, Ang Li et al. collected average round–trip times
from 260 different locations to multiple public cloud providers. They measured average
round–trip times of 73 ms [LYKZ10]. This is too high for time–sensitive applications.

Fog computing [BMZA12] is an extension to the existing traditional cloud infrastructure.
The goal is to enable time–sensitive, data–heavy and mission–critical applications. This
is achieved by reducing the distance from data sources e.g. devices to the cloud. Fog
architectures move computing power, storage, communication, and control closer to the
network edge. By distributing the capabilities previously provided by the centralized cloud
into multiple layers, network load and round–trip times can be reduced.

In a combined effort Cisco and multiple other companies and research institutes introduced
a fog reference architecture to guide future research and to clarify terminology. The
collective effort is organized through the OpenFog Consortium1. Their work is centered
around creating a common understanding and vision for fog computing.

1OpenFog Consortium https://www.openfogconsortium.org/

15

https://www.openfogconsortium.org/

1 Introduction

Nonetheless, it remains difficult to test application behavior and fog algorithms. Real–world
testbeds are expensive, difficult to setup and only available to few. Simulation frameworks
like iFogSim [GVGB17] are limited in terms of executable software. And are often tailored
to specific use cases.

This work is continuing the development of the open source project EmuFog [Gra17]
[MGG+17]. EmuFog is an extensible and scalable emulation framework for Fog computing
infrastructures. It supports researchers, system–architects and developers by providing a
framework to test application behavior in fog architectures. Furthermore, evaluation of
algorithms for edge identification, fog node placement, and application assignment can be
carried out on large systems. One major drawback of the current EmuFog version is the
inability to run more than one application per fog node. Additionally, more control over
the executed placement algorithms is desirable.

Presented in this work are extensions to the previous system, to enable multi–tiered fog
nodes. That is, the ability to run multiple applications on a single fog node instance.
Furthermore, usage of custom placement algorithms is simplified and a novel step for
application assignment is presented. Finally, the groundwork for resource management is
introduced to the system architecture.

16

Outline

This thesis is sectioned into the following chapters:

Chapter 2 – Background This Chapter, introduces important foundations and theoretical
concepts relevant to the presented work. Furthermore, related work is introduced and
discussed.

Chapter 3 – Objectives This Chapter, defines and motivates the objectives of proposed
work.

Chapter 4 – Concept Here, concepts and abstractions behind EmuFog are presented and
explained. In particular, concepts behind the topology representation and the placement
algorithms will be elaborated.

Chapter 5 – Implementation This Chapter, explains the system architecture and the
implementation of contributed concepts.

Chapter 6 – Evaluation In this Chapter, the usability and functionality of EmuFog will
be evaluated by testing a real–world application in different fog architectures.

Chapter 7 – Conclusion and future work Finally, in this Chapter the presented work is
concluded and proposals for further work on EmuFog are given.

17

2 Background

This chapter introduces foundational concepts that are relevant to this work, beginning by
providing a formal definition of fog computing in Section 2.1. Highlighting its concepts,
benefits and use cases. Section 2.2 discusses the concepts and benefits of network emulation
and compares emulation to simulation and real–world testing. Then tools and technologies
used in this work are introduced. Finally, related work is discussed in Section 2.4.

2.1 Fog Computing

Bonomi et al. proposed fog computing as one possible approach to enable time–sensitive
cloud applications [BMZA12]. It has the potential to solve many prospective limitations of
cloud computing in terms of latency and generated network traffic.

The OpenFog consortium defines fog computing as follows: "A horizontal, system level
architecture that distributes computing, storage, control and networking functions closer
to the user along a cloud–to–thing–continuum." [Con+] The goal of fog computing is to
enable time sensitive, data heavy and mission–critical applications. It brings control and
computing closer to the user.

Differences between Fog and Edge Computing As fog and edge computing are fairly
new concepts the terminology is not yet unambiguous. Vaquero et al. see edge computing
as a subset of fog computing [VR14]. The OpenFog Consortium on the other hand clearly
differentiates between fog and edge computing. They view edge computing strictly limited
to computation on edge devices e.g smart phones. Fog computing on the other hand
also provides storage, control and networking capabilities and hierarchically distributes
intelligence across several nodes. It is important to point out that fog computing is not
disconnected from the cloud. To the contrary, it is a very heterogeneous environment in
which nodes communicate and potentially cooperate with each other.

Resource Characteristics There are several different characteristics that distinguish
cloud from fog computing. Varshney et. al. highlight differences between fog, cloud and
edge computing. They highlight network connectivity as one of the key characteristics
[VS17]. Fog nodes lie between the cloud and the network edge, therefore latency is low
in both directions, to the cloud, and to the edge. The computing and storage capabilities
of fog nodes are significantly lower than in the cloud. Fog computing has the potential

19

2 Background

to enable low latencies through distribution and cooperation. Cooperation is one key to
reduce generated network traffic. Data traveling upwards from device nodes to the cloud
can be filtered, augmented and analyzed by intermediate fog nodes.

E

Fog
Node

Device
Node

E E

Device
Node

Device
Node

Device
Node

Cloud

B

BB

B

B

B

B

Fog
Node

Fog
Node

1

2

3

4

Figure 2.1: Fog computing system architecture.

Fog Computing Architecture Kapsalis et al. propose a simple fog platform architecture
in their work [KKV+17]. The proposed architecture consists of four layers: device layer (1),
hub layer (2), fog layer (3) and cloud layer (4). The lowest layer contains many different
heterogeneous devices or sensors. The second layer is the hub layer through which devices
and sensors are connected to network entities in order to communicate with the cloud, fog
nodes or other devices. The third layer consists of the network backbone that lies between
the edge and the cloud. This is the fog layer, here fog nodes are placed. The final layer is
the cloud layer, which represents the endpoint or destination of the system architecture.

20

2.1 Fog Computing

Fog Deployment Models One of the major benefits of fog computing is the flexibility
of fog architectures. Fog computing supports a fluid transition between fog nodes and
the centralized cloud infrastructure. The actual number of required nodes and hierarchy
levels is dependent on the use cases of the application. For example, to satisfy latency
demands of applications with small event–to–action windows, nodes could be distributed
at the network edge close to the devices. In data heavy IoE sensor streaming applications,
a hierarchical node layout could be beneficial. In such a topology, specific nodes could
process only a subset of the produced data flow. To determine a suitable layout is one of
the major difficulties for fog application developers.

Scenarios for Fog Computing Fog computing may be useful to various different sce-
narios like data heavy stream–processing or augmented and virtual reality where low
latencies are essential. Especially the ability to filter and aggregate information traveling
from the network edge to the cloud makes fog computing promising for stream– and
complex–event–processing. Stream processing capabilities of fog computing in the context
of Social Sensing [MGSR17b] and Message Queue Telemetry Transport (MQTT) [XMR16]
have been further evaluated.

The following example use case, which is adapted out of the reference architecture of the
OpenFog Consortium [Con+], further highlights the benefits of fog computing. One possible
application context of fog computing is the supervision of safety–critical applications, for
example, monitoring of oil pipelines. The operating company has equipped their pipelines
with controllable valves as well as pressure and flow sensors. To be able to remotely control
the pipeline. Without fog computing, each sensor would have to be connected directly to
the centralized management software. This high proximity leads to long round trip times.
In case of a malfunction, reaction time would be slow. For such a critical application this is
not feasible.

With fog computing, one could imagine distributing multiple nodes along the pipeline.
Such nodes could collect and process sensor data for specific subsections of the pipeline. If
granted autonomy fog nodes would even be able to react to anomalies directly. Furthermore,
only relevant aggregated sensor information will be transmitted from fog nodes to the
cloud. This architecture will reduce the required bandwidth and decrease the reaction time
drastically. Also, due to the distributed decision–making process, the pipeline will still be
secure even when sections of the pipeline are disconnected from the centralized monitoring
application. Responsible fog nodes can act autonomously.

This use case highlights two important properties of fog computing: reduced round–trip
time due to low proximities and increased security due to the distribution of control.

21

2 Background

2.2 Network Emulation

The design and development of fog applications, architectures or algorithms requires
adequate evaluation and validation in order to test the feasibility and efficiency of proposed
solutions. This is only possible if there is efficient instrumental tooling available. Especially
for testing and evaluation tools that offer a repeatable and controllable environment are
desirable.

Nowadays, three approaches are commonly used: simulation, emulation and real–world
test beds. Simulation "is a classical way to achieve economical and fast protocol experimen-
tation." [LPD12]. Often the studied problem is simplified and the simulation serves as a
poof of concept. Simulation frameworks like OMNet++1 are event-driven and are based
on a virtual clock. With simulation, a real–time evaluation is not possible.

Real–world testing is expensive and difficult to install, as real hardware has to be used.
In the fog computing context this is especially problematic as required hardware often
has yet to be built. Furthermore, real–world tests are very inflexible because the required
infrastructure has to be built first. Real–world testing is the final step in the development
process of applications or algorithms and is therefore often only feasible at the very end.

Emulation lies between simulation and execution on actual hardware. With emulation, one
has the possibility to define a specific environment suitable to the objective. For example,
the underlying characteristics and behavior in terms of Quality of Service (QoS) can be
defined. Emulation is used "to assess the performance of an end-to-end system." [LPD12]

This fine–grained control over the test environment combined with the cheap execution
cost, compared to real–world tests, makes emulation attractive for the evaluation of fog
scenarios.

In the following, emulation frameworks used in this work are introduced.

MiniNet

MiniNet [LHM10]2 proposed by Lantz et al. is a widely used network emulator. With
Mininet users are able to run a complete network topology on their local computer. All
required elements, hosts, switches, routers, and links are emulated and behave like a
complete network. Users are able to execute actual software on Mininet’s virtual hosts. One
further key characteristic that makes Mininet interesting for fog architecture emulation, is
the ability to specify the capabilities of the network e.g. link speed, delay and further QoS
attributes. Mininet allows for fast, easy and cheap fog topology evaluation. In contrast to
simulation, users can run real programs which is essential for application testing.

1OMNet++ is available at https://www.omnetpp.org/
2Mininet is available http://mininet.org/

22

https://www.omnetpp.org/
http://mininet.org/

2.2 Network Emulation

Containernet

Peuster et al.[PKR16] proposed Containernet3 as an extension to Mininet, that enables
users to run Docker Containers on Mininet’s virtual hosts. This additional feature simplifies
the configuration and deployment of custom applications under test. The ability to run
Containers reduces the overhead to test and evaluate software as Containerization is
nowadays widely used. Furthermore, users can run the same Containers in production and
Containernet.

The presented emulation frameworks fit well in the context of this work. They enable
precise network modeling and measurements according to scenario specific needs. Also,
they provide ways to run fog applications as close to the actual deployment as possible. By
using Mininet and Containernet fast and cheap, fog topology testing is possible.

3Containernet is available at https://containernet.github.io/

23

https://containernet.github.io/

2 Background

2.3 EmuFog a Testbed for Fog Computing

EmuFog [Gra17] [MGG+17] is an extensible and scalable emulation framework for fog
computing infrastructures. It supports researchers, system–architects and developers by
providing a framework to test application behavior in fog architectures. Furthermore,
evaluation of algorithms for edge identification, fog node placement, and application
assignment can be carried out on large systems. Graser et al. published a first version of the
framework open source on GitHub under the MIT Licence4. The tool is written in the Java
programming language and aims to be platform agnostic. By using network emulation,
EmuFog fills the gap between live testing and simulation for fog computing. The workflow
when performing experiments consist of four main steps [MGG+17]:

• Topology Generation: A suitable network topology is generated and provided to the
application.

• Topology Enhancement: Provided topology is parsed to the internal network graph
representation.

• Topology Transformation: The network is augmented using a several sub–steps.
First, the network edge is determined. Then devices and fog nodes are placed in the
network following provided placement policies. Configuration and specification of
fog and device nodes as well as applications and other scenario specific definitions is
done via a configuration file.

• Deployment and Execution: Finally, an executable experiment script is generated
out of the enhanced network topology.

The framework is useful for multiple developer and research tasks. Researchers can use
EmuFog to evaluate and test developed fog layouts or placement strategies in a fast,
controlled and repeatable way. System–architects can examine the characteristics of
existing topologies in a fog computing context. Developers can evaluate the behavior of
their application in a fog architecture while using their actual applications bundled into
containers.

Currently, there is no mechanism to control the mapping of applications to fog or device
nodes. Furthermore, only one application can be deployed per node. Moreover, the
executed topology transformation steps are fixed an can only be adapted by recompiling
the tool. These limitations among others are to be addressed in this work.

4MIT License is available at https://opensource.org/licenses/MIT

24

https://opensource.org/licenses/MIT

2.4 Related Work

2.4 Related Work

FogStore

Mayer et al. [MGSR17a] propose the FogStore concept as a improvement to existing
Distributed Data Stores (DDS). They aim to improve the performance of DDS by utilizing
the benefits of fog computing, especially close proximity to data consumers and producers.
An examination of DDS that are placed in close proximity to the network edge is carried out.
Mayer et al. developed a concept to integrate fog computing into existing DDS. Therefore,
they introduce fog–aware placement strategies to place fog nodes and context–sensitive
consistency levels. Furthermore, they performed evaluation measurements using network
emulation and the Yahoo Cloud Serving Benchmark (YCSB).

iFogSim

Gupta et al. [GVGB17] propose iFogSim, as a toolkit to evaluate fog environments. Con-
ceptually the goals of iFogSim and EmuFug are similar. In contrast to EmuFog, iFogSim
uses simulation to run the experiments. In iFogSim users are able to evaluate different fog
placements and measure power consumption, latency, congestion and placement costs.

The previously motivated differences of simulation and emulation in Section 2.2 apply
to iFogSim. In particular, the inability to execute actual software is a major drawback
compared to EmuFog. Furthermore, the system architecture of iFogSim doesn’t enable
device–to–device communication, thus limiting the number of scenarios that can be tested.
Moreover, the topologies under test have to be manually created. Nonetheless, simulator–
based solutions like iFogSim are valuable tools for rapid prototyping and initial validation
of fog algorithms.

25

2 Background

2.5 State of the Art Technologies

2.5.1 Topology Generation

In research, several different topology generators are used for protocol testing, performance
measurements and evaluation of application behavior. Proposed work uses the Boston
Representative Internet Topology Generator (BRITE) [MLMB01]5 to generate topologies
used as input to evaluate fog applications or algorithms.

2.5.2 Container–based Virtualization

Container–based virtualization is a system concept utilizing kernel features like cgroups6 in
order to isolate processes from one another. It is considered to be a lightweight alternative
to hypervisor–based virtualization [SPF+07]. Here, each virtual machine can contain a
complete operating–system and emulated hardware. Contrary, in container–based virtual-
ization the host system is shared across multiple containers. One of the biggest advantages
of container–based virtualization is the fast startup–time of containers compared to heavy
virtual machines. Containers can be seen as an abstraction layer that encapsulates applica-
tions. These encapsulated applications bundled with all its dependencies can be executed
as isolated processes.

Docker and Docker Compose

Docker7 is one of the most used container–based virtualization solutions. The application
containers in Docker are defined via Dockerfiles. Docker containers are lightweight and
platform agnostic.

Docker Compose8 is a container orchestration tool that provides features to configure multi–
container applications via a Yet Another Markup Language (YAML)9 file. Execution of the
complete application stack can be controlled over a command line interface.

Container–based virtualization is beneficial to this work as it allows to define applications
in such a way that they can be executed in an emulated system environment. The platform–
agnostic character of containers is also very important. It can be expected that applications
executed in the test environment behave similarly in the actual production environment.
Which is essential to be able to realistically evaluate application characteristics in fog
systems.

5Brite is available at https://www.cs.bu.edu/brite/
6Documentation is available at https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
7Docker is available at https://www.docker.com
8Docker Compose is available at https://docs.docker.com/compose/
9YAML specification is available at http://yaml.org/spec/1.2/spec.html

26

https://www.cs.bu.edu/brite/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.docker.com
https://docs.docker.com/compose/
http://yaml.org/spec/1.2/spec.html

3 Objectives

As previously motivated in Section 2.3 by using emulation, EmuFog presents the unique
property to execute scenarios using actual software. This work introduces an extended
and improved version of the EmuFog fog computing testbed. The main objectives of
EmuFog remain unchanged. That is, the possibility to emulate large networks to evaluate
and validate placement algorithms and fog applications. All previously defined criteria
scalability, extensibility, flexibility, platform independence remain valuable [Gra17].

The emphasis of this work is to further improve extensibility, flexibility and platform
independence. Since every scenario has different requirements, the testbed should provide
ways to specify the system models in order to meet defined criteria.

In particular, it should be possible to place more than one application per device or fog node
to be able to emulate more complex fog systems, e.g., a multi–tenant or multi–application
system. Additionally, it should be possible to adapt existing or implement custom placement
algorithms. The set of supported placement algorithms should include the following:

• Edge Identification: It should be possible to implement own logic to locate the network
edge and backbone for a given topology.

• Device Placement: It should be possible to define where, which type and how many
devices should be placed in the topology.

• Fog Layout: It should be possible to define where, which type and how many fog
nodes should be placed in the topology.

• Application Assignment: It should be possible to define where, which and how many
application instances should be placed in the topology.

Furthermore, each scenario has different demands regarding resource availability and
resource limitations. It should be possible to define hardware limitations for fog and device
nodes as well as limitations for applications to be placed on them.

Naturally, the system architecture should be done in a way that it remains flexible for
future extensions. Moreover, the existing code should be refactored so that previously listed
criteria are fulfilled. Finally, the set of executed algorithms should be configurable before
the application is executed.

27

4 Concept

Placement algorithms

Read the input
topology Device placement

Fog layout

Input topology

Experiment settings

Experiment script

Edge identification

Application
assignment

Output generation

Figure 4.1: Overview of the workflow.

This Chapter describes the concepts, extensions, and improvements implemented in this
work. The general workflow of EmuFog depicted in Figure 4.1 remains unchanged com-
pared to the previous version. However, much of the internal workings, as well as the input
configuration, has been refactored.

Each execution of EmuFog starts at the leftmost point of the workflow by providing some
form of network topology and a configuration file. This input is then parsed into the
internal topology representation described in Section 4.2, after that the desired placement
algorithms described in Section 4.3 are executed. Finally, the desired experiment script
described in Section 4.4 is generated.

Below, following the steps of execution, each step will be described in more detail. Concepts
and abstractions for all relevant system entities will be introduced and explained.

29

4 Concept

4.1 Input Topologies

The first step of each execution is to read and parse the provided network topology.
Internally, the topology representation is flexible enough, that each undirected graph can
be used as input. The presented version of EmuFog currently only supports the BRITE input
format. Although, the implementation is done in a way so that support for additional or
custom formats is possible. The provided topology will be mapped onto the internal graph
representation. This step is mapping links and router nodes to the respective nodes in the
topology representation.

4.2 Topology Representation

R

R

R

R

R

R

(a) Initial, unclassified network topology

B

E

B

B

E

E

Fog
Node

Device
Node

(b) Classified network topology with assigned
node entities

Figure 4.2: Internal topology representation

After successfully reading the input, the topology is internally represented as an undirected,
connected weighted graph Figure 4.2a. This topology graph provides the basis for all
subsequent steps. All steps are performed on the same graph and are either adding nodes
and links or are augmenting existing entities with additional information. This additional
information can reach from applications that are to be associated with specific nodes to
configurations that describe node characteristics. A topology contains two entity types,
edges which represent network links, and a generalized node wrapper object. Specifics are
described in the following subsections. Depicted in Figure 4.2b is an example of a topology
with classified router nodes and connected fog and device nodes.

G = (V, E) (4.1)

v ∈ V (G) = {Router, Device node, Fog node} (4.2)

{u, v} ∈ E(G) = Link (4.3)

Figure 4.3: Formal graph definition

30

4.2 Topology Representation

4.2.1 Edge Abstractions

The set of edges E(G) represents the network links. Each edge has the following associated
attributes:

• unique identifier in order to address specific link instances during the execution of
placement algorithms.

• Two edge weight parameters delay and bandwidth to model system characteristics.

4.2.2 Node Abstractions

The EmuFog system architecture includes three different node types: router nodes, fog nodes
and device nodes. Router nodes are rather intuitive, they represent network routers and can
be classified either as a backbone, edge or simple router instances. Fog and device nodes, on
the other hand, have two additional concepts associated with them, depicted in Figure 4.4.
First, the node–type defining node characteristics e.g hardware limitations. And second, the
node–configuration containing applications associated to the respective node. Conceptually,
fog and device nodes are very similar. However, they have different placement restrictions
in terms of which router types they can connect to. Additionally, each subclass has unique
parameter fields. The node–configuration can contain 0..n associated applications.

Router Nodes

Represent network routers in the topology. They can be classified either as a

• Router modeling the initial unclassified state.

• Backbone router as part of the backbone router set.

• Edge router sitting at the network edge and serving as a access point for device
nodes.

Fog node
&

Device node

node type

node
configuration applications

Figure 4.4: Entity relationship diagram for fog and device nodes

31

4 Concept

Fog Nodes

The perception of what qualifies as a fog node can be different from scenario to scenario.
Fog nodes can reach from intermediate server instances with multiple cores to very small
single-core nodes. Via the FogNodeType configuration the following characteristics, among
others, can be defined:

• hardware limitations e.g number of cpu–cores and available memory

• connectivity limitations like bandwidth and latency

• maximum connections the respective instance is able to serve

• cost to model different placement costs

That way users have the ability to model fog nodes suitable for their experiment. Fog
nodes can be placed anywhere in the network as there are scenarios conceivable where
fog nodes are placed at the network edge along with device nodes. In order to provide
users maximum flexibility, the underlying topology representation aims to make as few
assumptions as possible.

Device Nodes

Represent all different device types required for an experiment. Similar to fog nodes the
DeviceNodeType configuration allows the configuration of node characteristics. Hardware
and connectivity limitations can be defined in the same way. In contrast to fog nodes,
devices can only be connected to routers that are classified as a edge router.

This new topology representation simplifies the creation of custom topology nodes and
introduces two novel levels of abstraction. In particular, the node–configuration now allows
for fine–grained control of application assignment to fog or device nodes.

32

4.3 Placement Algorithms

4.3 Placement Algorithms

The placement algorithms form the heart of the framework and model the complete
experiment logic. Covered logic ranges from topology classification over fog layout creation
to application assignment. The algorithms are executed sequentially, each operating and
augmenting the same graph instance. The presented work offers a four–step approach. But
both the number of executed algorithms and the contained logic can be customized to suit
scenario–specific needs.

The algorithms for edge identification, device distribution and fog layout creation are based
on solutions presented by Graser [Gra17]. Especially the algorithms for edge identification
are conceptually identical. However, due to the additional levels of abstraction, e.g.
multiple applications per node and the new router types, the algorithms had to be adapted
accordingly. The fourth step is a novelty presented in this work.

The following subsections describe the purpose, concept, and complexities of each executed
step. There are no universal solutions, especially for the fog layout creation and edge
identification. Therefore, presented algorithms can only be seen as proposals.

4.3.1 Edge Identification

At first, the network edge for the provided topology is determined. Again, there is no single
correct approach to classify the network edge. The perception of what classifies as an edge
router depends on the executed experiment. The proposed algorithms from Graser use
router characteristics like edge degree, among others to classify the edge. Initially, the set
of backbone routers is empty and routers are simply classified as router. Algorithm 4.1
describes the edge identification process. The algorithm takes the topology as input and
modifies existing router nodes by following the proposed four steps.

• Mark AS Edge Node described in Algorithm 4.2

• Convert High Degree Nodes described in Algorithm 4.3

• Build Single Backbone described in Algorithm 4.4

• Convert Remaining Routers described in Algorithm 4.5

After the heuristic was successfully applied to the topology the set of router nodes only
contains either backbone or edge routers

33

4 Concept

Algorithm 4.1 Edge identification algorithm
1: routers← {}
2: procedure IDENTIFYEDGE(G(V, E))
3: routers← G.GETROUTERS

4: IDENTIFYBACKBONE(G)
5: return G

6: end procedure

7: procedure IDENTIFYBACKBONE(G)
8: MARKASEDGENODES(G)
9: CONVERTHIGHDEGREES(G)

10: BUILDSINGLEBACKBONE(G)
11: CONVERTREMAININGROUTERS(routers)
12: end procedure

Mark AS Edge Nodes

The underlying idea of this heuristic is that if routers lie at the border of an autonomous
system the probability of being a backbone router is very high. The algorithm works as
follows. It checks for all nodes whether they have a link connecting routers from two
different autonomous systems. If so, the routers connected by the respective edge are
added to the set of backbone routers.

Algorithm 4.2 Mark AS Edge Nodes
1: neighbors← {}
2: procedure MARKASEDGENODES(G)
3: for all node ∈ G.NODES do
4: neighbors← G.ADJACENTNODES(node)
5: for all neighbor ∈ neighbors do
6: if ISCROSSASEDGE(node, neighbor) then
7: if !ISBACKBONEROUTER(node) then
8: node.SETTYPE(BACKBONE_ROUTER)
9: end if

10: if ISROUTER(neighbor) then
11: neighbor.SETTYPE(BACKBONE_ROUTER)
12: end if
13: end if
14: end for
15: end for
16: end procedure

34

4.3 Placement Algorithms

Convert High Degree Nodes

Here, the proposed algorithm assumes that router nodes with a higher than average edge
degree are members of the backbone. Therefore, the algorithm sketched in Algorithm 4.3
calculates the average node degree for the given topology instance and then compares each
router node to the calculated averageDegree value. If a router has a degree above the
calculated average he will be classified as a backbone router.

Algorithm 4.3 Convert High Degree Nodes
1: procedure CONVERTHIGHDEGREES(G)
2: averageDegree← CALCULATEAVERAGEDEGREE(G)× BACKBONE_DEGREE_PCT
3: for all router ∈ routers do
4: aboveAverage← G.DEGREE(router) ≥ averageDegree

5: if aboveAverage then
6: router.SETTYPE(BACKBONE_ROUTER)
7: end if
8: end for
9: end procedure

35

4 Concept

Build Single Backbone

Up to this point, the presented heuristics may have classified multiple routers as backbone
routers. This step is concerned with connecting backbone routers into a subgraph. The
Algorithm 4.4 starts by selecting one backbone router and then iterates over the graph
structure following the Breadth Fist Algorithm. That way the complete topology is explored
and intermediate routers between backbone routers are classified as backbone routers as
well.

Algorithm 4.4 Build Single Backbone
1: procedure BUILDSINGLEBACKBONE(G)
2: backboneRouters← G.GETBACKBONEROUTERS

3: visited← {}
4: seen← {}
5: predecessors← {}
6: b ∈ backboneRouters

7: Q← {b} // Get first router ∈ backboneRouters
8: while Q ̸= {} do
9: c← Q.DEQUEUE

10: visited← c

11: for all neighbor : G.ADJACENTNODES(c) do
12: if neighbor ̸∈ visited ∧ neighbor ∈ seen then
13: if neighbor ∈ Q∧!ISCROSSASEDGE(c, neighbor) then
14: if ISBACKBONEROUTER(c) ∧ neighbor ∈ Routers then
15: predecessors.PUT(neighbor, c)
16: end if
17: end if
18: else
19: predecessors.PUT(neighbor, c)
20: Q← neighbor

21: seen← neighbor

22: end if
23: end for
24: if ISBACKBONEROUTER(c) then
25: predecessor ← predecessors.GET(c)
26: while predecessor ∈ Router do
27: predecessor.SETTYPE(BACKBONE_ROUTER)
28: predecessor ← predecessors.GET(predecessor)
29: end while
30: end if
31: end while
32: end procedure

36

4.3 Placement Algorithms

Convert Remaining Routers

This last step assumes that all routers that are still unclassified are part of the edge router
set. Therefore, Algorithm 4.3 iterates over the set of routers and classifies each remaining
router as an edge router.

Algorithm 4.5 Convert Remaining Routers
1: procedure CONVERTREMAININGROUTERS(routers)
2: for all router ∈ routers do
3: if router.EQUALS(ROUTER) then
4: router.SETTYPE(EDGE_ROUTER)
5: end if
6: end for
7: end procedure

4.3.2 Device Distribution

The device distribution placement algorithm allows users to specify the number and locality
of provided device node types, in order to emulate different network workloads. Device
nodes can be placed anywhere at the previously classified network edge. Here, the number,
type, and location of required device nodes can be defined. The proposed work contains
a simple device distribution algorithm which places a random number of devices at the
network edge.

37

4 Concept

4.3.3 Fog Layout Creation

Similar to the edge identification there is no one solution to fog layout models. As already
motivated in Chapter 2 there are many approaches for fog architectures.

The proposed fog layout uses a simple heuristic by specifying delay and hop count bound-
aries. The goal is to cover all edge devices with as few fog nodes as possible while still
complying to the specified limitations.

The presented Algorithm 4.6 works as follows. As long as there are edge routers, that have
device nodes connected to them, which are not covered by a fog node, and there are still
fog node capacities available, a set of candidate routers is determined. Out of this set, the
router that covers most devices under the given limitations is selected as a connection
point. The next fog node instance will be connected to this router. Next, given that there
are more than one fog–node–types provided. The best fitting node type has to be selected.
This is done by using the following cost function to determine the most valuable node–type
for the corresponding connection point.

ratio = connectedDevices−maximumConnections

costs
(4.4)

This ratio is calculated for each node–type and the instance with the highest ratio is
selected.

After the fog node was successfully placed, the set of edge routers has to be updated. All
covered edge routers are removed from the edge routers list. A router is covered if all
connected devices can be served by already placed fog nodes.

This process repeats until all devices are covered or there are no more fog nodes available.
In the first case, execution was successful in the second case no suitable fog layout could
be determined under the given limitations.

38

4.3 Placement Algorithms

Algorithm 4.6 Identify Fog Nodes
1: procedure IDENTIFYFOGNODES(G)
2: edgeRouters← G.GETEDGEROUTERS

3: remainingNodes← MAXFOGNODES

4: threshold← COSTTHRESHOLD

5: delayBoundary ← DELAYBOUNDARY

6: while edgeRouters ̸= {} do
7: if remainingNodes ≥ 0 then
8:
9: canditateRouters← DETERMINECANDIDATEROUTERS

10: connectionPoint = GETBACKBONENODEWITHHIGHESTEDGECOVERAGE

11: fogNodeToP lace = new FogNode(FINDCOSTOPTIMALNODETYPE(connectionPoint))
12: PLACEFOGNODE(connectionPoint, fogNodeToP lace)
13:
14: for all coveredRouter ∈ edgeRouters do
15: if coveredRouter.COVERED then
16: edgeRouters.REMOVE(coveredRouter)
17: end if
18: end for
19:
20: remainingNodes.DECREMENT

21: end if
22: end while
23: end procedure

Determine Candidate Routers

As part of the fog node placement algorithm Algorithm 4.7 uses a greedy Dijkstra [Dij59]
algorithm to calculate all shortest paths for the current edgeRouter. Then, in order to
find all routers that fulfill the specified delay and hop count requirements the set of
backboneRouters is filtered and only valid candidates are added to the result set.

Algorithm 4.7 Determine Candidate Routers
1: procedure DETERMINECANDIDATEROUTERS

2: for all edgeRouter ∈ edgeRouters do
3: CALCULATESHORTESTPATHS(edgeRouter) // start Dijkstra for current edgeRouter
4:
5: for all backboneRouter ∈ G.GETBACKBONEROUTERS do
6: if (backboneRouter.SHORTESTPATH ≤ threshold)
7: ∧ (backboneRouter.DISTANCE ≤ delayBoundary) then
8:
9: candidateRouters← backboneRouter

10: end if
11: end for
12: end for
13: end procedure

39

4 Concept

4.3.4 Application Assignment

This placement algorithm step is a novelty presented in this work. After the devices and
fog nodes are placed in the topology, one has to specify on which instances applications
should be placed. The assignment is partitioned into two separate steps. First, the device
application mapping is executed. Here device applications are assigned to devices and
required configurations can be made. Such configurations could include defining exposed
Ports or definition of required Environment variables. Second, the fog application mapping
in which fog applications are assigned and configured. The goal of this placement algorithm
is to provide fine–grained control over applications required to execute the respective
experiment.

4.4 Output Generation

At the end of the workflow, the experiment script is generated. In this step routers, links,
devices and fog nodes are translated from the internal representation to the desired output
format. Also, assigned applications are placed. In order to satisfy the flexibility objective
this step can be adapted to comply to experiment–specific requirements. Presented version
of EmuFog provides implementations for Containernet experiments. However, custom
implementations can be added.

40

5 Implementation

In this Chapter, the realization and implementation of previously introduced system con-
cepts is presented. This work extends the open–source tool EmuFog1. First, an overview
of the proposed system architecture is given. Then the implementation of core concepts
including changes compared to the previous EmuFog version will be explained in more
depth.

5.1 System Architecture

topology

EmuFog

settings

placement

launcher

export

util

reader

application

nodeconfig

input
domain

placement
domain

export
domain

container

Figure 5.1: EmuFog system architecture.

1Emufog is available at https://github.com/emufog/emufog

41

https://github.com/emufog/emufog

5 Implementation

The EmuFog System Architecture depicted in Figure 5.1 can be divided into three domains.
First, the input domain which contains logic to define experiment settings, read input
topologies and to initialize the internal topology representation. The second domain
is concerned with the execution of the placement algorithms described in Section 4.3.
And finally, the export domain generates all required output files in order to run the
experiment.

5.1.1 Input Domain

This domain contains all packages concerned with input specification, input topology
parsing, and topology representation.

Reader Package

This package contains the input reader implementations. In contrast to the previous EmuFog
implementation, the proposed work only provides a BriteFormatReader. Nonetheless,
the general structure is identical. For future extensions, only the abstract GraphReader

class has to be implemented. The reader package will be called by the Topology class in
order to instantiate the topology representation.

Settings Package

The settings package is responsible to read in experiment settings. The experiment settings
are defined via a YAML markup file. EmuFog uses Jackson by FasterXML2 to transform the
input into a Java object. The Settings class holds all relevant experiment information and
is accessible as a singleton object throughout the execution of the application.

Topology Package

Here the complete topology is specified. Nodes types and links are defined and the topology
object is created in the Topology class. This class is responsible to provide the topology
graph throughout the execution of the application. The topology object is most important
for the execution and all subsequent steps work on the same instance and are either adding
information or entities to the same instance.

2https://github.com/FasterXML

42

https://github.com/FasterXML

5.1 System Architecture

5.1.2 Placement Domain

This domain contains the complete placement algorithm logic as well as the required
node–configurations and all node–application related implementation. Applications are
modeled in the Application package. Each Application instance contains a Container object.
This abstract Container class functions as a simple wrapper to allow support for different
containerization solutions. Currently, only Docker is implemented but if support for other
technologies is required one simply has to implement the abstract Container class.

The Node Configurations package contains the node–type and node–configuration imple-
mentation for fog and device nodes.

Placement Algorithms

Here, the proposed placement algorithms are implemented. To realize the proposed ap-
proach. Four interfaces are provided, one for each step. The presented work includes
default implementations for each step as presented in Section 4.3. Again, custom imple-
mentations can be added over the provided interfaces. At execution, each algorithm calls
the Topology package to get the topology object to work on.

5.1.3 Export Domain

After the topology was successfully created, the Export Domain is concerned with the
creation of executable experiment scripts. To allow easy adaption for custom export types
an interface ITopologyExporter is provided. The proposed work supports exports to
Containernet with the ContainernetExporter class. To extend EmuFog with support for
custom output types one has to implement the provided interface.

43

5 Implementation

5.2 Contribution

In this section, major changes to the previous version are explained and motivated in
more depth. The most important changes took place in the following areas. First, the way
how users define and specify experiments was simplified. Second, the internal topology
representation was completely reworked. Third, as one of the main objectives of this work,
the concept of multi–tiered nodes was implemented. Finally, the ability to control the
assignment of applications was introduced and a Containernet exporter was added.

5.2.1 Input Configuration

Previously, the required experiment specifications were defined via a settings file using
the JavaScript Object Notation (JSON)3. Although, JSON is a very common and universal
data interchange format it is tedious to write and prone to typing errors. Especially,
representation of nested objects is inconvenient due to the heavy usage of parentheses in
JSON. In order to make the settings file more human–friendly the data format was changed
to YAML. The advantages of YAML are its readability and simple syntax without losing any
expressivity.

Also, execution of the previous EmuFog version heavily relied on command line arguments
to parameterize the application. For example, the provided topology type was defined
via a command line argument. The main shortcoming of this approach is that selected
parameters are not replicable after execution. To increase transparency and repeatability of
experiments most of the configuration parameters were moved into the settings file. The
set of available parameters is introduced in Appendix A.

Furthermore, mechanisms to dynamically select specific versions of placement algorithms
are introduced. Now, users are able to specify the desired implementation of let’s say
the EdgeIdentification algorithm by providing the classpath in the respective section in
the settings file. Then at execution, the desired implementation is selected via dynamic
class loading. Otherwise, the application will fall back to defined default algorithms. That
way users are able to run experiments with different algorithms without recompiling the
application.

In addition to that, applications can be defined in the settings. Conceptually, the implemen-
tation follows the schema of docker-compose4. Applications for fog and device nodes can be
defined and are then accessible for the application placement algorithm during execution
of EmuFog. The implemented features are documented in Appendix A.

3JSON specification is available at https://tools.ietf.org/html/rfc7159
4Docker compose is available at https://docs.docker.com/compose/

44

https://tools.ietf.org/html/rfc7159
https://docs.docker.com/compose/

5.2 Contribution

5.2.2 Topology Representation

The internal graph representation of EmuFog experienced a complete remodeling. The
previous version used a custom–made graph data structure. While trying to extend the
architecture to support multi–tiered nodes and a more flexible placement algorithm execu-
tion, this custom data structure limited the possibilities of extension severely. For example,
it would have been very difficult to integrate the introduced node–configurations, containing
the application definitions, to the previous data structure. Therefore, with future extensions
in mind, the graph structure was replaced by a commonly used graph implementation
provided by the Guava5 library. The flexibility of the Guava graph implementation (almost
every Java object can be used as a node), as well as the comprehensive feature set, are
beneficial to EmuFog users and developers.

Furthermore, the topology representation lives in the application as a singleton object (there
is never more than one topology object). And conceptually follows a sequential builder
pattern depicted in Figure 5.2. Upon instantiation, the build method is responsible to call
all configured placement steps. First, the selected read method to instantiate the graph is
called. Then the edge is identified, the devices are assigned and all other subsequent steps
are called. After all build steps are completed successfully the topology can be exported
using the desired exporter implementation.

The benefit of this approach is its flexibility regarding the number of executed steps as well
as the actual implementation of each step. As mentioned in Section 5.2.1 the executed
algorithms can be defined in the settings file and are then dynamically loaded in the build
method.

:build :read :identifyEdge :assignEdgeDevices :createFogLayout :assignApplications:topology

return

build

read

:export

Figure 5.2: Sequence diagram for topology creation

5Guava: Google Core Libraries for Java https://github.com/google/guava

45

https://github.com/google/guava

5 Implementation

5.2.3 Multi–Tier Node Abstraction

One of the main objectives of this work was the introduction of nodes with multi–application
capabilities. The previous version of EmuFog only allowed one application per fog or device
node. These applications are bundled in Docker containers. This one–to–one limitation
is due to the fact that Containernet, as the underlying emulation software, only supports
nodes with exactly one container assigned. Two possible approaches to a solution were
evaluated.

A possible solution would have been to adapt the Containernet implementation to suit our
requirements. This would have been a very laborious and time–consuming process. Because
the eventually proposed solution would still have to be accepted by the Containernet
developers. The second and implemented approach depicted in Figure 5.3 makes use of a
unique property of emulated network links which is the ability to emulate links with zero
delay. That way multiple applications can be connected without losing the characteristics
of the topology under test.

Device node

Fog node

(a) Previous, single–application architecture

Device node

Fog node

</>

</>

</>

(b) Proposed multi–application architecture

Figure 5.3: Multi-tier node abstraction

In Figure 5.3a the previous node abstraction is depicted. A fog node running a single
container instance is connected to a backbone router and a device node is connected to
an edge router. The proposed multi–application architecture in Figure 5.3b extends the
node abstraction. For each node, an intermediate router is added to the topology. This
intermediate router is connected to the respective backbone or edge router. The link
characteristics are specified in the node–configurations. Now applications associated to the
node can be connected via zero delay and maximum bandwidth links to the intermediate
router. Because emulation allows links with zero delay, connected applications behave to
the rest of the system as if they were connected directly to the actual topology router.

Listing 5.1 shows the actual implementation in Containernet. In line 3 the intermediate
router is added and connected to the corresponding topology router in line 5. Then the
application is connected to the intermediate router in line 14.

46

5.2 Contribution

Listing 5.1 Multi Tier Node in Containernet
1 # createMultitierSwitch

2 info('*** Create multi tier switch for d11\n')

3 mtsd11 = net.addSwitch('mtsd11')

4 info('*** Adding link from mtsd11 to r5\n')

5 net.addLink(mtsd11, r5, cls=TCLink, delay='10.0ms', bw=5.0)

6

7 # serviceA

8 info('*** Adding docker container d1117 with ubuntu:trusty\n')

9 d1117 = net.addDocker('d1117', ip='10.0.0.2', dimage="ubuntu:trusty", mem_limit=256, ...)

10

11 # connect application to mtsd11

12 info('*** connect application to mtsd11\n')

13 info('*** Adding link from d1117 to mtsd11\n')

14 net.addLink(d1117, mtsd11, cls=TCLink, delay='0.0ms', bw=1000.0)

Although this approach increases the number of emulated routers by the number of
connected nodes, we still believe this solution is feasible. Proposed solution only makes
use of general features of emulated networks. And should, therefore, be extendable to
other emulation tools as well. A custom Containernet extension, on the other hand, would
only work for Containernet and thus limit the flexibility of EmuFog. For Example, an easy
integration of MaxiNet wouldn’t be possible anymore. We believe flexibility is in this case
more important than efficiency and accept the associated increased emulation complexity.

5.2.4 Containernet Output

This version of EmuFog replaced the previous MaxiNet experiment output with a Con-
tainernet implementation. Mostly due to the fact that running Containernet experiments
has a lower overhead. Containernet itself is available as a Docker Container and can,
therefore, be used on most platforms. MaxiNet, on the other hand, is only optimized for
the Ubuntu distribution. During implementation, a bug in Containernet that prevented the
configuration of port–mappings in the experiment script was encountered. Fortunately, the
Containernet contributors were very helpful and responsive and fixed the bug.

47

6 Evaluation

In this chapter, the usability and functionality of EmuFog will be evaluated. Therefore a
DDS application will be deployed on different fog layouts and latency tests will be executed.
First, the used applications Cassandra and the YCSB will be introduced. Then, the necessary
preparations in order to run the applications in an emulated network are described. Next,
the evaluation setup and tested fog layouts are presented. Finally, the results will be
discussed. This evaluation follows two goals. First, to test the usability and functionality
of the proposed framework. Second, to examine the behavior of a DDS in a fog context,
similar to FogStore [MGSR17a].

Cassandra

Cassandra [LM10]1 is a widely used highly scalable and fault–tolerance distributed data
store. Cassandra works as a key value store and was developed by Lakshman et al. at
Facebook as a open–source implementation under the Apache license. Several large
software companies use Cassandra in production. One of the largest cluster has over
75.000 Nodes storing over 10 PB of data.

Yahoo Cloud Serving Benchmark

YCSB [CST+10]2 proposed by Cooper et al. is a framework to benchmark and classify
performance of distributed database systems. The framework provides several different
workloads to test characteristics like read versus write performance, latency and consistency.
Furthermore, custom tests can be implemented.

1Cassandra is available at http://cassandra.apache.org/
2YCSB is available at https://github.com/brianfrankcooper/YCSB/wiki

49

http://cassandra.apache.org/
https://github.com/brianfrankcooper/YCSB/wiki

6 Evaluation

The framework comes with six core workloads:

• Workload A: Update heavy workload with a mix of 50/50 reads and writes.

• Workload B: Read mostly workload with a 95/5 read/write mix.

• Workload C: Read only with 100% read.

• Workload D: Read latest workload. Here, new records are inserted and the most
recently inserted record read most often.

• Workload E: Here, short ranges of records are queried.

• Workload F: Read–modify–write, in this workload, records are written, modified and
then read again.

6.1 Evaluation Preparations

In this section, important preparations in order to run the experiments are described. In
particular, implementation details and lessons learned are documented. Furthermore, one
example for topology classification will be discussed.

Cassandra To be able to run Cassandra with EmuFog, Containernet and YCSB several
prearrangements have to be made. First, one has to configure the correct network for
Cassandra to start on. Per default, the docker network interfaces are used. In order
to connect to the emulated network running in Containernet the startup sequence of
Cassandra has been adapted using a custom startup script. This startup script also creates
necessary tables to run YCSB workloads at boot time. To be able to support multi–node
Cassandra clusters a Seed Node is required and wait times for nodes to discover each other
have to be taken into account. Therefore, a custom Application Assignment Placement
algorithm was introduced to EmuFog. This placement algorithm takes care of setting the
respective environment variables to define the Seed Node and specify wait times.

During the evaluation, two different input topologies were used. One small topology
consisting of 10 nodes and one larger topology with 100 nodes. For the small topology,
three different fog layouts have been generated and for the larger topology two.

50

6.2 Evaluation Setup

Topology Classification

Depicted in Figure 6.1 is the classification process of the small input topology. Fist, in
Figure 6.1a the raw unclassified is shown. Then during the execution of EmuFog the edge
identification algorithm identified the nodes 0, 2, 3, and 4 as backbone nodes in Figure 6.1b.
Finally, the remaining nodes are classified as edge nodes in Figure 6.1c.

0 3

42

1

5 8

7

6

9

(a) Unclassified topology

0 3

42

1

5 8

7

6

9

(b) Backbone nodes identified

0 3

42

1

5 8

7

6

9

(c) Classified topology

Figure 6.1: Input classification

6.2 Evaluation Setup

All measurements were carried out on the same system. The underlying hardware is a 4 x 16
Core Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz and 1TB RAM. In the following sections,
the three generated fog layouts are depicted and measurement results are presented. First,
a centralized layout with a single fog node has been created to model a cloud system
architecture. Then a simple multi–node fog layout was measured and finally, an edge
fog layout has been created. Additionally, two different layouts on the larger 100 node
topology were evaluated. Several different YCSB Workloads were executed. For each fog
layout, the results of Workload F are shown. The Workload was executed with two different
consistency levels. First, with level one, read from one arbitrary node and write to one
arbitrary node. Second, with level all, read and write from and to all nodes.

51

6 Evaluation

6.2.1 Centralized Layout Measurements

Here, the placement limitations and node configurations were set in such a way that one
fog node is capable to serve all device nodes. The specified fog node type can serve up to
ten devices. The following placement restrictions were made: no further than two hops
away and lower than 20 ms link delay. The generated topology is depicted in Figure 6.2a.
The device placement algorithm distributed four devices at the network edge and the fog
layout algorithm determined backbone router four as the most suitable connection point.
In this topology, there is only one Cassandra instance running. In Figure 6.2b the results of
Workload F are depicted. From left to right latencies for device node 1 to 4 are shown.

B B

BB

E

E E

E

E

E

Fog
Node

Device
Node

Device
Node

Device
Node

Device
Node

1

2

134

(a) Centralized fog node layout

1 2 3 4

0.3

0.4

0.5

0.29 0.29 0.3 0.29

0.54 0.54 0.54 0.54

0.25 0.25 0.25 0.25

La
te

nc
y

in
[s

]

Read Read–Modify–Write Update

(b) Workload F: Read–Modify–Write with consis-
tency level one

Figure 6.2: Centralized fog node layout measurements

52

6.2 Evaluation Setup

6.2.2 Multi Fog Node Layout Measurement

Here, the fog nodes had fewer capabilities than in the first layout. The placement restrictions
were similar: no further than two hops away and lower than 20 ms link delay. The generated
topology is depicted in Figure 6.3a. The device placement algorithm again distributed four
devices at the network edge and the fog layout algorithm determined backbone router four
as the most suitable connection point. Due to the lower capabilities of the defined fog node
types, two instances were required to serve all devices. In this topology, two Cassandra
instances are deployed.

In Figure 6.3b and Figure 6.3c the results of Workload F are depicted. From left to right
latencies for device node 1 to 4 are shown.

Fog
Node

Device
Node

B B

BB

E

E E

E

E

E

Fog
Node

Device
Node

Device
Node

Device
Node 1

2

3

4

12

(a) Multi node fog layout

1 2 3 4

0.4

0.6

0.8

1

0.58
0.64 0.65

0.59

0.8

1.04 1.03

0.86

0.38

0.53 0.53

0.43

La
te

nc
y

in
[s

]

Read Read–Modify–Write Update

(b) Workload F: Read–Modify–Write
with consistency level one

1 2 3 4

0.4

0.6

0.8

1

0.64
0.67

0.59
0.67

0.92

1.01

0.93
1

0.47 0.49
0.46

0.52

Read Read–Modify–Write Update

(c) Workload F: Read–Modify–Write
with consistency level all

Figure 6.3: Multi Fog Node Layout

53

6 Evaluation

6.2.3 Edge Fog Layout Measurements

Here, the placement restrictions were the strictest: not further than one hop away and
lower than 20 ms link delay. In addition to that defined fog node types were only capable
to serve one connection. The generated topology is depicted in Figure 6.4a. In order to
cover all devices four fog node instances were placed in this topology. In this topology, a
Cassandra instance is running on each fog node.

In Figure 6.4b and Figure 6.4c the results of Workload F are depicted. From left to right
latencies for device node 1 to 4 are shown.

Fog
Node

B B

BB

E

E E

E

E

EDevice
Node

Device
Node

Device
Node

Device
Node

Fog
Node

Fog
Node

Fog
Node

1

2

3

4

1 2 3 4

(a) Edge fog node layout

1 2 3 4

0.4

0.6

0.8

0.6 0.57
0.53 0.53

0.87
0.84

0.76 0.79

0.4 0.41 0.41 0.41

La
te

nc
y

in
[s

]

Read Read–Modify–Write Update

(b) Workload F: Read–Modify–Write
with consistency level one

1 2 3 4

0.4

0.5

0.6

0.7

0.8

0.54
0.57

0.54 0.54

0.76
0.82 0.81 0.8

0.4 0.4
0.43

0.4

Read Read–Modify–Write Update

(c) Workload F: Read–Modify–Write
with consistency level all

Figure 6.4: Edge fog node layout

54

6.2 Evaluation Setup

6.2.4 Larger Topologies

Two larger topologies were evaluated as well. The first containing 7 Cassandra instances
and 32 device nodes. And the second, containing 17 Cassandra instances and 22 device
nodes. Both, the 7 and 17 node Cassandra cluster could be started. The YCSB tests were
executed from one of the devices. The placement restrictions for the large topologies
were:

• 1: not further than five hops away and lower than 20ms link delay. Maximum
connections of fog node type 5.

• 2: not further than one hop away and lower than 20ms link delay. Maximum
connections of fog node type 20.

In Figure 6.5 the results of Workload F are depicted. From left to right latencies for topology
one and two are shown.

1 2

0.4

0.5

0.6

0.7

0.8

0.61
0.55

0.82
0.78

0.38
0.44

La
te

nc
y

in
[s

]

Read Read–Modify–Write Update

Figure 6.5: Workload F: Read–Modify–Write with consistency level one

55

6 Evaluation

6.3 Results and Discussion

The first goal of this evaluation could be reached. It was shown that real–world appli-
cations can be configured, deployed and executed using the EmuFog framework and
network emulation. Multiple fog layouts were created according to different scenario
requirements.

Furthermore, in the larger topologies, one can observe, that latencies are lower in fog
layouts that are closer to the edge. Also, update latencies were significantly higher in
topologies with more replicas. It is interesting to see that for small topologies, according to
the performed measurements, a centralized layout is able to deliver the best performance.
Furthermore, it has been shown that performance characteristics for the tested consistency
levels are very similar in small topologies. It can be expected that in larger topologies the
impact of higher consistency requirements has more impact.

In order to draw conclusions about the behavior of DDS in fog layouts further measurements
have to be carried out. Overall, the evaluation was able to show one possible field of
application for EmuFog.

56

7 Conclusion

In this work, an improved version of EmuFog was presented. Several shortcomings of the
previous version have been resolved. It is now possible to run multiple applications on
device and fog nodes. The concept of multi–tiered nodes have been implemented for the
Containernet emulation framework. However, the presented solution can also be applied
to other emulation frameworks like MaxiNet1 with low overhead.

Furthermore, the workflow of EmuFog has been streamlined and extended with further
topology augmentation steps. Beginning at the start of each EmuFog execution, the
configuration and definition of scenario specifics have been centralized into a single
settings file. This improves repeatability and versioning of executed scenarios.

Then, the internal graph representation and execution of the topology enhancement steps,
now called placement algorithms, have been adapted. The desired placement algorithms
can be defined via the input settings and are dynamically loaded at application start.
Internally, the executed placement algorithms are modeled in an exchangeable fashion.

In order to control the assignment of applications to nodes, a novel placement step was
introduced. Now it is possible to specify which applications should run on which node
entity. In the settings file application specific configurations e.g. environment variables,
scripts can be added. EmuFog comes with default implementations for each of the five
placement steps. The existing algorithms for edge identification and fog layout creation
have been updated due to the new graph representation and novel application assignment
algorithms were added.

To further increase the platform agnostic design goal of EmuFog, a containerized version of
the framework is available.

The functionality and usability of EmuFog have been successfully evaluated by bench-
marking a DDS application in different fog layouts. It has been shown that the proposed
framework is able to run real–world applications and enables users to generate use case
specific network topologies in a fast and repeatable way.

1Maxinet is available at https://maxinet.github.io/

57

https://maxinet.github.io/

7 Conclusion

Future Work

In future work, several areas of EmuFog could be improved:

• Placement algorithms: The set of provided placement algorithms could be extended
with more sophisticated solutions. Especially for the edge identification and fog
layout creation. It would be conceivable to implement fog layout algorithms building
hierarchical or meshed layouts.

• Investigate alternative fields of application: The flexible nature of EmuFog and
the ability to programmatically control the placement of applications in a predefined
topology opens an opportunity to use the framework in additional fields of application.
For instance, EmuFog could prove useful for automated integration testing of e.g.
microservice architectures. As the services under test can be executed in a completely
controlled environment in a fast an repeatable and automatable fashion. That way,
the behavior of multiple services can be evaluated during implementation as part of
the continuous integration pipeline of the software. And possible limitations could be
detected early on.

• Resource management: A global resource management representation to configure
the overall system capabilities may be useful to system–architects and other users. One
could imagine adding a separate placement algorithm to ensure that the constructed
topology does not exceed the available resources. The accessible system resources
could be modeled via the settings file.

• Mobile fog and device nodes: The static character of the current implementation
makes an evaluation of mobile fog scenarios difficult. But in the context of fog
computing mobility and flexibility are core concepts. It would be desirable to have
the ability to model more flexible network topologies. One possible step toward that
goal could be the introduction of nodes that can be moved during the execution of the
experiment. This could possibly be achieved by providing ways to programmatically
bend links from one endpoint to another. That way the mobility of nodes could be
modeled.

• Maxinet exporter: Presented work only includes a Containernet exporter imple-
mentation. To be able to evaluate larger systems an updated Maxinet exporter
implementation, incorporating the novel multi–tiered capabilities, could be useful.

• Input topologies: Presented work only includes support for BRITE input topologies,
to provide users more flexibility support for additional input types is desirable

The presented list of possible further work is not necessarily ordered by importance.
Although, the proposals for mobile fog and device nodes, as well as the introduction of
additional Placement Algorithms, are straightforward. Additionally, the alternative fields of
application cloud be investigated as an additional benefit.

58

A How To Use EmuFog

In this section the usage of EmuFog is described. First, the required input data and possible
configurations are introduced. Then, the execution of the application is explained. And
finally, instructions on how to use the generated output in containernet is are given.

Input Configuration

Input Topology The proposed version of EmuFog is able to work with BRITE topologies.
The path to the desired file has to be specified in the settings file as shown in Listing A.1.

Input Data Configuration of EmuFog is done via a YAML file. The settings are sectioned
into five different segments described in the following.

Input and Output Settings First, the basic input and output settings have to be defined.
Here, as shown in Listing A.1 paths to the input data and the desired output path are
configured. From Line 9 to 14 the placement algorithms can be chosen.

Listing A.1 Input and Output Settings
1 ###

2 Input/Output Settings

3 ###

4 inputGraphFilePath: "100_1.brite"

5 exportFilePath: "containernet_out.py"

6

7 overWriteOutputFile: true

8

9 applicationAssignmentPolicy: "emufog.placement.DefaultApplicationAssignment"

10 devicePlacement: "emufog.placement.DefaultDevicePlacement"

11 edgeIdentifier: "emufog.placement.DefaultEdgeIdentifier"

12 fogPlacement: "emufog.placement.DefaultFogLayout"

13 exporter: "emufog.export.ContainernetExporter"

14 reader: "emufog.reader.BriteReader"

59

A How To Use EmuFog

Basic Settings This part of the settings file defines the basic experiment settings. The
number of Fog Nodes and the cost heuristics are defined.

Listing A.2 Basic Settings
15 ###

16 Basic Settings

17 ###

18 baseAddress: "10.0.0.0"

19 maxFogNodes: 20

20 costThreshold: 2

21 delayBoundary: 20

22

23 # Settings for Parallel building:

24 threadCount: 1

25 parallelFogBuilding: false

Device Node Types Here, one or more Device Node Types can be specified. The specified
types are then available to the devicePlacement algorithm.

Listing A.3 Specification of Device Node Types
26 ###

27 DeviceNodeTypes

28 ###

29 deviceNodeTypes:

30 - name: deviceNode1

31 scalingFactor: 1

32 averageDeviceCount: 1

33 memoryLimit: "'256mb'"

34 cpuShare: 1

35 nodeLatency: 10

36 nodeBandwidth: 5

60

Fog Node Types Here, one or more Fog Node Types can be specified. The specified types
are then available to the fogPlacement algorithm.

Listing A.4 Specification of Fog Node Types
37 ###

38 FogNodeTypes

39 ###

40 fogNodeTypes:

41 - name: fogNodeType1

42 id: 1

43 maximumConnections: 1

44 costs: 1

45 memoryLimit: "'4gb'"

46 cpuShare: 1

47 nodeLatency: 0

48 nodeBandwidth: 100

Applications This section defines all available applications. Currently, there are two
different application types. First, fogApplications that can be placed on Fog Nodes. And
second, one ore more deviceApplications can be defined. Specified applications are available
to the applicationAssignmentPolicy algorithm.

Listing A.5 Specification of fog and device applications
49 ###

50 Applications

51 ###

52 fogApplications:

53 - name: serviceA

54 container:

55 image: "ubuntu:trusty"

56 ports:

57 -"8080"

58 portBindings:

59 -"80:8080"

60 labels:

61 -"'com.emufog'"

62 environment:

63 -"'FOO=Bar'"

64 commands:

65 -"ls"

66 volumes:

67 -"'settings.yaml:/home/settings.yaml'"

68 deviceApplications:

69 - name: serviceA

70 container:

71 image: alpine

61

A How To Use EmuFog

Run EmuFog

There are two ways to run EmuFog. One can either directly execute the compiled application
as shown in Listing A.6 or use the provided Container and mount all neccessary files as
shown in Listing A.7.

Listing A.6 An exemplary launch of EmuFog
$ java -jar emufog.jar -s settings.yaml

Listing A.7 Run EmuFog in a Container
1 version: "2.1"

2 services:

3 emufog:

4 image: emufog:latest

5 container_name: emufog

6 volumes:

7 - /emufog/emufogDocker/settings.yaml:/usr/app/emufog/settings.yaml:rw

8 - /emufog/emufogDocker/5er.brite:/usr/app/emufog/5er.brite:rw

9 - /emufog/emufogDocker/out:/usr/app/emufog/out:rw

10 command: java -jar emufog.jar -s settings.yaml

62

Output Files

Containernet Experiment The generated output file is executable in Containernet. The
implementation is done in a way that one has to start the desired SDN Controller by hand. In
order to support Networks with loops usage of the Ryu SDN Framework1 is recommended.
The framework already provides a controller implementation with Spanning–Tree[98]
capabilities.

To Start the Ryu controller execute command depicted in Listing A.8

Listing A.8 Start the Ryu controller
$ ryu-manager ryu.app.simple_switch_stp_13

Build Automation

With future extensions and collaborative development in mind groundwork for build
automation was introduced in this work. In order to ensure that there cannot be broken
code committed to the repository Travis CI2 is used as a Continuous Integration[DMG07]
solution. Before, adding new code to the repository each commit will be compiled by Travis
to prevent broken code in the repository.

1Ryu Framework https://osrg.github.io/ryu/
2Travis CI https://travis-ci.org/

63

https://osrg.github.io/ryu/
https://travis-ci.org/

Bibliography

[98] “IEEE Standard for Information Technology- Telecommunications and Infor-
mation Exchange Between Systems- Local and Metropolitan Area Networks-
Common Specifications Part 3: Media Access Control (MAC) Bridges.” In: AN-
SI/IEEE Std 802.1D, 1998 Edition (1998), pp. i–355. DOI: 10.1109/IEEESTD.
1998.95619 (cit. on p. 63).

[BMZA12] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. “Fog computing and its role in the
internet of things.” In: Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM. 2012, pp. 13–16 (cit. on pp. 15, 19).

[Con+] O. Consortium et al. Architecture Working Group,“Open-Fog Architecture
Overview,” Feb 2016 (cit. on pp. 19, 21).

[CST+10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears. “Bench-
marking cloud serving systems with YCSB.” In: Proceedings of the 1st ACM
symposium on Cloud computing. ACM. 2010, pp. 143–154 (cit. on p. 49).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs.” In:
Numerische mathematik 1.1 (1959), pp. 269–271 (cit. on p. 39).

[DLYE] B. Di Martino, K.-C. Li, L. T. Yang, A. Esposito. “Internet of Everything.” In:
() (cit. on p. 15).

[DMG07] P. M. Duvall, S. Matyas, A. Glover. Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007 (cit. on p. 63).

[Gra17] L. Graser. “Design and implementation of an evaluation testbed for fog
computing infrastructure and applications.” MA thesis. 2017 (cit. on pp. 16,
24, 27, 33).

[GVGB17] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya. “iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet
of Things, Edge and Fog computing environments.” In: Software: Practice
and Experience 47.9 (2017), pp. 1275–1296 (cit. on pp. 16, 25).

[Ind16] C. G. C. Index. “Forecast and methodology, 2015-2020 white paper.” In:
Retrieved 1st June (2016) (cit. on p. 15).

[KKV+17] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, C. Z. Patrikakis. “A
cooperative fog approach for effective workload balancing.” In: IEEE Cloud
Computing 4.2 (2017), pp. 36–45 (cit. on p. 20).

65

http://dx.doi.org/10.1109/IEEESTD.1998.95619
http://dx.doi.org/10.1109/IEEESTD.1998.95619

Bibliography

[LHM10] B. Lantz, B. Heller, N. McKeown. “A Network in a Laptop: Rapid Prototyp-
ing for Software-defined Networks.” In: Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks. Hotnets-IX. Monterey, California:
ACM, 2010, 19:1–19:6. ISBN: 978-1-4503-0409-2. DOI: 10.1145/1868447.
1868466. URL: http://doi.acm.org/10.1145/1868447.1868466 (cit. on
p. 22).

[LM10] A. Lakshman, P. Malik. “Cassandra: a decentralized structured storage sys-
tem.” In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40
(cit. on p. 49).

[LPD12] E. Lochin, T. Pérennou, L. Dairaine. “When should I use network emulation?”
In: annals of telecommunications - annales des télécommunications 67.5 (June
2012), pp. 247–255. ISSN: 1958-9395. DOI: 10.1007/s12243-011-0268-5.
URL: https://doi.org/10.1007/s12243-011-0268-5 (cit. on p. 22).

[LYKZ10] A. Li, X. Yang, S. Kandula, M. Zhang. “CloudCmp: comparing public cloud
providers.” In: Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement. ACM. 2010, pp. 1–14 (cit. on p. 15).

[MGG+17] R. Mayer, L. Graser, H. Gupta, E. Saurez, U. Ramachandran. “EmuFog: Exten-
sible and Scalable Emulation of Large-Scale Fog Computing Infrastructures.”
In: arXiv preprint arXiv:1709.07563 (2017) (cit. on pp. 16, 24).

[MGSR17a] R. Mayer, H. Gupta, E. Saurez, U. Ramachandran. “FogStore: Toward a Dis-
tributed Data Store for Fog Computing.” In: arXiv preprint arXiv:1709.07558
(2017) (cit. on pp. 25, 49).

[MGSR17b] R. Mayer, H. Gupta, E. Saurez, U. Ramachandran. “The fog makes sense:
Enabling social sensing services with limited internet connectivity.” In: Pro-
ceedings of the 2nd International Workshop on Social Sensing. ACM. 2017,
pp. 61–66 (cit. on p. 21).

[MLMB01] A. Medina, A. Lakhina, I. Matta, J. Byers. “BRITE: an approach to universal
topology generation.” In: MASCOTS 2001, Proceedings Ninth International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems. 2001, pp. 346–353. DOI: 10.1109/MASCOT.2001.948886
(cit. on p. 26).

[PKR16] M. Peuster, H. Karl, S. van Rossem. “MeDICINE: Rapid prototyping of
production-ready network services in multi-PoP environments.” In: 2016 IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). Nov. 2016, pp. 148–153. DOI: 10.1109/NFV-SDN.2016.7919490
(cit. on p. 23).

[Sat17] M. Satyanarayanan. “The Emergence of Edge Computing.” In: Computer 50.1
(Jan. 2017), pp. 30–39. ISSN: 0018-9162. DOI: 10.1109/MC.2017.9 (cit. on
p. 15).

66

http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://dx.doi.org/10.1007/s12243-011-0268-5
https://doi.org/10.1007/s12243-011-0268-5
http://dx.doi.org/10.1109/MASCOT.2001.948886
http://dx.doi.org/10.1109/NFV-SDN.2016.7919490
http://dx.doi.org/10.1109/MC.2017.9

[SPF+07] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson. “Container-based
operating system virtualization: a scalable, high-performance alternative to
hypervisors.” In: ACM SIGOPS Operating Systems Review. Vol. 41. 3. ACM.
2007, pp. 275–287 (cit. on p. 26).

[VR14] L. M. Vaquero, L. Rodero-Merino. “Finding your way in the fog: Towards a
comprehensive definition of fog computing.” In: ACM SIGCOMM Computer
Communication Review 44.5 (2014), pp. 27–32 (cit. on p. 19).

[VS17] P. Varshney, Y. Simmhan. “Demystifying fog computing: Characterizing
architectures, applications and abstractions.” In: Fog and Edge Computing
(ICFEC), 2017 IEEE 1st International Conference on. IEEE. 2017, pp. 115–124
(cit. on p. 19).

[XMR16] Y. Xu, V. Mahendran, S. Radhakrishnan. “Towards SDN-based fog computing:
MQTT broker virtualization for effective and reliable delivery.” In: Communi-
cation Systems and Networks (COMSNETS), 2016 8th International Conference
on. IEEE. 2016, pp. 1–6 (cit. on p. 21).

All links were last followed on May 11, 2018.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Fog Computing
	2.2 Network Emulation
	2.3 EmuFog a Testbed for Fog Computing
	2.4 Related Work
	2.5 State of the Art Technologies
	2.5.1 Topology Generation
	2.5.2 Container–based Virtualization

	3 Objectives
	4 Concept
	4.1 Input Topologies
	4.2 Topology Representation
	4.2.1 Edge Abstractions
	4.2.2 Node Abstractions

	4.3 Placement Algorithms
	4.3.1 Edge Identification
	4.3.2 Device Distribution
	4.3.3 Fog Layout Creation
	4.3.4 Application Assignment

	4.4 Output Generation

	5 Implementation
	5.1 System Architecture
	5.1.1 Input Domain
	5.1.2 Placement Domain
	5.1.3 Export Domain

	5.2 Contribution
	5.2.1 Input Configuration
	5.2.2 Topology Representation
	5.2.3 Multi–Tier Node Abstraction
	5.2.4 Containernet Output

	6 Evaluation
	6.1 Evaluation Preparations
	6.2 Evaluation Setup
	6.2.1 Centralized Layout Measurements
	6.2.2 Multi Fog Node Layout Measurement
	6.2.3 Edge Fog Layout Measurements
	6.2.4 Larger Topologies

	6.3 Results and Discussion

	7 Conclusion
	A How To Use EmuFog
	Bibliography

