Efficient Fault Tolerance for Selected
Scientific Computing Algorithms on
Heterogeneous and Approximate Computer
Architectures

Von der Fakultat Informatik, Elektrotechnik und Informationstechnik
und dem Stuttgart Research Centre for Simulation Technology
der Universitat Stuttgart
zur Erlangung der Wiirde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Alexander Scholl

aus Calw
Hauptberichter: Prof. Dr. Hans-Joachim Wunderlich
Mitberichter: Prof. Jie Han, PhD

Tag der mindlichen Prifung: 16. July 2018

Institut flir Technische Informatik

der Universitat Stuttgart

2018

Dedicated to my fiancée Lena

CONTENTS

Acknowledgments

Abbreviations and Notation

Abstract

Zusammenfassung

1 Introduction

1.1
1.2
1.3
1.4
1.5

Contributions of this Thesis
Scientific Computing and Simulation Technology
Reliability Challenges and Demands
Efficiency Challenges and Demands
Outline

2 Background and Related Work

2.1

2.2

2.3

2.4

2.5

Sparse Linear Algebra Operations
2.1.1 Dense and Sparse Matrix Operations
2.1.2 Conjugate Gradient Solvers
Reliability and Fault Tolerance
221 Definitions
2.2.2 Vulnerability Assessment
2.23 Fault Tolerance Strategies
Related Fault Tolerance Techniques for Linear Algebra Operations . .
2.3.1 Fault Tolerance Techniques for Matrix Multiplications
2.3.2 Related Fault Tolerance Techniques for Conjugate Gradient
Solvers.
Heterogeneous Computer Architectures and Approximate Computing
2.4.1 Heterogeneous Computer Architectures
2.4.2 The Approximate Computing Paradigm
Related Approximate Computing Techniques
2.5.1 Related Approximate Computing Techniques for Scientific
Computing Tasks

XV

xvii

Xix

xx1i

10
13
17

19
19
19
21
26
26
28
30
31
32

40

43

44

50

50

Contents

2.5.2 Related Parameter Estimation Techniques for Application

Executions on Approximate Computing Hardware

Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

3.1 MethodOverview.
3.2 Analytical Rounding Error Bound for Sparse Matrices
3.3 AlgorithmicSteps.
3.4 Error Detection and Correction

3.5 Computational and Memory Overhead

Efficient Fault Tolerance for the Conjugate Gradient Solvers

41 MethodOverview.
4.2 ErrorDetection L
43 Error Correction
44 Algorithmicsteps
4.5 Computational and Memory Overhead

Enabling the Conjugate Gradient Solvers on Approximate Comput-
ing Hardware

51 MethodOverview.
5.2 Evaluation of the Estimation
5.3 Algorithmic Steps.
5.4 Calibrating the Approximation Estimation Process

5.5 Computational and Memory Overhead

Parameter Estimation for Application Executions on Approximate
Computing Hardware

6.1 Overview of Parameter Evaluation and Estimation Methods
6.2 Instrumentation of Applications
6.3 Simulation-based Parameter Evaluation
6.4 Model-based Parameter Estimation

6.5 Combined Parameter Estimation

Experimental Evaluation and Results
7.1 Benchmark Matricesand Setup
7.2 ErrorModel

Vi

52

57
58
65
67
69
71

73
74
77
78
80
81

83
85
38
89
90
95

97
99
101
103
104
106

111
112
114

Contents

7.3 Approximation Model Lo 115
7.4 TFault-tolerant Sparse Matrix-Vector Multiplication. 116
74.1 Runtime Overhead 116
7.4.2 Error Coverage 119
743 Discussion of Experimental Results 121
7.5 Fault Tolerance for Conjugate Gradient Solvers 121
7.5.1 Vulnerability of Conjugate Gradient Solvers 122
7.5.2 Runtime Overhead for Error Detection 125
753 ErrorCoverage 126
7.5.4 Error Correction Overhead 128
7.5.5 Discussion of Experimental Results 129
7.6 Parameter Evaluation and Estimation Methods 130
7.6.1 Simulation-based Parameter Evaluation 131
7.6.2 Combined Parameter Estimation 134
7.6.3 Discussion of Experimental Results 136
7.7 Conjugate Gradient solvers on Approximate Computing Hardware . 137
7.7.1 Solver Iterations 137
772 Energy. e 138
7.7.3 EnergyEfficiency L. 140
7.7.4 Utilization of Approximation Levels 141
7.7.5 Discussion of Experimental Results 144
Conclusion 145
Linear Solvers and Preconditioners 149
A.1 The Conjugate Gradient Solver 149
A2 Preconditioners 150
Dependability Attributes 151
Floating-point Arithmetic 153
C.1 Floating-point Numbers 153
C.2 Rounding and Rounding Errors 154
C.3 IEEE Standard for Floating-Point Arithmetic 155
Additional Proofs 159

vii

Contents

D.1 Rounding Error Bound for Sparse Matrices

E Experimental Setup and Data

E.1 Hardware and Software Parameter

E.2 Fault-tolerant Sparse Matrix-Vector Multiplications

E.3 Fault Tolerance for Conjugate Gradient Solvers

E.4 Conjugate Gradient solvers on Approximate Computing Hardware .

E.5 Parameter Evaluation and Estimation.

Bibliography
Index

Publications of the Author

viii

159

165
165
167
171
184
192

197

233

237

LisT OF FIGURES

Chapter 3

3.1 Overview of the algorithmic steps in the fault-tolerant sparse matrix-

vector multiplication. o o o o Lo

Chapter 4

4.1 Overview of the algorithmic steps in a fault-tolerant (Preconditioned)

Conjugate Gradient Solver.

Chapter 5

5.1 Comparison of update vectors u®) and residuals 6) at runtime for two

input matrices A.

5.2 Overview of the presented technique for the Conjugate Gradient Solvers.

5.3 Overview of the algorithm that determines the minimum residuals p; for

each precision ;.

Chapter 6

6.1 Overview of the parameter estimation flow using the three estimation
methods.

6.2 Original and instrumented code example.

6.3 Example for applying the combined parameter estimation method to esti-

mate the power dissipation of a loop execution..

Chapter 7

7.1 Runtime overhead of the protected matrix-vector multiplication for dif-
ferent block sizes compared to unprotected executions.

7.2 Runtime overhead for error detection in case of a block size of 32.

7.3 Runtime overhead for error detection and correction in case of a block
size of 32.

7.4 Comparison of error coverage using the Fy-score.

X

63

81

86
90

94

100
102

109

117
118

119
120

Figures

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

Proportion of successfully converged experiments, diverged experiments
as well as experiments that resulted in silent data corruptions (SDC) in

case Of €TTOTS. . . . o v v o

Average iteration overhead to converge to correct results in case of errors.

Runtime overhead for error detection with respect to applying no pre-
conditioner, the Jacobi preconditioner, and the incomplete Cholesky fac-
torization (ICC) in error-free executions.
Maximum portion of execution failures (i.e. number of iterations ex-
ceeded iteration limit) with respect to T € [10710, 10*6]
Portion of execution failures (i.e. number of iterations exceeded iteration
limit) with respect to T = 1078
Average iteration overhead for error correction.
Comparison of simulation-based evaluation results for the different matri-
ces with respect to floating-point multiplication with different numbers
of precise mantissa bits. L L o oL
Comparison of the simulation-based parameter evaluation method and
the commerecial tool for the different matrices with respect to the power
dissipation.
Comparison of the simulation-based parameter evaluation method and
the commercial tool with respect to power dissipation in case of 52 precise
mantissa bits.
Comparison of simulation-based parameter evaluations for sparse matrix-
vector multiplications with different numbers of precise mantissa bits.
Relative error between estimation-based and simulation-based investiga-
tions of the energy demand. L L.
Speedup of the estimation-based parameter estimation method compared
to exhaustive simulation-based parameter evaluations.
Average number of iterations on approximate hardware compared to the
execution on precise hardware. o oL
Estimated energy demand to execute the solver on approximate hardware
compared to the execution on precise hardware.
Contribution of the underlying fault tolerance technique within the
energy demand for solver executions on approximate hardware.
Gain in energy efficiency for solver executions on approximate hardware

compared to executions on precise hardware.

123

124

125

126

128

129

131

132

133

134

135

136

138

139

140

141

Figures

7.21
7.22

7.23

Adaption of approximation levels in the course of the solver executions. 142
Minimum, maximum and average precision over the course of the solver
executions. 143
Average utilization of available precisions over the course of the solver

EXECULION. . .« . v o o e e e e e e e e e e 143

pal

LisT OF TABLES

Chapter 7
7.1 Overview of evaluated matrices from the Florida Sparse Matrix Collection.
7.2 Overview of the parallelizable linear algebra operations in the evaluated
Conjugate Gradient algorithms and their associated GPU-accelerated
library call.
Appendix C
C.1 Parameters of the IEEE 754-2008 standard for floating-point number
formats.
Appendix E
E.1 Hostsystem specification. o o L.
E.2 Host CPU specification.
E3 GPUspecification..
E.4 Average runtime of the original sparse matrix-vector multiplication Tg 5y
and average runtime overhead of the protected sparse matrix-vector mul-
tiplication Og in the error-free case for different block sizes.
E.5 Average runtime of the original sparse matrix-vector multiplication Tg 5y
and average runtime overhead of the protected sparse matrix-vector mul-
tiplication Op to detect and correct errors for different block sizes.
E.6 Balanced F;-score of the protected sparse matrix-vector multiplication
in case of single-bit flip errors for different block sizes.
E.7 Balanced F;-score of the protected sparse matrix-vector multiplication
in case of multi-bit flip errors for different block sizes..
E.8 Number of successfully converged experiments (Conv.), diverged exper-

iments (Div.), and experiments that resulted in silent data corruptions
(SDC) in case of single-bit flip error injections (i.e. one error injection

perexperiment).

xii

112

114

157

166
166
166

167

168

169

170

171

Tables

E.9

E.10

E.11

E.12

E.13

E.14

E.15

E.16

E.17

E.18

E.19

E.20

E.21

Number of successfully converged experiments (Conv.), diverged exper-
iments (Div.), and experiments that resulted in silent data corruptions
(SDC) in case of multi-bit flip error injections (i.e. one error injection per
experiment).
Average number of iterations in the error-free case Ig, average number
of iterations in case of single-bit flip error injections I¢ (i.e. one error
injection per experiment) and average resulting iteration overhead Of
to converge to correct results. oL oL
Average number of iterations in the error-free case Ig, average number
of iterations in case of multi-bit flip error injections I¢ (i.e. one error
injection per experiment) and resulting average iteration overhead Of
to converge to correct results. oL oL
Average execution time for unprotected solver execution T, average exe-
cution time for protected solver execution Tp, average runtime overhead
for error detection Op in the error-free case.
Average iteration overhead for error correction in case of one single-bit
flip error injection with respect to different T € [1071°,107°].
Average iteration overhead for error correction in case of two single-bit
flip error injections with respect to different T ¢ [10710, 1076].
Average iteration overhead for error correction in case of five single-bit
flip error injections with respect to different T € [1071°,107°].
Average iteration overhead for error correction in case of ten single-bit
flip error injections with respect to different T € [1071°,1076].
Average iteration overhead for error correction in case of one multi-bit
flip error injection with respect to different T € [1071°,107°].
Average iteration overhead for error correction in case of two multi-bit
flip error injections with respect to different 7 € [1071°,1076].
Average iteration overhead for error correction in case of five multi-bit
flip error injections with respect to different 7 € [10_10, 1()_6].
Average iteration overhead for error correction in case of ten multi-bit
flip error injections with respect to different T € [1071°,107%].
Average number of iterations for executions on precise hardware Ig,

average number of iterations for executions on approximate hardware

I

apxs

xiii

and resulting iteration overhead O, to converge to correct results.

172

173

174

175

176

177

178

179

180

181

182

183

184

Chapter

E.22

E.23

E.24

E.25

E.26

E.27

E.28

E.29

E.30

E.31

E.32

E.33

Average energy for executions on precise hardware Eg, average energy

for executions on approximate hardware E and resulting energy

apx»
comparison Crpergy: « « v
Average energy for executions on approximate hardware E,,,, average
energy for fault tolerance evaluations Err, and relative energy contribu-
tion of fault tolerance p. Lo
Energy efficiency for executions on precise hardware #g, energy ef-
ficiency for executions on approximate hardware 7,,,, and resulting
energy efficiency gain G,

Utilization of available precisions (i.e. number of precise mantissa bits p)

for executions on approximate hardware when no preconditioner is used.

Utilization of available precisions (i.e. number of precise mantissa bits p)
for executions on approximate hardware when the Jacobi preconditioner
isused. ...
Utilization of available precisions (i.e. number of precise mantissa bits p)
for executions on approximate hardware when the Incomplete Cholesky
factorization preconditioner (ICC)isused.
Minimum, maximum, and average number of precise mantissa bits p in
the course of solver executions.
Difference between dynamic power results obtained by the simulation-
based method and the commercial tool chain with different numbers of
precise mantissa bits. L L
Runtime of simulation-based parameter evaluation with respect to differ-
ent numbers of precise mantissa bits. o oL
Energy demand for sparse matrix-vector multiplication with respect to
different numbers of precise mantissa bits.
Relative error for sparse matrix-vector multiplication with respect to
different numbers of precise mantissa bits. 0L
Comparison of runtime for estimation-based T and simulation-based

methods T, as well as energy estimation error e of the estimation-based

Xiv

185

186

187

188

189

190

191

192

193

194

195

196

ACKNOWLEDGMENTS

During the past years, many people have contributed in different ways to the successful
conclusion of this dissertation. It is my pleasure to thank those whose encouragement

and support allowed me to grow and to fulfill my goals.

This work would not have been possible without the support of my supervisor, col-
leagues, and collaboration partners. I am grateful to Prof. Hans-Joachim Wunderlich
for sharing his ideas and feedback in countless discussions that greatly contributed to
this thesis. I would also like to thank Prof. Jie Han for the fruitful discussions during my
stay at the University of Alberta in Canada, and for accepting to be second adviser of my
thesis. I thank Prof. Joachim Grof for being my second adviser in the GS SimTech and
the interesting discussion during my milestone presentation. It is also my pleasure to
thank Claus Braun and Michael A. Kochte who always provided unconditional support

and encouragement over all these years.

I am grateful to all my collaboration partners within the SimTech Cluster of Excellence
at the University of Stuttgart. I thank Prof. Guido Schneider and Markus Daub for
the successful and interesting collaboration. I would also like to thank my collabo-
ration partners at the University of Alberta: Thank you Honglang Jiang, Yiding Liu,
Mohammad Saeed Ansari, and Liu Siting. I enjoyed the work with colleagues who
were at some time involved in my activities. It was a great pleasure to work with
Ahmed Atteya, Rafal Baranowski, Laura Rodriguez Gomez, Zahra Najafi Haghi, Natalia
Kaptsova, Chang Liu, Eric Schneider, Dominik Ull, and Marcus Wagner. In the past
years, I had many opportunities to work with students who assisted me in my project
work, especially Sebastian Brandhofer, Carlos Alberto Franco Salazar, Alisa Kuzmina,
Valentin Mihalcut, Sagar Gurudas Nayak, Hisham Saadeddin, Muhammad Tarique
Saleem, Amit Pattana Shetti, Stefan Simeonov, and Ediba Zugor. A work like this is
not possible without outstanding administrative and technical expertise: Thank you,
Mirjam Breitling, Helmut Hafner, and Lothar Hellmeier for your great assistance over

the past years.

Words cannot express how grateful I am to my fiancée Lena for her caring support and

all the sacrifices that she has made on my behalf.

Stuttgart, July 2018
Alexander Scholl

XV

ABBREVIATIONS AND NOTATION

Abbreviations

ABFT Algorithm-based Fault Tolerance
CG Conjugate Gradient method

CPU Central Processing Unit

DWC Duplication with Comparison

ECC Error Detecting and Correcting Codes
EDA Electronic Design Automation
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit

MIPS Millions of instructions per second
PCG Preconditioned Conjugate Gradient
SIMD Single instruction, multiple data
SpMV Sparse matrix-vector

TMR Triple Modular Redundancy

VLSI Very Large Scale Integration

Linear Algebra Notation

Ny set of natural numbers with 0

R set of real numbers

R, set of non-zero real numbers

R" R"™"™ set of real vectors, and set of real matrices
AT transpose operation

a;;,[Al;; (i,j)-element of matrix A

Ay k-th row block matrix of A

[Ar]ij (i,)-element of k-th row block matrix Ay
[A]; i-th row of matrix A

x| Euclidean norm of vector x

riLp vector r is orthogonal to vector p

p(i) i-th instance of vector p (e.g., in iteration i of an iterative algorithm)

XVii

Abbreviations and Notation

fl(x) floating-point representation of x

EM machine epsilon

Set Operator Notation

union
N intersection
N difference

Boolean Operator Notation

J

negation
conjunction
disjunction

implication

@U<>

equivalence

XViil

ABSTRACT

Scientific computing and simulation technology play an essential role to solve central
challenges in science and engineering. The high computational power of heterogeneous
computer architectures allows to accelerate applications in these domains, which are
often dominated by compute-intensive mathematical tasks. Scientific, economic and
political decision processes increasingly rely on such applications and therefore induce
a strong demand to compute correct and trustworthy results. However, the continued
semiconductor technology scaling increasingly imposes serious threats to the reliability
and efficiency of upcoming devices. Different reliability threats can cause crashes or
erroneous results without indication. Software-based fault tolerance techniques can
protect algorithmic tasks by adding appropriate operations to detect and correct errors
at runtime. Major challenges are induced by the runtime overhead of such operations
and by rounding errors in floating-point arithmetic that can cause false positives. The
end of Dennard scaling induces central challenges to further increase the compute
efficiency between semiconductor technology generations. Approximate computing
exploits the inherent error resilience of different applications to achieve efficiency gains
with respect to, for instance, power, energy, and execution times. However, scientific
applications often induce strict accuracy requirements which require careful utilization

of approximation techniques.

This thesis provides fault tolerance and approximate computing methods that enable the
reliable and efficient execution of linear algebra operations and Conjugate Gradient solvers
using heterogeneous and approximate computer architectures. The presented fault
tolerance techniques detect and correct errors at runtime with low runtime overhead
and high error coverage. At the same time, these fault tolerance techniques are exploited
to enable the execution of the Conjugate Gradient solvers on approximate hardware
by monitoring the underlying error resilience while adjusting the approximation error
accordingly. Besides, parameter evaluation and estimation methods are presented
that determine the computational efficiency of application executions on approximate

hardware.

An extensive experimental evaluation shows the efficiency and efficacy of the presented
methods with respect to the runtime overhead to detect and correct errors, the error
coverage as well as the achieved energy reduction in executing the Conjugate Gradient

solvers on approximate hardware.

Xix

ZUSAMMENFASSUNG

Wissenschaftliches Rechnen und Simulationstechnologie spielen eine wesentliche Rolle
in der Losung von zentralen Herausforderungen in Wissenschaft und Technik. Die hohe
Rechenleistung von heterogenen Rechnerarchitekturen erlaubt es, Anwendungen in die-
sen Bereichen zu beschleunigen, welche oftmals von rechenintensiven mathematischen
Aufgaben dominiert werden. Wissenschaftliche, wirtschaftliche und politische Entschei-
dungsprozesse stiitzen sich zunehmend auf solche Anwendungen und erfordern daher
ausdriicklich die Berechnung von korrekten und vertrauenswiirdigen Ergebnissen. Die
zunehmende Miniaturisierung der Halbleiterelektronik konfrontiert jedoch zukiinftige
Schaltkreise mit ernsthaften Bedrohungen fiir die Zuverlassigkeit und Effizienz. Ver-
schiedene Zuverlassigkeitsbedrohungen konnen Abstiirze und fehlerhafte Ergebnisse

verursachen, welche nicht signalisiert werden.

Software-basierte Fehlertoleranztechniken konnen algorithmische Aufgaben schiit-
zen, in dem sie diesen Algorithmen geeignete Operationen hinzufiigen, welche Fehler
zur Laufzeit erkennen und korrigieren. Grof3e Herausforderungen werden durch die
zusétzliche Laufzeit solcher Operationen und durch Rundungsfehler hervorgerufen,
welche in Gleitkommaarithmetik auftreten und zu falsch-positiven Erkennungen fithren
konnen. Das Ende der Dennard-Skalierung (engl. Dennard Scaling) fithrt zu zentralen
Herausforderungen fiir die weitere Steigerung der Recheneffizienz zwischen Technolo-
giegenerationen. Approximierendes Rechnen (engl. Approximate Computing) nutzt die
inharente Fehlerresilienz verschiedener Anwendungen aus, um Effizienzsteigerungen
gegeniiber Leistungsaufnahme, Energie und Laufzeiten zu erreichen. Wissenschaftli-
che Anwendungen stellen jedoch oftmals strenge Anforderungen an die Genauigkeit
von Ergebnissen, weshalb ein gewissenhafter Einsatz von Approximationstechniken

notwendig ist.

Die vorliegende Arbeit stellt Fehlertoleranz- und Approximationstechniken vor, welche
die zuverlassige und effiziente Ausfithrung von linearen Algebra Operationen und von
CG-Verfahren auf heterogenen und approximativen Rechnerarchitekturen erlauben. Die
vorgestellten Fehlertoleranztechniken erkennen und korrigieren Fehler zur Laufzeit mit
geringer zusatzlicher Laufzeit sowie hoher Fehlerabdeckung. Gleichzeitig erméglichen
diese Fehlertoleranztechniken die Ausfithrung des CG-Verfahrens auf approximativer
Hardware durch die Beobachtung der zugrundeliegenden Fehlerresilienz sowie der

entsprechenden Anpassung des Approximationsfehlers. Daneben werden Methoden

xx1

Zusammenfassung

zur Bewertung und Schiatzung von Parametern vorgestellt, welche die Recheneflizienz

von Anwendungsausfithrungen auf approximativer Hardware bestimmen.

Eine ausfiihrliche experimentelle Evaluierung zeigt die Effizienz und Effektivitat der
verschiedenen vorgestellten Methoden beziiglich der zusétzlichen Laufzeit zur Fehlerer-
kennung und -korrektur, der Fehlerabdeckung sowie der erreichten Energiereduktion

in der Ausfithrung des CG-Verfahrens auf approximativer Hardware.

XX1i

CHAPTER

INTRODUCTION

Simulation technology and scientific computing play an essential role in the majority of
scientific domains and have become established techniques to solve central challenges
in these fields. The explanatory and predictive power of computer-based simulation for
real-world systems and phenomena constitutes a sustained demand for short execution
times [Oberk10, p.9] along with high reliability to obtain trustworthy results [Cappel4].
Today, these domains benefit from the compute power of heterogeneous computer archi-
tectures, which provide high computational performance within reasonable power en-
velopes [Chen15a,Gaol6a]. Such computer architectures combine highly different kinds
of processing cores including multi-core CPUs, many-core GPUs architectures as well as
reconfigurable architectures like field programmable gate arrays (FPGA) along with com-
munication channels and embedded memories on single chips or packages [Chung10].
Scientific applications are accelerated by mapping the different underlying algorithmic
parts to matching components in these heterogeneous architectures, which can result
in significant reductions of computation time [Lopez15]. The usage of heterogeneous
computing architectures in the scientific and engineering domain continues to grow
which is reflected in significantly increasing numbers of high-performance computing

(HPC) systems that rely on these computer architectures [Gaol6a].

Over the last decades, continuous improvements in computer architecture and semiconduc-

tor technology scaling have largely driven the increase in computational performance.

2 Chapter 1 o Introduction

Moore’s Law [Moore65] has impelled continuously new technology generations with
doubling numbers of transistors on a single chip nearly every 18 months. Dennard
scaling theory [Denna74] enabled this law as it allowed to increase the transistor den-
sity between generations while maintaining a proportional relationship between chip
power and chip size. However, the continued technology scaling increasingly imposes
challenges that constitute serious threats to the reliability and efficiency of upcoming

semiconductor devices.

Modern nano-scaled semiconductor devices become increasingly vulnerable to a grow-
ing spectrum of different reliability threats [Mitral1l,TR] which can cause crashes
or erroneous application results without indication. Reliability is a crucial demand of
scientific applications since they are required to provide correct and trustworthy results.
Future manufacturing processes will allow even smaller chip feature sizes, which makes
the integration of efficient and effective fault tolerance techniques [Avizi04,Koren07]
mandatory. Fault tolerance techniques enable a system to ensure its correct service
according to the system specification in the presence of faults. These techniques can be
applied to different layers of the system stack ranging from the hardware to the software
and application layer, and typically exploit different forms of redundancy [Pradh96]. At
the circuit and device layer, different hardware-based fault tolerance techniques includ-
ing structural, temporal, or information redundancy, as well as self-checking, allow to
protect hardware units against different kinds of faults. A widely-used form of informa-
tion redundancy comprises error detecting and correcting codes that are, for instance,
used to protect communication channels and memories. However, these fault tolerance
measures are often associated with significant area and energy overheads that may even
reduce the system performance. Software-based fault tolerance techniques [Pullu01]
target different system layers including operating systems, middleware layers and
algorithmic tasks in applications. Different techniques were proposed, which protect
the processed data and the program control flow by targeting faults that manifest them-
selves as errors at these layers. These techniques include replication of computations
and data, assertions and embedded signatures for control flow protection as well as
different algorithm-based fault tolerance (ABFT) [Huang84] schemes to protect different
computational tasks. A central challenge in integrating such software-based measures

lies in the runtime and energy overhead that is induced by additional operations.

With the end of Dennard scaling [Esmae13], subthreshold leakage currents create a

power density problem that does not allow anymore to scale the power per transistor at

the same rate as the transistor dimensions. Without slowing down or fixing scaling pa-
rameters like frequency and supply voltage between technology generations, the power
density can grow exponentially which induces unacceptable increases in chip power
dissipation and thermal issues. The resulting power and efficiency wall [Flich16] mainly
constituted the rise of multi-core and many-core architectures in the mid-2000s. To over-
come the efficiency wall, it is not sufficient to only increase the performance of modern
computer architectures by, for instance, increasing the number of cores or computational
units on a chip [Esmae13]. The approximate computing paradigm [Han13, Venkal5] al-
lows to trade-off precision for efficiency gains with respect to power, energy, execution
times, computational performance, and chip area. This computing paradigm targets
different efficiency-cost parameters, such as the power-delay product of circuits and the
energy-time product of applications [Kaesl14, p.96]. Applications in multimedia and
signal processing, for instance, are often not expected to compute perfect results and
therefore exhibit a significant error resilience to certain numerical errors. Approxima-
tion techniques exploit this inherent error resilience to achieve reductions in runtime,
area, power, and energy demand. Different concepts have been proposed that extend
the heterogeneous computing paradigm by exploiting approximation techniques for
efficiency gains. Such heterogeneous and approximate computer architectures combine
approximate memories and processing elements with their precise counterparts [Es-
mael2a,Chand17] and offer error monitoring and compensation at different layers of

the system stack [Venkal3a].

Fast, efficient, and fault-tolerant computing techniques are essential demands of the
scientific computing domain that is dominated by compute-intensive tasks. With energy
being a constraining factor, the approximate computing paradigm is a promising solu-
tion to tackle upcoming and future energy challenges. A central challenge in extending
the application field of approximation techniques to the area of scientific computing is
constituted by the demand for correct and trustworthy results. Scientific applications
are often not necessarily error-tolerant and induce rather strict requirements on the
accuracy of computational results which requires careful utilization of approximation

techniques to achieve efficiency gains.

4 Chapter 1 e Introduction

1.1 Contributions of this Thesis

This thesis presents fault tolerance and approximate computing methods that enable the
fault-tolerant and efficient execution of linear algebra operations and Conjugate Gradient
solvers using heterogeneous and approximate computer architectures. These scientific
computing algorithms are essential parts of many large-scale applications in science and
engineering and are often accelerated by heterogeneous computer architectures. The
approximate computing methods execute these algorithms on approximate hardware
and exploit the presented fault tolerance techniques to ensure correct results with low
runtime overhead. Besides, this work discusses essential related approaches that also

target fault tolerance and approximate computing for scientific and engineering tasks.

A major challenge in ensuring the fault-tolerant execution of scientific computing
algorithms is constituted by the performance loss that can be induced by compute-
intensive error detection and correction schemes. The fault tolerance techniques
presented in this work are algorithm-based and exploit different properties of algorithms
to ensure the effective detection and correction of erroneous results with low runtime
overhead. The runtime overhead induced by the presented techniques scales with

increasing problem size.

The presented methods in this thesis are summarized as follows:

Efficient fault-tolerant sparse matrix-vector multiplications
A technique is presented that enables the fault-tolerant execution of sparse matrix-
vector multiplications on heterogeneous hardware by detecting and implicitly
locating errors in the results, which provides efficient local correction regarding
low runtime overhead and high error coverage. An error bound is presented
that distinguishes harmful errors caused by, for instance, transient events from

acceptable errors.

Efficient fault tolerance for the Conjugate Gradient solvers
Conjugate Gradient solvers are widely used in scientific and engineering applica-
tions and solve systems of linear equations iteratively. To ensure the convergence
of these solvers to correct results, a fault tolerance technique is presented that de-
tects errors with very low runtime overhead by periodically evaluating inherent

solver properties.

Enabling the Conjugate Gradient solvers on approximate hardware

Different applications including Conjugate Gradient solvers exhibit an error re-

1.1 e Contributions of this Thesis 5

silience that may change in the course of the iterations. This changing error
resilience, as well as the aforementioned tight accuracy demands, constitute major
challenges to increase the compute efficiency of solver executions. To enable the
Conjugate Gradient solvers on approximate computing hardware, an adaptive
method exploits the previously addressed fault tolerance technique to detect and
correct harmful approximation errors while controlling the underlying precision
at runtime. The low iteration overhead induced by this fault tolerance technique
to monitor intermediate computational results allows reduced energy demand

while ensuring convergence to correct results.

Parameter estimation for application executions on approximate hardware
Different parameters must be determined to evaluate the compute efficiency of
application executions on approximate computing hardware. These parameters
comprise the area, the leakage power, the dynamic power, the delay, and the
approximation error. To provide low parameter evaluation runtimes, three pa-
rameter estimation methods are presented that rely on circuit simulation-based
techniques, model-based evaluations as well as the combination of both ap-
proaches. Different parameters are estimated by extrapolating selected instruction

intervals to complete application executions.

The different presented methods were evaluated with respect to essential aspects
including the performance overhead to detect and correct errors, the error coverage as
well as the reduction in energy to execute Conjugate Gradient solvers on approximate
hardware. The experimental evaluation shows the application of these methods while

the associated benefits for scientific and engineering applications are discussed.

The scientific computing algorithms targeted in this thesis are categorized in the sparse
linear algebra computational class [Asano06]. This computational class is widely-used
in a large number of areas and continues to grow in importance. Areas in which
such sparse linear algebra problems arise include structural mechanics [Smith13, p.
77], thermal engineering [Leng15], computational fluid dynamics [Woznil16], machine
learning [Liul5a,Han16], the study of electromagnetic fields [Puzyr13, Dehiy17] as well
as semiconductor power grid analysis [Feng10]. Large-scale sparse problems appear in
these areas in the context of solving partial differential equations (PDEs), which are
discretized by finite element or finite difference methods [Saad03, p.47]. Iterative methods
like Conjugate Gradient solvers are well-known techniques to solve such complex prob-

lems and are preferred to direct methods like the Gaussian elimination [Golub13] since

6 Chapter 1 e Introduction

they are typically more efficient regarding computational performance and memory

requirements.

At the same time, these linear algebra operations are parallelizable, which makes them
well suited for heterogeneous computing systems comprising, for instance, multi-core
CPUs and many-core GPUs. Recent works in this area exploit different characteristics
of the underlying linear algebra operations to accelerate their execution using these

computer architectures [Buato09, Ament10, Helfe12,Li13, Liul6a, Filip17].

1.2 Scientific Computing and Simulation Technology

The research in the science and engineering domains is complemented and propelled by
scientific computing and simulation technology, which are often called the third pillar of
science next to theory and experiment [Resch17, p.22]. The underlying computer-based
modeling and simulation techniques have become essential means in the exploration
and understanding of natural phenomena as well as in the solution of complex engi-
neering problems. Their explanatory and predictive abilities allow to gain a deeper
understanding of such phenomena or enable new observations. At the same time, a
growing number of problems in different fields constitute an increasing demand to
complement or even substitute experiments by computer-based simulations since they
are often faster, cheaper, safer and provide increased observability. Such in-silico experi-
ments allow the investigation of problems that are infeasible or even impossible to solve
by common experimental and theoretical approaches. Besides being time-consuming
or highly expensive, different experiments can be associated with unacceptable risks
to life and environment. Important examples include natural catastrophes like earth
quakes [Boorel4] and tropical cyclones [Kim14] as well as the global climate and
weather [Hurre13].

To mimic such experiments using simulations, the underlying real-world systems
and phenomena are described in models that comprise mathematical and algorithmic
formulations. Simulation technology has become a multi-disciplinary domain that
combines the models from natural sciences and engineering with the computational

methods from numerical mathematics and computer science.

The transformation of scientific computing from a supportive tool into a leading role
[Oberk10, p.4] demands models that describe real-world systems and phenomena with

increasing level of detail [Keyes13]. Significantly increasing amounts of data and

1.2 e Scientific Computing and Simulation Technology 7

growing model complexities require scientific computations and simulations on very
large scales. Heterogeneous computer architectures [Chung10] provide the necessary
computer power to conduct such complex investigations with reasonable runtimes.
The acceleration of complex applications on heterogeneous computer architectures has
been widely used in the scientific and engineering computing domain and continues to

gain in importance.

Scientific computing applications on heterogeneous computer ar-

chitectures

The application runtime is a central aspect of scientific computing, which can induce
limiting factors for scientific discovery. At the same time, the increasing demand to
evaluate problems consisting of multiple interacting physics and phases in different
scientific and engineering fields leads to significantly growing model complexities.
The underlying multi-physics, multi-phase and multi-scale simulations benefit from the

different architectural strengths that heterogeneous computer architectures provide.

The computational performance of heterogeneous computer architectures is enabled by
the integration of highly diverse kinds of processing cores that close the gap between
serial or coarse-grained parallel tasks and highly data-parallel tasks. One of the most
widespread examples of heterogeneous computer architectures is the integration of
multi-core CPU and many-core GPU architectures on single chips that exhibit highly
different architectural features [Chung10, Mittal5]. Modern multi-core CPUs comprise
a few tens of latency-optimized cores that offer complex pipeline techniques like out-
of-order multiple instruction scheduling. In contrast, GPUs rely on large numbers of
so-called single instruction, multiple data (SIMD) processing elements that are associated
with smaller control units, which in return allowed integrating more processing ele-
ments. For this reason, such many-core GPUs are optimized for throughput-demanding

applications.

To gain high performance from these computer architectures, the different architectural
strengths must be leveraged by scientific and engineering applications. For instance,
the simulation of multiple interacting physics, phases or scales allows to distinguish
the underlying application into different algorithmic parts such as latency-sensitive,
coarse-grained parallelizable, and fine-grained parallelizable parts. This mapping of

applications to heterogeneous computer architectures can accelerate the application

8 Chapter 1 e Introduction

execution which allows reductions in execution runtime. A wide range of works report
significant speedups by tailoring highly different applications from these computing

domains to heterogeneous computer architectures:

The computational chemistry domain relies on these computer architectures to ac-
celerate simulations of reacting flows [Xu12, Yonke16], molecular and quantum me-
chanics [Wu12] as well as molecular dynamics [Lashul2]. These applications rely in
general on n-body simulations which are also applied to other domains including astro-
physics [Bastr12]. A closely related important example are Markov-chain molecular
Monte-Carlo simulations [Braun12a] that form a core task in thermodynamics and

thermal process technology.

Heterogeneous computing has been widely exploited in the computational biosciences
over the last decade to accelerate the investigation of biological processes and systems
at different scales. The core tasks range from protein [Liul3a] and genome sequenc-
ing [Marti16] over the investigation of nervous systems [Hoang13] and biological model-

ing [Avram17] to the evaluation of biochemical signaling pathways [Braun12b,Schol14].

The investigation of the global climate and weather relies on modeling and predicting
the physical, chemical, and biochemical states of the climate system as well as its
evolution over time. Different multi-scale and multi-physics models, often called Earth
System Models in this context are accelerated using heterogeneous computer architec-
tures as presented in [Yangl3a, Ganl5]. Besides these atmospheric and oceanographic
models [Song16], geophysical and seismic models [Cuil3, Marti15, Gokhb16,Roten16]

are accelerated to understand and predict geological processes like earthquakes.

Essential tasks in the electronic design automation (EDA) domain such as the design,
validation, and verification of semiconductor devices rely on heterogeneous computer
architectures to enable digital circuits with billions of transistors. A wide range of
approaches evaluate such designs at different abstraction levels and map data-parallel
simulation workloads to many-core GPUs while they perform scheduling and pre-
processing tasks on multi-core CPUs. Important examples include system-level and
register-transfer [Nanju10, Vinco12], gate-level [Chatt09, Holst15] and circuit-level
simulators [Gulat09, Kapre09]. Besides, essential tasks like fault simulation [Gulat08,
Kocht10,Schne16], power analysis [Holst12,Liu13b], and IR-drop estimations [Holst16]

are tailored to heterogeneous computer architectures.

Computational structural mechanics (CSM) and computational fluid dynamics (CFD)

play an increasing role in traditional engineering domains. Finite-element methods

1.2 e Scientific Computing and Simulation Technology 9

are accelerated on heterogeneous computer architectures to investigate the perfor-
mance of complex structures and materials [Kessl15, Miao16,Ni16,Shen16]. Compu-
tational fluid dynamics methods often rely on numerical methods to investigate gas
or liquid flows and heavily rely on heterogeneous computer architectures to solve the
underlying the Navier-Stokes [Zabel15,Deng16,Liul6b] and Lattice-Boltzmann [Mc-
Clu14, Feich15, Valer17] equations. Besides, these numerical methods are applied in
safety-critical domains like the aerospace domain to design airframes [Wang14] and jet
turbines [Regul16, Gottil6].

In the data sciences, data-intensive computing is an emerging area that provides methods
to process massive amounts of data in the order of terabytes or petabytes in size, which
is often referred to as Big Data [Chen14]. Examples of such significant data sources
can be found in the area of particle physics, for instance, in which laboratories like
the Large Hadron Collider produce 30 petabytes of data per year [Castil5, p.8]. To
solve the challenges that arise from data capturing, curating and analysis [Chen14],
different techniques like data batch and stream processing [Chen12,Ranja14], as well
as machine learning techniques are accelerated on heterogeneous computer architec-
tures [Oh04, Catan08,Li15, Abadil6]. Besides CPU and GPU architectures, application-
specific integrated circuits (ASICs) have been developed that specifically accelerate
machine learning tasks. An important example is the so-called Tensor Processing
Unit [Joupp17] that accelerates core operations in neural networks like matrix-vector
multiplications and computing nonlinear functions (i.e., activation functions). At the
same time, the coupling of computer architecture progress and machine learning
constitutes novel machine learning applications that enable fault classification for

semiconductor devices [Rodri16].

Sparse linear algebra operations like matrix multiplications and methods like the Conju-
gate Gradient solver are essential parts of the discussed applications. Besides, these oper-
ations and solvers are used in different benchmarks to evaluate the performance of HPC
systems. For instance, the High-Performance Conjugate Gradients benchmark [Donga1l5]
employs sparse matrix-vector multiplications and the Preconditioned Conjugate Gradient
algorithm to rank HPC systems by solving a representative thermal engineering prob-
lem. Benchmark datasets like the Florida Sparse Matrix Collection [Davis11] comprise
several thousand sparse matrices that represent real-world scientific and engineering

problems.

The mapping of these sparse linear algebra operations to heterogeneous computer

10 Chapter 1 o Introduction

architectures enables fast execution, but such mappings are not sufficient to fulfill the
demand for fault-tolerant and efficient computations required by the scientific and
engineering domains. Instead, efficient and fault-tolerant variants of these sparse linear
algebra operations have to be provided to achieve these goals. The next two sections

below introduce the associated reliability and efficiency challenges and demands.

1.3 Reliability Challenges and Demands

Scientific computing is widely used in different decision-making processes to assess
the reliability, robustness, and safety of products and technologies as well as the risk
of large-scale public and private projects [Oberk10]. Virtual prototyping and virtual
testing are two techniques with increasing importance that employ simulations in
different product development phases to reduce the development cost and time. In
contrast, the assessment of high-consequence applications relies almost entirely on
scientific computing as corresponding experiments cannot be performed under repre-
sentative conditions or impose severe risks and high costs. Such applications include
simulations of geological operations like carbon sequestration [Namha16], hydraulic
fracturing [Ehler17], underground deposition of nuclear waste [Vermal5], and simula-
tions of global climate change [Hurre13]. For this reason, the corresponding political
and economic decision-making processes induce a strong demand for scientific comput-
ing and simulation technology to provide correct and trustworthy results. A different
high-consequence application that is gaining attention is formed by autonomous driving,
which is associated with very high reliability and safety requirements. This demand for
reliable computations constitutes a major challenge as modern computing devices face

an increasing number of reliability threats.

The growing spectrum of reliability threats is already a serious challenge for high-
performance computing systems. For instance, the study in [Di Mal6] reports that
while hardware only causes about 25% of system-wide outages in the Blue Waters
supercomputer, the mean time between failures (MTBF) can be in the order of a few
days. These reliability threats can manifest themselves in a large range of unacceptable
application outcomes including significantly increased runtimes [Shant11] and visible
errors such as numerical deviations from the expected correct result. At the same time,
errors can corrupt application results without any indication, which result in Silent
Data Corruptions (SDC) [Mukhel1].

1.3 e Reliability Challenges and Demands 11

Fault tolerance techniques can be employed to detect and correct such unacceptable
effects of reliability threats. Due to the strong demand for high performance along with
reliable application results in the scientific and engineering computing domains, the

integration of effective fault tolerance techniques has become mandatory.

The spectrum of reliability threats ranges from extrinsic causes like manufacturing
process variations over intrinsic causes like aging and wear-out to environmental effects
such as the increasing susceptibility to transient events [Segur04]. At the same time, the
impact of these reliability threats is expected to increase as future manufacturing pro-
cesses will allow even smaller chip feature sizes resulting in an increased vulnerability

to such threats.

Manufacturing Manufacturing-induced process variability can cause the physical
and electrical device parameters to deviate from their nominal specifications,
which can result in erroneous functional behavior [Borka05,Shin16]. Different
device parameters are affected by process variability including the gate width,
the threshold voltage, the channel length, as well as the oxide thickness. As
the wavelength of light that is used for the lithography process is increasingly
exceeding the feature sizes, sub-wavelength lithography variations occur that
result in geometrical variations. The so-called line edge roughness (LER) is
exhibited in form of randomly varied edges of gate patterns which are caused by
fluctuating effects like photon flux variations or the random walk nature of acid
diffusion during photoresist removal. Random dopant fluctuations are caused
by variations in the impurity atom implantation phase, which can change the
threshold voltage. While manufacturing tests are used to identify and filter out
defective devices after fabrication, early-life failures and latent defects can induce

transient and intermittent faults in the course of the device lifetime.

Device lifetime In the course of the CMOS device lifetime, device parameter varia-
tions [Becke10,Mukhe11] continue to occur. Such dynamic variations are caused
by aging and stress mechanisms like negative bias temperature instability (NBTI),
time-dependent dielectric breakdown (TDDB), electromigration, and hot carrier
injection (HCI), and can lead to erroneous functional behavior and performance
variability over time. NBTI-induced aging increases the threshold voltage of
PMOS transistors, which is caused by applying negative bias voltages at in-
creased temperature. Time-dependent dielectric breakdown (TDDB) is caused by

the formation of conducting paths through the gate oxide to the substrate which

12 Chapter 1 o Introduction

results in a reduced device oxide insulation. Electromigration is the transport of
metal atoms caused by high current densities, which can lead to extrusions or
voids that manifest opens, shorts and bridges. Hot carrier injections (HCI) are
caused when carriers attain sufficient energy to be injected into the substrate

and collisions with substrate atoms cause electron/hole pairs.

Environmental threats Different reliability threats originate from the device envi-
ronment [Choi09], which includes electrical noise and different kinds of radiation.
Radiation-induced reliability threats include ionized particle strikes from heavy
ions, neutrons or alpha particles and can cause additional charges. These charges
can change the logic state of a circuit by, for instance, switching transistors for
short periods of time [Nicol11,Ferle13]. While single-event transients (SET) cause
voltage glitches in combinational logic that become bit errors when captured in
latches or memory elements, single-bit upsets (SBU) cause bit-flips within a latch
or memory element. The number of bit flips depends upon the charge intensity
generated by the particle strike which can affect almost all parts of modern CMOS
circuits. The actual impact depends on the physical and electrical properties of
the semiconductor material which constitutes the critical charge required to
induce a bit flip. Shrinking transistor geometries and increasing power densities
lead to reduced critical charges, which constitute an increased vulnerability to

such transient events in upcoming CMOS devices.

The investigation of fault tolerance techniques is an active research area as its integra-
tion has become mandatory. However, different challenges for the integration of fault
tolerance arise on the hardware as well as the software level. Different hardware-based
fault tolerance approaches rely on different forms of redundancy [Pradh96,Koren07] or
apply guard banding to mask errors [Weste15]. However, such techniques are often
associated with significant area and energy overheads that are not suitable for highly
integrated solutions. Therefore, a growing number of effects caused by transient events
will be exposed to the software which has to tolerate them. Future software applications

must be capable of detecting errors as well as recovering from them.

On the software level, compute-intensive algorithms from scientific and engineering
computing are often designed to provide maximum performance. A central challenge
in integrating software-based fault tolerance techniques lies in the runtime and energy
overhead that is induced by additional operations. Only techniques with low overheads

are suitable to satisfy the performance demands of scientific and engineering computing,.

1.4 o Efficiency Challenges and Demands 13

Traditional checkpointing techniques have become a mature approach to tolerate
errors in such applications [Pullu01, Herau16]. In general, checkpointing techniques
write the state of an application periodically to a storage component and restart the
application from a prior state if an error is detected. However, such techniques can
induce large recovery cost in both transferring checkpoint data and recomputing lost
results for high error rates. While these costs might be acceptable when errors are
rare, they can become infeasible in the near future with smaller chip feature sizes that
can cause increasing error rates. Therefore, checkpointing techniques will become
increasingly impractical as they induce significant bottlenecks for the execution of

applications [Sloan13, Suraal4, Liuléc].

Fault tolerance techniques that protect the program control-flow rely on assertions and
embedded signatures [Oh02], for instance, and avoid fetching and executing incorrect
instructions during the program execution. However, these techniques are not able to
detect errors that occur in arithmetic computing units, which can corrupt the application

result.

Algorithm-based fault tolerance (ABFT) techniques [Huang84] encode input data by
adding checksums before performing a linear operation and calculate new checksums
for the results. The results are checked for errors by evaluating invariants between
checksums that were processed by the operation and the checksums computed for
the results. While different ABFT approaches can be highly efficient for dense linear
algebra operations such as matrix multiplications or decompositions, they can induce
significant runtime overheads when they are used to protect sparse linear algebra

operations. Instead, efficient fault tolerance techniques are required for sparse matrices.

1.4 Efficiency Challenges and Demands

While scientific and engineering computing benefits from the progress in semicon-
ductor scaling and computer architecture, these domains also increasingly face major
challenges, which are constituted by the power and efficiency wall. These challenges
affect the high-performance computing domain, in which both the power and energy
demand have significantly increased over the last decade and become constraining
factors for the design of systems that provide increased performance [Borkal0]. To-
day’s most powerful high-performance computing systems are often associated with an

annual energy cost that exceeds the acquisition cost of the systems [Subral3, Mittal6a].

14 Chapter 1 o Introduction

To allow the exploration of upcoming scientific and engineering problems with growing
complexities, the computational efficiency increasingly becomes a central objective
besides the computational performance. The constraining factors in the different
computational efficiency parameters have to be tackled, which include the computational

runtime, the power dissipation, the energy demand, and the chip area.

Dennard scaling [Denna74] allowed successive semiconductor technology scalings
with doubling numbers of transistors per unit area while the power dissipation stayed
in proportion to the area for several decades. By reducing different physical features
like doping concentrations and the gate oxide thickness as well as scaling the supply
and threshold voltage proportionally to the geometrical dimensions of the transistor,
the power density could be maintained constant. Different effects including direct
quantum tunneling limit the further reduction of the gate oxide thickness without
causing significantly increased leakage currents that result in growing power densities.
Increased power densities, in turn, induce increased thermal energy per unit area,
which needs to be dissipated to keep the device within its thermal limits. To ensure
the correct operation of semiconductor devices, it is essential to operate these devices
within a fixed power budget. This insight is often referred to as the end of Dennard
scaling [Esmael3], which gave rise to different techniques and compute paradigms that

target different computational efficiency parameters.

Since the power dissipation of semiconductor devices is a central aspect of the compu-
tational efficiency, the investigation of approaches that reduce the power dissipation
became an active research field. Such low-power techniques target different levels of
the system stack ranging from devices and circuits, over architectures to applications.
On the device level, transistor technologies like fully depleted silicon-on-insulator
FETs (FDSOI) [Beign13] and fin-based FETs (FinFETs) provide reduced leakage cur-
rents [Mishr11]. On the circuit level, controllable-polarity field-effect transistors enable
the implementation of arithmetic functions [Gaill14] and power gates [Amarul3]
with reduced physical resources. Different dynamic voltage and frequency scaling ap-
proaches are widely-used techniques on the architecture level, which change the power
dissipation as well as the device performance at runtime [Semer02]. Fine-grain power
management techniques allow to scale the voltage or frequency for single parts or
regions of a device with respect to the resource demands of applications [Ranga09]. On
the application level, energy-aware task scheduling and migration techniques minimize

the power dissipation by trading off the number of processing units and the frequency

1.4 o Efficiency Challenges and Demands 15

of each processing unit [Hsu05]. A related concept relies on completely switching
off different device components including processing cores and parts of the memory
hierarchy [Esmae12b]. However, these low-power techniques are not sufficient enough
to solve the computational efficiency challenges, as they are likely not able to keep up

with the power efficiency demand required by semiconductor scaling [Shafi16].

The approximate computing paradigm does not only target the reduction of the power
dissipation but instead allows to trade-off precision against individual or combinations
of different computational efficiency parameters. The investigation of approximate
computing techniques is an active research area and continues to gain in importance.
A wide range of approximate computing techniques was proposed for different system
stack layers that promise significantly improved computational performance combined
with low power and energy demand. Important principles that constitute these approx-
imation techniques include task skipping [Sidir11], which allows runtime and energy
reductions, precision reductions [Jiang15], which result in reduced power dissipation
as well as data estimations [Miguel4], which allow energy reductions by, for instance,

avoiding energy-intensive memory operations.

The usefulness and relevance of approximate computing is highly dependent on the
spectrum and the number of applications that can benefit from it in the near future. The
investigation of approximate computing techniques has often focused on applications
that inherently provide some error tolerance or that origin from specialized benchmark
collections, which can create a significant discrepancy to real-world application do-
mains. At the same time, real-world applications from the scientific and engineering
computing domains highly demand such efficiency gains that are promised by approxi-
mate computing. For this reason, the application scope of approximate computing has

to be extended to these compute and power-intensive computing domains.

To fully utilize the benefits of approximate computing in general, different major

challenges [Venkal5] need be tackled to enable applications for approximate computing:

Definition of correct results and result quality As the notion of acceptable results
constitutes the error resilience of an application, it is inevitable to establish
quantitative definitions that allow to measure result quality and to determine
result correctness. While different error metrics exist for multimedia and signal
processing applications, application-specific metrics can reflect a wide range of

inherent properties in applications that need to be satisfied to accept a result.

16 Chapter 1 o Introduction

At the same time, such application-specific metrics can highly differ between
different applications. Besides the definition of metrics, methods are required
that ensure correct results by, for instance, monitoring intermediate results when
approximate computing techniques are utilized. Such methods may cancel the
efficiency gains by introducing additional operations into applications which

induce significant runtime and energy overheads.

Significance of compute efficiency gains Different computations in applications
offer a wide range of potentials for approximate computing regarding their impact
on both the result quality and the compute efficiency. Therefore, it is an essential
challenge to identify resilient and sensitive computations in applications as well
as to determine the significance of their contribution to the overall compute
efficiency. At the same time, different computations may exist in applications,
which do not allow approximations. Such computations typically involve pointer
arithmetic and control flow operations that may lead to, for instance, application

crashes.

Changing error resilience and precision-configurability The error resilience of
an application is not a static property, as it can change between different opera-
tions within the application. At the same time, the error resilience can depend
on the input data as well as it can change over the course of the application
execution. An important example are iterative solvers including the Conjugate
Gradient solvers that exhibit an error resilience that may change in the course
of the iterations. For this reason, approximate computing techniques are often

required to configure the induced approximation error at runtime.

These challenges especially apply to scientific and engineering computing applications
which are important components of decision-making processes that impose tight accuracy
demands. Such applications often comprise highly different and interacting tasks
that offer different opportunities to apply approximate computing. The evaluation of
the overall compute efficiency for such complex applications can be associated with
significant runtimes, which need to be reduced to determine the actual significance
of achieved compute efficiency gains. The error resilience is a major challenge in
scientific applications, which can change over the course of the execution as well as for
different input data. Besides precision-configurable approximation techniques, efficient
monitoring and adaption techniques are required that alter the underlying precision

according to such a changing error resilience.

1.5 e Qutline 17

1.5 Outline

The remainder of this work is organized into seven chapters that are structured as
follows: Chapter 2 introduces the necessary background and discusses the related
work for the subsequent chapters. This includes a concise introduction to the scientific
computing algorithms as well as their underlying sparse linear algebra operations
that are targeted in this thesis. At the same time, it discusses the essential ideas and
concepts from the fields of reliability and fault tolerance as well as heterogeneous and

approximate computing.

Chapters 3, 4, 5, and 6 discuss the contributions presented in this thesis. Chapter 3
presents a fault tolerance technique for sparse matrix-vector multiplications that pro-
vides both low runtime overhead and high error coverage by implicitly locating errors
during error detection steps for efficient error correction. Chapter 4 presents a fault
tolerance technique for the Conjugate Gradient solvers that periodically evaluates inher-
ent solver properties with low runtime overhead to detect errors. Chapter 5 presents an
adaptive method that enables the Conjugate Gradient solvers on approximate computing
hardware to obtain reduced energy demand while still ensuring correct results. Chap-
ter 6 presents parameter estimation methods that evaluate different compute efficiency

parameters for application executions on approximate computing hardware.

Chapter 7 presents and discusses the experimental evaluation of the methods presented
in this thesis. Chapter 8 concludes this work, summarizes the obtained findings and
discusses the achieved results. The appendices comprise additional material as well as

extended experimental results.

CHAPTER

BACKGROUND AND RELATED WORK

This chapter introduces the necessary background and discusses the related work
for the subsequent chapters. The selected scientific computing algorithms, as well as
their underlying sparse linear algebra operations, are discussed. Besides, this chap-
ter presents important concepts for reliability and fault tolerance in heterogeneous
computer architectures. The necessary background for the approximate computing
paradigm is introduced upon which the presented approximate computing methods

are built.

The corresponding literature is referenced where suitable.

2.1 Sparse Linear Algebra Operations

The contributions in this thesis focus on sparse matrix operations and conjugate gradient

solvers, for which the necessary background is introduced in this section.

2.1.1 Dense and Sparse Matrix Operations

Matrix operations constitute essential computational tasks in many large-scale scientific

and engineering applications. One of the most important operations is the matrix-vector

20 Chapter 2 e Background and Related Work

multiplication [Golub13], which computes the product of an (m x n)-matrix A and an

(n x 1)-operand vector b to obtain an (m x 1)-result vector r with
r:=Ab. (2.1)

An element 7; in the result vector r is computed as

n
r;= Z ai,k . bk . (22)
k=1

The computational complexity is determined by the number of elements in matrix A
with O(n - m). For quadratic matrices with 7 = m, the complexity is O(1%). In compari-
son to dense matrices in which almost all values are non-zero, sparse matrices contain a
significant portion of zero elements. In the sparse matrix-vector (SpMV) multiplication,
this sparsity property is exploited to reduce the computational complexity by omitting
unnecessary multiplications. With NNZ being the number of non-zero elements, the
computational complexity is now O(NNZ). Instead of a quadratic complexity, this SpMV

operation can be of linear complexity with NNZ ~ n.
Different fault tolerance techniques exploit the associative property of matrix-vector
multiplication which is

wT (Ab) = (wTA)b (2.3)

with b being an (1 x 1)-operand vector and w being an (m x 1)-operand vector.

An (m x n)-matrix A can be decomposed into row block matrices A; by row-partitioning
matrix A into m’ submatrices with 1 < m’ < m. A row block matrix A; is formed by
the i-th submatrix with 1 < i < m’. The row block size 0; denotes the number of rows in
the row block matrix A;. For all row block matrices of an (7 x n)-matrix A, the sum of

all row block sizes is the number of rows in A:

o;=m. (2.4)

NGRS

~
Il
—_

2.1 o Sparse Linear Algebra Operations 21

Example 2.1: The (6 x 2)-matrix A is row-partitioned into three row block

matrices Ay, Ay, and A3 with row block sizes 07 = 0y = 03 = 2:

[T a1 412
a1 a12 A = ’ ’
a a
a a | 42,1 22]
21 @29 A - .
1

A= as1 43| A - A = 431 432

= =|A, ol=
a1 Q42 Ag1 442
0. A - -

51 @52

A = 451 452

ag,1 46,2 3°
- ; [46,1 6,2 |

Let a be a vector with m elements which is partitioned into 1’ subvectors. Analogously
to the description of row block matrices, a block vector a; is a vector formed by the i-th

subvector with 1 <i < m’'.

Let A be an (m x n)-matrix that is partitioned into 7’ row block matrices, let b be
an (n x 1)-operand vector and let r be an (m x 1)-result vector that is partitioned into
m’ block vectors. The block-based matrix-vector multiplication performs the matrix-

vector multiplication r := Ab as

rq Al ¥ = Alb
r=Ab <« =l | o : (2.5)
| A r_ = Amlb

m m m

2.1.2 Conjugate Gradient Solvers

The Conjugate Gradient solvers form a group of algorithms which solve systems of

linear equations with the form
Ax=0b (2.6)

with A being a symmetric (A = AT) and positive-definite (xTAx > 0 with x # 0)
matrix [Saad03]. The vector x denotes the unknowns of the linear system while the
right-hand side vector b denotes the constant terms. In the following, the solver method

is introduced for real matrices and vectors, namely A € R™*",b € R", and x ¢ R".

The underlying solver method was originally presented by M.R. Hestenes and E. Stiefel

in 1952 [Heste52] while its effectiveness for large, sparse matrices was shown in the

22 Chapter 2 e Background and Related Work

early seventies [Reid72] when it was formulated as an iterative method. Compared
to direct methods like the Gaussian-Elimination, this iterative solver method finds
a correct result typically faster. The group of Conjugate Gradient solvers is formed
by the Conjugate Gradient solver (CG) and its variant, the Preconditioned Conjugate
Gradient solver (PCG). The difference between these two methods lies in the application
of a preconditioner M € R"*". Preconditioners can accelerate the solving performance
significantly by transforming the underlying linear system Ax = b in such a way that

the original solution x is computed with a reduced number of solving steps.

The runtime complexity of these solvers depends on both the size NNZ and the condition
number «(A) with O(NNZ -\/k(A)). The condition number x(A) of a symmetric,
positive-definite matrix A can be computed as

K(A) = Jmax (2.7)

Amin

with A, /A, being the ratio of the largest to the smallest eigenvalue. Precondition-
ers M can diminish the condition number x(A) by indirectly solving the original system
Ax=bas M 'Ax = M'b. Favorably, the preconditioner matrix M resembles the
inverse matrix of A suchthat M™* ~ A™! and k(M *A) « x(A). The actual operation
to be performed depends on the type of preconditioner and does not necessarily have

to include matrix inversions and matrix-vector operations.

Different variants of the PCG solver are established by the spectrum of precondi-
tioning techniques that focus different application scopes [Benzi02]. The Jabobi pre-
conditioner uses the diagonal of A to compose the preconditioner matrix M with
M, ob; = diag(A). The application of this preconditioner results in a matrix-vector
multiplication M]_alcobi r= diag(ahl, T a;,ll)r. This preconditioner has a memory com-
plexity of O(n) and a runtime complexity of O(n). Different preconditioners like the
incomplete Cholesky factorization, the incomplete LU factorization, or the symmetric suc-
cessive overrelaxation invoke different and potentially more computationally intensive

operations [Benzi02].

The Conjugate Gradient methods solve linear equations by representing the solution x

as a combination of different vectors and scalars:

For a matrix A ¢ R"™", a set of vectors V = {o®) |) ¢ R" A0®) + 0} is A-orthogonal
if V satisfies

v® A0 =0 withk . (2.8)

2.1 o Sparse Linear Algebra Operations 23

A search direction p(k) is a vector in a set of N mutually A-orthogonal vectors
P={p® | p® erR" A p® +0}. (2.9)

Search directions p(k) are computed by the Conjugate Gradient methods over the
course of solver iterations k with 1 < k < N. Let x(¥) be the intermediate result in solver
iteration k. A residual vector ¥'¥) is the difference between the right-hand side vector b

and the product of A and the intermediate result xR
) = p— Ax) (2.10)
The residual 5% is the euclidean norm of the residual vector in solver iteration k:
80 = [r O = b - Ax D, . (2.11)

A set of search directions P forms a basis for R”, which allows to represent the solution x

as a linear combination based on an initial guess vector x(0) e R”

N
x=x0 4 > a) p®) (2.12)
k=0
in which a®) is computed as
W) . p(k)r(k)
Y] (2.13)
pAp

to ensure optimal step sizes [Saad03]. In case a preconditioner M is applied, ak) g

computed as

T a0

(2.14)

In each solver iteration k, an intermediate result x*) is computed from the previous

iteration as

20D 2 (0 4 g (0) y(K) (2.15)

Based on the A-orthogonality between search directions, difterent inherent relations

exist between the vectors used in the Conjugate Gradient Solvers. For two different

24 Chapter 2 e Background and Related Work

iterations j and k in a Conjugate Gradient solver the underlying vectors have the

following relations:

pD 1 Ap® forjk (2.16)
) 1 p®) for j >k (2.17)
¢ 1 40 for j +k (2.18)

The interested reader can find the proof for Equations 2.16 to 2.18 in [Golub13], Sec-
tion 11.3.

The fundamental operations of the PCG solver are shown in Algorithm 1 in pseudo
code. For completeness, the CG solver algorithm is described in Appendix A.1. To
make a clear distinction between the error induced by approximate hardware and the
outcomes of PCG iterations, the term intermediate result is used to address x, which is
often referred to as approximation x in literature. The two primary parts of the PCG
algorithm are the preparation of PCG ranging between Lines 1 and 5 and the PCG loop
ranging between Lines 6 and 17. The preparation of PCG initializes auxiliary vectors
based on the initial guess x(?)_ Based on the initial guess vector x(0) each iteration of
the PCG loop provides an improved intermediate result x) with respect to the exact
solution. PCG iterations are executed until an intermediate result x(*) is found with
a residual 6) that satisfies the accuracy bounds defined by € € (R,R) := (,,¢€,).
While the absolute accuracy tolerance €, only considers the norm of the residual [[#(F)],
to check an intermediate result, the relative accuracy tolerance €, is scaling-invariant
which makes the number of required PCG iterations independent from initial guess

vector x(o).

The memory complexity of the CG solver is O(NNZ) with NNZ being the number of
non-zero elements in A. At the same time, the memory complexity of the PCG solver is

at least O(NNZ) and depends on the memory complexity of the utilized preconditioner.

In theory, the Conjugate Gradient solvers converge in a finite number of iterations to
the solution. Since these solvers are typically performed using floating-point arithmetic,
rounding errors can occur. Over the iterations, rounding errors can accumulate in the
search direction vectors p(k) which can cause them to lose A-orthogonality. For this
reason, the orthogonalities presented above in Equations 2.16 to 2.18 are in practice

only approximately orthogonal. At the same time, the residual &) calculated by the

2.1 o Sparse Linear Algebra Operations 25

Input: A,M.,b, x(o), €5 €ps Kypax
Output: The result of solving the system Ax = b: x
Data: p(k), r0) s 5k

(k+1)

/* Preparation of PCG */
110« p- AxO) // Initial residual vector
2 (0« M40, // Preconditioning
3 p(o) «~ 5(0); // Initial search direction
4 60 £ £OTL0). // Initial residual
5 k< 0; // Iteration count

/* PCG loop 2/

=)

while (68 > €2) A (6016 > €2) A (k < kpyay) do

;| w® < ap®,

o | o pOTG0,

2 “*‘76%36?

0 | xFD o x® +ocp(k); // Next intermediate result

| D) (0 g (R, // Update residual vector

2 | srD) o pp1pked). // Preconditioning

i | 60D (DT (kD). // Update residual
r(k+1)Ts(k+1))

14 ﬁ 6--———7?————,

5 | pD) gD 4 gy (R, // New search direction

16 | k< k+1;

17 end

"~ Algorithm 1: The Preconditioned Conjugate Gradient (PCG) algorithm.

Conjugate Gradient algorithm and the true residual

r) = b Ax®) (2.19)
can increasingly deviate over the iterations due to rounding errors [Cools16]. This
deviation is induced by the property that the true residual is never calculated during
the iterations in the Conjugate Gradient solvers. Instead, the residual is computed
from the recurrence r = #(¥) + Z,IC\L 0 ~a®A p(k) to reduce the number of matrix-vector
multiplications per iteration to one. Due to both the possible loss of A-orthogonality and
the deviation between true and recursive residuals, the required number of iterations

can be significantly increased or the solver may return a wrong result. These properties

26 Chapter 2 e Background and Related Work

have to be considered when developing a fault tolerance technique with high error

coverage.

The applicability of the Conjugate Gradient Solvers is not necessarily limited to sym-
metric and positive-definite matrices. To solve the normal equations, both sides of the
original equation Ax = b can be pre-multiplied by AT to solve ATAx = ATb. As long
as A is non-singular, ATA s symmetric and positive-definite which allows to exploit

the aforementioned solver properties.

The Conjugate Gradient solvers as well as matrix-vector operations constitute compute-
intensive tasks in the scientific and engineering computing domain which are often ac-
celerated using heterogeneous computer architectures. Since these modern computing
devices become increasingly vulnerable to different reliability threats, the integration
of fault tolerance techniques is a mandatory prerequisite. Section 2.2 introduces the
formal foundations on reliability and fault tolerance while Section 2.3 discusses related

fault tolerance techniques.

2.2 Reliability and Fault Tolerance

This section introduces the definitions and concepts in the area of reliability and fault
tolerance that is used in the subsequent chapters. The vulnerability of modern CMOS
devices is shown using recent assessment results from the literature. This introduction is
complemented by discussing the concepts of fault tolerance techniques while presenting
the underlying ideas of the fault models that are applied in the experimental evaluations

of this thesis.

2.2.1 Definitions

The definitions in this section follow the taxonomy of Avizienis et al. and other au-
thors [Avizi04, Cappel4,Pullu01]. The basic entity in this taxonomy is the system which
is able to communicate and interact with other systems in its environment. An essential
property of a system is its functionality that is described by a system function. The steps
that a system performs to implement its function constitute its behavior and can be
described as a sequence of internal and external states. The behavior that is perceivable

by the other systems in the environment forms the service it is delivering.

2.2 o Reliability and Fault Tolerance 27

The delivered service is called a correct service when it meets the specified system
function. The case in which the delivered service deviates from the system function is
called a failure. Such deviations are called errors and are manifested by a set of external
states that differ from the expected correct set of states. Errors are called detected errors
when the system identifies and signals their presence. The cause of an error is called a
fault. Hardware faults can result from defects that describe distortions or imperfections
in the physical structure of the underlying hardware. Besides manufacturing defects,
different defect mechanisms exist such as aging or radiation that increase the probability
of occurring defects. At the same time, hardware faults can be caused by environmental

transient events like particle hits (e.g., neutron and alpha particles).

The different of types of faults can be classified according to their persistence into
permanent, intermittent and transient faults. A permanent fault is persistent and contin-
ues to exist until the fault is repaired. An intermittent fault occurs not continuously
but at irregular time intervals. A transient fault occurs once for a short period of
time and then typically disappears. Besides their persistence, faults can be classified
according to different categories including the phase of creation, the point of origination,

the phenomenological cause, the dimension, the objective, and the capability.

The term dependability comprises a global concept that can be determined and measured
through the three elements attributes, means to attain dependability, and threats. The
attributes comprise availability, reliability, safety, integrity, and maintainability. As
one of the most important attributes, the reliability describes the probability that a
system provides its specified correct service for a certain period of time. The formal
definition for the reliability of a system is described in Appendix B. While reliability is
one attribute to describe dependability, fault tolerance is a means to attain dependability.
Fault tolerance techniques try to ensure the correct service according to the system
specification in the presence of faults. These techniques are intended to detect and
correct errors during operation of the system. This intention is achieved by detecting
and notifying about the presence of errors and by recovering, or by compensating
for errors by, for instance, using redundancy. Error recovery can include rollback
schemes, where the system state is returned to a previous correct state which can be a
checkpoint. At the same time, error recovery can rely on roll-forward techniques in
which new correct states are created. Besides tolerating faults, dependability is attained

by predicting, preventing, or removing faults.

The threats that can harm the dependability of systems comprise the aforementioned

28 Chapter 2 e Background and Related Work

faults, errors and failures. The fault tolerance techniques presented in the subsequent
chapters tackle reliability threats that are able to manifest themselves as erroneous
outputs of arithmetic computations. As a result, these techniques contribute to the goal
of dependable computing by detecting and correcting erroneous outputs in the selected

scientific computing algorithms.

2.2.2 Vulnerability Assessment

The vulnerability of modern CMOS-based computing devices to, for instance, the effects

of transient events has been assessed in the literature using different approaches.

The vulnerability to different reliability threats can be assessed by analytical methods
such as the Architectural Vulnerability Factor (AVF) analysis [Mukhe11, p.79], [Wilke14].
Fault injection and fault emulation experiments are widely used to assess the vulnerability
of applications and the effectiveness of fault tolerance techniques [Nicol11]. Fault
injection experiments can be performed at different levels of abstraction [Hsueh97],
ranging from hardware fault injection over simulation-based fault injection to software-
based fault injection. Surveys summarize the failure events under real conditions over
certain periods of time. These surveys rely on error logs generated by fault tolerance
techniques, which are used to obtain insights into the vulnerability of different system

components.

Hardware fault injection experiments inject faults into the physical hardware of the
target system. Different physical experiments are described in the literature in which
circuits are exposed to, for instance, radiation while they perform certain tasks. While
such physical experiments may mimic fault mechanisms realistically, they require
special instruments like neutron beam generators [Tiwar15a]. At the same time, ob-
serving the manifestation of errors caused by specific faults can be challenging or even

impossible.

Fault emulation experiments rely on logic emulation that is typically performed using
reconfigurable hardware like field programmable gate arrays (FPGAs) [Cheng99]. Two
widely used fault emulation approaches are the instrumentation of the circuit descrip-
tion and the reconfiguration of the emulated circuit. While circuit instrumentation
approaches add fault injection logic to the original circuit description, reconfiguration-
based approaches modify the FPGA configuration data (i.e., the underlying bitstream)

to inject faults.

2.2 o Reliability and Fault Tolerance 29

In contrast to physical experiments, fault emulation and simulation-based fault injection
rely on fault models. Fault models bundle and collapse the different kinds of faults
that affect a system into specific fault classes. These fault classes can be described at

different abstraction levels at corresponding degrees of detail.

Simulation-based fault injection experiments rely on fault models that are applied
to descriptions of circuits, architectures, or systems to evaluate the impact of faults.
Fault injections are mimicked by, for instance, changing the hardware model or the
simulated state of the hardware. For gate-level circuit descriptions, the stuck-at fault
model [Bushn04] is a widely used description to mimic certain manufacturing defects.
The conditional line flip model [Wunde10] can express the range of traditional circuit
fault models by describing fault activations at specific fault sites using Boolean, time-
related or arbitrary conditions. The Resilience Articulation Point model [Herke14]
allows to assess the resilience between different abstraction levels of a system using
probabilistic models such as probabilistic bit flips, which are mapped between the levels

using so-called abstraction transformation functions.

Software-based fault injection experiments [Segal88, Kanaw92] instrument applications
to inject errors at runtime that mimic the manifestation of injected faults. Since faults
only cause errors when they are activated and not masked during fault propagation,
injecting errors in the targets of actual faults (e.g., the outputs of arithmetic computa-
tions), increases the number actually evaluated errors. For this reason, different related
works rely on error injection experiments to evaluate the efficiency of fault tolerance
techniques as these experiments avoid inactive faults. A widely used error model is the
bit flip model [Brone08, Wunde10, Herke14, Fang16, Wu16,Loh16] which manipulates
single or multiple bits in a value (e.g., in the output of an arithmetic unit) by inverting
them or by forcing them to either 0 or 1. This model covers the manifestation of faults
ranging from transient to permanent faults in arbitrary system components including
arithmetic units, register files and communication networks. For these reasons, the fault
tolerance techniques presented in this thesis are evaluated by software-based fault

injection experiments using a bit flip error model.

Besides performing fault injection experiments, different works in the literature eval-
uated system logs collected over a certain period of time to assess the system vul-
nerability. Di Martino et al. [Di Mal6] assessed the vulnerability of the Blue Waters
high-performance computing system under typical execution conditions. The authors

evaluated the machine check exceptions collected in the system logs over a period of

30 Chapter 2 e Background and Related Work

261 days. In this period, 1544 398 machine check events occurred which relates to an
average error rate of 250 detected errors/h. Within these events, 28 errors were neither
correctable by the applied fault tolerance techniques (i.e., ECC and Chipkill [Dell97]).
For the GPU devices, uncorrectable error events occurred on average every 80 h. An
evaluation of memory errors showed that about 70% of the memory errors involved
a single bit while about 30% involved between 2 and 8 consecutive bits. Tiwari et
al. [Tiwar15b] assessed the vulnerability of the Titan high-performance computing
system. The authors evaluated the system logs collected over a period 21 months and
analyzed the GPU-related events. In this time period, 48 uncorrectable errors were
detected, which corresponds on average to one uncorrectable error event per week. In
these events, 86% of these uncorrectable errors occurred in device memory, while the

remaining 14% occurred in the register files.

In summary, the different vulnerability assessments in the literature show that modern
CMOS-based computing devices are highly vulnerable to the effects of transient events,
but also to permanent faults. This insight emphasizes the demand for fault tolerance

techniques.

2.2.3 Fault Tolerance Strategies

Fault tolerance techniques intend to attain dependability of a system by avoiding fail-
ures in the presence of faults. A well-known strategy used by most fault tolerance
techniques is to exploit specific forms of redundancy. By introducing redundancy,
additional hardware, procedures, or information are used that are not directly required
by the system to provide a correct service. However, these additional elements come
into effect in case of occurring errors by detecting and correcting these errors. The
majority of fault tolerance techniques can be classified into the three categories dis-
cussed below [Pradh96,Koren07]. These categories comprise space redundancy, time

redundancy, and information redundancy.

Space redundancy is often referred to as structural redundancy when applied to hardware
designs. This strategy adds additional hardware into the design to tolerate errors. The
Dual Modular Redundancy (DMR) technique replicates a module (e.g., a processing
element) once which allows to detect single errors. In contrast to DMR, the Triple
Modular Redundancy (TMR) technique replicates a module into three units which

allows to detect and correct single errors based on a majority decision. However, if

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 31

more than one module is affected by an error, three different outputs can be obtained,

and the voter is not able to provide a correct result.

Time redundancy relies on repeating computations a certain number of times and
comparing the different results to detect errors. For instance, the Duplication with
Comparison (DWC) technique repeats certain computations once and compares the
two produced results. Time redundancy techniques can detect transient or intermittent
faults. However, permanent faults remain undetected since these faults produce the
same wrong output repeatedly. Errors are corrected by repeating the failed computa-

tions or by restarting the application from a priorly recorded state (i.e., a checkpoint).

Information redundancy techniques encode input data (i.e., the underlying information)
to detect errors. For instance, to ensure the integrity of data that is stored in memory or
transmitted between systems, Error Detecting and Correcting Codes (ECC) can be applied.
These codes add some check bits to the original data bits which allow error detection
or even correction depending on the underlying encoding scheme. The aforementioned
ABFT techniques apply information redundancy to detect errors in the results of al-
gorithms. These techniques add checksums to the input data before executing the
algorithm and calculate new checksums for the results. Errors are detected by evaluat-
ing certain algorithm-specific invariants between checksums that were processed by
the algorithm and the checksums computed for the results. When the encoding and
invariant checking steps induce only low runtime overhead, such ABFT techniques can
be very efficient, which makes them a favorable option in integrating fault tolerance.
The fault tolerance techniques presented in this thesis exploit information redundancy

to enable the efficient detection and correction of errors.

2.3 Related Fault Tolerance Techniques for Linear Al-

gebra Operations

The investigation of fault tolerance techniques for linear algebra algorithms is an
active research area and continues to gain in importance. Related fault tolerance
techniques for matrix-matrix and matrix-vector multiplications are discussed below
in Section 2.3.1. Conjugate Gradient solvers cannot be directly protected by these
fault tolerance techniques as they do not cover all underlying operations. Related fault

tolerance techniques for Conjugate Gradient solvers are discussed below in Section 2.3.2.

32 Chapter 2 o Background and Related Work

2.3.1 Fault Tolerance Techniques for Matrix Multiplications

Different algorithm-based fault tolerance (ABFT) approaches were proposed for dense
linear algebra operations such as matrix multiplications and decompositions as well
as matrix factorizations [Huang84, Braun14, Wu14, Hakka15, Du12, Boute15, Wu16].
ABFT techniques encode input data by adding checksums before performing the linear

operation and calculate new checksums for the results.

Weights can be introduced during checksum generation to improve the error detection,
localization and correction capability of ABFT techniques as introduced in [Jou86].
The computed checksums introduce information redundancy, which is now exploited
to check the results for errors. Errors are detected by comparing the checksums that
were processed by the operation and the checksums computed for the results. In the
following, the protection of matrix-matrix multiplications using ABFT is discussed for
square matrices. The underlying concept can be transferred to general matrices without

loss of generality.

Weights w;. are used to encode an (1 x n)-matrix A by multiplying weights w; to
the matrix elements 4; ; with 1 < k < n. Weights that are used to encode a specific
matrix A form a weight vector, which is denoted by w 4. Different techniques were
proposed in related works to select weights. One wide-spread approach is to set the
weights to 1 [Brone08, Shant12]. Jou and Abraham [Jou86] propose the utilization
of exponential weights. For a weight vector w with n elements, the weights w; are
computed as wy, := 251 for 1 < k < n. While such exponential weights can be efficiently
computed in their binary representation through shift operations, exponential weights
can cause overflow problems for very large weights. To address this overflow problem,
Luk [Luk86] proposes linear weights w; that are computed as wy := k for 1 < k < n.

Fasi et al. propose quadratic weight vectors [Fasil6] with wy := k*for1<k<n.

ABFT techniques protect a matrix-matrix multiplication R := AB with A,B, and R being
(n x n)-matrices by encoding the input operands A and B using a (1 x nn)-weight vector
w, and an (1 x 1)-weight vector wg. While the columns are encoded in A to obtain
column checksums, the rows are encoded in B to obtain row checksums. Both encodings
are performed using matrix-vector multiplications that result in two checksum vectors.
The resulting checksum vectors are stored in additional columns and rows to form a
and a full checksum matrix

column checksum matrix A.., a row checksum matrix B

ce» ree

Ry, as follows:

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 33

A column checksum vector ¢, is a (1 x n)-vector that is formed by computing column

checksums for A as
C.i=WHA. (2.20)

A column checksum matrix A, is an (1 + 1 x n)-matrix that is formed by matrix A and

its corresponding column checksum vector ¢, as

A

Cc

A
wAA

A, =

cc

(2.21)

A row checksum vector ¢, is an (n x 1)-vector that is formed by computing row checksums
for B as

¢, = Bwg . (2.22)

A row checksum matrix B,, is an (1 x nn + 1)-matrix that is formed by matrix B and its

corresponding row checksum vector c, as
B,.=[B ¢]=[B Buwy] (2.23)

A full checksum matrix Ry, is an (1 + 1 x 1 + 1)-matrix that results from the multipli-

cation of a column checksum matrix A.. and a row checksum matrix B, as
Rfc = AgBye (2.24)
Following [Huang84], the elements of the full checksum matrix Ry, are evaluted as:

A

Ce

R RwB

R, =
fC ZUAR wARwB

[B Cr] (2.25)

ABFT encodes the operand matrices A and B according to Equations 2.21 and 2.23 and
computes the full checksum matrix R ¢, which allows to check for errors in the result

matrix R by evaluating the following identity:
waRwg=c.-c,. (2.26)

Equation 2.26 follows from applying Equations 2.20 and 2.22 on ¢, - ¢, and substituting
AB by R since R := AB. Errors are detected when Equation 2.26 does not hold.

34 Chapter 2 o Background and Related Work

Errors typically do not affect the complete result matrix R, but only small parts of it. To
avoid unnecessary recomputations, syndrome vectors are computed to find the location
of errors, which allows to perform only necessary computations to correct errors (i.e.,
inner products) instead. The vector results of Rwpg and w4 R in the full checksum
matrix R fc serve as inputs to compute two syndrome vectors. For the matrix-matrix
multiplication R := AB with (7 x n)-matrices A, B, and R, a row syndrome vector and

a column syndrome vector are computed:

A row syndrome vector s, is an (n x 1)-vector that is computed as
s, = Ac, - Rwg . (2.27)
and a column syndrome vector s is a (1 x n)-vector that is computed as

sc=c.B-wysR. (2.28)

During error-free matrix-matrix multiplications, both row and column syndrome vec-

tors are zero:

s.=s,=0. (2.29)

Proof: Equation 2.29 results from applying Equations 2.27 and 2.28 to Equation 2.26.
O

Non-zero syndrome elements [s,]; and [s_]; indicate the location of an error within

the corresponding row i and column j in the result matrix R [Jou86].

With matrix size (1 x), O(n?) computations are required to check for errors. For
this reason, ABFT is efficient for multiplying dense matrices since (’)(ng) computations
are induced by the multiplication itself. Partitionable linear algebra operations such
as matrix-matrix operations can be divided into blocks of smaller matrix operations

which allows to perform the ABFT technique on the single blocks separately [Rexfo94].

ABFT can also be applied to matrix-vector multiplications. Let A denote an (n x n)-
matrix, b denote an (7 x 1)-vector and let 7 denote an (1 x 1)-vector. With the result
and one of the operands being vectors instead of matrices (i.e., b and r instead of B
and R), different matrix-vector-multiplications that were required by ABFT to protect

matrix-matrix-multiplications evaluate to inner products and to vector-scaling operations.

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 35

To protect a matrix-vector multiplication 7 := Ab using ABFT, the checksum vectors in
Equations 2.20 and 2.22 are evaluated as follows [Brone08]: Equation 2.20 still requires

a matrix-vector multiplication to compute the column checksum vector ¢, and
C. = ZUAA . (230)

At the same time, the (1 x 1)-vector b replaces the operand matrix B, which changes
the number of weights in weight vector wpg. Since each row in b contains one column,
the weight vector wg now only contains one element, which is denoted as w := [wg];.
Following Equation 2.22, the row checksum vector c, is computed using a vector-scaling

operation instead of a matrix-vector multiplication and

¢, =b-w. (2.31)

Example 2.2: The (3 x 3)-matrix A is multiplied by a (3 x 1)-operand vector b to

obtain the (3 x 1)-result vector :

2 19
3=122
1 18
To compute checksums for the columns in A, three weights are required, since
A contains three rows. Therefore, w4 is a (1 x 3)-vector. At the same time, one

weight is required to compute checksums for the rows in b, since b contains one

column. This weight is denoted by w. In this example, all weights are set to 1:
wy=[1 1 1] w=1

Using these weights, the input operand A is encoded using a matrix-vector multi-
plication to compute c.. Since only one weight is required to encode b, the row
checksum vector ¢, is computed using a vector-scaling operation instead of a

matrix-vector multiplication:

ccmwaA=[11 10 7| g=bw=

36 Chapter 2 e Background and Related Work

Following Equation 2.25 and with r and b being (n x 1)-vectors, the full checksum

matrix R, is evaluated as a (11 + 1 x 2)-matrix instead of an (1 + 1 x 1 + 1)-matrix and

Rfc = AgeBye (2.32)

1A
CC

Compared to the matrix-matrix multiplication, for which ABFT requires a matrix-vector

r r-w

Ry = [b cr] (2.33)

WH T Wyt W

multiplication and two inner products to detect errors (cf. Equation 2.26), ABFT only
requires two inner products and a scalar multiplication to detect errors for matrix-vector

multiplications by evaluating the identity
Co'C=Wy T W. (2.34)
Equation 2.34 follows from Equation 2.26 and will typically not be satisfied in case of

errors [Sloan13].

Equation 2.34 allows to compute scalar checksums for both operands and results: Using
the checksum vectors computed for the operands, ¢, and c,, an operand checksum c is

computed as

cp:=¢.- ¢, =(wyA) - (b-w). (2.35)

By encoding the result r using weight vectors w, and wg, a result checksum cq is

computed as

Coi=Wy T W. (2.36)

Example 2.3: (Continues Example 2.2)
The operand checksum c; encodes the inputs A and b:

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 37

The result checksum cy encodes the result r:

19
cp=wyrw=[1 1 1]-22[1=59
18

In the following, the different steps of applying ABFT to matrix-vector multiplications
are discussed with respect to the runtime complexity of the different operations. The
fault tolerance technique is performed in two parts: The first part comprises a setup
phase which is executed once for each matrix A to obtain the column checksum vector
¢, := wpA. The second part comprises the operations for error detection, in which the
checksum of the operands c¢; is computed and compared to the checksum of the result c,.
With matrix size 1, O(n?) computations are required for the setup phase, while error
checking only requires O(n) computations (i.e., two inner products). This approach
can induce low runtime overhead for dense matrices, since (’)(112) computations are

induced by the multiplication itself.

Sparse linear algebra operations are essential tasks in different scientific and engineering
applications besides dense linear operations. The straightforward application of ABFT
to protect sparse matrix-vector (SpMV) multiplications induces significant runtime over-
heads as the runtime complexity of the SpMV multiplication depends on the number of
non-zero elements in the underlying matrix. The runtime complexity of the SpMV multi-
plication can be linear, if each row in the underlying matrix contains only a few non-zero
elements. In such a case, the runtime overhead for error detection may even exceed the
runtime of the original operation, since the SpMV operation and the error detection op-
erations are in same order of runtime complexity (i.e., O(NNZ) ~ O(n), with NNZ ~ n).
On top of that, when applied to matrix-vector multiplications, the error localization
scheme used for matrix-matrix multiplications does not reduce the number of compu-
tations compared to complete recomputations [Sloan13]. Both the error localization
scheme (i.e., compute s, := Ab - w — r- w following Equation 2.27) and complete recom-
putations (i.e., recompute 7 := Ab) compute a matrix-vector multiplication with equal

number of computations.

Nonetheless, the error detection operations described in Equation 2.34 is applied in
different related works to detect errors in sparse linear operations such as the SpMV oper-
ation [Brone08,Shant12,Sloan12,Sloan13,Fasi16]: Bronevetsky and Supinsky [Brone08],

38 Chapter 2 o Background and Related Work

Shantharam et al. [Shant12], and Fasi et al. [Fasi16] apply this approach within the
Conjugate Gradient algorithm to detect and correct errors in the underlying SpMV

operations.

Different approaches were proposed that focus on reducing the runtime overhead
for error detection and correction in sparse linear operations. Sloan et al. propose
checksum encodings [Sloan12] for the SpMV operation that omit some computations
during error detection. These checksum encodings are based on either sampling some
random matrix columns in the computation of the column checksum vector ¢, or
aggregating selected column sums to form clustered checksums. Both encodings reduce
the number of non-zero elements in the column checksum vector c,, which reduces
the error detection runtime. In the aggregation scheme, different clustering algorithms
exploit structural properties such as dominant diagonality, diagonal bands or blocked
diagonality to identify representative column sums for the column checksum vector c,.
Besides, two preconditioning techniques are proposed that change or create additional
structures within the matrix to make them suitable for this aggregation scheme. The
fault tolerance technique corrects errors by rolling back the application to a prior
checkpoint. This approach reduces the runtime overhead for error detection, but also

reduces the error coverage.

Later, Sloan et al. proposed an error localization scheme [Sloan13] for the SpMV
operation that avoids complete recomputations to reduce the runtime overhead for
error correction. The proposed fault tolerance technique detects errors using the error
detection operations in Equation 2.34 and delimits the corresponding portion in the
result vector r; in which the erroneous result element exists. The erroneous result
vector element is corrected by recomputing the SpMV operation for the delimited
portion. Such portions in the result vector are determined by an iterative bisection
technique, which repeatedly divides the input matrix A into two row block matrices
and checks for errors in these block matrices. The bisection is repeated until a certain
portion of the vector around the erroneous result vector element is delimited. However,
the runtime overhead to provide fault tolerance still depends on the error detection
operations, as the result of this check is required before any error localization steps can

be performed.

Gao et al. [Gao16b] developed a fault tolerance scheme that protects multiple matrix-
vector multiplications executed in parallel by exploiting ideas from Error Detecting

and Correcting Codes (ECC). For p matrix-vector multiplications with b = Ap

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 39

and 1 <1 < p, this scheme calculates a detection matrix D and a sum matrix S from p
input matrices A®_ For each input matrix A®_ a checksum vector is computed with
¢ =wTAD, wT = (1..1),i = (1,...,p). The single rows in the detection matrix [D];
are composed by adding specific checksum vectors c® according to Hamming parity bit

configurations. In case of a single error, the erroneous result vector '@ is located and
corrected using the sum vector z = Sb, with S = Z;Ll AD andy? = 2 - Z]P:l), r;=0.
However, this approach focuses on integer arithmetic which is uncommon in the
scientific and engineering computing domain. The challenge to distinguish inevitable
rounding errors from harmful errors is not addressed. Besides, the runtime overhead is
dominated by two additional matrix-vector multiplications which can be significant for

low numbers of input matrices p.

Since linear operations for both dense and sparse matrices are often performed using
floating-point arithmetic, rounding errors occur. A more detailed discussion on the
nature of rounding errors in floating-point arithmetic can be found in Appendix C. A
direct comparison of checksums should be avoided because rounding errors typically
cause small differences in these checksums. To avoid false positive error detections in the
presence of rounding errors, error checking needs to be performed under consideration

of a rounding error bound.

A rounding error bound T € IR is an upper bound for the maximum difference between

an operand checksum c; € R and a corresponding result checksum c, € R for

fl(er) = fl(ex)l < T (2.37)

with fI(c;) € R and fl(cy) € R denoting the corresponding floating-point representa-

tions for ¢; and c,, respectively (cf. Equation D.2).

Errors are detected, when [fI(c;) — fI(cy)| exceeds the rounding error bound 7. The
challenge to distinguish inevitable rounding errors from harmful errors was addressed
in different related works. Huang and Abraham propose to let the user determine such
thresholds T manually [Huang84]. However, this approach requires a deep knowledge
of the input data and re-calibrations for subsequent or new problem sets. Different
approaches were proposed that determine such rounding error bounds at runtime with
respect to the input data. Analytical rounding error functions provide upper estimations
for the rounding error with respect to the underlying input data. Such rounding error
functions were derived for different basic arithmetic operations as well as for linear

operations like inner products [Golub13]. To protect matrix-vector multiplications

40 Chapter 2 o Background and Related Work

using dense matrices in the presence of rounding errors, an analytical rounding error

bound was derived by Chowdhury and Banerjee [Chowd96].

While these analytic rounding error functions focus on the worst-case rounding er-
ror [Higha96], probabilistic models of floating-point arithmetic can provide statistical
statements on the rounding error behavior. Such models were used by Barlow and
Bareiss [Barlo85] to derive probabilistic error bounds for sums and inner products
in floating-point arithmetic. Based on this approach, an algorithm-based fault toler-
ance scheme was proposed for dense matrix-operations such as multiplications and

decompositions which determines rounding error bounds at runtime [Brauni4].

In summary, the direct application of traditional ABFT is highly inefficient when applied
to sparse linear operations such as the SpMV multiplication. Related works [Sloan12]
and [Sloan13] focus on reducing the runtime overheads for error detection and correc-
tion steps. However, the applied error detection schemes only indicate the existence
of errors and not their location. Either complete recomputations or additional error
localization steps need to be performed to correct errors. Scientific and engineering
applications are typically performed using floating-point arithmetic which is prone to
rounding errors. For this reason, suitable rounding error bounds are required to distin-
guish errors in the magnitude of the rounding error and errors that may be harmful to
the application. In Chapter 3, a fault tolerance technique for sparse matrix operations
is presented that allows the efficient algorithmic detection and correction of erroneous

computation results with high error coverage.

2.3.2 Related Fault Tolerance Techniques for Conjugate Gradi-

ent Solvers

While the ABFT techniques discussed above can protect the linear operations in the
Conjugate Gradient solvers, they are not able to protect all operations with low runtime
overhead. For instance, when the error detection operations in Equation 2.34 are
applied to protect an inner product a’b, one additional inner product will be computed
(ie., (w- aT)b with w being a weight scalar). This approach does not allow low runtime
overhead since the additional inner product has the same runtime complexity as the
original one. Therefore, fault tolerance for the Conjugate Gradient solvers demands

different methods to achieve complete and efficient protection.

2.3 o Related Fault Tolerance Techniques for Linear Algebra Operations 41

The vulnerability of the Conjugate Gradient solvers was assessed over the last decade:
Bronevetsky and Supinski [Brone08] show the insufficient ability of CG to avoid silent
data corruptions in the presence of errors. Shantharam et al. [Shant11] discuss the
influence of errors on the performance of linear solvers and demonstrate performance

degradations of PCG by factors of up to 200x.

Different fault tolerance approaches were presented to detect and correct transient
events causing errors: Oboril et al. [Oboril1] present a fault tolerance technique that
repeats PCG on an auxiliary problem, if an incorrect solution is detected after the
completion of PCG. In such a case, PCG is repeated on the obtained residual Ad = r
[:= (b - Ax)]. While this method aims to avoid repetitions of PCG on the original
problem, it awaits the result after complete convergence of PCG before it checks for
errors. Sao and Vuduc [Sao13] propose to periodically stabilize the solver execution
during inherently reliable system modes. Such stabilizations exploit the convergence
conditions of CG to transform arbitrary iterations to valid iterations. Chen [Chen13]
proposes a periodic check of both the residual invariant (i.e., O sb- Ax(k)) and the
orthogonality of consecutive search direction and residual vectors (cf. equation 2.17) for
error detection. Detected errors are corrected by rolling the solver back to a previously
recorded state (i.e., a checkpoint). Chien et al. propose a hierarchical checkpointing
technique [Chien16] to extend the fault tolerance technique presented by Chen. This
technique targets latent errors that can cause endless loops in traditional checkpoint-
rollback techniques which rely on single recorded states. An array comprising multiple
checkpoints is maintained that holds different application states recorded during the
execution. Loh et al. [Loh16] propose to check the orthogonality of consecutive residual
and preconditioned residual vectors (i.e., (M~ '+ ¢ = g=DTL(0) 4) as well
as its typical decreasing monotonicity after each iteration to detect errors. The steps
performed to update the intermediate result x) are duplicated and compared in each
iteration to detect errors that may not violate this orthogonality invariant. The solver is
recovered from detected errors by restarting the solver from the last computed version
of x©)_ Tao et al. [Tao16] present a fault tolerance technique that relies on computing
and adapting checksums for the vectors in PCG. Vector updates are tracked by adapting
the checksums according to the underlying value changes at runtime. The checksum
encoding follows the ABFT encoding scheme discussed above in Section 2.3.1. To detect
errors, new checksums are computed for the resulting vectors which are compared to

the original checksums in user-defined intervals. In case of detected errors, the solver

42 Chapter 2 o Background and Related Work

is rolled back to a previously recorded state.

Different related works rely on replication schemes to introduce fault tolerance: Liu
et al. [Liul5b] propose to use increasing levels of replication as the solver converges
to a solution. After a predefined number of iterations, the state of the PCG solver is
replicated and the execution is continued in a Dual Modular Redundancy scheme that
periodically crosschecks the underlying intermediate results. The state of the PCG
solver is replicated again after a predefined number of iterations and the execution
is continued in a Triple Modular Redundancy scheme. Detected errors are corrected
by rolling back to a previously recorded state when DMR is used and by recovering
an erroneous execution from a majority decision when TMR is used. Dichev and
Nikolopoulos [Diche16] propose a Dual Modular Redundancy scheme that replicates
the execution of PCG. This scheme periodically synchronizes both executions to detect
errors by comparing the computed residual norms (i.e., | rii) | ~ Hrg) |). To correct errors
that affected only one of both executions, the residual invariant (i.e.,)~ b- Axk)) is
checked in both executions to identify the correct execution which is used to restore the
erroneous one. If both executions do not satisfy the residual invariant, the execution is

restarted from a previously recorded state.

The discussed approaches rely on strategies and operations that induce significant
runtime and energy overheads to obtain fault tolerance. Such overheads can violate the
central demand in scientific and engineering computing domain for fast and efficient

computations.

The approaches in [Sao13, Chen13] require additional sparse matrix-vector operations
to detect errors which induces significant runtime overheads. At the same time, the
approaches in [Loh16,Tao16] add at least one additional inner product into each solver
iteration. While the parallel execution of replicated PCG instances can reduce the
runtime overhead for DMR and TMR schemes presented in [Liul5b, Diche16], the
demanded energy is multiplied by a factor constituted by the number of replications.
Some approaches recover from errors solely by using checkpointing techniques, which

are associated with large recovery cost in recomputing lost intermediate results.

Chapter 4 presents an efficient fault tolerance technique for the Conjugate Gradient
solvers that relies on an error detection and correction scheme with low runtime and

energy overhead while it achieves high error coverage.

2.4 o Heterogeneous Computer Architectures and Approximate Computing 43

2.4 Heterogeneous Computer Architectures and Ap-

proximate Computing

The scientific and engineering computing domains demand feasible execution times
along with high reliability. Compute-intensive applications from these domains are
often accelerated using heterogeneous computer architectures since they provide high
computational performance within reasonable power envelopes. This section presents
the concept of heterogeneous computer architectures and discusses its benefits for
the fields of science and engineering. At the same time, it introduces the necessary
background for the approximate computing paradigm which is promising to become an

integral part of such computer architectures [Esmael2a, Chand17].

2.4.1 Heterogeneous Computer Architectures

Semiconductor technology scaling induces to integrate considerably different computer
architectures with different kinds of processing cores, communication channels and
embedded memories on single chips or packages [Chen15a]. Heterogeneous computer
architectures are a result from this integration process and combine, for instance, multi-
core CPUs, many-core GPUs architectures as well as reconfigurable architectures like
field programmable gate arrays (FPGA) [Chung10]. One of the most widespread example
for these computer architectures is the integration of CPU and GPU architectures on
single chips [Mittal5] such as Intel’s Skylake architecture [Intel17] and AMD’s APU

architecture [Bouvil4].

Applications from the scientific and engineering domain often comprise of different
computational parts which, for instance, reflect multiple interacting processes from
multi-phase, multi-scale or multi-physics problems. Applications are accelerated by
mapping the different underlying algorithmic parts to the different components of such
heterogeneous architectures which can result in significant reductions of computation
time. For instance, while multi-core CPUs are typically optimized for latency-sensitive
as well as coarse-grained parallel tasks, many-core GPUs provide high computational

throughput.

The computational performance of heterogeneous computer architectures is the most
important aspect for applications from the scientific and engineering computing do-

mains. Compared to homogeneous architectures (i.e., that rely on single kinds of

44 Chapter 2 o Background and Related Work

processing units), these heterogeneous architectures can achieve significantly increased
performance to execute such applications. By integrating these highly diverse kinds of
processing cores, the gap between latency-sensitive or coarse-grained parallel tasks
and highly data-parallel tasks is closed. These different kinds of tasks were often indi-
vidually tailored to latency-optimized CPUs and throughput-optimized GPUs before.
For this reason, the acceleration of such algorithmic parts is enabled that did not fit in

an optimal manner to one of the existing architectures before.

With the growing interest for heterogeneous computer architectures over the last
decade, different application programming interfaces were developed that allow to
tailor applications to these architectures. For instance, OpenCL [Stone10] and Nvidia
CUDA [NVIDI17] are two wide-spread examples for such programming interfaces.
Different software libraries like SparseLib [Donga94] and NIST Sparse BLAS [Duff02]
allow the integration of sparse linear algebra operations and solvers into a wide range
of applications. A research field focuses on building blocks that accelerate compute-
intensive and recurring tasks including sparse linear algebra operations [Kreut16] using
such computer architectures. Important examples include software frameworks like
MAGMA [Dongal2], ViennaCL [Rupp10] and PETCs [Balay16].

2.4.2 The Approximate Computing Paradigm

While the concept of approximate computing was already addressed several decades
ago [Von N56], the research activities on this computing paradigm have only just intensi-
fied in the last couple of years. Approximate computing tackles different computational
efficiency cost metrics in the system stack. Important metrics include the area-time

complexity, the power-clock cycle product, and the energy-time product [Nebel13,Kaesl14]:

The area-time complexity
Area-time complexity :=A-T (2.38)

measures the resource efficiency for a given (chip) area A and a time T spent to process

an instruction. A closely related metric is the area-time* complexity [Thomp79]

Area-time? complexity := A - T2. (2.39)

The power-clock cycle product

Power-clock cycle product := P - t, (2.40)

2.4 o Heterogeneous Computer Architectures and Approximate Computing 45

provides insights into the energy efficiency of a circuit for P being the chip power

dissipation and ¢, being the clock cycle.

The energy-time product
Energy-time product:= E-T (2.41)

measures the interplay between computational performance and energy efficiency for

E denoting the energy and T denoting the time spent to process an instruction.

A metric to measure the computational performance is MIPS (millions of instructions
per second):
instruction count

MIPS := 5 . (2.42)
10” - execution time

The energy-per-instruction metric
E P-T

instruction count instruction count

Energy-per-instruction := (2.43)

measures the power efficiency for E denoting the energy, P denoting the power
dissipation, and T denoting the time spent to process an instruction. With T =
instruction count/MIPS, the energy-per-instruction metric is related to the Watt/MIPS-
metric [Rabael2] as follows:

T _ Watt
instruction count MIPS

Energy-per-instruction = P - (2.44)

At the same time, the energy-time product is related to the Watt—per—MIPSQ—metric as

follows:

T 2 Watt
) = (2.45)

- MIPS?

Central terms in approximate computing are accuracy and precision. For an exact result

Energy-time product = P - (. -
instruction count

¢ € R" and a specified maximum distance d € IR, d > 0 to the exact result, the accuracy
is the probability P that a computed result ¢’ is within the specified distance d to the

exact value c:
Accuracy = P({|c-c'|5 <d}) . (2.46)
The precision is the distance from a computed result ¢’ to the exact value c:
Precision := ¢ - (|, . (2.47)

Precision is a characteristic of the approximation technique (e.g., approximate hardware

and its approximate arithmetic) while the accuracy is a requirement defined by the

46 Chapter 2 o Background and Related Work

application, in particular by its underlying algorithms and the processed data. For
instance, approximate arithmetic structures such as adders or multipliers that exhibit a
large degree of approximation are typically associated with a lower precision, meaning
that the results of their operations are allowed to deviate more from the exact com-
putational result. Important examples for error metrics [Han13] are the absolute and

relative error and the error rate.

For an exact result ¢ € R and a computed result ¢’ € R, the absolute error €, is
eaps = |c—C|. (2.48)

The relative error €,,; is

e=(]

frel = 1 (2.49)

The error rate error,,;, describes the relation between the number of input values and

the number of computed results ¢’ that are unequal to the precise result ¢ with

Number of imprecise results with ¢ - ¢’| p>0

error, e i= (2.50)

Total number of input values
Application-specific error metrics were proposed that are able to evaluate the accuracy
of application results [Grigol4a, Grigo14b, Zhang14a,Ringe15, Zhang15a].

Different approximation techniques target the power dissipation of circuits. The three
basic power dissipation sources of CMOS devices are the charging and discharging of
capacitors, short-circuit currents and leakage currents [Nebel13]. In the following, let
Vpp denote the supply voltage, let f denote the clock frequency, let I}, denote the
leakage current, let A; denote the activity, let Q; denote the transported charge during
a short-circuit and let C; denote the capacitance at node i. The power dissipation caused

by charging and discharging of capacitors P is
Pcp ::%-f-ng-;A,--c,-. (2.51)
The power dissipation caused by short-circuit currents Pg is
Psc:=Vpp-f-3,Qi"A; . (2.52)
i
The leakage power Py, is

Pleak = Ileak : VDD . (2-53)

2.4 o Heterogeneous Computer Architectures and Approximate Computing 47

Based on these sources, an estimation for the average power dissipation is
1 2
P f-Vop- 2 Ai-Ci+ Vpp - f- 20 Qi+ Ai+ lieak Vpp - (2.54)
1 1

To evaluate parameters like power and performance, different techniques compute an
instruction mix [Patte14] of target applications. Let i := 1, ---, 1 denote instructions and
let p; denote the probability for the execution of instruction i. An instruction mix is a set
of instructions 7 along with probabilities p; that are obtained by counting instruction
executions in the target applications. Instead of executing the target applications while
measuring different parameters, benchmark programs can be derived from the obtained
instruction mix. Compared to the original applications, these benchmarks can exhibit a
reduced instruction count, for instance, and allow reduced execution and evaluation

times.

A wide range of approximate computing techniques have been proposed for different
system layers from circuits over architectures to software. These techniques exploit
the inherent resilience of applications to certain numerical errors. The current scope
of applications for approximate computing can be distinguished into different classes
depending on their input data sets, their output data sets or the computational patterns
they exhibit [Chakr10, Chipp13, Venkal5, Shafi16]:

Applications with imprecise inputs include applications that process real-world
data sets that are often inherently noisy. Subsequent computations in such ap-
plications do not have to be more precise than what the input data allows. The
underlying algorithms of these applications are designed to handle noise appro-
priately, which gives them the ability to tolerate errors due to approximation. A
second member of this class are applications that process large data sets with high
degrees of redundancy, which enables a certain error tolerance. Such applications
include, for instance, voice recognition, motion detection or processing of sensor
data [Chipp13, Wang16,Rahal7].

Applications with imprecise outputs include applications whose required output
quality is defined by, for instance, the limited perceptual abilities of human beings.
Deviations from perfect results due to approximation errors can be tolerated as
long as they are not perceived by the user. Examples for such applications include
audio, image and video processing in multimedia applications [Advan14, Schaf14,
Tagli16].

48 Chapter 2 o Background and Related Work

Applications with ambiguous outputs include applications that produce a range
of output data that are equally acceptable for the users. These applications
include recommendation systems, web searches, modern machine learning tech-
niques [Esmael2c, Grigol4a, Eldri14, Grigo15, Moreal5, Zhang15b] and often
process data based on heuristics, statistical aggregation, and probabilistic compu-

tations. A perfect solution does not necessarily exist for such applications.

Applications with convergent outputs include applications which utilize optimiza-
tion techniques or iterative methods that refine the output data set until a certain
convergence criterion is satisfied [Zhangl4a,Lass17]. The output quality may
vary depending on the processing steps and the computational precision. Er-
rors due to approximate computations may be compensated by longer execution
times. The Conjugate Gradient solvers (cf. Chapter 2.1.2) are an example for such

iterative convergent tasks where such a compensation often does not occur.

The approximate computing paradigm has been applied to the whole computing
stack including circuits, architectures up to software, programming models and al-
gorithms [Shafi16]. Approximate computing hardware designs are developed with
deviations from their exact specification which therefore cause approximation errors
up to a certain degree. The spectrum of proposed approximate hardware designs
ranges from approximate adder structures [Mahdi10, Guptall,Miao12, Guptal3,Kim13,
Yang13b,Nanu14,Hu15,Beche16] and multipliers [Kyaw10,Kulka11,Farsh13,Bhard14,
Chen15b,Liul7] over approximate floating-point components [Zhang14b,Liul6d,Yin16]
to structures that allow to configure the underlying precision at runtime [Kahng12,
Lin13,Bhard13,Liu14, Hashe15, Camus15,Espos16, Mazah16]. Besides arithmetic units,
different approaches target efficiency gains in the memory hierarchy by, for instance, es-
timating load values to reduce cache miss latencies [Migue14,Yazdal6a,Yazdal6b,Jain16],
skipping memory accesses [Samad14] as well as reducing the refresh rates in DRAM
memories [Liul2,Cho14,Jeong16] and voltage [Chen16]. Different design automation
methods were proposed that focus on the design, automatic generation and synthe-
sis of approximate circuits [Venkal2, Venkal3b, Miao13, Nepal14, Yazda15, Soeke16].
Besides the design phase, different approaches analyze the error behavior of approxi-
mate hardware [Venkall] and propose formal verification techniques for approximate
hardware [Holik16].

Different concepts have been proposed that introduce the approximate computing

paradigm into heterogeneous computer architectures. Esmaeilzadeh et al. [Esmae12a]

2.4 o Heterogeneous Computer Architectures and Approximate Computing 49

present a computer architecture that allows application developers to select between
precise and approximate computation modes. A special instruction set architecture
offers approximate variants of precise arithmetic operations that can be used to achieve
efficiency-gains for error-resilient instructions within applications. This computer
architecture relies on voltage scaling in different components such as register files
and caches, as well as in arithmetic operations to trade-off errors for reduced power
dissipation. Venkataramani [Venkal3a] presents a computer architecture that provides
precision-configurable arithmetic units along with error estimation units. Different
monitors estimate the accumulation of numeric errors that are induced by rounding
at different precision degrees, which can be evaluated by applications using special
instructions. Unacceptable errors are corrected by recomputing the affected instruc-
tions with increased precision. Chandrasekharan et al. [Chand17] present a computer
architecture that combines approximate floating-point units with their precise coun-
terparts. These approximate floating-point units reduce the number of clock cycles
required for floating-point operations by storing already performed operations and
results in a look-up table, which is checked before each new floating-point operation.
If a new floating-point operation is similar to an already performed operation, then the
corresponding result value is returned from the lookup table, while the floating-point
unit is bypassed. The maximum degree of similarity that triggers such a bypass can be
dynamically adapted by the application. Koutsovasilis et al. [Kouts17] present a bench-
mark suite of 12 compute-intensive tasks from the science and engineering domain
that were adapted to heterogeneous and approximate computer architectures. Each im-
plemented task relys on an accurate and an approximate version of its computationally
intensive parts. The underlying approximation techniques are based on task skipping,

precision-reduction in arithmetic operations and relaxation of sychronization barriers.

On the software level, task skipping and early termination techniques like loop perfo-
ration [Sidir11] reduce the number of executed instructions at the cost of result quality.
Programming language extensions allow developers to guide the approximation by,
for instance, source code annotations that specify approximable data and instruc-
tions [Samps11,Carbi13,Rahim13, Vassi15]. Changing quality demands are exploited by
compiler-based program transformation techniques that generate multiple versions of
programs with different precision levels and memory access frequencies [Samad13].
The approximate nature of neural networks is exploited to mimic certain algorithms

and to compute approximate results [Moreal5, McAfe15]. At the same time, neural net-

50 Chapter 2 e Background and Related Work

works and their underlying evaluation algorithms are approximated to obtain efficiency
gains [Venkal4, Zhang15b, Sarwal6].

The next section discusses related approximate computing schemes, which were pro-
posed for essential tasks in the scientific and engineering computing domain including
Cholesky Decomposition [Schaf14], Eigen-Decompositions [Zhang15a], iterative meth-
ods [Zhang14a], and inverse matrix p-th roots [Lass17].

2.5 Related Approximate Computing Techniques

This section presents and discusses the related work for the approximate computing
methods presented in Chapters 5 and 6. Related works that target the extension of the
approximate computing application scope to the scientific and engineering computing
domain are discussed below in Section 2.5.1. Different compute efficiency parameters
need to be evaluated to asses the execution of applications on approximate computing
hardware. Related works that determine such parameters are discussed below in
Section 2.5.2.

2.5.1 Related Approximate Computing Techniques for Scientific
Computing Tasks

Schaffner et al. [Schaf14] propose an approximate computing technique for a direct
Cholesky decomposition-based solver that targets well-conditioned problems arising in
video processing applications. The technique exploits the application-specific property
that such well-conditioned problems tend to contain insignificant values in the fill-
in elements of their Cholesky decomposition. During the decomposition process,
multiplications are skipped in the computation of such fill-in elements that contain

operands smaller than a specific threshold value.

Zhang et al. [Zhangl4a] propose a monitoring technique for iterative methods that
continuously adapts the induced approximation error according to their underlying
optimization functions [Saad03]. This technique starts the execution using the lowest
available degree of precision, which is increased if the underlying optimization function
is violated. While some iterative methods rely on evaluating their underlying optimiza-
tion function, Krylov-subspace methods like the Conjugate Gradient solvers typically

do not compute this function explicitly to find solutions. The periodic computation

2.5 o Related Approximate Computing Techniques 51

of this function induces significant runtime overheads since it requires an additional
expensive matrix-vector multiplication. On top of that, such additional matrix-vector

multiplications can cancel out potential energy savings.

Later, Zhang et al. [Zhang15a] present a method that enables the iterative Lanczos
algorithm for approximate computing by dynamically adapting the induced approxi-
mation. As a prerequisite, the authors evaluated the error resilience of the underlying
algorithmic parts using the resilience identification approach in [Chipp13] to determine
candidates suitable for approximation. The presented technique exploits the insight
that the Lanczos algorithm restarts the search process to re-establish inherent properties
(i.e. orthogonality). In case of such restarts, the proposed technique adapts the induced
approximation by increasing the underlying precision. Based on the ideas in [Sloan12],
the underlying matrix-vector multiplications in the Lanczos algorithm are monitored to

evaluate the result quality against accuracy demands.

Lass et al. [Lass17] analyze the error resilience of an iterative algorithm that computes
the inverse matrix p-th roots (i.e., AY P) of a positive definite matrix A [Bini05]. The
convergence behavior in the presence of approximation errors is evaluated by com-
paring the intermediate solutions against solutions computed in precise arithmetic.
Approximation errors are mimicked by reducing the precision in the underlying com-
putations and data representations. Reducing the precision below a certain degree
introduces an oscillating behavior which is dependent on the matrix size and the root

factor p.

In summary, the discussed approximate computing schemes target different scientific
and engineering applications. The underlying approximation schemes include detecting
and skipping computations for insignificant values, monitoring inherent correction
cycles to adapt the induced approximation as well as adding monitors to detect violations
of inherent application properties. For iterative methods including the Conjugate
Gradient solvers, such monitoring techniques must induce only low runtime and energy

overhead to avoid reducing or canceling the achieved efficiency gains.

Chapter 5 presents an adaptive method that exploits the fault-tolerant Conjugate Gradi-
ent solver (i.e., presented in Chapter 4) to enable the solver execution on approximate
computing hardware with high compute efficiency gains while still providing correct
results. This method propels the extension of the application scope of approximate com-
puting to the scientific and engineering computing domain, which are often associated

with low error resilience along with tight constraints on the result accuracy.

52 Chapter 2 e Background and Related Work

2.5.2 Related Parameter Estimation Techniques for Application

Executions on Approximate Computing Hardware

To assess the compute efficiency of application executions on approximate computing
hardware, different parameters need to be determined, which comprise the area, the
leakage power, the dynamic power, the delay, and the approximation error. Using these
parameters, the compute efficiency is described by different metrics including the
energy per instruction as well as the overall runtime performance, for instance. The
different related works can be distinguished into two classes with respect to the targeted
parameters. The first class comprises related works that investigate the approximation
error and its propagation throughout the application execution, while the second class
comprises related works that provide parameter estimation methods targeting, for

instance, the leakage and dynamic power dissipation.

Different related works model the approximation error induced by approximate comput-
ing hardware to investigate the approximation error resilience of applications: Chippa
et al. [Chipp13] inject random bit flip errors into the output variables of different loops
and functions to identify error-resilient algorithmic parts. Algorithmic parts that do not
cause application crashes or unacceptable result deviations are further evaluated using
software-based models of approximate computing techniques. These models include
loop perforations, operand value truncations and bit error profiles that specify the error

probability for each bit in an arithmetic unit.

Roy et al. [Roy14] use random value manipulations to identify error-resilient application
data (e.g., program variables). This approach collects representative value ranges
for each variable in a program depending on the variable data type to form a multi-
dimensional search space. Different configurations are randomly extracted from such

search spaces to evaluate the sensitivity of the application output to certain variables.

Mishra et al. [Mishr14] present a framework that combines annotation-guided code
transformations and instruction set simulation of approximate computing techniques to
determine the error resilience of applications. The simulated approximation techniques
include operand value truncation, approximate memories, and approximate network

channels.

Single bit flip error injections are utilized by Venkatagiri et al. [Venkal6] to identify
error-resilient arithmetic instructions. Program analysis methods and heuristics are

applied to collect suitable error injection candidates, which are grouped in error equiv-

2.5 o Related Approximate Computing Techniques 53

alence classes. Error injection experiments are performed on a representative of such

equivalence classes while the application output is monitored.

Barbareschi et al. [Barbal6] use reduced floating-point precision to evaluate the error
resilience of applications. Existing source code is transformed by user-defined transfor-
mation rules to generate approximate source code variants. These source code variants
are evaluated using user-defined error metrics to assess the error resilience of the

different code parts.

Lee et al. [Lee16] present an approach that generates models for arbitrary approximate
hardware designs using data flow graphs and probability mass functions. Data flow
graphs capture the propagation of data and approximation errors from the inputs to
the outputs in approximate hardware designs. Probability mass functions are used to
model the influence of approximation errors on the dependency between input values

and approximate application outputs.

The discussed related works [Chipp13,Roy14, Mishr14, Venkal6, Barbal6,Lee16] rely
on different software-based models of approximate computing hardware, which are
used to identify algorithmic parts as well as data that are resilient to approximation
errors. To evaluate the significance of the compute efficiency, parameters like the power
dissipation and the demanded energy must also be assessed besides the application

output error.

Different techniques have been presented that evaluate the power dissipation of appli-
cation executions. One approach is to determine the power dissipation of individual
instructions using physical measurements and to use the obtained results to estimate
the power dissipation for complete application executions: Tiwari et al. [Tiwar94, Ti-
war96] present such a measurement-based technique that generates power models for
instruction traces by quantifying the power dissipation of individual instructions and
different inter-instruction effects. Such inter-instruction effects include pipeline and
write buffer stalls as well as cache misses. The power models are obtained through
physical experiments in which the current drawn by the target device is measured

while executing the application under consideration in an infinite loop.

Physical experiments are also used by Laurent et al. [Laure04] for a power modeling
technique called functional level power analysis. To model the power dissipation, differ-
ent programs are executed on evaluation boards, while the drawn current is measured.
The measurements are summarized in a power model using regression. Later, this

technique is applied by Senn et al. [Senn04] to estimate the power dissipation for appli-

54 Chapter 2 e Background and Related Work

cations. Using static code analysis, different parameters such as the instruction mix are
determined. These parameters are translated to power dissipation using the models
that were generated by functional level power analysis. Rethinagiri et al. [Rethi14] apply
the functional level power analysis approach to heterogeneous computer architectures
comprising multi-core CPUs and field programmable gate arrays (FPGA). The authors
present power models for different devices that allow to estimate the power dissipation
from different parameters of the executed application and the underlying target design.

These parameters include the instruction mix and number of cores.

The discussed related works [Tiwar94, Laure04, Senn04, Rethi14] estimate the power
dissipation of complete application executions by modeling the power dissipation of
the underlying instructions using physical experiments. While these experiments are
performed at full execution speed, they require the implementation of approximate

hardware descriptions in physical hardware, which can be associated with high cost.

Different related works estimate the power dissipation of application executions by
using capacitance descriptions: Brooks et al. [Brook00] provide capacitance equations
for different architectural components including caches, fully associative memories,
combinational logic, wiring as well as clocking to compute the capacitance of a target
device. Using architectural simulations for the target applications, the circuit activity is

determined to estimate the power dissipation of application executions.

Capacitance descriptions are also used by Li et al. [Li09] in McPAT, which provides
models for power, area, and timing estimation targeting architectural-level circuit
descriptions. This approach decomposes the target architecture into circuit blocks and
computes the capacitance for each module using analytical models to evaluate the

power dissipation.

The discussed related works [Brook00,Li09] rely on capacitance descriptions to model
the underlying hardware, which is evaluated by architectural simulation to estimate
the power dissipation. Different approximate hardware designs are based on changes
in the underlying functional description of the circuit (e.g., in the gate-level description
of approximate arithmetic units [Yang13b, Chen15b, Liu17]), which are not necessarily

reflected in an architectural simulation.

Sampson et al. [Samps11] provide a model that specifies power and energy reductions for
different architectural components with respect to certain approximation techniques.
The presented reduction specifications have been collected from different works in the

literature targeting voltage scaling, mantissa reduction in floating-point operations, as

2.5 o Related Approximate Computing Techniques 55

well as memory refresh rate reductions. This model provides insights for three configu-
rations of the evaluated approximation techniques. However, precision-configurable
approximate computing arithmetic often provides a significantly larger number of
configurations, which need to be evaluated to obtain detailed insights into the power

dissipation.

Different related works target simulation-based power estimation techniques and present
techniques to reduce the simulation runtime for complete application executions: Hsieh
and Pedram [Hsieh98] estimate the power dissipation of an application execution by
combining architectural and register-transfer-level simulation. In a first step, architec-
tural simulation is performed to obtain different application parameters including the
instruction mix. A new program is generated from these parameters, which exhibits
similar performance and power dissipation behavior as the original application. Com-
pared to the original instruction trace, the instruction trace of the generated program is
reduced with respect to a user-defined compression ratio. In a second step, the new pro-
gram is simulated at the register-transfer level to determine the power dissipation. The
obtained power dissipation result is used as an estimation for the complete application

execution.

Hamerly et al. [Hamer05] present a technique to reduce the runtime of architectural
simulation by exploiting repetitive behaviors in programs. A central assumption of
this approach is that all iterations of a repetitive instruction interval (i.e., a section of
continuous application execution) exhibit similar behavior, which allows to evaluate an
instruction interval once to represent all remaining instances. The approach identifies
such representative instruction intervals in an offline analysis step by examining the
execution frequencies for different regions of code. The identified instruction intervals
are clustered according to their execution frequency in complete application executions

to allow weighted parameter extrapolation.

The authors of [Wunde03] present a method that exploits statistical sampling theory
to reduce the runtime of architectural simulation. In the course of a simulation, the
approach alternates between detailed and functional simulation modes provided by
a custom system-level simulation framework for fixed instruction intervals in an ap-
plication. The approach selects minimal numbers of instruction intervals for detailed
simulations to estimate parameters like performance and power while satisfying a

required confidence interval.

The discussed related works [Hsieh98, Wunde03,Hamer05] rely on significantly reduced

56 Chapter 2 e Background and Related Work

portions of the original application, namely synthesized programs and selected instruction
intervals to estimate the power dissipation of complete application executions. These
approaches assume that the evaluated instructions exhibit similar behavior compared
to the original application. Approximation techniques like [Zhang14a] exploit changing
degrees of approximation errors to ensure acceptable application outputs. However,
changing degrees of approximation errors induce different behaviors over time. Previ-
ously repetitive behaviors that are exhibited by iterative methods, for instance, can only
be limited to iteration intervals with unchanged approximation error. At the same time,
the evaluation of a limited instruction interval does not necessarily reflect the impact
of approximation errors on the power dissipation, since the induced approximation

error propagates between executed instructions.

Chapter 6 presents parameter estimation methods that assess the compute efficiency of
application executions on approximate computing hardware with respect to the area, the
leakage power, the dynamic power, the delay, and the approximation error. To evaluate
long-running iterative algorithmic parts, highly accurate but slow circuit simulations
are combined with light-weight models of approximate computing hardware. This
approach exploits the insight that parameter estimations can achieve low estimation
runtimes and high estimation accuracy using carefully selected instruction intervals as
discussed in [Hsieh98, Wunde03, Hamer05]. The underlying model is based on operand
value truncation in accordance to [Chipp13, Mishr14,Barbal6]. At the same time, the
impact of approximation errors on the power dissipation is considered by evaluating

the propagation of approximation errors throughout the application execution.

CHAPTER

EFFICIENT FAULT-TOLERANT
SPARSE MATRIX-VECTOR

MULTIPLICATION

A fault tolerance technique for sparse matrix-vector multiplications (SpMV) is presented
in this chapter that allows the efficient algorithmic detection and correction of erro-
neous operation results with high error coverage [Schol16a]. To achieve high runtime
efficiency, an important challenge is to derive an error detection and correction scheme
with low runtime overhead. At the same time, additional challenges arise to avoid
false positive error detections due to rounding errors. To achieve high error coverage,
suitable rounding error bounds are required to distinguish errors in the magnitude of

rounding errors from presumably harmful errors.

The fault tolerance technique is based on the observation that even high error rates
typically do not cause errors in complete matrix-vector multiplication results, but
only in small parts. Instead of repeating entire computations or performing expensive
error localization steps, the underlying error detection scheme is instrumented to
implicitly provide the error locations with high efficiency. This technique enables
partial recomputations just for erroneous outputs directly after error detection, which

reduces the overall runtime overhead to provide fault tolerance.

58 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

This fault tolerance technique is algorithm-based and exploits the properties of sparse
matrices to instrument error detection steps with error localization capabilities. Round-
ing errors are addressed by an analytical error bound that provides suitable rounding

error bounds for the SpMV operation.

Related algorithm-based fault tolerance approaches for sparse matrix operations detect
and correct errors, but often perform expensive error localization steps or rely on
complete recomputations. General checkpointing techniques write the state of an
application periodically to a fault-tolerant storage and restart the application from a
prior state if an error is detected. However, such techniques can induce large recovery
cost in both transferring checkpoint data and recomputing lost results for high error
rates. Therefore, checkpointing techniques will become increasingly impractical as

they induce significant bottlenecks for the execution of applications [Liul1].

Related algorithmic error detection and correction approaches compute and evaluate
checksums to detect errors and recompute erroneous results by recomputation. Such
approaches avoid the cost induced by rolling back to a prior state. Since even under high
error rates, only a small portion of the output is corrupted by errors, these approaches
reduce error correction cost by locating and recomputing only erroneous results. This
partial recomputation approach, however, requires additional error localization steps to
avoid unnecessary correction cost. Additional error localization costs may be acceptable

for small outputs, but become unacceptable for large output sizes.

The remainder of this chapter is organized as follows. Section 3.1 below introduces the
formal background for the presented fault tolerance technique. An analytical rounding
error bound for sparse matrix operations is discussed below in Section 3.2. Section 3.3
presents the corresponding algorithmic steps. Section 3.4 presents the details of the
underlying preprocessing, error detection and correction steps. This chapter concludes
with a discussion on the runtime and memory overhead in Section 3.5. The presented

fault tolerance technique is evaluated in Chapter 7, Section 7.4.

3.1 Method Overview

The presented fault tolerance technique divides the SpMV operation into small blocks
with respect to a selected row block size (cf. Equation 2.4) and performs checksum-based
error detection for each block separately. This block-based error detection scheme

was evaluated for dense matrix operations in [Rexfo94]. Blocks for which the operand

3.1 e Method Overview 59

checksums do not match the corresponding result checksums are marked erroneous. For
this reason, this approach delimits error locations to blocks of result elements instead
of locating the erroneous result element exactly. These erroneous blocks are corrected
by recomputing the SpMV multiplications partially for these blocks. Therefore, error
locations are already determined during error detection which avoids both complete
recomputation and error localization steps. Since this block-based approach exploits
the sparsity of the underlying input matrix, the runtime overhead to detect and locate

errors is significantly reduced.

The following equations and examples introduce the fault tolerance technique for the
matrix-vector multiplication 7 := Ab, in which A denotes a real (7 x nn)-matrix and r, b
denote (n x 1)-vectors. The underlying concept can be transferred to general matrices
without loss of generality. The partitioning of the SpMV multiplication into row blocks
as well as the generation of checksums for these blocks relies on a weight matrix W,

which is computed as follows:

Let a matrix A € R"*" be partitioned into m’ row block matrices A, Ay, ---A, / with
1 <m’ < n. The row block size 0, denotes the number of rows in row block matrix Ay
with 1 < k < m’. For each row block matrix Ay, a weight vector w® isa (1 x 0y,)-vector,
which contains weights [w(k)]l- € R.. The weights are non-zero real numbers used to

encode the row block matrices.

A weight matrix W is an (m’ x n)-matrix that is formed by m’ weight vectors w®)

with 1 <k <m’ as

oD 0 e e T
0o w®
W o : 3.1
w® G-
: . . 0
0 0w

Each row k in a weight matrix W is formed by weight vector w®). At the same time,
each column in W contains one non-zero element, namely one weight from a weight

vector.

60 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

Example 3.1: The (6 x 6)-sparse matrix A is multiplied by a (6 x 1)-operand

vector b to obtain the (6 x 1)-result vector r:

Zero elements in matrices and vectors are denoted by (-).

r:=Ab=

1

2

N Ot

ot W N

~ ot

1

2

9

— R Ol W R N

4
26
42
36

8

18].

Matrix A is partitioned in three row block matrices A;, A5, and A3 with row block
sizes 01 =09 =03= 2.

1 2] A=t 2
5 2 |- 5 2]
2 35 A . 2 3]
A = = A2 <~ A2 =
5 4 1 5 1
A3 - -
2 [9 1
Aq =
|2 1 9] 37, 1 9

Using the row block sizes 0y = 0y = 03 = 2, a (1 x 2)-weight vector w®) is formed

for each row block matrix Ay.

In this example, all weights are set to 1:
wD = [1 1] w® = [1 1] w3 = [1 1] ‘
Following Equation 3.1, a (3 x 6)-weight matrix W is formed by the weight vectors.

w . . 11
w?® . = |- 11
w® .. 011

3.1 e Method Overview 61

A row block matrix A is encoded using weight vector w® to compute a (1 x n)-

checksum vector ¢© as
c® = w® 4, . (3.2)

The structure of a weight matrix W allows to encode each row block matrix A; within
a single sparse matrix-matrix multiplication WA. The generated checksum vectors

form the (m’ x n)-checksum matrix C with

(w0 .. . 0] A] [w(l)Al]
0o w?® - : A, w(2)A2
C:=WA-= : : |- 3 3.3
w® | a7 w®a, (3:3)
: : 0 : :
| 0 | w(m')_ A,/ _w(m,)Am/_
Following Equation 3.2, row k in C contains the checksum vector (b
[w(l)Al] [c(l)]
w?A, c®
C-= : = f 3.4
w®a, || ® (34)
w(m,)Am/ _C(m’)_

Example 3.2: (Continues Example 3.1)
The weight matrix W is multiplied with A to obtain the (3 x 6)-checksum matrix C
following Equation 3.3.

152 - - 2
C=WA=|- 28 9 - 1
2 - -1 2 9].

The weight matrix W and the checksum matrix C are used to compute checksums for

the operands Ab and checksums for the result . An operand checksum vector t is an

62 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

(m' x 1)-vector that is computed for the operands in a matrix-vector multiplication Ab

as
t:=Cb. (3.5)

A result checksum vector t* is an (m' x 1)-vector that is computed for the results of a

matrix-vector multiplication Ab as

t":=Wr. (3.6)

Example 3.3: (Continues Example 3.2)

A (3 x 1)-operand checksum vector ¢ is computed following Equation 3.5 as

2

4
152-~23 30
t:=Cb=-289-15:78
2 - -129 26

4

1

and a (3 x 1)-result checksum vector t* is computed following Equation 3.6 as

4
26
11 - - . . 30
. 42
t"=Wr-= 1 1 =|78
36
1 1 26| .
8
18

A syndrome vector s is an (m’ x 1)-vector that is computed from the checksum vectors
tand t”* as

si=t-t". (3.7)

The syndrome vector allows both error detection and localization. If , A, and b are

!/ —_
related by 7 = Ab, then the syndrome vector s € R “Lis equal to the zero vector 0:

s=0. (3.8)

3.1 e Method Overview 63

Proof: Equation 3.8 follows from applying Equations 3.3, 3.5, and 3.6 to Equation 3.7:

s=t-t"=Cb-Wr=(WA)b-Wr=W(Ab-r)
(withr = Ab): s=W(0)=0.

Example 3.4: (Continues Example 3.3)

A (3 x 1)-syndrome vector s is computed from ¢ and ¢* following Equation 3.7 as

30 30 0
s=t-t"=[78]-|78[=]0
26 26 0].

If a syndrome vector element s € s is not zero, then the relation between the row block

matrix Ay, the operand vector b and the result block vector r; does not hold:
sk+0 < re+Aib. (3.9
Proof:
S =t —tg = [Cb]i - [Wr]i = [Clxb - [W]ir .
Following Equation 3.3, row k in a checksum matrix C is computed as
[Cli =™ =w® A,
which allows to write the term [C];b as
[Clib = (wPA)b .

The term [W], r is computed as

n
(Wlir=> wy;-7;.
i

64 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

From Equation 2.5 follows that the result vector r is partitioned into block vectors
ry,79, 7, such that the block size of r is equal to the row block size of Ay with
1 <k <m'. Following Equation 3.1, row k in a weight matrix W contains the weight
vector w*) which is enclosed by zero elements. Since only the multiplication of the

vector w*) with the row block 7} can result in a non-zero result:

n
(Wiir =Y wi ;i = w®ry .
i=1

The syndrome vector element s; only depends on the relationship between the row

block matrix Ay, the operand vector b and the result block vector ry:
sk = [Clib - [W]ir = (@ A)b - w®r = w® (A -1y) .
Assuming that the weight vectors are not zero, w® 0
50 o Ab-1r+#0 o r+Arb.

a

Since the syndrome vector element s only relies on the relation between the row block
matrix Ay, the operand vector b and the result block vector 7y, errors in the result of

the matrix-vector multiplication 7 := Ab can be delimited to r; := A;b for which s; # 0.

Example 3.5: Assume that the fourth result element r, is corrupted during the

matrix-vector multiplication from Example 3.1. The second block vector r; contains

the error:
[4 1 [4 1 r;- = 4

26 2 26
42 , 42 , 42

ri= r = S Ty =
36 B34 34
8 8 , [] T

r =
18] [18] 37 |18

3.2 e Analytical Rounding Error Bound for Sparse Matrices 65

In the corresponding syndrome vector s, the second syndrome element s, is not

ZEro.
30 30 0
s=t"—-t=Wr'-Cb=|76|-|78] = |[|-2
26 26 0

With s # 0, the error location is delimited to r;.

When the matrix-vector multiplication is executed in floating-point arithmetic, rounding
errors can occur that induce small differences between the checksum vector elements
t; and t;. To distinguish errors in the magnitude of rounding errors from errors that
may be harmful to the application, each syndrome element s; is compared against a

rounding error bound, which is computed as follows:

Let fI(t;) € Rand fI(t;) € R denote the floating-point representations of ¢ and f;. A
rounding error bound vector T is an (m' x 1)-vector and its elements T € R are upper
bounds for the maximum difference between the floating-point representations of the

checksums f; and ;:
FICE) = fICE] < T (3.10)

Section 3.2 below presents an analytical rounding error bound for sparse matrix-vector

multiplications.

3.2 Analytical Rounding Error Bound for Sparse Ma-

trices

Rounding errors create a major challenge for fault tolerance techniques, because these
inevitable errors can cause false positives when checksums are directly compared for
equality. Error detection schemes need to consider the impact of rounding errors as they
typically cause small differences in the checksums. Instead of comparing checksums
directly, the difference between checksums has to be compared to suitable rounding
error bounds T that cope with such differences. Error bounds T that are chosen smaller
than the actual rounding error cause false positive error detections and can trigger

unnecessary corrections. Too large bounds T can lead to undetected errors (i.e., false

66 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

negatives) that may harm the final result in the application. For instance, such errors
may significantly increase execution times or lead to silent data corruption in the case

of iterative solvers [Brone08, Shant11].

An important metric that is used to quantify the rounding error in floating-point
arithmetic is the machine epsilon [Mulle10]. The machine epsilon €, is an upper bound
on the relative error due to rounding for normal numbers in floating point arithmetic.
For directed rounding modes, the machine epsilon €, is computed from the number of

significant digits in a floating-point representation p > 2 (i.e., precision) with

gy = 2P (3.11)

To keep the introduction for the term machine epsilon concise, the interested reader

finds a comprehensive discussion of floating-point arithmetic in Appendix C.

Chowdhury and Banerjee present an analytical rounding error bound [Chowd96]
for dense matrix-vector multiplications that are protected by ABFT as described in
Equations 2.34 to 2.36. This rounding error bound estimates the maximum difference
between the operand and result checksums that is constituted by the accumulation of
rounding errors in the different underlying operations. These operations include the
norms of operand b, checksum vector ¢ (i.e., wTA) as well as the rows in input matrix A.
Using repeated applications of the triangle inequality, the submultiplicative inequality
and the Cauchy-Schwarz inequality, the authors compose the analytical rounding error
bounds for these operations (i.e., inner products and matrix-vector products) to form

an estimation for the maximum difference between these checksums.

Let A € R™" b e R™! and r ¢ R™! that are related by ¥ = Ab. Besides, let ¢,
denote the (1 x n)-column checksum vector (i.e., wT A) and let ¢ M denote the machine
epsilon. The rounding error bound based on simplified error analysis Tgg 4 is a scalar that
is computed as

m

Tsea = ((n+2:m=2)- 3 |aily+n-fecla)-en bl (3.12)
i=1

with |a;]5 denoting the norm of the i-th row in matrix A.
The difference between the operand and result checksums is typically smaller for sparse
matrices, because sparse matrices contain a large portion of zero elements which do

not contribute to the rounding error. For this reason, the error bounds derived by this

approach are too loose for sparse problems.

3.3 e Algorithmic Steps 67

The presented fault tolerance technique relies on an analytical rounding error bound
for sparse matrix-vector multiplications that is based on the following insight: Instead
of assuming that each block A; contains non-zero elements in all 7 columns, the ac-
tual number of non-empty columns 7, is utilized to estimate the maximum difference
between the operand and result checksums. This estimation provides tighter error
bounds since it considers the actual number of elements that contribute to the rounding
error with 1 < n for sparse row block matrices. The presented fault tolerance tech-
nique utilizes the following analytical rounding error bound for sparse matrix-vector

multiplications.

Given A € R™ b e R and r ¢ R™!. Let A and r be partitioned into m’ blocks
with 0}, being the number of rows in block k. Let w(®) be the k-th (1 x 0)-weight vector
with 1 <k<m'andlet C e R™ " denote the checksum matrix. Besides, let 11, denote
the number of non-empty columns in row block matrix A and let €,; be the machine
epsilon. The rounding error bound for sparse matrix operations T is an (m' x 1)-vector

and its elements T; are computed as:

Ok
k
T = [y e (1 +2-01) YN[OTil- (A2 + - 1[Clila) - (3.13)
i=1
To keep this discussion concise, the interested reader finds the derivation of Equa-

tion 3.13 in Appendix D.1.

3.3 Algorithmic Steps

The underlying algorithmic steps of the presented fault-tolerant sparse matrix-vector
multiplication are based on the equations introduced in Section 3.1 above. Given a
sparse matrix-vector multiplication r := Ab, the fault tolerance technique preprocesses
the operation and performs error detection and correction steps in the course of the

original operation.

An overview of the algorithmic steps that are performed for each fault-tolerant sparse
matrix-vector multiplication is shown in Figure 3.1. Operations that can be executed in

parallel to each other are depicted in common rows.

In a preprocessing step, the weight matrix W is computed to encode the input matrix A
following Equation 3.1. Besides, the checksum matrix C is computed as C := WA

following Equation 3.3. The structure of the weight matrix W ensures that each row k

68 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

?

Preprocessing

Compute sparse weight matrix W
and sparse checksum matrix €

!

Sparse Matrix-Vector operation (SpMV)

r=Ab t=Cbh

Once for
each matrix A

Compute Compute operand
result vector checksum vector
v v
Compute Compute

operand’s norm result checksums

8 = Ibll, tt = Wr
v v
Compute syndrome vector
‘ s=t—t* ‘
v

Error Detection

—(® Csd>n? |

Error Localization

true:
Error detected

Error Correction
Recompute SpMV for corrupted blocks k

-

A Figure 3.1 — Overview of the algorithmic steps in the fault-tolerant sparse matrix-
vector multiplication.

in the checksum matrix C contains the column checksums for a specific block A;. As
discussed in Chapter 2.3.1, different approaches exist to set the weight elements. Unless
otherwise stated, the weight elements are set to 1 following [Brone08, Shant12, Sloan12,
Sloan13]. As a result, the checksum matrix C inherits the sparsity of the input matrix A.
By exploiting this sparsity, this block-based approach reduces the runtime overhead
to detect errors compared to related approaches that rely on traditional ABFT (cf.
Chapter 2.3.1).

In the first step of the fault-tolerant sparse matrix-vector multiplication, the original

operation ¥ = Ab computes the result vector r. Parallel to this operation, the operand

3.4 e Error Detection and Correction 69

checksum vector t is computed with ¢ = Cb following Equation 3.5. Each element #;.

stores the checksum for k-th block in the original SpMV operation A;b.

The second and third steps compute different error detection variables that are required
to check the results. The operand norm f is computed in the second step, which is
required to determine the rounding error bounds for error detection. After the first
step encoded the operands, new checksums are calculated for the results and stored in
the result checksum vector ¢t* := Wr following Equation 3.6. Each element t; stores
the checksum for result block 7. The third step computes the syndrome vector s by
calculating the difference between the result checksum vector #* and the operand

checksum vector ¢ following Equation 3.7.

To detect errors and delimit error locations, the fourth step compares each element of
the syndrome vector s; against the rounding error bound 7 that is computed following
Equation 3.13. During this error detection step, the location of errors is determined by
the portion of result blocks k for which the syndrome exceeds the corresponding round-
ing error bound. These blocks contain at least one erroneous element. To correct these
errors, these erroneous blocks are recomputed in the fifth step. Instead of recomputing
the original SpMV operation completely, this error correction scheme recomputes this

operation only partially in case of errors.

3.4 Error Detection and Correction

The error detection steps are prepared by encoding an input matrix A using a weight
matrix W following Equation 3.1. The structure of the weight matrix (i.e., the location
of non-zero weights in the matrix) ensures that the matrix A is encoded with respect
to its partitioning for each of the m’ row block matrices Ay, Ay, -+, A, . The resulting
checksums are combined in the checksum matrix C that is computed in a sparse matrix-
matrix multiplication C := W A. The checksum matrix C has to be computed for each
input matrix A only once. Further matrix-vector multiplications using matrix A can
reuse the already computed checksum matrix C. Besides, the structure of the weight
matrix ensures that each row in the checksum matrix [C] contains the checksums for
the corresponding row block matrix A;. The checksum matrix C allows to compute the
operand checksums in a single additional SpMV operation which results in the operand
checksum vector t := Cb. After the computation of the original operation r = Ab, result

checksums t* are computed by t* := Wr. The structure of the weight matrix divides

70 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

the result vector r into m’ vector blocks 7y (i.e., 1, = Ayb) during the computation of

result checksums *.

The error detection steps compute syndrome vector elements following Equation 3.7 as
S := t; —t; and evaluate them against rounding error bounds T; following Equation 3.13
to determine error locations already during error detection. According to Equation 3.8,
the checksum vectors t and t* are equal aside from rounding errors in the error-free
case. The difference between these checksum vectors constitutes the syndrome vector
s = t - t* which is used to detect errors. Each syndrome element s; is compared against
its corresponding rounding error bound T, to distinguish errors in the magnitude of

the rounding errors from errors that may be harmful to the application.

In case of errors, the fault tolerance technique recovers from errors by recomputing the
original SpMV multiplication partially. Compared to recomputing the entire original
operation or performing additional error localization steps, this approach induces low

runtime overhead.

Parallel to the detection of errors, errors are located by determining the set of result
vector blocks 7} for which the syndrome vector elements s; exceed the corresponding
round error bound 7. Errors are corrected by recomputing such erroneous blocks 7}
with

Ty = Akb for |Sk| > T - (3.14)

Multiple erroneous row blocks {r,-,r]-, ...} are corrected by recomputing each block

individually.

In high error rate scenarios, additional errors can occur during error detection and
correction steps. To avoid the propagation of such errors to the application, the error
detection steps can be repeated after the error correction steps finished. This error
detection and correction cycle is repeated until all checksum invariant violations are

resolved.

However, in case of false positive error detections, infinite loops can occur as the
underlying result and checksum values will not change during error detection and
correction cycles. Such infinite loops can be avoided by storing the computed checksum
vectors f and £ after error detection and comparing new checksum vectors to these
previously computed checksum vectors. As the impact of false positive errors on the

checksums will typically not change between succeeding error detection events, the

3.5 e Computational and Memory Overhead 71

error detection and correction cycle is stopped, if succeeding checksums do not change.
At the same time, errors caused by transient events are still detected reliably as these

errors typically affect succeeding checksums to different extents.

3.5 Computational and Memory Overhead

The SpMV multiplication := Ab with A € R"*" has a runtime complexity of O(NNZ)
with NNZ being the number of non-zero elements in matrix A. With NNZ ~ n, this
SpMV operation can be of linear complexity (i.e., O(NNZ) ~ O(n) and NNZ <« n?).
The memory requirement is constituted by the number of non-zero elements NNZ in
matrix A, the number of elements in the operand vector b with #n elements and the

number of elements in the result vector 7 with 7 elements.

Both the computational and memory overhead induced by this fault-tolerance technique
depends on the number of row block matrices m’ into which the original matrix A
is divided. During preprocessing, the m’ x n-weight matrix W with 7 elements is
multiplied with the 7 x n-input matrix A with NNZ elements to obtain the m’ x n
checksum matrix C. The runtime complexity for the preprocessing step is O(NNZ).
While the space complexity for the weight matrix W is O(n), the space complexity
for the checksum matrix C depends on the block sizes 0} and the distribution of the
non-zero elements in matrix A. Let max (n") be the maximum number of non-zero
columns in the row block matrices Ay, then the space complexity for the checksum
matrix C is O(m'-max (n")). The actual number of non-zero elements in the checksum

matrix C ranges from n for m’ = 1 to NNZ for m’ = n.

Both the weight matrix W and the checksum matrix C have to be computed only
once for each input matrix A. For this reason, applications that reuse the input matrix
A repeatedly achieve even larger benefits from this fault tolerance technique. An
important class of such applications are iterative solvers that typically dominate the

runtime for many scientific applications.

The error detection steps have a runtime complexity of O(m'-max (n")) + O(n) which
is independent of the number of errors. During error detection, the operand checksum
vector t is computed with £ := Cb, which has a runtime complexity of O(m’-max (n")).
The result checksum vector t* is computed with t* := Wr, which has a runtime
complexity of O(n), since the weight matrix W contains at most 7 non-zero elements.

The computation of the operand vector norm f := |b||, has a runtime complexity

72 Chapter 3 e Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication

of O(n). Computing and comparing the syndrome vector elements s, with the rounding
error bounds T has a runtime complexity of O(m"). Each rounding error bound Tj, is
computed with a runtime complexity of O(1). The space complexity for error detection

steps is constituted by the number of elements 71" in the syndrome vector b with O(m").

The runtime complexity to correct errors depends on the number of non-zero elements
in those row blocks {7y, #;,...} in which an error was detected. With NNZ; being the
number of non-zero elements in block Ay, the runtime complexity to correct errors for
i is O(NNZ,.). If all blocks are affected, then the runtime complexity for correction
is at most O(NNZ), which corresponds to the runtime complexity of the original
operation. Errors typically affect only a small part of the result vector elements even
under high error rates. For this reason, the average expected runtime complexity for

error correction is O(NNZy).

The total memory overhead to detect and correct errors is 7+ m’ - (4 + max (n'))
elements which are constituted by the m’ x n-weight matrix W (i.e., n elements), the
m’ x n checksum matrix C (i.e., m’-max(n’) elements), the operand and result checksum

vectors as well as the syndrome vector with m' elements each.

The number of blocks 1’ is an important parameter that determines both the runtime
overhead as well as the error coverage. With larger blocks, the runtime overhead
for error detection is reduced as the checksum matrix C contains fewer rows which
reduces the runtime for computing ¢ (i.e., t = Cb). However, in case of errors, the
runtime overhead to correct errors increases as the row block matrices A; contain more
elements. At the same time, the error coverage can decrease as errors are more likely

to be masked by larger rounding errors in the computation of checksums.

With the linear operations being computed on parallel hardware, the number of sequen-
tial steps dominates the runtime. While large blocks reduce the runtime to compute
the operand vector £, the runtime to compute ¢* increases. Each element #; is com-
puted as an inner product which is typically implemented as a reduction on parallel
computer architectures [Gallo15, p. 18]. With increasing number of elements in each
inner product, the number of sequential reduction steps increases. At the same time,
smaller blocks result in larger checksum matrices C but reduce the runtime to compute

the result checksum vector t*.

CHAPTER

EFFICIENT FAULT TOLERANCE FOR THE

CONJUGATE GRADIENT SOLVERS

This chapter presents a fault tolerance technique for the Conjugate Gradient solvers
that detects and corrects errors [Schol15], for instance, caused by transient events. The
presented technique is suitable for both the CG and the PCG solver as the underlying
assumptions are independent of the utilized preconditioning operations. A major
challenge in achieving high runtime efficiency is to find an error detection scheme with
low runtime overhead and high error coverage. In case of errors, a high error coverage
allows low detection and correction latencies which reduces the number of additional

iterations required to converge to a correct solution.

The presented approach exploits the property that arbitrary successive iterations in
these solvers are related to each other by different inherent relations (cf. Equations 2.16
to 2.18 in Chapter 2.1.2). The convergence of these solvers and the correctness of the
final result is ensured, if those relations are maintained throughout the whole execution.
By evaluating these relations at runtime to detect and correct errors, repetitions of
complete executions are avoided. The underlying error detection criteria are derived
from these relations using only operations that induce low overhead compared to the
original operations in the solvers. Since expensive operations like sparse matrix-vector

multiplications are not required, this error detection scheme is very efficient. At the

74 Chapter 4 o Efficient Fault Tolerance for the Conjugate Gradient Solvers

same time, the runtime overhead for error detection scales favorably with increasing
number of non-zero elements in the input matrix. As the underlying relations are
satisfied for arbitrary iterations in a solver execution, the induced runtime overhead
can be further reduced by periodically evaluating these criteria. The error correction
scheme of the proposed fault tolerance technique reduces the overhead to restore the
solver execution by identifying the degree of corruption and trading off three different
correction methods against each other. Whenever possible, online corrections (i.e.,

roll-forward recovery) are preferred to two different roll-back schemes.

As Chapter 2.3.2 discussed at the example of related works like [Brone08, Shant11],
the Conjugate Gradient solvers are still vulnerable to transient effects. Even single
errors can degrade the solver performance by factors of up to 200x and cause silent
data corruptions in which the derived solution may not satisfy the original problem
Ax = b, despite apparent convergence. Different fault tolerance approaches were
presented in the related work that tackle the vulnerability of these solvers with different
strategies. One approach is to repeat the solver execution if the computed solution x
does not satisfy the original problem Ax = b. However, this approach waits until the
solver converged to a solution before errors are detected. While different approaches
detect errors at runtime, they induce significant runtime overheads since they rely on
additional expensive matrix-vector multiplications or perform additional inner products
after each solver iteration to detect errors. Besides, some approaches solely rely on
traditional checkpointing techniques, which induce high cost in recomputing erroneous

results compared to immediate correction approaches.

The presented fault tolerance technique is discussed in this chapter as follows. Sec-
tion 4.1 below introduces the formal background for this technique. The following
Sections 4.2 and 4.3 discuss the underlying error detection and corrections schemes.
Section 4.4 presents an overview of the corresponding algorithmic steps. Finally, this
chapter is concluded by a discussion on the runtime and memory overhead in Sec-
tion 4.5. This fault tolerance technique is evaluated in Chapter 7.5 by experimental

results.

4.1 Method Overview

As discussed in Chapter 2.1.2, the Conjugate Gradient methods solve linear systems of
the form Ax = b with A €e R™", x ¢ R", and b € R" iteratively. In the following, the

4.1 e Method Overview 75

solver iterations are denoted by 7, j, and k.

The presented fault tolerance technique instruments the Conjugate Gradient solvers by
additional operations that periodically check for errors and generate checkpoints. The
error detection scheme evaluates two different criteria, which are referred to as lambda

and sigma error checking criteria below.

The error checking interval t determines the number of iterations that are executed
between two successive error detection iterations. For two solver iterations k and i,

with k # 1, the lambda and sigma error checking criteria are periodically evaluated with

k=i+t witht>1. (4.1)

The lambda error checking criterion relies on the periodic computation of two check-
sums. Let p(i) € R" be the search direction in iteration i.

A lambda checksum A1V is a scalar that is computed in iteration 7 as
AD = pTp®) (4.2)
The sigma checksum o is a scalar that is computed in iteration i as

o= | p@], . (4.3)

During the execution of the Conjugate Gradient solver, the following equations hold,
which describe inherent relations between different solver iterations. Let w'?) ¢ R" be
the result of Ap(i) in iteration i. Besides, let ¥ ¢ R be the intermediate result in
iteration k. The lambda checksum relation holds for /\(i), w(i), and %) in an error-free

scenario:

xOT@ 2 AO fork>i. (4.4)

Proof: Let i and k denote two different iterations in a Conjugate Gradient solver with
k > i. Following Equation 2.17, the residual vector) i orthogonal to each preceding

search direction vector p(i) in the error-free case with
r&) | p(i) — r(k)Tp(i) =0 ifk>i. (4.5)
At the same time,) and the intermediate result x) are related by

) = p— Ax®) (4.6)

76 Chapter 4 e Efficient Fault Tolerance for the Conjugate Gradient Solvers

Combining equations 4.5 and 4.6 leads to:
(b _Ax(k))Tp(i) -0

The left-hand side can be rewritten to:

(b- Ax(k))Tp(i) - pr(i) —x(k)T(Ap(i))
Since the result of A p(i) is computed as w? in iteration i, it can be replaced as follows

(b- Ax(k))Tp(i) - pr(i) x4, ()
Finally:

xOT () — pr(i)
With A®) = pT p(;
O = A0 fork>i.

a

Let #¥) ¢ IR" be the residual vector in iteration k and let p(i) € R” be the search
direction vector in iteration i. The sigma checksum relation holds for r(k), and p(i) in

an error-free scenario:
rOTpD -0 fork>i. (4.7)
Proof: Let i and k denote two different iterations in a Conjugate Gradient solver with

k > i. Following Equation 2.17, the residual vector &) s orthogonal to each preceding

search direction vector p(i) in the error-free case with

01 p = FOTD 0 fork>i.

a
In floating-point arithmetic, the normalized form of Equation 4.7 is evaluated and
, ()T 4, (1)
T(k) 1 p(l) ﬁ ~0 fork>i. (4.8)
o PV A P

Following Equation 4.3, o .= ||p(i) Io
()T 4, (@)

TP L0 forksi. (4.9)

[r®)],. ~

4.2 e Error Detection 77

4.2 Error Detection

In each solver iteration, the Conjugate Gradient methods update three vectors, namely
the residual vector r(k), the search direction vector p(k) and the intermediate result x.
Over the course of a solver execution, the residual and search direction vectors affect
each other, which allows to detect errors by checking relations between these vectors
for successive iterations. As summarized in Chapter 2.1.2, the orthogonality properties
in Equations 2.16 to 2.18 and the residual property in Equation 2.10 must be satisfied to
ensure convergence to a correct result. Errors that are caused by transient events, for
instance, corrupt these relations and become therefore detectable. Thus, the periodic
evaluation of these relations ensures to detect errors that are harmful for the Conjugate
Gradient solvers. The orthogonality relations are constituted by the A-orthogonality be-
tween search directions {p(o), p(l), vy p(N)} of successive iterations with p(i) 1 Ap(k)
for k # i. Checking the A-orthogonality itself is not feasible, as the periodic evaluation

of the required sparse matrix-vector operation induces significant runtime overhead.

To detect errors with low runtime overhead, the Conjugate Gradient solvers are instru-
mented to evaluate the lambda and sigma error checking criteria periodically at the error
checking interval t. To check these criteria for error detection, inner products with a
linear complexity of O(n) are performed. As the runtime complexity of the Conjugate
Gradient solvers depends on the number of non-zero elements NNZ in matrix A, the

runtime overhead for error detection decreases with increasing NNZ.

The o-criterion in Equation 4.7 detects errors that affect at least the residual vectors)
by evaluating the orthogonality between successive residual and search direction vec-
tors. The intermediate results x() are not related to any other vector by an orthogonality
relation. Instead, these vectors are related to the residual vector () by & —p - Ax®
following Equation 2.10. The evaluation of this residual relation to detect errors in (k)
induces significant runtime overheads since it relies on an additional matrix-vector
multiplication. The A-checking criterion in Equation 4.4 is derived from combining
this residual relation and orthogonality relation between residual and search direction
vectors to avoid this matrix-vector multiplication. In accordance with the o-checking
criterion, the A-checking criterion only relies on inner products. Errors that affect
the search directions p(k) become also detectable in this criterion as the intermediate

K

results x(*) are updated using the search directions.

An error detection step is typically not necessary after each iteration as even high

78 Chapter 4 o Efficient Fault Tolerance for the Conjugate Gradient Solvers

error rates do not affect complete sets of iterations in a solver execution, but only
small subsets. Additionally, the error checking criteria do not require to evaluate the
relations between directly successive iterations (i.e., k = i + 1), which allows to reduce
the runtime overhead by increasing the error checking interval t. While large error
checking intervals ¢ allow low runtime overheads by reducing the number of error
detection steps, they also can cause a low error coverage. At the same time, small error
checking intervals t can enable a high error coverage, but also induce large runtime
overheads. To provide a method that determines optimal error checking intervals ¢
that provide minimum solver execution runtime, Z. Chen [Chen13] investigated the
dependency between error rates (i.e., the number of expected errors per second), the

runtime overhead to obtain correct results, and the selected error checking interval t.

The Conjugate Gradient solvers are typically executed using floating-point arithmetic
which is prone to rounding errors. Since rounding errors can cause small differences in
the checksums, all checksums are evaluated against a user-defined threshold T to avoid

false positive error detections.

Let fl(a) and fI1(b) denote the floating-point representations of checksums a4 € IR and
b € R that are related by a = b. The rounding error threshold T € R is a scalar that is
used to evaluate the identity between checksums a and b. The identity a = b is evaluated

in floating-point arithmetic as

fl(a) - fI(b)| < T . (4.10)

4.3 Error Correction

If errors are detected during the execution of a Conjugate Gradient solver, error correc-
tion steps are required to ensure convergence and eventually a correct result. A direct
approach for error correction is repeating the complete solver execution until a correct
result is obtained. However, this approach can induce significant runtime overheads as

the solvers may require an increased number of iterations to converge in case of errors.

To correct errors, the Conjugate Gradient solvers are instrumented with an adaptive
error correction scheme that identifies the extent of the detected error and trades off
three different correction methods against each other. By selecting a suitable error
correction scheme, this method allows low runtime overheads by reducing the number

of additional iterations to achieve convergence with a correct result.

4.3 e Error Correction 79

In case of a detected error, an online correction is performed if the error did not increase
the distance between the solution x and the current approximation vector x(F) compared
to the last recorded checkpoint. Otherwise, the error recovery scheme performs a
complete roll-back, if such a correction is not advantageous and therefore avoids complete
recomputations of the solver. If the utilized checkpoint appears to be corrupted by, for

instance, latent errors, a corrective roll-back is performed to avoid endless loops.

Identifying Degrees of Corruption for Detected Errors

Errors can cause additional solver iterations and silent data corruptions. At the same
time, errors also can also take an apparently corrupted intermediate result x5 closer
to the actual solution x. If the residual #*) in the intermediate result () is closer to
zero compared to the residual in the intermediate result D of a checkpoint, then x ()

is likely to be closer to the exact solution than x) with

[+ < 1D,

— [b-AxP], <[b- AxD], (4.11)

In such a case, it is promising to continue the solver execution using x®) ag it is likely
for the solver to require fewer additional iterations to converge compared to a roll-back
recovery. Otherwise, if the residual) in the intermediate result x is larger than r(i),
then a roll-back to iteration 7 is more promising to induce fewer iterations. The details

of online correction, complete roll-back and corrective roll-back are presented below.

A prerequisite to compute the residuals is the absence of floating-point exceptions such
as NaN and Inf (cf. Appendix C.3) in the underlying vector elements of the intermediate
result vector x). Such elements are replaced by randomly selected elements in the
vector that are free of floating-point exceptions. In case that the complete vector x ()

contains floating-point exceptions, all elements are set to 0.

Online Correction

An erroneous iteration k is corrected if the continuation using x) g promising to
converge in fewer iterations compared to a roll-back to the last checkpoint. Online
correction re-establishes the residual and orthogonality relations for successive iterations
after iteration k. The following steps are performed for correction: First, the residual

) is recomputed in the approximation x8) ag #0) .= b — Ax()_ Second, the search

80 Chapter 4 o Efficient Fault Tolerance for the Conjugate Gradient Solvers

direction p(k) is computed using the preconditioned residual p(k) = M~ '+® for PCG
and using the residual p(k) = +®) for CG.

Complete and Corrective Roll-back

Both roll-back schemes rely on the periodic creation of checkpoints in which the
vectors x(F), p(k), and r(*) are written to a fault-tolerant storage (e.g., ECC-protected
memory [Mittal6b]). During complete roll-back recovery, the stored values are copied

to the data elements of the current iteration.

Corrective roll-back recovery is performed, if a certain checkpoint is used more than
once for error recovery. A checkpoint is periodically created when no error is de-
tected. However, latent errors can propagate to such checkpoints as they may remain
undetected until a succeeding error detection step. Rolling back to a checkpoint that
contains a latent error can cause endless loops as the solver may be rolled back to
the affected checkpoint repeatedly. Therefore, a corrective roll-back is applied when
the solver was rolled back to a certain checkpoint before. In this case, only the stored
approximation x) is restored and the remaining vectors are corrected according to
x)_ The residual r® is recomputed in the approximation x5 as r®) = b — Ax®) and
the search direction p(k) is set to the preconditioned residual p(k) = M~ 1+® for PCG
and the residual p(k) =) for CG, respectively. Afterwards, the solver execution is

continued for both roll-back techniques.

4.4 Algorithmic steps

Figure 4.1 shows the algorithmic steps of a Conjugate Gradient solver that is instrumented
by the presented fault tolerance technique. These steps are suitable for both the
Conjugate Gradient Solver and the Preconditioned Conjugate Gradient Solver and are
not affected by the underlying preconditioning operations. The first two steps comprise
the preparation of the solver and the computation of a solver iteration which together

form the operations in the original solver algorithm (cf. Chapter 2.1.2).

Steps 3 to 6 are added to establish fault tolerance. The presented error detection scheme
is performed in the third step. If no error is detected, then a checkpoint is periodically
generated in a fault-tolerant storage (e.g., ECC-protected memory [Mittal6b]). Both

error detection criteria, lambda and sigma are periodically computed in the fifth step.

4.5 o Computational and Memory Overhead 81

@ Preparation of CG/PCG
v
——(While (§¢) > €2) A (§%)/8© > €2) Ak < kppay do)=
v
) CG/PCG lteration
v
Error Detection §
2 OT® ~ 1O A 70OTHD ~ 0 7 8
false: v_true ke
error Create checkpoint é
detected 7 Q
Calculate error detection criteria §
\ 20 pTp® 3
|
v

Adaptive Error Correction

Selection of the most promising

error correction method

v v v
Online Complete Corrective
Correction Roll-back Roll-back

| | |

A Figure 4.1 — Overview of the algorithmic steps in a fault-tolerant (Preconditioned)
Conjugate Gradient Solver.

If no errors are detected, then the solver execution is continued. In case of errors, the
adaptive error recovery scheme selects the most promising technique in the sixth step,

namely online correction, complete roll-back and corrective roll-back.

4.5 Computational and Memory Overhead

The presented fault tolerance technique protects the Conjugate Gradient solvers, CG
and PCG, that have a runtime complexity of O(NNZ -+/x(A)) with NNZ being the
number of non-zero elements and with x(A) being the condition number in matrix A
(cf. Chapter 2.1.2). The memory requirement is constant during the solver execution

as the vectors and scalars from previous iterations can be overwritten. The memory

82 Chapter 4 o Efficient Fault Tolerance for the Conjugate Gradient Solvers

complexity of the CG solver is O(NNZ) while it can be larger for the PCG solver as

this technique depends on the memory complexity of the utilized preconditioner.

To gain a more realistic insight into the runtime overhead that is induced by the
presented technique, it is more feasible to consider the runtime of single iterations as
the underlying error detection and correction steps are applied periodically in error
checking intervals . The runtime of a single iteration is typically dominated by a sparse
matrix-vector multiplication with runtime complexity O(NNZ). In the PCG solver, the
single iterations can be dominated by the preconditioner depending on the underlying
preconditioning operations, which can include additional matrix-vector operations or

invocations of different solvers [Benzi02].

The error detection scheme of the presented technique is dominated by the periodic
computation of four additional inner products, which induce a runtime overhead with
linear complexity of O(n). Assuming sparse matrix-vector multiplications to be the
most dominant operations in the solver iterations, the runtime overhead and the scaling
behavior depend on the number of non-zero elements NNZ in the underlying matrix.
Compared to the original solver runtime, the runtime overhead induced by this error

detection scheme typically decreases with increasing NNZ.

The error detection steps require some memory to store the periodically computed
scalars A and ¢ that induce a constant memory complexity of O(1). The corresponding
memory requirement remains constant throughout the whole solver execution as the
scalars from previous error detection steps can be overwritten. The error correction
steps rely on periodically created checkpoints that contain three vectors. For this
reason, the memory complexity of the error correction step is linear with O(n) and
is not dependent on the number of solver iterations as previous checkpoints can be

overwritten.

When an error is detected, the presented adaptive error correction scheme compares
the residual #(¥) of the current iteration with the residual in the checkpoint) to select
a suitable error correction procedure. The computation of the residual () requires one

additional matrix-vector multiplication with runtime complexity O(NNZ).

CHAPTER

ENABLING THE
CONJUGATE GRADIENT SOLVERS ON

APPROXIMATE CoOMPUTING HARDWARE

This chapter presents a technique that enables the execution of the Conjugate Gradient
solvers using approximate hardware to achieve energy efficiency gains while still ensur-
ing correct solver results [Schol16b]. A major challenge of executing these solvers in the
presence of approximation errors is constituted by the tight accuracy demands imposed
by the scientific and engineering domains on the result quality. For this reason, different
approximation techniques are rendered unsuitable that relax the result accuracy for
efficiency gains including task skipping techniques like loop perforation (cf. Chapter 2.4).
These tight accuracy demands also prohibit unadaptable approximation techniques
that exploit single degrees of precision (e.g. relying on single approximate hardware
designs). Additional solver iterations with increased precision can be required to obtain
correct results that can cancel out the gained energy savings. At the same time, differ-
ent application components typically exhibit different sensitivities to approximation
errors, which demand careful adaption of the approximation according to the currently
executed component [Chipp13]. Iterative solvers like the Conjugate Gradient solvers

additionally exhibit an error resilience that may also change over time [Zhangl4a].

84 Chapter 5 o Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

Instead of relying on single precision degrees, the presented technique exploits ap-
proximate hardware that offers different approximation levels (e.g. different degrees of
precision with certain numbers of precise bits), which are exchanged according to the
changing error resilience. Reduced energy demands and correct results are achieved
by dynamically evaluating the underlying error resilience in these solvers. This error

resilience evaluation is not only performed effectively, but also highly efficiently.

The presented technique is based on the insight that the error resilience can be estimated
from the solution progress with low runtime and energy overhead. Such estimations are
translated to approximation levels that are periodically evaluated by the fault tolerance
technique presented in Chapter 4. This fault tolerance technique is instrumented to
detect and correct harmful approximation errors, which ensures low iteration over-
heads to obtain correct results. In a typical solution progress, the update steps are being
refined over the course of iterations k which therefore become increasingly sensitive to
approximation errors. While early iterations often allow a certain degree of approxima-
tion as long as the general direction towards the solution is maintained, the induced
degree of approximation needs to be reduced as the intermediate results x (k) approach
the solution x. The degree of error resilience to certain approximation errors can be
different for different matrices which demands to calibrate this estimation process to
changing input matrices. An analysis method is presented that allows this calibration,
which is based on recent investigations on the rounding error accumulation behavior

in the Conjugate Gradient Solvers [Cools16].

As Chapter 2.5.1 discussed, different related techniques were proposed that focus on spe-
cific tasks in the scientific computing domain like Cholesky decompositions [Schaf14],
eigendecompositions [Zhang15a], and computing inverse matrix p-th roots [Lass17].
The approach in [Zhang14a] proposes to begin iterative methods using the lowest avail-
able degree of precision which is increased if the underlying optimization function E(x)
is violated between iterations. The optimization function for the systems of linear
equations Ax = b is min, E(x) := %xTAx — xTb with E'(x) = Ax — b [Saad03]. Since
the Conjugate Gradient methods do not explicitly compute the optimization function
E(x) during the solver execution, runtime overheads can be induced by additional eval-
uations of this functions. Such runtime overheads can be significant, as the optimization

function relies on expensive matrix operations.

The presented technique is discussed in this chapter as follows. Section 5.1 presents

the formal background for the presented technique. Section 5.2 discusses the details

5.1 e Method Overview 85

of the error resilience estimation and evaluation steps. The algorithmic steps of the
technique are discussed in Section 5.3. Section 5.4 presents and discusses a method
that allows to calibrate the error resilience estimation process. This chapter concludes
with a discussion on the runtime and memory overhead in Section 5.5. The presented

technique is evaluated in experimental results in Chapter 7.7.

5.1 Method Overview

As discussed in Chapter 2.1.2, the Conjugate Gradient solvers successively minimize the
distance constituted between the initial guess x(*) and the solution of the underlying
equation Ax = b, namely x over time. In the following, it is assumed that A € R"*",
xeR", and b e R".

The update vector u®) ¢ R" is the vector between an intermediate result x*) ¢ R" in

iteration k of a Conjugate Gradient solver and its predecessor in iteration k — 1 with

0 = () _ x (k=) (5.1)

As intermediate results are constructed from preceding intermediate results x5 with

2D o= () oc(k)p(k), the update vectors u®) can also be computed as

_ D) 4 (D) (k1) (k1)

2B = g (=1) (k1)

p (5.2)

with p(k_l) € R" being the search direction vector in iteration k—1.

The Conjugate Gradient solvers are resilient to a certain degree of approximation as long
as the general direction towards the solution is maintained over the course of iterations.
As the intermediate results x() approach the solution x over time, the induced degree
of approximation needs to be reduced as the update vectors are increasingly being
refined (i.e., ||y < [u®) |, for i > k) and therefore become increasingly sensitive to
approximation errors. The presented technique relies on an error resilience estimation
scheme that guides the induced approximation along the solving progress that is reflected

in the update vector length between successive iterations.

Figure 5.1 shows two examples (cf. Section 7.1) for PCG executions with applied

Jacobi-Preconditioner. The update vector length |#*) |, range within several orders

86 Chapter 5 e Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

of magnitude before converging to a correct result. At the same time, these examples
show that such update vectors are typically large during the first solver iterations and

approach zero when the solver converges to the solution.

Q=N 1E+04 - Matrix msc01050 1E+04 - Matrix msc10848
= TE+02 1E+02 -
? TE+00 A TE+00 -
N1E-02 A 1E-02 A
& 1E-04 - 1E-04
w 1E-06 A 1E-06 -
< 1E-08 - 1E-08
3 1E-10 . . 1E-10 . . |
- 0 700 1400 0 2000 4000 6000
Iterations Iterations
1E+08 - 1E+14 -
_ 1E+06 - TE+12 4
S TE+04 1 1E+10 +
~ 1E+02 - 1E+08 1
™ 1E+06 -
S 1E+00 4 1E+04
g TE-02 - 1E+02 -
1E-04 - 1E+00 -
1E-06 T 1 1E-02 T T 1
0 700 1400 0 2000 4000 6000
Iterations Iterations

A Figure 5.1 — Comparison of update vectors 1) and residuals 6) at runtime for
two input matrices A.

As summarized in Chapter 2.1.2, the Conjugate Gradient solvers require the search
directions of successive iterations to be A-orthogonal to ensure convergence to a correct
result. Following Equation 5.2, the update vectors u® are computed by scaling the

(k-1)

corresponding search directions p using the scalar factor «*~)_ For this reason,

the A-orthogonality also applies to the update vectors u® with
uDAu® =0 fork+i. (5.3)

The Conjugate Gradient solvers are becoming increasingly sensitive for smaller update
vectors since the update direction is now increasingly altered by approximation errors
which can violate the A-orthogonality between successive update vectors. Checking the
A-orthogonality periodically is not a feasible solution, as the evaluation of the required
matrix-vector multiplication induces significant runtime and energy overhead that may
cancel the achieved efficiency gains. Instead, the impact of approximation errors on
the update vector directions u®) can be estimated to guide the approximation with low

overhead.

5.1 e Method Overview 87

When an approximation technique is applied to a solver execution in floating-point
arithmetic, then both rounding and approximation errors accumulate in the underlying
solver data over the course of solver iterations. Therefore, the error resilience of the
Conjugate Gradient solvers in iteration k is determined by the maximum approximation
error accumulation which is not violating the inherent solver convergence invariants.
The presented technique exploits the insight that the accumulation of approximation
errors can be estimated from the residual 6% (ie, 6® = [#®], = |b- AxP],,
cf. Equation 2.10), which allows low overhead in evaluating the error resilience. For
floating-point arithmetic with machine epsilon €,,, Cools et al. [Cools16] investigated
the rounding error accumulation process and presented a mathematical method to
determine error accumulation limits by tracking the residual ¢ () over time. Based on
this investigation, the presented technique estimates the error resilience and adapts an

underlying precision-configurable approximation technique accordingly. Compared to

evaluating the update vector length Hu(k) o, which requires additional inner products,
monitoring the residual ¢ () induces favorably low overhead as this value is inherently

computed by the Conjugate Gradient solvers in each iteration.

Precision-configurable approximation techniques typically provide a finite number of
configurations, which are called approximation levels below. The set of approximation

levels is denoted by L and
L:={l;]ie{l,..,n}} (5.4)

with /; denoting an approximation level that corresponds to a specific configuration of

the approximation technique.

Using the number of approximation levels 7, the presented technique decomposes the

value range for the residual ¢ () into n intervals

[0,01), [p1,02), [P2,03), - [Pn o). (5.5)

As a result of this decomposition, each residual 5() is an element of one interval
[0i, Pi+1)- To reflect the increasing demand for precision by the Conjugate Gradient
solvers as they approach the solution, each interval comprises a specific range of
residual values for which a certain approximation level is utilized. At runtime, an
approximation level step function H (0 (k)) is evaluated to determine the approximation

level I; € L for the residual 5% in iteration k.

H(@®Y:[0,00) - L. (5.6)

88 Chapter 5 o Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

For a given residual 6™ the function H ((5(k)) provides the corresponding approxi-
mation level /; with respect to the underlying interval 6) ¢ [0i, Pi+1)- To satisfy the
increasing demand for precision as the solver approaches the solution, this function
maps large residuals (e.g. close to the residual in the first iteration (O)) to approxima-
tion levels /; with low precision while smaller residuals are mapped to approximation
levels with increasing precision. While this function can be defined as a user-defined
lookup table, Section 5.4 below presents a technique to determine this function for
specific input matrices A based on analyzing the approximation error accumulation.
The monitoring of ¢ () and the computation H(J (k)) induces very low performance

and energy overheads since only scalar operations are required.

5.2 Evaluation of the Estimation

Estimation errors can lead to selecting approximation levels /; that are too aggressive
and violate the inherent convergence relations. Without reconfiguring the underlying
approximation technique to provide increased precision, wrong results can be obtained
despite apparent convergence of the solver while the compute efficiency gain can be
canceled by additional iterations to obtain correct results. This scenario can occur when
the step function H(¢ (k)) does not exactly represent the underlying error resilience,
which can be caused by selecting a different initial guess vector x(0 or by applying the
step function H (5(k)) to a different linear system A'x = b’

The approximation level that is applied in solver iteration i is computed by adding an
offset 0 € IN to the result of H(é(k)). The offset function O : L x Ny — L maps the
result of the step function H(J (k)) to an approximation level with increased precision.
For an offset 0*) in iteration k, the offset function computes the approximation level in

solver iteration k (i.e., 1) ¢ L) as
1= 0 (H(6®),0®) = 1., (5.7)

such that the approximation level /;_, provides increased precision compared to ap-

proximation level ;.

The offset o) is adapted by the fault tolerance technique presented in Chapter 4.
The introduced approximation errors are periodically evaluated by the fault tolerance
technique to detect and correct approximation errors that are too harmful for the solver

execution. This fault tolerance technique ensures correct solver results by periodically

5.3 e Algorithmic Steps 89

evaluating the inherent solver convergence relations. At the same time, this technique

induces only low energy and runtime overheads since it avoids expensive operations.

In case of a violation, this fault tolerance technique reestablishes the inherent solver
relations by performing error correction steps as explained in Chapter 4.3. Afterwards,

the offset is incremented to continue the solver execution with increased precision.

If the result of the step function H(J (k)) suggests to increase the underlying precision
over the course of the solver iterations, then this offset is decremented again. As a
result, the utilized approximation level and underlying precision remain unchanged in
scenarios in which the offset is larger than zero. This offset reduction avoids unnecessary
compute efficiency reductions by maintaining the maximum degree of approximation
which does not harm the convergence to correct results. At the same time, unsuitable
offset reductions are detected and corrected by the periodically evaluated fault tolerance

technique.

5.3 Algorithmic Steps

Figure 5.2 shows the presented technique for the Conjugate Gradient solvers. This
technique enables the Conjugate Gradient solvers for approximate computing by in-
strumenting the underlying algorithm by additional steps that periodically estimate
the error resilience, select a corresponding approximation level and evaluate such selected

levels.

The first step comprises the preparation of the solver algorithm which is constituted
by the original solver preparation steps (cf. Chapter 2.1.2). In the second step, the
approximation level / () i periodically determined based on estimating the current
error resilience in iteration k. Using this approximation level 1) a solver iteration is
computed in the third step. Afterwards, the approximation level is evaluated periodically
in the fourth step by the fault tolerance technique presented before in Chapter 4. If the
approximation level is too aggressive (i.e., the underlying precision is unsuitable for
solver convergence), the inherent convergence invariants of the Conjugate Gradient
solvers are violated, which is detected by the fault tolerance technique as an error.
In such a case, an offset is introduced in the fifth step which ensures that the solver
iterations are continued using lower approximation levels with increased precision.
Besides, a valid solver state is recovered by performing the error correction scheme of

the fault tolerance technique.

90 Chapter 5 e Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

@ Preparation of CG/PCG
v
—>< While (6% > €2) A (60 /6O > €2) Ak < kypay do ><—
v

2 Determine approximation level
3 ‘ [(B) 0(H(5(")),0(k)) ‘
v
(3) CG/PCG lteration
v

Apply Fault Tolerance Technique

Error Detection

Periodic

Check inherent solver properties

)’

Maintain fault tolerance context

detected

[((= = === — =

error

Error Correction

Re-establish valid solver state

Y

Adapt approximation level

A Figure 5.2 — Overview of the presented technique for the Conjugate Gradient
Solvers.

5.4 Calibrating the Approximation Estimation

Process

This section presents a method to determine approximation level step functions H (8 (k))
that ensure energy-efficient executions of the Conjugate Gradient solvers using approx-
imate computing hardware. As the step functions H(J (k)) are based on estimating the
error resilience, a major challenge in determining suitable step functions H ((5(k)) is
to guide the approximation with respect to the actual error resilience in the solution
progress. For instance, if the precision is increased too early, the overall efficiency gain
is unnecessarily reduced. If the precision is increased too late, unacceptable errors
can accumulate and cause additional iterations that reduce or cancel out the achieved

efficiency gains. At the same time, the dynamic behavior of the error resilience can be

5.4 e Calibrating the Approximation Estimation Process 91

different for different input matrices.

Based on the investigation by Cools et al. [Cools16] the method presented in this
section determines the step functions H(J (k)) with respect to approximation techniques
that offer different precisions €;. For each approximation level /; that a configurable
approximation technique provides, the corresponding precision ¢; is determined by the

maximum relative error for non-zero results.

Given a basic arithmetic operation op (e.g., op € {+,—,-,/}) that is performed on
two operands a € R and b € R. Let the corresponding approximate operation using
approximation level /; be denoted by op,,. For approximation level /;, the underlying

precision ¢; is
¢;:=max|d| subject to: (@ 0p,,, b) = (a op b)(1+6) (5.8)
and
(@ 0pypy) #0A(a0pb) #0.

Over the course of solver iterations k, the residual 6X) typically decreases. The un-
derlying idea is to decompose the residual value range [0, co(into intervals [p;, 0;,1)
according to Equation 5.5 such that p; denotes the minimum residual to which the
approximation error accumulation does not violate the inherent solver properties. As a
result, the intervals [p;, p;,1) determine the residual value range in which the solver is

resilient to precision ¢; at runtime.

To determine the minimum residual p; for a precision ¢; of interest, the method executes
the Conjugate Gradient solver using this precision ¢; while monitoring the error accu-
mulation caused by both rounding errors and approximation errors. The corresponding
approximation level /; remains suitable until the accumulated error violates an accu-
mulation limit, which is explained below in detail. In such a case, this approximation
level needs to be exchanged by an approximation level with increased precision. Let a
violation occur in iteration k with residual 6 for applied precision ¢;. Since a violation
occurred, the residual 6) determines the minimum residual (ie,p;j:=0 (k)) to which
the solver execution is resilient to using precision ¢;. At the same time, this event is

tracked in the step function H(6()) by adding a step with

H(6W):=1.. (5.9)

92 Chapter 5 e Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

Monitoring and Evaluation of Error Accumulations

The accumulation of arithmetic errors such as rounding and approximation errors can

(k)

cause the residual vector #(¥) to increasingly deviate from the true residual vector r,.

over the iterations. This deviation is constituted by the property that the true residual
vector
r) = p— Ax®) (5.10)

is never calculated over the course of iterations in the Conjugate Gradient solvers.

Instead, the residual vector) is calculated by the Conjugate Gradient solvers as:

N
) = 40 > ~a®) Ap®) (5.11)
k=0

with) being computed following Equation 2.13.
5K

Following [Cools16], the true residual &, = H”t(rku)e”z begins to stagnate (i.e., the value

in 6%

e does not decrease further) while the residual 4 (k) .= ||r(k) |, keeps decreasing

after so-called residual stagnation points due to rounding error accumulation. Such
residual stagnation points are determined by evaluating the difference vector ArF)
(k+1)

and the true residual vector r(k+1) with

between the iterative residual vector r true

Ar®) = 8 8 (5.12)

rue

The residual difference is the norm of the difference vector Ar®) with
ASR) = |ArR), . (5.13)
A residual stagnation point is reached in iteration k, if
5 < A5 (5.14)

When the rounding error accumulation until iteration k causes the residual difference
AS®) to exceed the residual 6), then additional solver iterations after iteration k are not
likely to improve the intermediate result towards the solution as long as the underlying
precision is not increased. For this reason, residual stagnation points determine error

accumulation limits. This insight is exploited by the method presented in this section to

5.4 e Calibrating the Approximation Estimation Process 93

determine minimum residuals p; for each precision ¢; that is offered by the underlying

approximate computing technique with

pi = min 60 with 6 < As® . (5.15)

50

An estimation for the residual difference Ad

is presented in [Cools16] to determine
the residual difference AJ®) with minimum runtime overhead. Computing the residual
difference A5 exactly would require an additional expensive matrix-vector multipli-

cation in each iteration which can cancel achieved compute efficiency gains.

In the first solver iteration, the iterative residual vector (0 s equal to the true residual

vector rfrou)e (cf. Line 1 in Algorithm 1). For this reason, the difference between (9 and
rfrou)e is zero
1O =0 ASO Z 0. (5.16)

In the remaining solver iterations, the value of the residual difference Ad (k) is estimated
by the term AS6Y) [Cools16] with

est

AsED A5e(§t) +2,® ||w(k) lo- €M (5.17)

est

with €,, being the machine epsilon and A = 0. Here, the terms a¥) and w®)

est

denote internal variables of the Conjugate Gradient solvers (cf. Chapter 2.1.2).

Equation 5.17 is reformulated to estimate the difference between true and iterative

residual vectors Ad (k+1)

ost _ caused by approximation errors as follows: While the machine

epsilon €, describes the maximum relative error caused by rounding (cf. Chapter 3.2),
the term ¢; describes the maximum relative error caused by a specific configuration
of an approximation technique following Equation 5.8, which allows to replace €, by
¢;. The method presented in this section estimates the difference between true and
iterative residual vectors caused by approximation errors using the term 1) which is

computed as
ck+1) . 2 (B) 4 9, (R) ||w(k) o€ (5.18)
and (¥ := 0.

This estimation procedure requires one additional product per iteration to compute

the norm |w®|,, which only has to be applied once per matrix A. The minimum
residuals p; collected for the different precisions ¢; are applied to different solver
executions that are based on the same or highly similar matrices A to avoid this inner

product and to reduce the energy demand.

94 Chapter 5 e Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

Overview of algorithmic steps

Figure 5.3 shows the algorithmic steps of the presented method to determine step

functions H (¢ (k)) that guide the induced approximation along the solution progress.

Initialize approximation analysis
[«n

1© —max{L} =1,
£ <0
v
@ Preparation of CG/PCG
v
—(While (8®) > €2) A (60)/6© > e2) Ak < kypgx do Y+
v
(3) CG/PCG lIteration

Analyze approximation level

Update residual difference

T(k) - T(k—l) + 2a(k—1)||w(k—1)”2 g

Check residual difference

5§ < 07

true \ false Periodic

Apply Fault Tolerance Technique

1
v § error detected

Update approximation level step function

pi < 8® H(p) «1® =1

v
Adapt approximation
[—i—1
l(k) — li
7 <0

A Figure 5.3 — Overview of the algorithm that determines the minimum residuals p;

for each precision g;.
This methods instruments the Conjugate Gradient solvers to find the different minimum

residuals p; to which the solvers are resilient at runtime with respect to the different

5.5 ¢ Computational and Memory Overhead 95

available degrees of precision ¢; € {€1, €5, ...,€5 }. The first step initializes this procedure

by selecting the approximation level with minimum available precision. The residual

difference variable T(?) is set to zero since the iterative residual vector #(?) is initialized
to b — Ax") before the first iteration by the Conjugate Gradient solvers, which equals
(0)

true*

and the computation of a solver iteration which together form the operations in the

the true residual vector r,. .. Steps two and three comprise the preparation of the solver

original solver algorithm (cf. Chapter 2.1.2).

Step four updates the estimation for the residual difference 7() after each solver itera-
tion as described in Equation 5.18. If the minimum residual p; for the currently chosen
precision ¢; has not been found yet (i.e., residual stagnation point, cf. Equation 5.14),
the fault tolerance technique presented in Chapter 4 is periodically applied in the fifth

step, which checks the solver convergence invariants to ensure correct results.

If either the minimum residual p; for the currently chosen precision ¢; has been found or
the fault tolerance technique detected a violation, the step function H (¢ (k)) is updated
in the sixth step using the residual 6 in the current iteration k. After this update
step, the step function H(J (k)) will suggest to use the approximation level /; with the
corresponding precision ¢; as long as the iterative solver residual exceeds the minimum
residual p;. Afterwards, the induced approximation is adapted to use increased precision
in step seven. The approximation level [; is exchanged by an approximation level that
offers the next increased precision degree. The iterative residual vector) is restored
by computing the true residual vector (i.e.,) = p - Ax(k)). As restoring the iterative
residual vector cancels the difference between the iterative and true residual vector, the

difference variable T is set to zero.

5.5 Computational and Memory Overhead

The presented methods in this chapter target the Conjugate Gradient solvers that are
additionally instrumented by the fault tolerance technique presented in Chapter 4. The
computational and memory complexity of these solvers and the overhead introduced by
this fault tolerance technique are not changed by the additional operations introduced by
the method in this chapter. For this reason, the computational and memory complexity
presented in Chapter 4.5 is considered as a basis to discuss the runtime and energy

overhead.

96 Chapter 5 e Enabling the Conjugate Gradient Solvers on Approximate
Computing Hardware

The memory overhead for both methods is constituted by storing the step func-
tion H(J (k)) and the offset value. Storing this function requires memory for n scalar
tuples (i.e., (0 k), [.)), with n being the number of available approximation levels that
the underlying approximation technique offers. The runtime and energy overhead
is constituted by estimating and evaluating the underlying error resilience as well as
changing the approximation level. The error resilience estimation requires one peri-
odic evaluation of the step function H (¢ (k)). With this function being implemented
as a lookup table, the runtime and energy overhead induce linear complexity O(n).
The evaluation of the selected approximation level /; by the fault tolerance technique
induces a runtime overhead with linear complexity of O(n), with n being the ma-
trix size (cf. Chapter 4.5). Adapting the underlying approximation technique (e.g.
precision-configurable approximate hardware) induces a constant runtime overhead
with O(1). This update procedure requires, for instance, a single special instruction

from an approximate instruction set architecture as discussed in [Samps11, Venkal3a].

The method that determines step functions H (5(k)) to guide the approximation at
runtime presented above in Section 5.4 differs from the pure approximation guiding
method by storing and updating the residual difference 7 and by updating the step
function H(é (k)). The residual difference T () induces a constant memory complexity
with O(1) as only a single scalar needs to be stored in memory. The runtime and
energy overhead is constituted by estimating the residual difference as described in
Equation 5.18. This estimation induces an overhead with linear complexity in each
iteration with O(n) as an additional inner product is required. This inner product can
be avoided if the gained step functions H (¢ (k)) are reused for further solver executions
using a certain matrix A. The update of the step function H(J (k)) induces a runtime and
energy overhead of linear complexity with O(n), if this function is being implemented

as a lookup table.

CHAPTER

PARAMETER ESTIMATION FOR
APPLICATION EXECUTIONS ON

APPROXIMATE CoOMPUTING HARDWARE

This chapter presents parameter evaluation and estimation methods to assess appli-
cation executions on approximate computing hardware. The parameters of interest
comprise the area, the leakage power, the dynamic power, the delay, and the approxima-
tion error. The investigation of these parameters is required to reveal crucial compute
efficiency aspects gained by approximate hardware, which includes the energy per
instruction and the overall runtime performance. The parameters of interest can be
distinguished according to their dependency on the application execution. Application-
independent parameters comprise the area and the leakage power, which are obtained
during the hardware synthesis process, for instance. Application-dependent parameters
comprise the dynamic power, the delay, and the approximation error, which depend on

the underlying application data (e.g., operand values for arithmetic circuits).

Application-dependent parameters induce a major challenge to achieve low parameter
evaluation runtimes for complex and long-running applications, which can comprise
billions of executed instructions. Parameter evaluation techniques that rely on circuit

simulation to evaluate application-dependent parameters are often rendered infeasible

98 Chapter 6 e Parameter Estimation for Application Executions on Approximate
Computing Hardware

by the execution times that are induced by simulating all executed instructions in an
application. Such simulations are often orders of magnitude slower than executing the

underlying instructions in silicon [Oluko98].

To reduce the runtime to assess complete application executions, a simulation-based
parameter evaluation method is combined with a model-based method to estimate
application-dependent parameters for complete application executions. The under-
lying idea is to combine highly accurate but slow gate-level timing simulations with
light-weight software-based models, which describe the numerical approximation error
of approximate computing hardware. This combined parameter estimation method is
applied to iterative algorithmic parts such as loops to estimate the application-dependent
parameters using a reduced number of simulation results. This approach is based on the
insight that such parameters can be estimated with high accuracy by evaluating care-
fully selected instruction intervals (i.e., a section of continuous application execution).
Approximation error adaptions in iterative algorithmic parts are exploited to select
instruction intervals for simulation-based parameter estimation. At the same time, this
method considers the dependency between approximation errors, the power dissipation,
and the delay by evaluating the propagation of approximation errors throughout the

application execution.

As Chapter 2.5.2 discussed, different related works model the approximation error in-
duced by approximate computing hardware to evaluate the error resilience of applica-
tions. For instance, related works [Chipp13, Mishr14,Barba16] truncate the operands in
arithmetic operations to identify algorithmic parts as well as data that are resilient to
approximate computing techniques. Such approaches do not consider parameters like
the power dissipation, which are required to evaluate compute efficiency aspects. Dif-
ferent related works analyze the power dissipation for complete application executions.
Related works [Tiwar94, Rethi14, Laure04] rely on physical experiments to model the
power dissipation of different instructions in applications. While these experiments
are performed at full execution speed, they require the implementation of approximate

hardware designs in physical hardware.

Related works [Hsieh98, Wunde03, Hamer05] present different techniques to reduce the
runtime of simulation-based power analysis for complete application executions. Instead
of evaluating all instruction executions in an application, these techniques evaluate
significantly reduced portions of the original application and estimate the application

power dissipation from the obtained results. [Hsieh98] synthesizes new programs based

6.1 o Overview of Parameter Evaluation and Estimation Methods 99

on the instruction mix (cf. Chapter 2.4.2) in applications. [Wunde03, Hamer05] evaluate
representative instruction intervals using circuit simulation. These related approaches
assume that the evaluated instructions represent the complete execution of the original
application. However, approximation errors propagate between executed instructions.
For this reason, the evaluation of limited instruction intervals does not necessarily
reflect the impact of propagated approximation errors on both the power dissipation
and the delay. New techniques are required that consider approximation errors and
their propagation throughout the application execution. At the same time, precision-
configurable approximate hardware needs to be considered that allows to adapt the
degree of the induced approximation error. Such hardware structures are required by
approximation techniques like [Zhang14a] and by the technique presented in Chapter 5

to ensure acceptable application outputs.

The remainder of this chapter presents the different methods as follows. Section 6.1
discusses the dependencies between the different parameter evaluation and estimation
methods. To instrument applications for parameter evaluation, an interface is presented
in Section 6.2. The simulation-based parameter evaluation method is presented in
Section 6.3. Section 6.4 presents the estimation method that relies on software-based
models of approximation techniques. Section 6.5 presents the combined parameter
estimation method, which reduces the parameter estimation runtime for iterative

algorithms.

The evaluation of the parameter estimation methods presented in this Chapter is
discussed in Chapter 7.6. In this evaluation, the presented approach is applied to

investigate the approximate computing technique presented in Chapter 5.

6.1 Overview of Parameter Evaluation and Estima-

tion Methods

The presented approach relies on three different parameter evaluation and estimation
methods, which are based on gate-level timing simulations, software-based models of ap-
proximation techniques as well as their combination. An overview of these methods and
their dependencies is shown below in Figure 6.1. Applications comprise instructions and
compute kernels that can form iterative algorithmic parts. Applications of interest need
to be instrumented to evaluate both application-dependent and application-independent

parameters with respect to the underlying approximate computing hardware. A flexible

100 Chapter 6 o Parameter Estimation for Application Executions on Approximate
Computing Hardware

data representation is provided that allows the seamless integration of the different

methods into applications to evaluate the underlying instructions and data.

Applications

Instructions and compute kernels

Instrumentation of applications

Simulation-based evaluation
| . evaluation |
HW synthesis Timing simulation
|2 17
- Area - Delay
- Leakage power - Dynamic power
- Approximation error
Model-based estimation
LI () T e e
Models of approximation error

12

- Approximation error

Assess application executions:

Combined estimation method
Combination of model-based <'-5

and simulation-based methods

A Figure 6.1 — Overview of the parameter estimation flow using the three estimation
methods.

Gate-level timing simulations and hardware synthesis results form the simulation-based
method, which provides detailed insights into the application execution on approximate
computing hardware. The second method is the model-based estimation method,
which relies on light-weight software-based models to mimic the numerical error of

approximation techniques.

The combined estimation method evaluates the different parameters for iterative algo-
rithmic parts. To provide low runtime, this method evaluates a reduced portion of
iterations using timing simulation while it evaluates the remaining iterations using

software-based models.

6.2 e Instrumentation of Applications 101

6.2 Instrumentation of Applications

Applications need to be instrumented to investigate their execution on approximate
hardware using the three different parameter evaluation methods. As the number of
required changes grows with the code size, the instrumentation of existing or new
code can become a challenging task. Different interfaces are provided comprising
approximate data types and handles that allow the seamless instrumentation of existing
or new code. The approximate data types are based on basic arithmetic data types (i.e.,
integer and floating-point data types), which can be found in any modern programming
language (e.g., C/C++). Since the remaining instructions remain unchanged, code

transformation techniques like [Barba16] can be applied to automatize the code changes.

The interface allows the flexible utilization of the different methods. Different handles
allow to switch between the model-based and simulation-based method at runtime. On
top of that, these handles denote iterative algorithmic parts in an application as well as
configuration changes in the underlying approximation technique (i.e., adaptions in
approximation error). The combined estimation method relies on this information to
extract and map instruction intervals of iterative algorithmic parts to either model-based
estimations or to simulation-based evaluations at runtime. The identification of iterative

algorithmic parts like loops can be automatized using techniques like [Hamer05].

Figure 6.2 shows an exemplary instrumentation of a vector addition code that is ex-
ecuted in a loop. A handle is used to denote the begin and end of the loop, which
indicates the underlying iterative algorithmic part (i.e., loopBegin and loopEnd). This
handle is also used to denote adaptions of the underlying approximation technique
(i.e., updateConfiguration), which allows the combined estimation method to evaluate
one vector addition execution for each utilized configuration using timing simulation.
Besides the initialization of this handle, only variable declarations and function calls

need to be adapted to instrument the code.

The application instrumentation approach relies on a flexible data representation to
represent the operands of instructions and compute kernels such as linear algebra
operations. To illustrate the utilization of this data representation by the different
methods, the following notation is utilized. Computation tuples S comprise operands

that are processed by a common operator and are described as follows:

Let (a op b) denote an instruction on input operands a and b which are processed by an

operator op € {+,—,,/}. An operand vector O is a vector containing n 2-tuples (a;, b;),

102 Chapter 6 o Parameter Estimation for Application Executions on Approximate

Computing Hardware

double alpha, beta; // scalars
double* A,B; /] vectors
int N;

r* X

while (k !'= 0){

r* . H

alpha = alpha * beta;

for (inti=0;i<N;i++){
B[i] = alpha * A[i] + BIiJ;

}

approxHandle handle;

approxDouble alpha, beta; // scalars

approxDouble* A,B; /] vectors
int N;

r*.. *

while (k '= 0){

handle.loopBegin();

/o ¥
handle.updateConfiguration();
alpha = alpha * beta;

for (inti=0;i<N;i++){

B[i] = alpha * A[i] + BIil;
}

handle.loopEnd();

Original code Instrumented code

A Figure 6.2 — Original and instrumented code example.

which represent instructions (a; op b;) 1<y,
O:= [(al,bl), (ﬂQ,bz),...,(ﬂn,bn)] for (ai,bi) ‘4a;op bi . (61)

A computation tuple S is a 2-tuple that contains one operator op € {+,—,-,/} and an

operand vector O with

S :=(op,0) . (6.2)

Example 6.1: Given two vectors r €]R”Xl, x € R™! and a scalar & € IR. The
vector scaling operation 7 := ax can be translated to a single computation tuple S
with

S:= (. /[(“/xl)/ (IXIXQ)/”'/ (“/xn)]) .

The different methods evaluate the operand tuples (a;,b;) in operation vectors in

parallel, which allows low evaluation runtimes. For this reason, successive arithmetic

6.3 e Simulation-based Parameter Evaluation 103

instructions with data dependencies need to be mapped to multiple computation tuples
S1,S9,-++,S,, in order to resolve such data dependencies between the operand tuples in

vector O.

6.3 Simulation-based Parameter Evaluation

The simulation-based parameter evaluation method determines the parameters of
interest, namely the area, the leakage power, the dynamic power, the delay, and the
approximation error to describe application executions on approximate computing
hardware. This method evaluates application-independent parameters from hardware
synthesis results, while it evaluates application-dependent parameters using circuit

simulation.

The simulation-based estimation method maps the operands (a;,b;) € O in a computa-
tion tuple S to a parallel high-throughput gate-level timing simulator accelerated on a
GPU [Holst15] to achieve feasible estimation runtimes. For each computation tuple S,
a simulation instance evaluates the operands (a;,b;) € O using the circuit description
of a target design t. For each target design t, this simulator takes a netlist and the
underlying delay annotations in standard delay format (SDF) as input. Such netlists
describe precise as well as approximate arithmetic structures. The parallel-pattern sim-
ulation technique of this simulator is exploited by the presented method by mapping
the operands (a;,b;) € O for a target design t to an input pattern vector P'. The input

patterns p; € P! are evaluated in concurrent timing simulations on a GPU.

The structure of operand vectors O allows such concurrent timing simulations since
the operands (a;,b;) € O do not exhibit data dependencies. This high-throughput
simulation technique allows the fast evaluation of complex compute kernels, such as
matrix-matrix or matrix-vector multiplications in scientific applications, which often

comprise significant amounts of arithmetic operations.

The different application-dependent parameters are determined as follows: For each
pattern p € P!, the output pattern generated during timing simulation is mapped to a

result r.

To compute the error due to approximation e and the error rate p for approximate
designs, an additional timing simulation is performed for their precise counterparts.
The approximation error e is expressed by the absolute and relative error of a result

obtained by an approximate design. The number of non-zero approximation errors

104 Chapter 6 o Parameter Estimation for Application Executions on Approximate
Computing Hardware

is compared to the number of evaluated patterns p to compute the error rate p of an

approximate design.

The delay is determined by the maximum delay that is observed at the circuit outputs

for a pattern p.

During a timing simulation, the signal switching activity for each gate output is collected
in the circuit. The signal switching activity is used to compute the Weighted Switching
Activity (WSA) for pattern p as

WSA,, = > f(i) -s(i) (6.3)

with f(7) being the fanout and s(7) being the number of transitions at the output of
gate 1. Standard cell library information such as [Nanga] provides the energy amount

for signal transitions at gate 7, which is denoted by energy; below.

Using the obtained WSA results and the clock period clk, the dynamic power is computed

for a pattern p as:

Energy, := > (f(i)-s(i)) - energy; (6.4)
Dynamic Power, := Energy,,/clk . (6.5)

6.4 Model-based Parameter Estimation

Different parameters in approximate computing designs determine the probability
and magnitude of induced approximation errors. Such parameters have an essential
impact on satisfying or violating accuracy bounds of applications. The model-based
estimation method evaluates models for approximate arithmetic structures that describe
the induced approximation error. In the following, a model description is introduced

that mimics the induced approximation error of approximate arithmetic structures.

A model for an approximate arithmetic structure M is a tuple M := (t,m, p), which
associates an approximate target design t with an error profile that comprises the error
magnitude m and the error rate p. The error magnitude is determined by the maximum
relative error e as described in Equation 5.8. For precision-configurable designs (cf.
Chapter 2.4.2), the model description comprises a set of 1 tuples (t,m, p, k), where k

denotes the approximation parameter to specify configurations and

M := {(tlfmlfplfkl)/"'/(tnlmn/pnlkn)} . (6-6)

6.4 o Model-based Parameter Estimation 105

Approximation techniques are modeled using different approaches. In the following,
a model M is presented for the so-called truncation and random fill approximation
technique. Truncation-based models are widely used in the literature to describe ap-
proximate arithmetic units [Chipp13, Mishr14, Barba16]. This approximation technique
performs approximate arithmetic operations by truncating the k least significant bits in
the operand values and concatenating the provided precise result bits with uniformly
random bits. This technique allows to configure the underlying precision by changing
the number of approximated bits k. Each value for k corresponds to a specific approxi-
mation level I; (cf. Equation 5.4). Higher approximation levels use increasing numbers
of approximated bits, while lower approximation levels rely on more precise bits. This

technique can be applied to both approximate integer and floating-point arithmetic.

An instruction (a op b) with input operands a € R and b € R is approximated as
1 := approx (trunc(a) op trunc(b)) (6.7)

with approx(...) describing a function that fills the truncated bits in the result with a
random pattern. To adjust the error rate in this technique, the truncation operation is

skipped in a specific portion of model evaluations.

The model parameters in M are determined for applying this approximation technique
to floating-point operations op € {+,—,, /} (cf. Appendix C.3) as follows: In floating-
point arithmetic, the approximation technique truncates the k least significant bits in
the operand mantissas before performing the operation and filling the truncated bits in
the result mantissa with a random pattern. This technique allows a user to specify an
arbitrary number of configurations (f,m, p, k) in which the error rate p and the number
of truncated bits k for this approximation technique t are user-defined parameters.
Following Equation 5.8, the maximum relative error m between an operation (a op b)

and its approximate floating-point representation fI(a OP,px b) is
m :=max|d| subject to: flI(a op,,, b) = (aopb)(1+9) (6.8)
and
fl(aop,,, b)#0n(aopb)+0.

Given a floating-point operation (a op b) that is processed by the truncation and random

fill approximation technique. For a floating-point representation using p significand bits,

106 Chapter 6 o Parameter Estimation for Application Executions on Approximate
Computing Hardware

p — k most significant bits in the operand mantissas remain unaffected by truncation.
In the worst case, the approximation provides the same result as an operation using

p — k mantissa bits. Following Equation 3.11, the maximum relative error m is therefore

m =2~ (PF1) (6.9)

Depending on the approximate target designs, the model description needs to be
adapted. Approximate data representations [Chipp13] mimic the approximation error
that is introduced to operands and results in approximate memory. Approximate
arithmetic operations such as additions and multiplications are modeled by evaluating
the original operations while inducing errors to the underlying operands or result values
according to a specified error profile. Error profiles mimic the induced approximation
error by, for instance, adding random numerical errors sampled from probability mass

functions [Huang12,Leel6].

6.5 Combined Parameter Estimation

To determine application-dependent parameters like the dynamic power dissipation
of an application execution, all instructions in an application can be evaluated by
the simulation-based estimation method, which provides an exhaustive insight into
the different parameters for all evaluated instructions. Such an exhaustive insight is
obtained by mapping all instructions in an application to computation tuples S that are
completely evaluated to obtain parameter results for all underlying operands (a;, b;).
However, such an exhaustive exploration that evaluates all instructions in an application

execution using gate-level timing simulation can cause long runtimes.

The dependency between operand values, approximation techniques, and application-
dependent parameters induces a major challenge to reduce the number of timing
simulations while achieving accurate evaluation results. Since the induced approxi-
mation error affects different application-dependent parameters, the propagation of
approximation errors between executed instructions has to be evaluated. At the same
time, precision-configurable approximate hardware needs to be considered, since such

hardware adapts the degree of induced approximation error.

The combined parameter estimation method combines model-based and simulation-
based instruction evaluations, which allows to estimate application-dependent pa-

rameters for complete application executions while significantly reducing the num-

6.5 o Combined Parameter Estimation 107

ber of timing simulations. This approach exploits the insight that carefully selected
instruction intervals allow to estimate application-dependent parameters with high
accuracy [Hsieh98, Wunde03, Hamer05]. The parameter estimation method targets
iterative algorithmic parts that are executed using precision-configurable approxima-
tion techniques. Between such iterations, these approximation techniques can adapt
the degree of induced approximation error. Instead of only evaluating the selected
instruction intervals, all instructions in an application execution are evaluated while
the underlying estimation method is switched between model-based evaluations and
timing simulations, which allows to evaluate both the impact of approximation error

adaptions as well as the approximation error propagation.

For an iteration of an iterative algorithmic part, an instruction interval is a vector that

contains 7 computation tuples S
I:= [51152/'”1371] (610)

such that I comprises the executed instructions of the iteration.

The term © denotes the set of instruction intervals I that are executed for an iterative
algorithmic part (i.e., all iterations of the algorithmic part). The estimation method
distinguishes the set of instruction intervals © into two subsets, representative instruc-
tion intervals ©¢ that are evaluated by timing simulations and remaining instruction
intervals ©), that are evaluated by model-based estimations. Representative instruc-
tion intervals I € @y are selected in the two following cases: The first iteration of an
iterative algorithmic part forms the first representative instruction interval. On top
of that, further representative instruction intervals are formed whenever the induced

approximation error is adapted in the underlying approximation technique.

The power dissipation (i.e., comprises both dynamic power and leakage power) and the
delay are estimated using representative instruction intervals for complete application
execution as follows: For each computation tuple S in a representative instruction inter-
val I € ©g, the average power dissipation Power 41, and the average delay Delay 4
are computed using the power dissipation and delay results that were obtained for
the underlying operands (a;, b;). The average power dissipation Power 4y, and delay
results Delay 4y, are used as estimations for computation tuples S in subsequent in-
struction intervals [€ @, until another representative instruction interval I € Qg is

reached in the sequence of instruction intervals.

108 Chapter 6 o Parameter Estimation for Application Executions on Approximate
Computing Hardware

For a computation tuple S that contains # operands (a;, b;), the average power dissipa-
tion Power 4y is computed as

n

Power gy =Y.
i=1

Dynamic and leakage power to compute operands i

(6.11)
n

A central derived parameter is the energy demand of a computation tuple S. The energy
demand of a computation tuple S is estimated from the average power dissipation

Power 4y and the average delay Delay 4y, to compute one instruction with
Energy := n - Power sy - Delay 4y ¢ - (6.12)

Let Energy; i denote the estimated energy demand of the i-th computation tuple S;
in the k-th instruction interval of an application execution. To estimate the energy
for complete application executions that contain M instruction intervals, the energy

demand of all executed computation tuples is summed and

M N
Application Energy :=))" Energy;y, forS;el}, [, €®. (6.13)

k=1i=1
Using Equation 2.45 in Chapter 2.4.2, the power dissipation results and the time required
to process the instructions are used to evaluate the computational performance and

energy efficiency (i.e., Watt-per-MIPS? metric) of an application execution.

Figure 6.3 illustrates the combined estimation method at the example of a loop, which

is executed using a precision-configurable approximation technique.

The instructions in each loop iteration are represented by a sequence of instruction
intervals I, -+, I,, which are sequentially evaluated. The first instruction interval I,
is a representative instruction interval I € ®g, which is evaluated by the simulation-
based parameter evaluation method to determine the power dissipation results P,
(i.e., power dissipation results of underlying compute tuples S) and the result r (i.e.,
approximate results in the underlying program variables) for the instructions in . The
instruction intervals I; to I3 are remaining instruction intervals Iy, I, I3 € @, since
these intervals are evaluated with the same approximation error configuration as I,.
The intervals I; to I3 are evaluated by the model-based estimation method to compute
the approximation error propagation. The results of these intervals are denoted by
11 to r3. The power dissipation results in P are used as an estimation for the power

dissipation for intervals I; to I5.

6.5 o Combined Parameter Estimation 109

Instruction | Simulation- Model-based Estimation Parameter
intervals based estimation of power Results
(iterations) evaluation

o | —[Ro][P] o Ra][P |
I N i S——
L (R L —=[&][~]
I (B L&~

Adaption of approximation error

i [R] P] s—
Is R5|7 _’ P,

Adaption of approximation error

: Y i e 1Y |

I, Instruction interval in iteration k

Ry, Approximate arithmetic results in iteration k

P, Power dissipation results in iteration k

A Figure 6.3 — Example for applying the combined parameter estimation method to
estimate the power dissipation of a loop execution.

110 Chapter 6 o Parameter Estimation for Application Executions on Approximate
Computing Hardware

After interval I3, the induced approximation error is adapted. For this reason, the
instruction interval I, is a representative instruction interval I, € ®g, which is evaluated
using timing simulations to determine the power dissipation results P,. The power
dissipation results P, are used as estimations for all intervals between interval I,
and the next approximation adaption after I5. The remaining intervals are evaluated
accordingly by switching between the simulation-based and the model-based method

after adaptions of the induced approximation error.

CHAPTER

EXPERIMENTAL EVALUATION AND

RESULTS

This chapter discusses the experimental evaluation for the methods presented in this
thesis. The benchmark data set presented below in Section 7.1 was used to evaluate
the different methods. These benchmarks are based on different real-world problems
from science and engineering and allow reliable conclusions on the performance of the
presented methods in the corresponding applications. The presented fault tolerance
methods (cf. Chapter 3 and Chapter 4) were evaluated using the error model described
below in Section 7.2. The approximation model presented below in Section 7.3 was

applied to evaluate the approximate computing technique presented in Chapter 5.

The central findings for the different methods are summarized and discussed in this
chapter. The experimental results that were obtained for the fault-tolerant sparse
matrix-vector multiplication (cf. Chapter 3) are presented in Section 7.4. Section 7.5
presents the experimental results for the efficient fault tolerance technique that targets
Conjugate Gradient solvers (cf. Chapter 4). The parameter evaluation and estimation
methods (cf. Chapter 6) are evaluated in Section 7.6. The technique that enables
Conjugate Gradient solvers on approximate hardware (cf. Chapter 5) is evaluated below
in Section 7.7. To ensure a concise presentation of the experimental results, the detailed

data has been moved into Appendix E.

112 Chapter 7 o Experimental Evaluation and Results

7.1

Benchmark Matrices and Setup

The benchmark data set comprises 30 matrices from the Florida Sparse Matrix Collec-

tion [Davis11], which are shown in Table 7.1. Besides the names and the size of the

different matrices N x N, the number of nonzero elements NNZ are presented. As a

side information, the portion of Os within the matrices is shown (i.e. number of zero

elements in each matrix divided by the total number of elements).

v Table 7.1 — Overview of evaluated matrices from the Florida Sparse Matrix Collec-
tion [Davis11].

MATRIX MATRiIXx NONZERO PORTION DESCRIPTION

NAME SIZE N ELEMENTS OF 0s

nos3 960 15,844 98.2808% Biharmonic operator on plate
besstk10 1,086 22,070 98.1287% Buckling of hot washer
msc01050 1,050 26,198 97.6238% Symmetric test matrix
besstk21 3,600 26,600 99.7948% Clamped square plate
besstk11 1,473 34,241 98.4219% Ore car (Lumped Masses)
nasa2146 2,146 72,250 98.4312% Test structure (NASA)
sts4098 4,098 72,356 99.5692% Structural engineering matrix
besstk13 2,003 83,883 97.9092% Fluid flow

msc04515 4,515 97,707 99.5207% Test matrix (MSC/Nastran)
ex9 3,363 99,471 99.1205% Test matrix (FIDAP)

bodyy4 17,546 121,550 99.9605% Structrual engineering matrix
bodyy5 18,589 128,853 99.9627% Structrual engineering matrix
bodyy6 19, 366 134,208 99.9642% Structrual engineering matrix
Muu 7,102 170,134 99.6627% Test matrix (Mathworks)
s3rmt3m3 5,357 207,123 99.2783% Analysis of cylindrical shells
s3rmt3m1 5,489 217,669 99.2775% Analysis of cylindrical shells
besstk28 4,410 219,024 98.8738% Solid element model
s3rmg4ml 5,489 262,943 99.1273% Analysis of cylindrical shells
besstk16 4,884 290,378 98.7827% Dam

Kuu 7,102 340,200 99.3255% Test matrix (Mathworks)
besstk38 8,032 355,460 99.4490% Airplane engine component
msc23052 23,052 1,142,686 99.7850% Test matrix (MSC/Nastran)
msc10848 10,848 1,229,776 98.9550% Test matrix (MSC/Nastran)
cfd2 123,440 3,085,406 99.9798% Symmetric pressure matrix
nd3k 9,000 3,279,690 95.9510% 3D mesh problem

ship_001 34,920 3,896,496 99.6805% Ship structure

shipsec5 179,860 4,598,604 99.9858% Ship section (PARASOL)
G3_circuit 1,585,478 7,660,826 99.9997% Circuit simulation problem
hood 220,542 9,895,422 99.9797% Test matrix (INDEED)
crankseg_1 52,804 10,614,210 99.6193% Static analysis of a crankshaft detail

7.1 o Benchmark Matrices and Setup 113

These matrices comprise square symmetric matrices that are positive-definite and
contain real numbers. The matrix size (i.e., matrix dimension N) ranges from 960 to
1585478 while the number of non-zero elements ranges from 15844 to 10614 210. At
the same time, the sparsity (i.e. portion of 0s) of these matrices ranges from 95.95% to
99.9996%. These matrices represent different real-world problems including structural
engineering (e.g. bodyy6), mechanics (e.g. besstk38), computational fluid dynamics

(e.g. cfd2) and semiconductor device simulation (e.g. G3_circuit).

The matrices were utilized to solve linear systems Ax = b using the Conjugate Gradient
solvers (cf. Chapter 2.1.2). These linear systems were generated as follows: The right-
hand side vector b was generated following [Cools16] as b := A% with %; := 1/»/N
and N being the matrix size. The right-hand side vector b was changed between
experiments using a random vector r to avoid repeating solver setups with b := A¥ and
%; := 1/N/N +71;/|r|5. The elements in r were generated using the Mersenne Twister
pseudorandom number generator [Matsu98] within the IEEE-754 double-precision
range [IEEE 08] with 7; € [-1.798-10%%%,1.798 - 103°®]. The elements in the initial
guess vector [x(o)]i were set to b;. The execution of the solvers was continued until
the residual 6¥) fell below the absolute accuracy tolerance €, or 5 /6 () fell below the
relative accuracy tolerance €,. The absolute error tolerance €, was set to 107 and the
relative error tolerance €, was set to 1071, An experiment was considered a failure, if
the number of iterations exceeded the iteration limit, namely 10-N iterations with N
being the matrix size. Three different representatives of Conjugate Gradient solvers
were evaluated, namely the CG solver (i.e. does not rely on a preconditioner), the PCG
solver with jJabobi preconditioning as well PCG with incomplete Cholesky factorization

(ICC) as preconditioner. Details on these preconditioners are presented in Appendix A.2.

To accelerate the experiments, all parallelizable linear algebra operations in the eval-
uated Conjugate Gradient algorithms were mapped to a heterogeneous computing
system, which is described in Appendix E.1. Linear algebra operations were mapped
to GPU architectures based on GPU-accelerated mathematical libraries, namely the
CuBLAS [Nvidia] and CuSPARSE library [Nvidib]. The library calls summarized in Ta-
ble 7.2 were utilized for the different linear algebra operations. The evaluated matrices
were stored in the compressed sparse row storage format (CSR) [DAzev05] to avoid
unnecessary overhead in matrix operations due to multiplications by 0. All experiments
have been performed in double-precision floating-point arithmetic. Each experiment

was executed using a combination of a single CPU core and a single GPU.

114 Chapter 7 o Experimental Evaluation and Results

v Table 7.2 — Overview of the parallelizable linear algebra operations in the evaluated
Conjugate Gradient algorithms and their associated GPU-accelerated library call.

OPERATION LIBRARY CALL LIBRARY
Sparse matrix-vector multiplication cusparseDcsrmv cuSPARSE
Inner product cublasDdot cuBLAS
Vector addition cublasDaxpy cuBLAS
Euclidean vector norm cublasDnrm2 cuBLAS
Jacobi preconditioning cusparseDcsrmv cuSPARSE

Incomplete Cholesky preconditioning cusparseDcsrsv_solve cuSPARSE

7.2 Error Model

The experimental evaluation focuses on transient events that cause errors in the outputs
of arithmetic computations. Erroneous arithmetic outputs may lead to Silent Data
Corruptions (SDC). Such corruptions of outputs may occur in the arithmetic components
of a processor due to the manifestation of faults in form of errors. This error model
does not inject errors in memory elements as hardware fault tolerance techniques like
ECC [Mittal6b] are often used in high-performance systems to protect main memories,
caches and register files. The model also does not inject errors in the control logic or
in the encoding of instructions as it considers them to be protected by appropriate

measures like assertions and embedded signatures [Khudi13].

Different implementations of floating-point units exist that may have different error
propagation patterns for transient events. In accordance to related works [Brone08,
Sloan12,Sloan13,Liul5b, Tao16,Diche16], errors are injected into the outputs of compu-

tations at runtime by instrumenting the application to perform random error injections.

To evaluate the fault tolerance technique that targets sparse matrix-vector multiplica-
tions (cf. Chapter 3), errors are injected into a randomly selected element within the
result vector of the matrix operation. In executions of the Conjugate Gradient solver,
errors were injected by randomly selecting both an iteration and one of the operations
in the solver to generate erroneous results. If the selected operation computes a vector
as result, then one element in this result vector was randomly chosen. All error injection
locations were selected based on uniformly distributed random numbers, that were

generated using the Mersenne Twister pseudorandom number generator [Matsu98].

During error injections, two forms of bit flip errors were evaluated, namely single-

bit and multi-bit flip error events. To evaluate multi-bit flip error events, the results

7.3 o Approximation Model 115

of the underlying floating-point instructions are modified by randomized bursts of
bidirectional bit flips. The position of a burst is randomly chosen from a uniform
distribution within the 64 bits of the floating-point values. Following the survey results
in [Di Ma16], the number of bits affected by such bursts are randomly chosen from a
normal distribution with mean = 5 and variance = 3. Bit flips were also injected into

operations that perform error detection.

7.3 Approximation Model

The software-based model presented in Chapter 6.4 was utilized to evaluate the pre-
sented approximation methods. This model was used to approximate the calculation of
mantissa values during floating-point multiplications. In each operation, these approxi-
mate floating-point operations truncate k least significant bits in the operand mantissas
and concatenate the computed precise result bits with uniformly random bits, which

mimic approximately computed bits.

By changing the number of approximated bits k, the approximate floating-point model
mimics precision-configurable approximation techniques that provide different approx-
imation levels. Ten approximation levels were utilized that provide different numbers
of precise mantissa bits p € {2,7,17,22,27,32,37,42,47,52}.

In executions of the Conjugate Gradient solver, this approximation model was ap-
plied to the dominant operation in the solver, namely the floating-point multiplica-

tions [Zhang14b] in sparse matrix-vector multiplications.

Gate-level hardware descriptions were developed that reflect the behavior of this approx-
imation model in hardware. These hardware descriptions are used to obtain insights
into the energy efficiency of solver executions by computing the power dissipation and
solver runtime from performing timing simulations. Following the description in [De-
sch06, chp. 16], combinational gate-level descriptions for a floating-point adder and a
floating-point multiplier in double-precision arithmetic were derived. The resulting
hardware descriptions were synthesized using combinational two-input gates from the

NanGate 45 nm library [Nanga].

Both hardware descriptions comprise 128 inputs and 64 outputs, respectively. While
the multiplier contains 20,812 two-input gates and a critical path delay of 14.21 ns, the
adder contains 5,678 gates and a critical path delay of 14.99 ns. The leakage power of
the multiplier is 0.154 mW while it is 0.033 mW for the adder.

116 Chapter 7 o Experimental Evaluation and Results

Both the software-based model as well as the timing simulations evaluated the underly-

ing floating-point operations in double-precision arithmetic.

7.4 Fault-tolerant Sparse Matrix-Vector
Multiplication

This section evaluates the fault tolerance technique for sparse matrix-vector multipli-
cations that was presented in Chapter 3. The experimental results presented below
show the runtime overhead for both error detection and correction as well as the achiev-
able error coverage. The underlying error detection scheme is compared to the related
work approach described in Chapter 2.3.1 (cf. Equation 2.34) that is used by different
related works [Brone08, Shant12, Sloan12, Sloan13, Fasi16] to protect sparse matrix-
vector multiplications. The presented error correction scheme is compared to complete

re-executions of the matrix-vector multiplication.

The presented fault tolerance technique provides different parameters that have been
evaluated with respect to their influence on the runtime and the error coverage. Different
block sizes 0} have been selected to evaluate the interplay between the chosen block
size, the resulting error coverage, and the induced runtime overhead for error detection
and correction. Besides, two different kinds of errors have been evaluated, namely
single-bit flip errors as well as multi-bit flip errors. For each experiment with single-bit
flip error injections, a second run of the experiment was performed using multi-bit flip

error injections instead.

7.4.1 Runtime Overhead

The fault tolerance technique induces some runtime overhead to detect errors as it
complements the original matrix-vector multiplication with additional operations. The

runtime overhead for error detection is computed as:

Runtime for protected operation

Runtime overhead = (1) -100%.

Runtime for original operation

To obtain the runtime overhead for error detection steps, 1000 experiments were

performed for each matrix and each selected block size in which no errors were injected.

The runtime overhead for error detection that is induced by the fault tolerance technique

depends on the block size 0. The runtime overhead has been evaluated for different

7.4 o Fault-tolerant Sparse Matrix-Vector Multiplication 117

block sizes ranging from 1 to 512. If a matrix could not be partitioned into 7’ equally
sized row block matrices, then the first m’ — 1 row blocks were equally sized, while the

last row block covered the remaining rows in the matrix.

Figure 7.1 compares the runtime overhead for error detection for each matrix with
respect to different block sizes. Each blue data point denotes one runtime overhead
result for a specific matrix. The red graph depicts the average runtime overhead
over all evaluated matrices with respect to changing the block size. At the same
time, the presented fault tolerance is compared to the runtime overhead induced by the
Duplication with Comparison (DWC) technique (cf. Chapter 2.2.3). The runtime overhead
induced by DWC is depicted by the orange graph (i.e. 100% runtime overhead).

180%
160%
140%
120%
100%
80%
60%
40%
20%
0% 4

1 2 4 8 16 32 64 128 256 512
Block size

Runtime overhead

A Figure 7.1 — Runtime overhead of the protected matrix-vector multiplication for
different block sizes compared to unprotected executions.

The average runtime overhead is ranging from 44.8% for block size 32 to 77.6% for block
size 1. The maximum runtime overhead is observed for block size 1, in which case the
checksum matrix C is equal to the input matrix A. In that case, the computation of
both the original operation Ab and the checksum generation Cb are equal operations
and exhibit the same complexity. For block size 1, measured runtime overheads below

100% can be explained by the parallel execution of these two operations.

As block size 32 provides minimum average error detection overhead, the corresponding
experiments are further evaluated below. Detailed results for the other block sizes can

be found in Appendix E.2.

The error detection overhead is shown for each matrix in Figure 7.2 for a block size of 32.
In this figure, the error detection overhead of the presented fault tolerance technique

is compared against the related work approach that evaluates Equation 2.34 to detect

118 Chapter 7 o Experimental Evaluation and Results

errors [Sloan13]. The orange graph depicts the runtime overhead that is induced by
the Duplication with Comparison (DWC) technique (i.e. 100% runtime overhead).

160%
140%

w11
100% i B3

80%
60%
40%
20%

0%

Runtime overhead

B Presented method m Related work [Sloan13]

A Figure 7.2 — Runtime overhead for error detection in case of a block size of 32.

To ensure a fair comparison, the error checking steps in the related work approach
were parallelized with the original matrix-vector multiplication (r := Ab). The evalu-
ated matrices are ordered by increasing size. The experimental results show that the
runtime overhead decreases for both fault tolerance techniques with increasing matrix
size. The runtime overhead for error detection ranges from 12.4% to 115.0% for the
presented fault tolerance technique while it ranges from 15.4% to 148.7% for the related
work approach. On average, the runtime overhead is reduced by 43.1% when both
approaches are compared. The minimum reduction has been measured with 11.4% with
matrix G3_circuit while the maximum reduction has been measured 69.9% with matrix
s3rmg4m1. Compared to the DWC technique, which induces runtime overhead of at
least 100%, the runtime overhead is reduced for 29 out of 30 matrices. With increasing
matrix size, the reduction in runtime overhead compared to DWC becomes increasingly

significant.

In case of errors, some additional runtime overhead is introduced by the presented fault
tolerance technique to locate and correct detected errors. The runtime overhead for
both detecting and correcting errors has been evaluated by injecting one error into the
matrix-vector multiplication while comparing the runtime to the unprotected operation.
Additional experiments have been performed in which errors were injected into error

detection operations. Figure 7.3 shows the results of this investigation.

7.4 o Fault-tolerant Sparse Matrix-Vector Multiplication 119

300%

el

S 250%

=

g 200%

5 150%

Q

,§100%

=

= 1nn

= I annnuasa I

0:0% I I IIIII.I [
MO LI N NLDOH D O XYH LIIINIINLIPPAYIAOYEYDN IO
e PN IS R NN T LS ETITLOLIICS IS § o
TEFIFTIFIITSTY ‘IO FTIFTTFTOLS O E L9
FLEETTFEES IS e 8¢ SS9 ¢
EIE <& PPTFY LS NS &

I Presented method W Related work [Sloan13]

A Figure 7.3 — Runtime overhead for error detection and correction in case of a block
size of 32.

In each experiment, one matrix-vector multiplication has been performed while one
element in the output vector was injected which triggered error corrections in all eval-
uated methods. The presented error correction technique is compared to re-executing
the complete matrix-vector multiplication in case of detected errors. For each matrix

and each selected block size, 1000 error injection experiments were performed.

The runtime overhead for both error detection and correction ranges from 15.6% to
155.6% for the presented fault tolerance technique, while it ranges from 115.5% to 248.7%
for the related work approach. The runtime overhead is on average reduced by 63.9%.
The minimum reduction is 28.4% with matrix nasa2146 and the maximum reduction is

86.5% with matrix crankseg_1 compared to the related work approach.

7.4.2 Error Coverage

To evaluate the error coverage for the fault-tolerant sparse-matrix vector multiplication,
errors have been injected into the operation while the reaction of the fault tolerance
technique was observed. For each matrix and each selected block size, 1000 error
injection experiments have been performed to compare the effectiveness of the pre-
sented technique against the related work approach [Sloan13]. In each experiment,
one matrix-vector multiplication has been performed while one error was injected to
the output of the operation or into the error detection operations. The rounding error
bound presented in Chapter 3.2 was applied to distinguish harmful from acceptable

errors for the presented fault tolerance technique. For the related work approach, the

120 Chapter 7 o Experimental Evaluation and Results

analytical rounding error bound [Chowd96] was applied (cf. Equation 3.12).

From the experimental results, the balanced F,-score [Van R79] is computed which
quantifies the error coverage based on the number of successfully detected errors
(true positives), the number of undetected errors (false negatives) and the number of
mistakenly identified errors (false positives) with

2 -true positives

17 2 true positives + false negatives + false positives

With an Fy-score close or equal to 1, the number of successfully detected errors is
significantly larger than the number of undetected and mistakenly identified errors.
Smaller F;-scores correspond to increased numbers of undetected and mistakenly
identified errors. Figure 7.4 shows the results of this investigation by presenting the
F;-scores for the different methods.

1.0 Single-bit Flips

0.8
0.6
0.4
0.2
0.0

F,-Score

Multi-bit Flips

1.0
0.8
0.6
0.4
0.2
0.0

F,-Score

@ Presented method M Related work [Sloan13]
A Figure 7.4 — Comparison of error coverage using the F;-score.

For single-bit error injections, the F;-score ranges from 0.578 to 0.932 and is on average
0.817. Compared to the related work approach, the F;-score is on average improved
by 35.7%. The minimum improvement is 1.9% with matrix ship_001. The maximum
improvement is reported with matrix cfd, for which the F;-score is 150% larger compared

to the related work approach.

7.5 o Fault Tolerance for Conjugate Gradient Solvers 121

The F;-score ranges from 0.582 to 0.933 and is on average 0.818 for multi-bit flip error
injections. At the same time, the improvement of the F;-score for the presented method

ranges from 1.9% with matrix ship_001 up to 155% for matrix Muu.

7.4.3 Discussion of Experimental Results

The experimental evaluation demonstrates that the presented fault-tolerant sparse
matrix-vector multiplication allows the efficient algorithmic detection and correction
of erroneous operation results while it provides high error coverage. By selecting a
suitable block size, the underlying error detection scheme induces only low runtime
overhead. With a block size of 32, the runtime overhead is on average 44.8% and is
at most 115.0% for the evaluated matrices. In case of errors, the runtime overhead for
both error detection and correction is at most 155.6%. Compared to the related work
approach, this runtime overhead is on average reduced by 63.9%. This low runtime
overhead can be explained by the implicit localization of errors, which allows partial

recomputations just for erroneous outputs directly after error detection.

A high error coverage is achieved while the number of false positive error detections due
to rounding errors is minimized. The presented rounding error function distinguishes
harmful from acceptable errors in the magnitude of rounding errors and achieves an
average F;-score of 0.817 for single-bit flip errors and 0.818 for multi-bit flip errors.
The highest F; of 0.993 was measured with matrix Muu. Compared to the related work
approach, the presented fault tolerance technique improves the F;-score by up to 155%.
This high error coverage can be explained by the combination of the implicit error
localization scheme and the presented rounding error function, which is tailored to

sparse matrix-vector multiplications.

7.5 Fault Tolerance for Conjugate Gradient Solvers

This section evaluates the fault tolerance technique that protects Conjugate Gradient
solvers, which was presented in Chapter 4. This technique has been evaluated with
respect to the error detection runtime overhead in error-free executions and the error
correction runtime overhead in case of errors. The vulnerability of unprotected Conjugate
Gradient solvers to errors is demonstrated to emphasize the demand for effective fault

tolerance measures.

122 Chapter 7 o Experimental Evaluation and Results

Each experiment comprises a complete run of the solver and a certain number of
error injections according to the error model as discussed above in Section 7.2. In the
course of the experiments, the influence of different parameters has been evaluated:
By changing the number of injected errors per experiment, the effectiveness of this
fault tolerance technique is evaluated with respect to the error coverage and the error
correction runtime overhead. Besides, the influence of the rounding error threshold T
(cf. Equation 4.10) on both the error correction runtime overhead as well as the error
coverage is evaluated. Two different kinds of errors have been evaluated, namely
single-bit flip errors as well as multi-bit flip errors. For each experiment that has been
performed with single-bit flip error injections, a second run was performed using

multi-bit flip error injections instead.

7.5.1 Vulnerability of Conjugate Gradient Solvers

In a preliminary step, the vulnerability of Conjugate Gradient solvers has been eval-
uated by performing error injection experiments without applying any additional
instrumentation by fault tolerance measures to the solver. In this evaluation, 3000 error
injection experiments were performed for each matrix. In the course of each experi-
ment, a complete run of the solver was performed while a single error was injected
in a randomly chosen iteration. In such iterations, a result register of a linear algebra
operation was randomly selected to inject an error. Figure 7.5 shows the vulnerability
of Conjugate Gradient solvers to single and multi-bit flip errors with respect to the
proportion between successfully converged experiments, diverged experiments as well
as experiments that resulted in silent data corruptions (SDC). The evaluated matrices
are ordered by the number of non-zero elements (NNZ). In these figures, the results
for applying the Jacobi-preconditioner are shown. Further results were obtained for
the other two preconditioning cases, which do not show significant differences. These

results are presented in Appendix E.3.

In this evaluation, a successfully converged experiment refers to a solver execution
that provided a correct result within the iteration limit. Such a correct result x) i
constituted by a residual ¢ (6) that satisfies either the absolute accuracy tolerance €, or
the relative accuracy tolerance €, (cf. Section 7.1). At the same time, an experiment is
referred to as diverged if the number of iterations exceeded the iteration limit. Silent
data corruptions are a result of experiments in which the provided result x) does not

satisfy the underlying linear system Ax = b. In such a case, the provided result x6)

7.5 o Fault Tolerance for Conjugate Gradient Solvers 123

neither satisfies the absolute accuracy tolerance €, nor the relative accuracy tolerance

€, despite apparent solver convergence.

Single-bit Flips

100%
80%
60%
40%
20%
0%
gﬁﬁgﬁfﬁ?g §§§§§§®$@$§&$§5§§§§/§Q§Qf¢§~§§&\
9 O X : N
Q“ﬁ’%“%&f"’w&g S ‘?@?@Q@$$Qé’ vé’ﬁ@‘* $\$(?/ ¢§
Multiple-bit Flips
100%
80%
60%
40%
20%
0%
Y K RN
é’g%@é’”é’g ESESES $$$$*&$$%@ w&,ﬁﬁ' z?‘z,“&/ 5&3&

<
H Converged to correct result @ Diverged B Silent Data Corruption

A Figure 7.5 — Proportion of successfully converged experiments, diverged experi-
ments as well as experiments that resulted in silent data corruptions (SDC) in case of
errors.

For single-bit errors, the proportion of successfully converged solver executions is on
average 42.0% and ranges from 4.8% to 82.1%. Multi-bit error injections reduce the
number of successfully converged solver executions on average by 11%. For 20 matrices,
the solver only converged in at most 50% of the evaluated experiments to a correct
result. For single-bit errors, the proportion of solver executions that exceeded the
iteration limit (i.e. diverged) is on average 8.1% and ranges from 0% to 37.0%. Multi-bit
flip errors increase the number of diverged experiments on average increased by 17.3%.
At the same time, the proportion of silent data corruptions ranges from 14.3% up to
90.9% for single-bit flip errors and from 15.0% up to 94.2% for multi-bit flip errors. While
the average number of silent data corruptions is 49.9% for single-bit flip errors and

52.8% for multi-bit flip errors, it exceeds 60% for 10 out of 30 matrices.

124 Chapter 7 o Experimental Evaluation and Results

The experiments in which the solver converged to a correct result have been further
evaluated with respect to the iteration overhead. Figure 7.6 shows the average iteration
overhead for these successfully converged experiments compared to error-free solver

executions. The depicted runtime overhead was calculated as

Solver iterations in case of errors

Iteration overhead := (- 1) -100%.

Solver iterations in error-free case

Single-bit Flips
200% 8 P
< 100%
b
Q
<
o 10%
>
5
c
L 1%
e
o
Q
= 0%

QI N b N o ~ N ~ X N
SIS TEL EILETLEFETSEETITSEF S
CEFSFFFTEY I IIFSFT TIPSO L S
9 S QG N 9O &@(9$0, s VO KRR ST ¢
CEISFSELF LS 99 FEPEY &S S o7
S SERSAR SN SIS 2,32,3”°§“° RIS > 9P é,§

Multi-bit Flips
200% P
< 100%
b
Q
<
o 10%
>
S
-
L 1%
e
o
Q
= 0%

SO M N o ~N N oo N & N
ISR EIL T EETTEIIFSEST S
CFSFFITESY “SIITFIFIFTFPS 098y
G S GG IS S SLSELE AR NS U
&L E &S SSIRSIEEN & &E & & &S S L)
ASIPSERSER SN SIS g,g,wg)\vo NS > 9D é,$

A Figure 7.6 — Average iteration overhead to converge to correct results in case of
errors.

In case of single-bit flip errors, the iteration overhead required to converge to a correct
result ranges from 1.9% to 108.7% and is on average 28.2% when no fault tolerance
measure is applied. Multi-bit flip errors increase this overhead on average by 23.2%
compared to single-bit flip errors. In that case, the iteration overhead ranges from 3.6%
to 161.4%. For three matrices, the average overhead exceeds 100% which corresponds

to completely repeating the solver execution.

The observed vulnerability of the evaluated Conjugate Gradient solvers constitutes

a strong demand for effective fault tolerance measures that induce only low runtime

7.5 o Fault Tolerance for Conjugate Gradient Solvers 125

overhead to detect and correct errors. For the evaluated matrices, 47.2% of all solver
executions resulted in either significantly increased runtimes or silent data corruptions
in case of errors. Even if the solvers converged to a correct result, the iteration overhead

to provide solutions was increased by up to 161.4%.

7.5.2 Runtime Overhead for Error Detection

The fault tolerance technique presented in Chapter 4 was applied to the evaluated
Conjugate Gradient solvers to investigate the runtime overhead for error detection.
In this evaluation, 3000 experiments were performed for each matrix to obtain the
results shown below. In these experiments, the error checking interval t was set to ten
iterations. Checkpoints were created in intervals of ten iterations. As different kinds of
preconditioners can be chosen for Conjugate Gradient solvers, the runtime overhead
was obtained for three different cases. While in the first case, no preconditioner was
applied, the Jacobi preconditioner, and the incomplete Cholesky factorization (ICC)
were applied in the other two cases. From the collected runtime information, the

runtime overhead is computed as

Protected solver execution runtime

- 1) -100%.

Runtime overhead := g .
Unprotected solver execution runtime

Figure 7.7 shows the results of this investigation.

10.00%

o

&

£

S 1.00%

>

5

]

£ 0.10% | | |

=

g | LULLRERL

2 RN

0.01% I I 1
B O RS O G O SV S P S I SEAA SEC IS
Ty I FTIXFE T R AT S FIITFCFESETTITI S
CEFSFFITFY SIS PIFIFTTFST oI LY
SIS F LS $I9 ST & ST ¥
& N IS L ISP LR
B No preconditioner | Jacobi preconditioner @ 1CC preconditioner

A Figure 7.7 — Runtime overhead for error detection with respect to applying no
preconditioner, the Jacobi preconditioner, and the incomplete Cholesky factorization
(ICC) in error-free executions.

The runtime overhead for error detection which is introduced by the presented method

differs for the three preconditioners since they introduce different operations to the

126 Chapter 7 o Experimental Evaluation and Results

original solver execution (cf. Appendix A.2). The runtime overhead for error detection
is on average 1.7% and ranges from 0.15% to 3.8% when no preconditioner is applied.
The average error detection overhead is 1.5% when the Jacobi preconditioner is applied
and 0.2% when the incomplete Cholesky factorization preconditioner is applied. The
runtime overhead of the presented fault tolerance method typically becomes smaller
with increasing numbers of non-zero elements. For the three largest matrices, G3_circuit,
hood and crankseg 1, the overhead of the presented method is only between 0.02% and
0.23%. Therefore, the fault tolerance technique scales very well with increasing problem

sizes.

7.5.3 Error Coverage

To evaluate the effectiveness of the presented fault tolerance technique in the presence
of errors, 3000 error injection experiments were performed for each matrix. These error
injection experiments were performed in accordance to the above presented vulnera-
bility assessment of the Conjugate Gradient solvers with respect to the selected error
types and locations. In each experiment, a complete run of the solver was performed
while between one and ten errors were injected in a randomly chosen iteration. In these
iterations, a result register of a linear algebra operation was randomly selected to inject
an error. The evaluation below shows the results for applying the Jacobi-preconditioner.
Further results were obtained for the other two preconditioning cases, which do not

show significant differences. These additional results are shown in Appendix E.3.

Figure 7.8 shows the maximum portions of diverged experiments for different numbers of
injected errors and different rounding error thresholds {10_10, 10_9, 10_8, 10_7, 10_6}.

Single-bit Flips Multi-bit Flips
9 25% 8 P 2.5% P
5 ®
= 2.0% 2.0%
g 15% ® 159 2
o < 2
S 1.0% 1.0% 1 ¢ o
e}
o0 0.5% 05% 1 o
2 00% . ——— 0.0% —8
a 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Injected Errors Injected Errors

——1E-10 ——1E-09 ©—1E-08 ——1E-07 —9—1E-06

A Figure 7.8 — Maximum portion of execution failures (i.e. number of iterations
exceeded iteration limit) with respect to T € [1071%,107%].

7.5 o Fault Tolerance for Conjugate Gradient Solvers 127

The range of rounding thresholds T was determined individually for each matrix to
avoid false positives in the error-free case. To find appropriate rounding thresholds T
for the different matrices, the experiments were started with the smallest rounding
error threshold T = 10710, In case of a false positive, the rounding error threshold was

increased, while the threshold value was omitted from the experiments.

In the course of the experiments, no silent data corruption occurred. For increasing
numbers of error injection events, the maximum portions of diverged experiments
increases. In case of one error, at least 98.9% of all experiments converged successfully.
When the number of error injections is increased to ten per experiment, then at least

97.8% of all experiments still converged to a correct result.

Larger invariant thresholds T lead to an increasing number of undetected errors that
can induce additional iterations to the solver executions. These additional iterations can
cause the solver execution to exceed the iteration limit. Smaller invariant thresholds,
however, can cause false positive error detections. The threshold invariants T = 10710
and T = 10 induced false positive error detections for seven matrices. For the remain-
ing threshold invariants T € [10™°,107°], the evaluated matrices did not cause false

positive error detections.

Figure 7.9 shows the portion of experiments that exceeded the limit of iterations when

the threshold invariant T was set to 107°.

Diverged experiments were observed for eight out of 30 matrices. While for single-bit
flip error injections, the portion of diverged experiments ranges from 0.1% to 1.6%, it

ranges from 0.1% to 2.2% for multi-bit flip error injections.

Compared to the unprotected case, the presented fault tolerance technique significantly
increases the number of solver executions that converge to a correct result. For 22 out
of 30 matrices, all solver executions converged to a correct result within the iteration
limit. For the remaining eight matrices, at least 97.8% converged to a correct result in
the presence of up to ten error injection events. Therefore, the presented technique

scales very well with increasing error rates.

128 Chapter 7 o Experimental Evaluation and Results

Single-bit Flips

experiments
N N
S [®)]
RN

1.5%

< 1.0%

&b

S 0.5%

2 |

A 0% +—r——r————%+r—fF
PR R PP LT OO IR P ILSFIFIFS LTSS
X I IAIY O .08 FEIF LSS S LTSS
CESITFHITFTST "IIIPLSIFTSIHS gy
SIEFSELF S O n;§n§@~gé’§~0& S &S ?5\3:0\%8 N
& < & & o g’ & & O C@'

" Multi-bit Flips

2 25%

3]

£ 2.0%

=

g 15%

)

= 1.0%

]

2 05% ‘

(]

>

E0.0%IIIIIIIIIIII.IIII.I L T T T 1T T
I R R A - G I S SIS SRR SR S
I NIN & & .08 I I LTSS AN
EEEITISIS SIS EEFEFT IS TrL S
I LE &5 LS ESEESEES S S P LY & & S L7
ASIPSERSER SN SIS g,g,@;;@ NIPSIPS o,co(:;a ¢,§

B 1 Error Injection @2 Error Injections M5 Error Injections M 10 Error Injections

A Figure 7.9 — Portion of execution failures (i.e. number of iterations exceeded
iteration limit) with respect to T = 1075,

7.5.4 Error Correction Overhead

The overhead for error correction is introduced by additional iterations that are required
for convergence to a correct result in case of errors, compared to the error-free execution.

This error correction overhead is calculated with

Protected solver iterations with errors

Err. correction overhead := (- 1) -100%.

Unprotected solver iterations without errors

Figure 7.10 shows the average overhead for error correction for different numbers of

injected errors and different invariant thresholds 7.

For both single and multi-bit flip error injections, the average overhead for error
correction increases with increasing numbers of error injection events. For single-bit
flip error injections, the overhead ranges from 4.7% for one error injection to 18.82% in
case of ten error injections. In case of one error injection event, the overhead ranges

from 4.7% to 5.3% when the threshold invariant T is increased from 1070 to 107, At

7.5 o Fault Tolerance for Conjugate Gradient Solvers 129

Singe-bit Flips Multi-bit Flips

< 25% & P 25% P

3

2 20% 20%

s 15% 15%

5 10% 10%

T 5% 5%

2

- 0% T T T T T T T T T T 1 O% T T T T T T T T T T 1

o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10

Injected Errors Injected Errors

——1E-10 —e—1E-09 < 1E-08 —e—1E-07 —e—1E-06

A Figure 7.10 — Average iteration overhead for error correction with respect to
different T € [1071%,1079].

the same time, the overhead ranges from 15.5% to 18.8% when the threshold invariant

T is increased from 1071° to 1079 in the case of ten error injection events.

For multi-bit flip error injections, the overhead ranges from 5.3% for one error injection
to 19.9% in case of ten error injections. When the threshold invariant 7 is increased
from 10710 to 10_6, the overhead ranges from 5.3% to 6.8% in case of one error injection

event. For ten error injection events, the overhead ranges from 16.3% to 19.9%.

7.5.5 Discussion of Experimental Results

The experimental evaluation demonstrated that the presented fault tolerance technique
provides both effective error detection and low runtime overhead. The average run-
time overhead for error detection is 1.7% when no preconditioner is applied, 1.5% for
the Jacobi preconditioner, and 0.2% for the incomplete Cholesky factorization precon-
ditioner. The runtime overhead differs for the evaluated preconditioners since the
preconditioners rely on different operations with diverse runtime. Overall, the observed
runtime overhead is at most only 3.8% in the error-free case. Besides, the runtime
overhead scales very well with increasing problem sizes as it typically decreases for

larger problems.

Compared to unprotected solver executions, this fault tolerance technique increases
the number of correct results significantly despite the presence of errors. In 22 out of
30 evaluated matrices, all experiments converged to a correct result. For the remaining
eight matrices, at least 97.8% of the experiments provided a correct result. In case of one

error injection per solver execution, the average runtime overhead to correct errors is

130 Chapter 7 o Experimental Evaluation and Results

6.2% and remains below 15.7% in the worst case. While the runtime overhead to correct
errors increases with increasing number of errors, it is at most 31.1% in case of ten error

events.

Both the low runtime overhead to detect and correct errors as well as the high effective-
ness make this fault tolerance technique highly suitable for applications in the scientific

and engineering domain.

7.6 Parameter Evaluation and Estimation Methods

This section presents the experimental results for the parameter evaluation and esti-
mation methods, which were introduced in Chapter 6. The methods are evaluated at
the example of the approximate computing technique presented in Chapter 5, which
executes the Conjugate Gradient solvers on approximate hardware (cf. Section 7.3)
while adapting the precision according to the changing error resilience between solver

iterations.

The underlying linear operations in the solver are explored by the simulation-based
parameter evaluation method to determine parameters comprising area, delay, power,
energy, and induced approximation error. The obtained power parameters have been
validated against a commercial timing simulation and power estimation tool. The
combined parameter estimation method has been evaluated by estimating energy and
runtime for complete application executions. To validate this approach, the results have
been compared to the results of exhaustive simulation-based parameter evaluations

with respect to the estimation error and the runtime reduction.

All linear operations in the Conjugate Gradient solver are instrumented by replacing
the underlying floating-point operations by a corresponding interface invocation. In
accordance to the experimental evaluation in Section 7.7, the floating-point multiplica-
tions in sparse matrix-vector operations are replaced by their approximate counterparts.
All benchmark matrices from Table 7.2 were evaluated for ten approximation levels
that rely on different numbers of precise mantissa bits following the approximation
model described in Chapter 6.4 (i.e. 2, 7, 17, 22, 27, 32, 37, 42, 47, and 52 precise mantissa
bits). All timing simulations were performed on circuit descriptions for floating-point
addition and multiplication as described in Section 7.3. In the experiments, all floating-
point operations were performed in double-precision floating-point arithmetic for the

solver execution.

7.6 o Parameter Evaluation and Estimation Methods 131

Section 7.6.1 presents the experimental results for the simulation-based parameter
evaluation method, in which the activity, the delay, the power dissipation, and the
approximation error are compared for the different matrices. Section 7.6.2 presents
the validation of the combined parameter estimation method, which combines the
simulation-based and model-based methods to estimate the power dissipation for

complete application executions.

7.6.1 Simulation-based Parameter Evaluation

The simulation-based parameter evaluation method is applied to determine the average
switching activity, the average dynamic power, the maximum delay, and the average
relative error to compare precise and approximate floating-point multiplications in
sparse matrix-vector multiplications. Figure 7.11 compares these observables for the
different matrices with respect to different numbers of precise mantissa bits. Each data

point denotes an obtained observable for one specific matrix.

1E+05 g 10.0
>
2 £
> b - S { S
B 5 1E+04 ‘gg‘ g 10 3‘
= * s o ‘
oo 20 ¢ s]
U = (@]
= <= 1E+03 =2 0.1)
“ 1E+02] 2 00 ’
10.0 1E+01 1
1E-01 - *
- 80 f t 5 1E-03 - P
= 60 ¢ () 5 1E-05 - *
~) ¢ 1E-07 - s
< ‘ = pe
3 40 = 1E-09 -
° L, ¢ § = BT *
' 1E-13 - »
00 T T T T T T T T T T 1 TE-15 _4 T T T T T T T T 1
5247 4237 3227221712 7 2 5247 42 37 32272217 12 7 2
Precise mantissa bits Precise mantissa bits

A Figure 7.11 — Comparison of simulation-based evaluation results for the different
matrices with respect to floating-point multiplication with different numbers of precise
mantissa bits.

The weighted switching activity (WSA) decreases with decreasing number of precise

mantissa bits. The WSA ranges from 100 to 44, 162, resulting in a dynamic power

132 Chapter 7 o Experimental Evaluation and Results

ranging from 0.013 mW to 5.4 mW. The maximum delay corresponds to the time of
the last observed transition in the circuit outputs and ranges from 1.4 ns to 8.8 ns. The

relative error increases with decreasing number of precise mantissa bits and ranges
from 2.1-107%° t0 0.17.

The simulation-based parameter evaluation method was validated using a commercial
simulation and power estimation tool. The power dissipation results obtained by the
commercial tool P..¢ are compared to the results of the simulation-based method P by

computing the difference
AP:=P-P.. (7.1)

Figure 7.12 shows the results of this investigation. Each blue graph denotes a difference
result AP for one specific matrix. The red graph denotes the maximum AP for a certain

number of precise mantissa bits.

0.16
— 0.12

0.08

AP [mW

0.04

52 47 42 37 32 27 22 17 12 7 2
Precise mantissa bits

A Figure 7.12 — Comparison of the simulation-based parameter evaluation method
and the commercial tool for the different matrices with respect to the power dissipation.

Figure 7.13 compares the power results in case of 52 precise mantissa bits.

For all evaluated matrices, the deviation between the simulation-based parameter
evaluation method and the commercial tool is on average 5.0% and ranges from 0.1% to
22.5%. This validation shows only small deviations between the results of simulation-
based evaluations and the commercial tool, which allows to draw reliable conclusions
on the evaluated observables. In all evaluated cases, the power results calculated by the
presented method were larger than the results obtained by the commercial tool. Since
these calculated power results are pessimistic, trustworthy conclusions on power and

energy reductions can be provided using these results.

7.6 o Parameter Evaluation and Estimation Methods 133

6.0

> o
o o

Dynamic and
leakage power [mW]
w
(=)

D
o o o

I Presented method ® Commerical tool

A Figure 7.13 — Comparison of the simulation-based parameter evaluation method
and the commercial tool with respect to power dissipation in case of 52 precise mantissa
bits.

For executions of sparse matrix-vector multiplications using different numbers of
precise mantissa bits, the relative error and energy demand have been determined. The

relative error ¢,,; is computed as

lp—al2
€] 1= =
" Iplla

with a being a result vector computed on approximate hardware and p being its precise

(7.2)

counterpart. At the same time, the energy demand is computed from the 7 underlying
floating-point operations in a sparse matrix-vector multiplication (i.e., floating-point

multiplications and floating-point additions) as

n
Energy :=) Power; - T; (7.3)

i=1
with Power; denoting the power dissipation (i.e., leakage and dynamic power) and T;
denoting the critical path delay of the underlying circuit (i.e., 14.99ns as discussed
above in Section 7.3). Figure 7.14 compares the relative error and the energy demand

for the different evaluated matrices.

The relative error increases with decreasing number of precise mantissa bits and ranges
from 2.1-1071° to 0.17. The average energy decreases with decreasing number of precise
mantissa bits and ranges from 3.9-107% J to 4.1-1077 J. When the number of precise
mantissa bits is reduced from 52 to 2, the energy demand is on average decreased by
92.8%.

134 Chapter 7 o Experimental Evaluation and Results

1E+00 - 1E-02
5 1E-03 - i _ 1E-03 *§§§§§
= P = ¢ o o o $ $ $ $
®1E-06- + u>131E-04 "" 00,‘
> —_
S 1E-09 - ¢ S 1E-05 ¢ ¢ ¢ ‘ ’ ' ‘ .
< * w ‘ ‘ ‘ ’
& 1E-12 | ol 1E-06 =
1E_15 _4 T T T T T T T T 1 1E_07 T T T T T T T T T T 1
52 47 42 37 3227 2217 12 7 2 52 47 42 37 32 27 22 17 12 7 2
Precise mantissa bits Precise mantissa bits

A Figure 7.14 — Comparison of simulation-based parameter evaluations for sparse
matrix-vector multiplications with different numbers of precise mantissa bits.

7.6.2 Combined Parameter Estimation

To evaluate the estimation-based parameter estimation method, this method has been
applied to assess complete executions of the Conjugate Gradient solver. For each solver
iteration k in the execution of the Conjugate Gradient solver, an instruction interval I},
has been formed that contains all linear operations with their underlying floating-
point operations (i.e. floating-point additions and multiplications). In the execution
of the solver, the evaluation of the instruction intervals has been switched between
simulation-based evaluations and model-based estimations as follows: Simulation-based
evaluations are performed for representative instruction intervals that comprise the
first instruction interval I and all instruction intervals [; that follow an adaption of
the underlying approximation error (i.e., the first iteration after an adaption). Such
adaptions of the underlying precision-configurable approximation techniques can occur
between solver iterations. The remaining instruction intervals are evaluated by the

model-based estimation method that mimics the approximation error.

Using the power dissipation results obtained from the performed timing simulations,
the combined parameter estimation method estimates the power dissipation of the
remaining instruction intervals as follows: As explained in Chapter 6.5 in detail, power
dissipation results obtained for an instruction interval are used as estimations for sub-
sequent instruction intervals until the underlying approximation technique is adapted.
Based on these power estimations, the method estimates the energy demand for whole
solver executions using Equation 6.13. To validate this scheme, the energy estimations

were compared to the results obtained from exhaustive explorations, in which all in-

7.6 o Parameter Evaluation and Estimation Methods 135

struction intervals during the solver execution are evaluated using timing simulations.
The iteration limit was set to 1000 iterations to maintain a feasible evaluation time (i.e.

maximum 14 days per experiment).

Figure 7.15 shows the relative error between estimation-based and simulation-based

investigations of the energy demand.

14%
s 12%
e
o 10%
.
B 6%
E 4%
=
S 2%
0%
DA PP DO YL OLIIPRIDINLIDPDYIPIYNSbIDIN
FE LTI Y Rl R AT AL ELTELTEIS SIS S
CISFTFTITIS SIS EETSF TP CgLSEE
S L &5 RSIRNIRN S EFLS && g N RS NI
PSR SR S ASIS gjgjwagjkw ISP > 9D §§

A Figure 7.15 — Relative error between estimation-based and simulation-based inves-
tigations of the energy demand.

The error in the energy estimation is on average 5.8% and ranges from 1.8% to only
13.0% when the estimation-based and simulation-based methods are compared. For
18 matrices, the energy estimation error is less than 6.0%. In all evaluated cases, the
energy estimation is larger than the energy determined by timing simulations. Such
small estimation errors allow to draw reliable conclusions from the results obtained by

the estimation-based method.

The runtime of the estimation-based method was compared to the runtime of exhaustive
explorations by computing the speedup as

Runtime of simulation-based method

Speedup :=
peedup Runtime of estimation-based method

The results of this evaluation are shown in Figure 7.16.

When compared to exhaustive explorations, the parameter investigation runtime is
reduced for all matrices by the estimation-based method. The speedup is on average
149.3x and ranges from 4.5x (i.e. 157.9s to 34.8s) to 414.9x (i.e. 5707.4s to 13.85s). For
28 out of 30 matrices, the speedup is at least 54.7x. The speedup can be explained by
the significantly reduced number of solver iterations that are evaluated by compute-

intensive timing simulations. In the worst case, at most 10 solver iterations are mapped

136 Chapter 7 o Experimental Evaluation and Results

1000x

100x

Speedup
=
X

1x
0x
SO N b » Na) N N Lo % N Y N
SIS LFILETREPESTTTEFIFS LSS
FSTFISES SFFTEESSE TEFS QLS
I L F L 9O S SEL LY &5 s ¢, X
< ESERN < ESRSIES < 2 s
& < & P VD && @ é”é'v

A Figure 7.16 — Speedup of the estimation-based parameter estimation method com-
pared to exhaustive simulation-based parameter evaluations.

to timing simulations, since 10 approximation levels are available for each solver
execution. With increasing number of iterations that are required for convergence to
correct results, larger speedups are achieved. The minimum speedup of 4.5x is observed
with Matrix Muu and can be explained by the low number of iterations (i.e. » 17) that

are required to solve linear equations for this matrix.

Both small estimation errors along with significant speedups show that the presented

approach enables the efficient and effective exploration of parameters.

7.6.3 Discussion of Experimental Results

The experimental results above show that the presented parameter evaluation and
estimation methods investigate application executions on approximate computing
hardware with low parameter evaluation runtime and high accuracy. In the simulation-
based evaluation of floating-point operations, the deviation between the observed power
results and the results of a commercial tool is on average 5.0% and ranges from 0.1%
to 22.5%. Such small deviations allow to draw reliable conclusions for the determined

observables.

For complete application executions, the combined estimation method determines
essential parameters like the power dissipation with significant speedups and high
accuracy. In the evaluation of complete solver executions, the observed speedup is
up to 414.9x while providing energy estimations that only deviate by less than 13.0%
when compared to exhaustive explorations that map all underlying operations to timing

simulations. On average, this parameter estimation method provides a speedup of 149.3x

7.7 e Conjugate Gradient solvers on Approximate Computing Hardware 137

and an estimation error of 5.8%. The presented approach allows to draw trustworthy
results, since all obtained energy estimations were pessimistic compared to the results

obtained from exhaustive simulations.

7.7 Conjugate Gradient solvers on Approximate Com-

puting Hardware

This section evaluates the technique that enables the execution of the Conjugate Gra-
dient solvers using approximate hardware, which was presented in Chapter 5. This
technique has been evaluated with respect to the influence of approximation errors
on the solver iterations for correct convergence, the reduction in energy as well as the
resulting energy efficiency. Besides, the utilization of the available precision degrees

over the course of the solver progress have been analyzed.

The experimental parameters were set as follows: At runtime, the floating-point multi-
plications in the sparse matrix-vector multiplication were replaced by their approximate
counterparts. For each matrix, 3000 experiments were performed. Each experiment
comprised a single execution of the Conjugate Gradient solver with approximated
matrix-vector multiplications. The rounding error threshold used in the comparison of
floating-point values was set to 107". The error resilience in the solver was estimated
each 20 iterations and evaluated by the fault tolerance technique (cf. Chapter 5.2)
each 10 iterations. For each matrix, the step function H (¢ (k)) was calibrated once
following the procedure discussed in Chapter 5.4. In each experiment, ten approx-
imation levels were utilized that rely on specific numbers of precise mantissa bits
p€{2,7,17,22,27,32,37,42,47,52}. All experiments converged to a correct solution.

In the experiments, the influence of the utilized preconditioning technique has been
evaluated. The experimental results shown below were obtained using the jacobi
preconditioner. Further results were obtained for the other two preconditioning cases,

which are summarized in Appendix E.4.

7.7.1 Solver Iterations

The introduction of approximation errors into the iterative solver process may induce

some additional iterations required for convergence to a correct result. From the

138 Chapter 7 o Experimental Evaluation and Results

evaluated experiments, the iteration overhead is computed as

Iterations for execution on approximate hardware

Tteration overhead := (- 1) -100%.

Iterations for execution on precise hardware

Figure 7.17 shows the additional iterations induced by approximation errors compared

to the number of iterations that are required by the solver when executed on precise

hardware.

< 30%

(4]

v 25%

+

o 20%

>

© 15%

c

.2 10%

®

E 5%

- 0%
DM QOO A NDL DY L O DL IDOIDNIINLIDPPOHYNDPDUNYDNSLIDIEN
S P INILS TR RS T L ELTLESIET ST S oy
FEFIFTFTHIITEY 3OO FTISTTIOLS O 4889
FEEEFTEES 99 fEEEE £8& SS9 ¢
‘Q@‘Q‘QQ ‘Q@ 2)32;,‘03}‘0 ‘Q'@@ c,‘o(;) é,b,

A Figure 7.17 — Average number of iterations on approximate hardware compared
to the execution on precise hardware.

The evaluated matrices are ordered by the number of non-zero elements. The increase
in the number of iterations is on average only 5.6% and ranges from 0% to 26.1%. For 25
matrices, the number of iterations is only increased by at most 11%. For the matrices

Muu, nd3k, and G3_circuit, no iteration overhead was observed.

Low iteration overheads are favorable as each additional iteration demands some
additional energy, which can cancel the energy efficiency gain achieved by approximate
hardware in the worst case. The iteration overhead that is associated with the presented

technique is often very low.

7.7.2 Energy

To evaluate the energy demand, the operations in the Conjugate Gradient solver were
evaluated by the combined parameter estimation scheme presented in Chapter 6.5
that relies on both gate-level timing simulations and model-based evaluations of the
approximation. This method evaluated at least one complete solver iteration for each

approximation level using timing simulations to determine the power dissipation.

7.7 o Conjugate Gradient solvers on Approximate Computing Hardware 139

Following Equations 6.3 and Equation 6.5, the power dissipation is obtained from the
activity information provided by the timing simulation and the energy information
given in the standard cell library. Using these results, the energy for complete solver
executions is estimated using Equation 6.13. In the remaining solver iterations, the
software-based approximation model was applied to introduce approximation errors.
Both the software-based model and the timing simulations evaluated the underlying

floating-point operations in double-precision arithmetic.
The obtained results for energy are compared to the energy that is required to execute
the solver on precise hardware without approximation errors as follows:

Energy for execution on approximate hardware

C = -100%. 7.4
Energy (Energy for execution on precise hardware) ° (7-4)

Figure 7.18 shows the demanded energy for executing the solver on approximate

hardware compared to the execution on precise hardware.

c 120%
S o]
2 100%
3
g 80%
£ 60%
&)
> 40%
20
T 20%
i
0%
D QO ANDL DY DO XL LIPSO NLDIIINDANETDNHLIEIDIN
SIS L ISP ETTIILIFSEFTS
CESFFIITEY IO FISFTTFOS O g8 g
FEESETSLE S LY ¢8s T ¥
‘Q@‘Q‘QQ ‘Q@ ggg)‘Qg;“Q ‘Q'@S c,%é’) é,b,

A Figure 7.18 — Estimated energy demand to execute the solver on approximate
hardware compared to the execution on precise hardware.

The case Cgyerq, = 100% denotes the scenario in which the energy demand for executing
the solver is equal on approximate hardware and precise hardware. Lower values in
CEnergy denote reductions in energy to execute the solver while still obtaining correct
results. Such a reduction in energy can be observed for 27 matrices compared to
executing the solver on precise hardware. For these matrices, the energy demand is on
average reduced by 26.9% and in total up to 66.7%. For 14 matrices, the energy demand
is reduced by at least 25%.

Figure 7.19 shows the contribution of the underlying fault tolerance technique within
the energy demand of solver executions on approximate hardware. This energy demand

is compared to the energy demand of solver executions on precise hardware.

140 Chapter 7 o Experimental Evaluation and Results

120%

100%

80%

60%

40%

20% l

0% T
D

Energy comparison

DA N DD LD PD L IDADINLIDNIINED LD
PPN Y TR RN L LSS S S
CFISTFTGFITY D TIIETTSIFTIOS I VELL 8
FEESTFES I FEELE 8¢ S8 e ¥

FOFT &S R

@ Energy Demand by Fault Tolerance ~ B Energy Demand by Solver Operations

A Figure 7.19 — Contribution of the underlying fault tolerance technique within the
energy demand for solver executions on approximate hardware.

The energy demand of the fault tolerance technique is on average 6.0% and ranges from
0.7% to 13.6% compared to the total energy demand of solver executions on approximate
hardware. This low energy overhead is favorable to execute the Conjugate Gradient

solver using approximate hardware with significantly reduced energy demand.

7.7.3 Energy Efficiency

The energy efficiency is evaluated using the Watt-per-MIPS® metric that is based on the

energy-time product metric (cf. Equation 2.45).

As discussed in Section 7.6.1, the power dissipation changes by adapting the approxima-
tion level (i.e. adapting the number of precise mantissa bits). As the power dissipation
can change between solver iterations, the average power dissipation Power sy in a
complete solver execution is computed from the power dissipation in single solver

iterations k with

Average power dissipation in iteration k

n
Power yyg = . (7.5)
k=1

n

with 7 denoting the total number of iterations required for correct convergence.

Let T,

the energy-time product metric is

denote the solver execution runtime. With T; = instruction count/MIPS,

olver olver

2
Tsolver) Watt (7 6)

Energy-time product = Power sy - (. _ -
instruction count

© MIpS?

7.7 o Conjugate Gradient solvers on Approximate Computing Hardware 141

From the obtained power dissipation results, the gain in energy efficiency G;7 is com-

puted and compared for executions on approximate and precise hardware as follows:

G (Watt—per—MIPS2 for execution on precise hardware
p =

)-10096. (7.7)

Watt-per-MIPS? for execution on approximate hardware

The results of this evaluation are shown in Figure 7.20.

£ 325% .
&, 300% —
> 250% 7 —
S 200% 3 —
§150%§ — Vi =
0 100% HHF—— e — = — —
> E
& 50% 3 H H
o]
[5) 3
UCJ 0%- T 1
PESIIPLL LI IEETRIPIESTPIFIFSEF S
OX O NN Y v . 0NN N JFEXFLSOL S SO
TESFFITSY "33 IIFIFTFTENS 08T
OGS GO 9 & CENOANd QX C &
TEIFTEF T T (?&?@an;@\og SEEL z,°?$&/ &
@ S

A Figure 7.20 — Gain in energy efficiency for solver executions on approximate
hardware compared to executions on precise hardware.

In this evaluation, the case G, = 100% denotes the scenario in which executing the
solver on approximate hardware and precise hardware lead to equal energy efficiency.
Values in G;7 below 100% refer to decreased energy efficiency when the solver is
executed on approximate hardware. At the same time, values in G, larger than 100%
denote improved energy efficiency. The energy efficiency is improved for 23 matrices
compared to executing the solver on precise hardware. In case of these matrices, the
largest energy efficiency gain is 300.4%, while the average energy efficiency gain is

148.0%. For 14 out of 30 matrices, the energy efficiency is at least increased by 25%.

7.7.4 Utilization of Approximation Levels

Over the course of the solver iterations, the induced approximation error was adapted
according to the changing error resilience. Figure 7.21 shows the adaption of approxi-
mation levels for single solver executions at the example of matrices bodyy4, besstk16,
Kuu, and crankseg_1. The utilized approximation level is denoted with respect to the

number of precise mantissa bits.

142 Chapter 7 o Experimental Evaluation and Results

bodyy4 bcsstk16

o 52 @ 52

gy Y,

a a

s 32 = 32

(o] <

g 22 g 22

b b

g 12 2 12

0— 2 T T T T T T T 1 QL_ 2 T T T T T T T 1
Iterations Iterations

Kuu crankseg_1

@ 52 8 52 4

o e 3

o 42 o 42 4

wn wn 4

B2 2]

= 32 £ 32 7

< <]

£ 22 E 22 1

b b]

S 12 s 12 4

g g3

D- 2 T T T T T T T T T T T 1 D- 2 : T T T T T T T T 1
Iterations Iterations

A Figure 7.21 — Adaption of approximation levels in the course of the solver execu-
tions.

The available approximation levels were utilized to different extents during the evaluated
solver executions. To gain an insight into the approximation level utilization for all

matrices, the average number of precise mantissa bits p oy Was computed as

", p; - (Number of iterations spent with p; precise mantissa bits)
PavG = Z

7.8
= Total number of iterations 7.8)

with p; € {2,7,17,22,27,32,37,42,47,52} denoting the number of precise mantissa
bits. Figure 7.22 shows the results of this investigation. The whiskers denote the
minimum and maximum number of precise mantissa bits that were utilized in the

solver executions.

In the evaluation, 16 out of 30 matrices required full precision (i.e. 52 precisely computed
mantissa bits) to convergence to correct results. At the same time, 5 matrices required
only 47 precise mantissa bits to provide correct results. The minimum number of precise
mantissa bits was required by matrix Muu, which only required 27 precise mantissa
bits. The average number of precise mantissa bits p sy that was utilized during solver
executions ranges from 9.5 to 51.7. Besides, 9 out of 30 matrices used 2 precise mantissa

bits in a portion of the solver execution.

7.7 o Conjugate Gradient solvers on Approximate Computing Hardware 143

;252 I 1T L

8 TITT 1 T+ - + 4

o 42 T LT 1 + T T

o 4

2 -

£ 32

<

£ 22

b

'g 12

o- 2| T 1

NN ~N N N B N

ETEIEITEL FILITEETETTESTIFSESS
CFLFFTITIY “IPITEEFLF IS ILETY
CILELE LS 9O SSFELE g & s Y ¥
ASIPSER SR SN <& 3,3,9‘2;% ISP o,‘)é’) é,§

A Figure 7.22 — Minimum, maximum and average precision over the course of the
solver executions.

The utilization of the available approximation levels is evaluated by counting the
number of iterations that used a specific approximation level. The utilization U(p;) of

an approximation level that relies on p; precise mantissa bits is computed as:

() =

Figure 7.23 shows the results of this evaluation with respect to the number of precise

I

Number of iterations spent with p; precise mantissa bits

) -100%.

Total number of iterations

mantissa bits.

100%
80%
60%
40%
20%
0% T

Utilization of
precise mantissa bits

DO »h LIS G-I oAk >N
SR v Nogx S v NI ND Qo
S S TS o e ST IFSTE S8
SO EF XL S S SIS & s VO INISIERN
CFEISFSSY & & & ASRSERN NSRS ¢ &S S, 7
WEOTF Tog FPVHY V&S 508 &

052 047 m42 W37 E32 B27 @22 @17 12 @7 @2

A Figure 7.23 — Average utilization of available precisions over the course of the
solver execution.

The maximum approximation level (i.e. 2 precise mantissa bits) was utilized in 2.2% of
the iterations. The most heavily used approximation level relies on 42 precise mantissa

bits and was applied on average in 30.7% of all evaluated solver iterations.

The different matrices use the available precision levels to different extents. While

matrices nos3, nasa2146, ex9, bodyy5, and G3_circuit, for instance, rely on a single

144 Chapter 7 o Experimental Evaluation and Results

precision for the majority of solver iterations, matrices like besstk13, s3rmg4m1, and

besstk16 rely on multiple different precisions over the course of the solver iterations.

7.7.5 Discussion of Experimental Results

The experimental evaluation showed that the adaptive method presented in Chapter 5
enables the execution of the Conjugate Gradient solvers using approximate hardware
and, at the same time, often achieves increased energy efficiency while still ensuring
correct solver results. When compared to executions on precise hardware (i.e. without
approximation errors), the energy efficiency is increased for 23 out of 30 matrices. For
the evaluated matrices, the energy efficiency was improved by up to 200.4%. On average,

the energy efficiency is increased by 48.0%.

The introduction of approximation errors into the solver execution increased the solver
runtime by at most 26.1% compared to executions on precise hardware. On average,
the runtime is only increased by 5.6%. This low runtime overhead can be explained
by the adaption of the induced approximation error according to the changing error
resilience at runtime. Although the runtime of the solver execution is increased, the

energy is reduced by up to 66.7%. The average reduction in energy is 26.9%.

The increased energy efficiency comes at the cost of a few additional solver iterations and
low energy overhead by the underlying fault tolerance technique. This fault tolerance
technique is highly suitable to monitor the solver execution on approximate hardware
since its energy demand is on average 29.1x lower than the energy demand of the solver
execution. At the same time, the demand for trustworthy results is still satisfied since

this technique ensures correct results despite the introduction of approximation errors.

CHAPTER

CONCLUSION

The high computational power of heterogeneous computer architectures plays an
essential role in accelerating complex tasks in scientific computing and simulation
technology. The sustained demand for short execution times is satisfied by mapping
algorithmic parts to matching components in these computer architectures, which can

result in reduced runtimes.

Continuous improvements in computer architecture and semiconductor technology
scaling have largely driven the increase in computational performance over the past
decades. Continued technology scaling, however, increasingly imposes serious threats
to the reliability and efficiency of upcoming semiconductor devices. Modern nano-
scaled semiconductor devices become increasingly vulnerable to a growing spectrum
of different reliability threats which can cause crashes or erroneous application results
without indication. However, the explanatory and predictive power of computed results
increasingly supports decision-making processes, which demands high reliability to
obtain trustworthy results. Future manufacturing processes will allow even smaller

chip feature sizes, which makes the integration of fault tolerance techniques mandatory.

Fault tolerance techniques can be applied to different system layers and typically rely on
different forms of redundancy to ensure the correct service in a system. Software-based
fault tolerance techniques protect algorithmic tasks in applications, for instance, by

targeting faults that manifest themselves as errors at the software and application

146 Chapter 8 o Conclusion

layer. Different techniques like algorithm-based fault tolerance (ABFT) add appropriate
operations to detect and correct errors at runtime. A central challenge in integrating
such software-based measures lies in the runtime overhead that is induced by such

additional operations.

With the end of Dennard scaling, a power density problem emerged that can cause unac-
ceptable chip power dissipation and thermal issues unless central scaling parameters are
fixed between technology generations. The approximate computing paradigm allows to
trade-off precision for efficiency gains with respect to power, energy, execution times,
computational performance, and chip area. Different concepts have been proposed
for heterogeneous and approximate computer architectures that combine approximate
memories and processing elements with their precise counterparts. While approximate
computing is a promising solution to tackle upcoming energy challenges by exploiting
the error resilience in applications, scientific applications, however, often induce strict
accuracy demands and offer rather low error tolerance. Such strict accuracy demands

require careful utilization of approximation techniques.

This thesis has introduced fault tolerance and approximate computing methods that
enable the reliable and efficient execution of linear algebra operations and Conjugate
Gradient solvers using heterogeneous and approximate computer architectures. A fault
tolerance technique for sparse matrix-vector multiplications has been presented that
detects and implicitly locates errors in erroneous operation results with low runtime
overhead and high error coverage. This fault tolerance technique exploits the insight
that even high error rates typically do not cause errors in complete matrix operation
results, but only in small parts. To avoid false-positive error detections in the presence of
rounding errors, a rounding error bound has been presented that distinguishes harmful

errors from inevitable rounding errors that occur in floating-point arithmetic.

A fault-tolerant Conjugate Gradient solver has been introduced that exploits that arbi-
trary successive iterations in the Conjugate Gradient solvers are related to each other
by different inherent relations. To ensure the convergence of these solvers to correct
results, the fault tolerance technique detects and corrections errors by evaluating these
relations with very low runtime overhead. As the underlying assumptions are inde-
pendent of the utilized preconditioning operation, the presented technique can protect
both, the CG and the PCG solver.

An adaptive method that enables the Conjugate Gradient solvers on approximate computing

hardware ensures convergence to correct results with reduced energy demand. This

147

method instruments the fault-tolerant Conjugate Gradient solver to monitor the changing

error resilience at runtime and to adapt the induced approximation error accordingly.

Parameter evaluation and estimation methods have been introduced, which deter-
mine the achieved computational efficiency for application executions on approximate
hardware with respect to the induced approximation error as well as delay, switching
activity, power, and energy. An underlying combined parameter estimation method
enables fast and accurate investigations by combining highly accurate gate-level timing
simulations with light-weight software-based models to estimate different parameters

for long-running application executions.

The presented fault tolerance techniques were evaluated on a heterogeneous computing
system with respect to the runtime overhead to detect and correct errors, as well as the
error coverage. When the presented fault-tolerant sparse matrix-vector multiplication
is compared to the traditional ABFT approach, the runtime overhead to detect and
correct errors is on average reduced by 63.9%. At the same time, the error coverage is
improved by up to 155%. Compared to unprotected executions, the fault-tolerant Conju-
gate Gradient solver induces an average error detection runtime overhead of 1.5%. For
the different evaluated benchmark matrices, at least 97.8% of the experiments provided
a correct result in case of errors. For 22 out of 30 evaluated matrices, all experiments
converged to a correct result. The runtime overhead induced by both presented fault
tolerance techniques scales with increasing problem size. The experimental evaluation
also showed that the Conjugate Gradient solvers can be executed using approximate
hardware by dynamically adjusting the approximation error according to the chang-
ing error resilience. When compared to executions on precise hardware, the energy
efficiency is increased for 23 out of 30 evaluated matrices. While the average increase
in energy efficiency is 48.0%, the maximum increase is 200.4%. The increased energy
efficiency comes at the cost of a few additional solver iterations. Experimental results
for the parameter evaluation and estimation methods have shown that the underlying
approach estimates parameters like the energy for complete application executions
with significantly reduced runtime and high accuracy. For the evaluation of complete
solver executions, this approach allowed speedups of up to 414.9x and provided energy

estimations that only deviate by less than 13.0%.

APPENDIX

LINEAR SOLVERS AND PRECONDITIONERS

A.1 The Conjugate Gradient Solver

The description of the Conjugate Gradient solver in Algorithm 2 follows [Saad03, pp.
199-200].

Input: A,b, x(0) €45 €5 Ky
Output: The result of solving the system Ax = b: x
Data: p(k), &) 50

(k+1)

/* Preparation of CG */
1#m<—b—Axm); // Initial residual vector
2 pO <+ // Initial search direction
3506rmﬂ}m% // Initial residual
4 k<0

/* (Continued on the next page) */

150 Appendix A e Linear Solvers and Preconditioners

/* CG loop */
5 while (6% > €2) A (60 /5O 5 €2) A (k < k,,,,) do

o | w® < Ap®;

5
7 o <~ W;
s | a4 (0) +1xp(k); // Next intermediate result
o | D)) gy, // Update residual vector
10 (5(k+1) <_r(k+1)T1,(k+1)
1n | < 5((;—;)1);
2 | plrh) (D) o gy (keD), // New search direction
13 k<k+1;
14 end

Algorithm 2: The Conjugate Gradient Solver algorithm.

A.2 Preconditioners

The description of the Jacobi preconditioner in Equation A.1 and the description of the
Incomplete Cholesky Factorization preconditioner in Equation A.2 follow [Golub13, chp.
11.5].

Let A € R"" be a positive-definite matrix:

The jacobi preconditioner matrix M, .p; is
M]acobi = dlag(A) (Al)

with diag(A) being the diagonal matrix of matrix A.

The preconditioner matrix M- used by the Incomplete Cholesky Factorization precon-

ditioner is

so that for all nonzero 4; [HHT]ij = a;;. At the same time, H is a sparse lower

i»
triangular matrix so that if

R:=HH"-A (A.3)

then ﬂl’]' +0=> Ti]' =0.

APPENDIX

DEPENDABILITY ATTRIBUTES

The following definitions follow the taxonomy of [Pradh96] and [Koren07].

Definition B.1 (Lifetime of a system) Given a system that provides its specified
correct service at time t = 0, the lifetime T of a system denotes the time until the system
fails (i.e. permanent system failure - the delivered service by the system deviates from

the correct service permanently).

The lifetime T is a random variable.

Definition B.2 (Failure probability function) The failure probability function
F{(t) is the probability that a system will fail at or before time t with

F(t) := Prob{T < t}. (B.1)

Definition B.3 (Probability density function of lifetime T) With T being the
lifetime of a system, f(t) denotes the probability density function with

£(#) = %(:). (B.2)

152 Appendix B e Dependability Attributes

Being a probability density function, f(t) must satisfy V¢ > 0: f(t) >0 and
Jo" f(t)dt = 1. Both functions are related through

F(t) = fo " £(s)ds. (B3)

Definition B.4 (Reliability) The reliability R(t) of a system is the probability that

a system provides its specified correct service at least for the time period t with

R(t) := Prob{T >t} =1-F(t). (B.4)

Definition B.5 (Mean time to failure) The mean time to failure (MTTF) denotes
the average time in which a system provides its specified correct service until a failure

occurs. This measure is the expected value of the lifetime E[T] with

MTTE = E[T] = fﬂoot-f(t)dt= /OOOR(t)dt. (B.5)

Definition B.6 (Mean time between failures) For a repairable system, the mean
time between failures (MTBF) denotes the average time between failures of a system.
With the time to repair the system (i.e. detect and isolate faulty component, replace
component, verify successful fault removal) being denoted by the mean time to repair
(MTTR), the MTBF is

MTBF:= MTTF+ MTTR. (B.6)

Definition B.7 (Failure rate) The failure rate A is the number of failing systems

per time unit t compared to the number of surviving systems N.

/\(t)— f(t>N

“T-FO) N 4

Failure rates are expressed using the FIT rate which corresponds to the number of

failures that can be expected in 10° operation hours.

APPENDIX

FLOATING-POINT ARITHMETIC

This appendix chapter gives an overview of floating-point arithmetic and discusses
the sources of rounding errors that can occur in finite-precision formats. Besides, this
appendix chapter briefly discusses the basic formats and concepts that are defined in
the IEEE Standard 754™-2008 [IEEE 08].

C.1 Floating-point Numbers

Scientific and engineering computing among other disciplines heavily relies on real
numbers in their underlying computer-based modeling and simulation techniques.
Today, the most widely used approach to represent real numbers is constituted by
floating-point arithmetic that follows the IEEE Standard 754™-2008 [IEEE 08]. The
discussion of floating-point arithmetic below follows [Mulle10] and [Golub13, chp.
2.7.2].

A floating-point number x is determined by the combination of a sign s, a radix B, a

normalized significand m and an exponent e with
x=(-1)-pm. (C.1)

A set of parameters determines the precision and the value range of the floating-point

representation:

154 Appendix C e Floating-point Arithmetic

« The sign s € {0, 1} corresponds to the sign of x.
« The radix (or base) B is an integer value and 8 > 2.
+ The precision p determines the number of digits in the significand and p > 2.

« Two integer values ¢,,;, and e,,,, are used to delimit the value range of the

exponent with e,,,;,, <0< ¢€,,,,-
+ The exponent e is an integer with e,,,;,, < e < e€,,,-

+ The normal significand m is a number 0 < |m/| < 2.

Normalization ensures a unique representation for each floating-point number as it
inherently selects representations for which the exponent is minimal. In case 1 <
|m| < 2, the underlying floating-point number x is a normal number. For radix f = 2,
normalization allows to save one bit, which can be implicitly stored and, at the same

time, allows to increase the precision p for the significand m by one bit.

In case of e = ¢,,;,, and |m| < 1, the underlying floating-point number x does not satisfy
the normalization condition 1 < |m| < 2. These numbers are called denormal numbers
(in the literature, the term subnormal numbers is also used). Denormal numbers fill the
gap between the smallest representable, normal floating-point number and zero. By
filling this gap, denormal numbers allow so-called gradual underflow, which causes a

slow loss of precision instead of an abrupt loss.

C.2 Rounding and Rounding Errors

Generally, floating-point numbers comprise a limited number of digits that allows to
represent a finite set of rational numbers. To represent a real number in a certain
floating-point format, the number has to be rounded to a suitable adjacent floating-
point number. Besides, rounding is also often necessary to represent the result of
floating-point operations in the underlying floating-point format. The difference that is

introduced by a rounding operation is the so-called rounding error.

Different rounding modes can be defined that determine how a number is rounded to a
finite floating-point number using a rounding function. For instance, the four rounding
modes that appear in IEEE Standard 754™-2008 are:

C.3 e IEEE Standard for Floating-Point Arithmetic 155

« The round-towards-minus-infinity rounding mode maps a number x to RD(x).
The function RD(x) computes the largest floating-point number less than or

equal to x, possibly —oo.

« The round-towards-plus-infinity rounding mode maps a number x to RU(x). The
function RU(x) computes the smallest floating-point number greater than or

equal to x, possibly +oo.

« The round-towards-zero rounding mode maps a number x to RZ(x). The function
RZ(x) computes the adjacent floating-point number to x that is not greater in

magnitude than x.

« The round-to-nearest rounding mode maps a number x to RN(x). The function
RN(x) computes the closest floating-point number to x. In the case that x
is located exactly halfway between two adjacent floating-point numbers, a so
called tie-breaking rule is required. A widely-used tie-breaking rule is round-to-
nearest-even which maps x to the floating-point number with even significand
m. Important properties of an appropriate tie-breaking rule are sign symmetry
RN(-x) = =RN(x), lack of statistical bias, and reproducibility.

Different properties that are satsified by arithmetic on real numbers do not apply
in floating-point arithmetic. In general, floating-point additions and multiplications
are neither associative (i.e. a+ (b+c¢) # (a+Db) + ¢) nor distributive (i.e. a- (b +¢) #

a-b+b-c).

C.3 IEEE Standard for Floating-Point Arithmetic

The IEEE Standard 754™-2008 [IEEE 08] defines binary and decimal floating-point
number formats and provides methods for floating-point arithmetic in single, double, ex-
tended, and extendable precision, while it recommends formats for data interchange. The
computation methods described in this standard ensure identical results of floating-point
operations independent of the underlying implementation, which can be performed
in hardware, software, or both. The standard defines computation methods for addi-
tion, subtraction, multiplication, division, fused multiply-add, square root, compare,
and other operations. At the same time, the standard specifies conversion algorithms
between integer and floating-format as well as between different floating-point formats.

Besides specifications of formats, the standard defines exception conditions such as

156 Appendix C e Floating-point Arithmetic

non-representable numbers (i.e. Not-a-Number, NaN), and provides handling solutions

for these conditions.

The standard specifies floating-point number formats using four parameters, namely
a radix f € {2,10}, the precision p, as well as e,,,, and e,,;,, which are constrained
by e,,in = 1 — e,y It also specifies, that the following floating-point numbers are

representable by any floating-point format:

« Signed zero and non-zero floating-point numbers following Equation C.1 for
which the sign is either 0 or 1. Besides, the exponent is an integer €,,;,, < € < €,,,,¢
and m is represented by a finite digit string containing p digits d;, 0 <d; < and
therefore 0 <m < B.

« Two infinites, —oco and +oo.

« Two not-a-number representations (NaNs), a quiet NaN (gNaN) and a signaling
NaN (sNaN).

Floating-point numbers according to IEEE Standard 754™-2008 have a unique encoding
using k bits. The standard ensures unique encodings my maximizing the significand
while decreasing the exponent e until either e = ¢,,;, or m > 1. The encoding of

floating-point numbers in k bits relies on the following three fields:

1. A signbit S.
2. A biased exponent E = e + bias comprising w bits.

3. Atrailing significand field T with = p — 1 bits, where the leading digit is implicitly

encoded in the biased exponent E.

The three fields are concatenated in the form (S, E, T'), such that the sum for the lengths
of the bit fields equals k with 1+ w + t = k. Different types of precision are specified in
Table C.1 that determine specific values for k, p, t, w, and bias. The encoding of the
biased exponent E distinguishes normal and subnormal numbers, as well as it reserves
unique encodings for +0, +oo and NaNs. Values in the biased exponent E in the range
[1,2% - 2] encode normal floating-point numbers, while the reserved value 0 encodes
+(as well as denormal numbers. Besides, the value 2% — 1 encodes +oo and NaNs.
The representation r for a floating-point number and its corresponding value v are

computed from the fields S, E, and T as follows:

C.3 e IEEE Standard for Floating-Point Arithmetic 157

« ForE=2Y-1and T # 0, is gNaN or sNaN and v is NaN.

« ForE=2Y-1andT=0,rand v = (-1)° - (+0).

« For 1 <E<2¥-2,ris (S, (E -bias),(1+2"7-T)). The value of the floating-
point number is v = (~1)°- 257045 . (1 4+ 2177 . T'). Therefore, normal numbers
have an implicit leading significand bit of 1.

« For E=0and T 0, 7is (S, e, (0+ 277 - T)). The value of the floating-point
number is v = (=1)° - 2% . (0 + 2177 . T). Subnormal numbers have an implicit

leading significand bit of 0.

v Table C.1 — Parameters of the IEEE 754-2008 standard for floating-point number
formats adopted from [IEEE 08].

Parameter binary16 binary32 binary64 binary128
k, storage width in bits 16 32 64 128
p. precision in bits 11 24 53 113
€,0x» MAXimum exponent e 15 127 1023 16383
bias, E —e 15 127 1023 16383
sign bit 1 1 1 1
w, exponent field width in bits 5 8 11 15
t, trailing significand field width in bits 10 23 52 112

Following Table C.1, the machine epsilon (cf. Equation 3.11) for single and double
precision number formats is therefore:
EM = 27 (P~ =972 5 1.19.1077 (Single precision). (C.2)
EM = 27(P=1) 22752 4 2.99.10716 (Double precision). (C.3)

APPENDIX

ADDITIONAL PROOFS

D.1 Rounding Error Bound for Sparse Matrices

This section describes the derivation of Equation 3.13 from Chapter 3. The derivation
is based on the following assumptions: The matrix-vector multiplication r := Ab is
computed in floating-point arithmetic with machine epsilon €, (cf. Equation 3.11) and
A e R™™ b,reR™!. For this multiplication, an operand checksum vector f € R™ >

!
and a result checksum vector t* € R™ *! are computed following Equations 3.5 and 3.6.

The derivation is based on the numerical analysis for the underlying operations (i.e.
inner products and matrix-vector products), which shows that the elements in the
rounding error bound vector for sparse matrix operations Tj are bounds for the maximum

difference between the floating-point representations of the checksums f; and ;:

[fI(te) = fI(k)] < T - (D.1)

In the course of the numerical analysis, rounding error bounds for the underlying linear
operations are composed to form upper bounds 7. Finally, it will be shown that the
presented rounding error bound T is equal to the rounding error bound 7; derived

during numerical analysis: T, = Tj.

160 Appendix D e Additional Proofs

The required rounding error bounds follow the results in [Chowd96], which are briefly
introduced below. The interested reader can find a detailed introduction for example
in [Golub13], Section 2.7.2.

A central element of such a numerical analysis is the mapping of real numbers to a
floating-point representation. Let €, be the machine epsilon (i.e. the machine rounding
error) for floating-point operations and let x € IR.

The function fI(x) maps x to the floating-point representation of x:

fl(x):=x(1+0), with|d|<ep. (D.2)

For any basic arithmetic operation op (i.e. +,—,-, /) performed in floating-point arith-

metic on X,y € R using machine epsilon €,,, the function fI(x op y) satisfies
fl(xopy):=(xopy)(1+6), with|d|<ep. (D.3)

The order in which multiple floating-point operations are being performed deter-
mines the induced rounding error, since floating-point operations are not associative
(fl(xop fl(yopz)) # fl(fl(x op y) op z)). For this reason, rounding error bounds
that cover more than two floating-point operations are determined by the order in

which the floating-point operations are being performed.

The rounding error that occurs in summations is bounded as follows. Let {x;|x; € R}
be a set of n numbers. The sum of this set fI(Y}.; x;) computed in floating-point

arithmetic in the order i = 1,2, ...n satisfies:
L n
fl(z xl-) = ZiZI xi(1+(5i) (D4)
i=1
with J; being the upper rounding error bound with

|0, < (n—1)ep; and

0;] < (m+1-i)ep (L<i<nm)

and ¢, being the machine epsilon.

The rounding error that occurs in inner products is bounded as follows. Let x and y

be two vectors that contain 7 elements x;,1; € IR. The floating-point representation

D.1 e Rounding Error Bound for Sparse Matrices 161

of the inner product between these two vectors computed in floating-point arithmetic

fl(x"y) satisfies

fl(xTy) = f1<z";x,-yi> =S xi(1+5) (D5)

i=1

with J; being the upper rounding error bound with
01| < neppand 6;| < (n+2-i)ep, (1<i<n).

The difference between the result of the inner product xTy and its floating-point

representation fI(x"y) can be bounded by:
flGxTy) —xTyl <n-eplxlalyls - (D.6)

In the following, rounding error bounds are derived for the different underlying linear
operations that are performed for each fault-tolerant sparse matrix-vector multiplication
as presented in Chapter 3.3. The presented analytical rounding error bound T in
Equation 3.13 relies on the number of non-empty columns #;. in a row block matrix A,
to determine the maximum difference between the operand t; and result checksums

elements ¢;.

The difference between the k-th operand checksum element ¢ and its floating-point

representation fI(f;) is bounded by
Ok k
F1Ct) = tel < ac-ena- - 1w O Ll 1A 12 1Bl + 1 -en - I[Celalblo: (D7)
i=1

with w®) being the k-th (1 x o')-weight vector and 1 < k < m’. The term 0j, is the
number of rows in block k and 7}, is the number of non-zero columns in Aj. The term
[Aj]; denotes the i-th row in row block k and the term [C];, is the k-th row in C.

.- in the checksum

Proof: The floating-point representation of a checksum element ¢; ;

matrix C is

fitee) = f1([w04]) - ST (4], (105) 9

i=1

with J; being the upper rounding error bound and

|0,| < 0 -€pp and |6 < (03 +2—1) -y for 1 <i < 0y

162 Appendix D e Additional Proofs

which follows from the direct application of Equation D.4. The floating-point represen-

tation of an operand checksum element fI(f;) is

fI(t) ::fl(zn;fl(ck,j)'bj) Zfl(ck]) bj-(1+9))

]_

([w®1; - [A) by (1+[&i) (1 +6)) (D.9)

with [}]; ; being the upper rounding error bound and |[{y], ;| < 0% - €pr and [[i]; 1] <
(o) +2—1) € with 1 < i < 03. The difference between the operand checksum elements

t, and its floating-point representation fI(ty) is:
n_ Ok
F10 1l =12 [(A by (L4 6)(1+6)) - zck] bl (D.10)
j=1i=1

By reorganizing the terms, applying the triangle inequality while neglecting quadratic

contributions of the machine epsilon O (&%), the difference can be bounded by:

[fI(tk) = tl < Z Z|), i bi [Gilijl+ Ylex, - b;- 0 (D.11)

j=li=1 j=1

An upper estimation can be formulated for this difference: With ;. being the number of
non-zero columns in the row block matrix Ay, 5]- <n'-¢ M- Which allows to substitute
6; with 1y - €. Using [Cxlij < 0k - €pm and the application of the Cauchy-Schwarz

inequality:

[fICtk) = bl < 0% e - Z\ O LAl 1Bl +ni - ear- [[Clilalbl2 (D.12)
i=1

a

The difference between the k-th result checksum element f; and its floating-point

representation fI(t;) can be bounded by:

FICtE) — | < em- (g + o) - [l Z;I w1 [[ALl (D.13)

with 71, being the number of non-zero columns in A;.

D.1 e Rounding Error Bound for Sparse Matrices 163

Proof: The floating-point representation of a result element fI([r];) is
n
fIridi) = 2 [Ak)ij- b (1+ [Eklij) (D.14)
j=1

with [{y]; ; being the upper rounding error bound and |[]; 1| < 7~ €y and [[Gx]; i <
(n+2-j)-epm, (1 <j < n), which follows from Equation D.6. The floating-point

representation of a result checksum element fI(t;) is
1) = f1(w® - fi(ry)) = Z[®; FIrd)1+ ;) (D.15)
i=1
- S [®;-

i=1]

EVj:

[Agli; b (1+ [l 1) (1 +p;) (D.16)

Il
—_

The difference between the k-th result checksum elements f; and its floating-point
representation fI(t;) is:

n

1) 1= 300l ST by (1 Bl)0+ 0) - 2304 b] 17

i=1 j=1

By reorganizing the terms, applying the triangle inequality while neglecting quadratic
contributions of the machine epsilon O(e%,), the difference can be bounded by:

I tk)_tk|<|22], é‘k1]|+IZZ w7 [Ag];; by pil (D.18)

i=1j=1 i=1j=1

An upper estimation can be formulated for this difference. With #;, being the number
of non-zero columns in the row block matrix Ay, [Ck] < ng- €y Using p; < 0% - €y

and the application of the Cauchy-Schwarz inequality:
k
FLCER) = bl < e (g + o) - [b - ZI Ol 1142 - (D.19)
i=1
O

An upper bound 7, is determined for the difference between the floating-point rep-
resentation of ¢, and the floating-point representation of t; by combining the results
from Equations D.7 and D.13 such that [fI(#{) — fI(f;)| < T. At the same time, T} = T:

fIt) = fI(E)| < T = T (D.20)

which leads to Equation 3.13.

164 Appendix D e Additional Proofs

Proof: For the block k, the difference between the floating-point representations of the

operand checksum element f; and the result checksum element f; is
FICk) = IO = f1(Ee) = B+ b = fL(E) =t + £ (D.21)
With t; = t; and the application of the triangle inequality:
<|fECEe) = el + |f1(E) = (D.22)

, the difference can be formulated as

By substituting |f1(;) -t and |fI(£]) - t;

Tk
<ai-ent- Y[L - I[Ai21B12 + i -epr- [[CTil2 1
i=1

Tk
+en- (np+ o) [bla- YI[w O] [[Addill (D.23)
i=1

After reorganization:
FE(Ee) = f1(E)] <

16l -enr- (g +2-030) 5 ([Tl - [[ATi 2 + - 1[Cil)
=: 'lN'k =T - (D24)

APPENDIX

EXPERIMENTAL SETUP AND DATA

This appendix presents the experimental setup with respect to the hardware config-
uration that was used to provide the experimental results in Chapter 7. Besides, this
appendix complements these experimental results by providing additional results for

the different experiments.

E.1 Hardware and Software Parameter

Tables E.1, E.2, and E.3 show the hardware and software specifications of the system

that was used to conduct the experiments.

166 Appendix E e Experimental Setup and Data

v Table E.1 — Host system specification.

CPUs: 2x Intel Xeon E5-2623
GPUs: 4x Nvidia Tesla K80
Memory: 128 GB

Operating system:
GCC version:

Cent OS 6 Linux
4.9.2

CUDA version: 8.0

v Table E.2 — Host CPU specification.
Name: Intel Xeon E5-2623
Cores: 4
Frequency: 3.0 GHz

Theo. double precision peak performance: 96 GFLOPs
Thermal design power: 106 W

v Table E.3 — GPU specification.

Name: Tesla K80

GPU cores: 2xGK210
Microarchitecture: Nvidia Kepler

Stream processors: 2x2496

Clock frequency: 560 MHz

Theo. double precision peak performance: 2.91 TFLOPs
Memory size: 2x12 GByte GDDR5
Memory protection: ECC (memories, caches and registers)
Memory clock: 2.5 GHz

Memory bandwidth: 480 GB/s (aggregated)
Memory interface: 384 Bit

System interface: PCI Express Gen3 x16

Thermal design power: 300 W

E.2 e Fault-tolerant Sparse Matrix-Vector Multiplications 167

E.2 Fault-tolerant Sparse Matrix-Vector
Multiplications

Table E.4 shows the runtime of the original matrix-vector multiplications and the

runtime overhead of the protected matrix-vector multiplications in the error-free case.

Vv Table E.4 — Average runtime of the original sparse matrix-vector multiplica-
tion Ts,pry and average runtime overhead of the protected sparse matrix-vector multi-
plication Og in the error-free case for different block sizes.

Matrix | Tsppy Og FOR BLOCK SIZE 0},
NAME [ms] 1 2 4 8 16 32 64 128 256 512
nos3 33.5(178.2% 148.8% 133.6% 121.5% 115.1% 115.0% 121.9% 125.4% 126.6% 137.9%

besstk10 33.1|1125.1% 110.9% 93.0% 93.3% 91.6% 89.0% 96.5% 99.7%101.6% 111.0%
msc01050 45.0| 83.6% 74.0% 65.7% 60.2% 58.8% 59.1% 62.7% 62.3% 66.9% 69.8%

besstk21 31.71127.7% 95.4% 66.7% 64.0% 63.2% 60.7% 67.4% 69.9% 73.0% 86.3%
besstk11 34.4| 91.1% 89.7% 88.1% 89.2% 87.1% 84.6% 88.4% 90.2% 95.9% 98.0%
nasa2146 37.4/105.4% 100.7% 98.8% 95.5% 95.9% 95.5% 102.8% 104.8% 107.4% 112.7%
sts4098 100.7] 56.4% 54.0% 53.4% 46.2% 47.9% 46.0% 46.6% 48.5% 49.9% 55.5%

besstk13 42.7) 64.0% 62.6% 59.4% 56.7% 58.3% 58.0% 65.3% 64.8% 66.3% 76.5%
msc04515 44.4| 44.4% 43.3% 42.9% 42.6% 44.7% 43.2% 45.6% 45.2% 49.8% 64.0%

ex9 44.1| 56.9% 48.6% 47.8% 46.6% 47.2% 46.7% 47.0% 46.6% 52.3% 56.4%
bodyy4 092.5| 43.2% 35.7% 35.7% 35.2% 33.9% 36.4% 38.5% 38.9% 42.9% 50.6%
bodyy5 54.6| 60.9% 51.2% 51.0% 49.8% 48.5% 50.0% 53.4% 56.8% 58.2% 61.3%
bodyyé6 95.5| 47.9% 42.5% 39.3% 39.1% 37.8% 40.4% 40.7% 41.7% 46.5% 51.4%
Muu 60.6| 76.2% T74.8% 65.7% 65.2% 65.1% 62.5% 72.2% 78.1% 83.6% 94.2%

s3rmt3m3 62.1| 29.8% 28.5% 27.7% 27.8% 28.1% 28.0% 28.4% 28.7% 29.1% 30.7%
s3rmt3m]l 65.1| 42.2% 38.1% 36.1% 35.7% 36.9% 37.6% 39.5% 39.7% 43.3% 52.5%
besstk28 69.5| 49.9% 45.0% 43.9% 42.8% 42.6% 39.4% 41.9% 44.7% 53.1% 72.1%
s3rmq4m1 75.6| 26.5% 23.4% 22.7% 21.9% 20.6% 20.9% 21.7% 22.3% 24.2% 25.6%
besstk16 81.8| 68.3% 67.5% 66.1% 64.8% 62.4% 59.5% 65.2% 67.0% 67.9% 70.7%
Kuu 70.4| 71.7% 62.6% 59.7% 57.0% 51.9% 50.1% 56.1% 60.5% 67.5% 72.2%
besstk38 145.3| 30.6% 25.2% 22.9% 23.0% 21.9% 21.8% 24.3% 25.0% 26.4% 30.0%
msc23052 197.5| 77.3% 50.2% 31.9% 27.9% 27.3% 27.4% 28.7% 33.8% 39.9% 59.1%
msc10848 147.8] 54.6% 36.5% 28.9% 28.1% 24.0% 25.9% 35.7% 40.5% 45.5% 63.1%
cfd2 402.4122.0% 80.0% 60.4% 41.8% 36.0% 29.7% 25.6% 24.2% 23.7% 24.3%
nd3k 296.6/104.7% 64.3% 40.7% 28.8% 24.8% 22.3% 22.1% 31.2% 46.0% 60.8%
ship_001 451.9(109.2% 64.7% 42.2% 27.9% 21.2% 17.2% 16.6% 19.9% 28.4% 40.8%
shipsec5 |1,250.6/106.2% 61.1% 31.8% 20.9% 16.3% 12.4% 10.2% 8.6% 7.0% 7.3%
G3_circuit |1,298.3|113.3% 68.8% 56.3% 46.6% 41.1% 38.0% 38.6% 37.3% 37.6% 38.0%
hood 1,351.0{109.6% 64.1% 38.6% 22.4% 16.7% 13.3% 11.3% 10.7% 15.0% 22.3%
crankseg_1| 930.5| 52.4% 32.3% 20.0% 14.3% 13.4% 12.4% 12.8% 13.5% 16.2% 20.3%

168 Appendix E e Experimental Setup and Data

Table E.5 shows the runtime of the original matrix-vector multiplications and the

runtime overhead of the protected matrix-vector multiplications in case of errors (i.e.,

overhead for error detection and correction).

v Table E.5 — Average runtime of the original sparse matrix-vector multiplica-
tion Tg, 1y and average runtime overhead of the protected sparse matrix-vector multi-
plication Op to detect and correct errors for different block sizes.

Matrix | Ts,py Or FOR BLOCK SIZE 0},

NAME [ms] 1 2 4 8 16 32 64 128 256 512
nos3 33.5/183.3% 158.4% 156.7% 154.4% 155.6% 153.9% 156.2% 165.6% 182.6% 195.8%
besstk10 33.1|143.7% 142.8% 139.1% 136.7% 134.6% 129.5% 133.3% 137.1% 139.2% 154.9%
msc01050 45.0{107.8% 106.6% 104.6% 97.8% 96.3% 98.0% 100.8% 100.5% 103.9% 104.1%
besstk21 31.7|1133.6% 115.0% 97.9% 96.5% 96.2% 91.5% 92.4% 93.2% 102.4% 106.4%
besstk11 34.4(139.8% 138.0% 130.4% 129.9% 126.0% 125.0% 127.9% 129.5% 133.0% 135.9%
nasa2146 37.4{172.3% 170.1% 167.5% 163.4% 162.4% 155.7% 156.1% 156.1% 165.0% 167.3%
sts4098 100.7] 93.5% 84.4% 83.3% 71.2% 64.6% 52.3% 55.2% 61.2% 68.5% 71.7%
besstk13 42.71104.2% 94.7% 91.8% 88.2% 88.0% 86.6% 88.8% 90.1% 92.4% 94.8%
msc04515 44.4| 74.3% 73.0% 72.6% 71.4% 70.4% 69.3% 69.6% 72.0% 72.3% 75.5%
ex9 44.1] 86.0% 84.9% 81.9% 80.5% 78.1% 78.0% 77.1% 80.8% 81.7% 83.7%
bodyy4 52.5| 89.4% 73.2% 69.0% 65.2% 59.7% 62.3% 63.6% 63.6% 65.8% 69.7%
bodyy5 54.6(123.0% 101.2% 97.0% 93.8% 85.9% 84.1% 86.0% 88.1% 88.9% 92.8%
bodyy6 55.5| 82.5% 67.8% 60.8% 58.0% 56.9% 57.0% 57.3% 59.2% 60.0% 65.1%
Muu 60.6{128.2% 117.8% 111.8% 103.5% 103.0% 98.4% 99.3% 103.7% 106.0% 115.4%
s3rmt3m3 62.1| 57.7% 50.5% 50.6% 51.3% 50.7% 46.7% 47.3% 47.3% 47.9% 49.3%
s3rmt3m1 65.1| 76.9% 68.9% 66.6% 65.0% 64.5% 63.7% 63.7% 65.3% 68.9% T7.5%
besstk28 69.5| 69.7% 67.1% 66.1% 64.4% 63.6% 63.1% 66.4% 68.4% 73.8% 82.7%
s3rmq4ml 75.6| 49.8% 42.1% 39.1% 38.1% 37.2% 35.6% 37.8% 38.4% 38.5% 38.6%
besstk16 81.8| 80.6% 79.8% 79.5% 78.1% T4.4% 73.6% 74.4% T4.8% 75.5% 76.4%
Kuu 70.4| 85.0% 73.6% 67.5% 62.0% 60.7% 57.2% 67.9% 74.1% 81.5% 85.3%
besstk38 145.3| 47.3% 43.3% 40.8% 37.2% 34.8% 32.1% 35.7% 39.7% 45.5% 47.9%
msc23052 | 197.5| 96.3% 67.9% 49.8% 43.3% 41.2% 41.5% 38.4% 48.9% 51.4% 62.5%
msc10848 | 147.8| 67.4% 48.7% 44.1% 42.9% 39.6% 40.3% 45.5% 52.5% 55.3% 67.7%
cfd2 402.4/188.4% 118.6% 87.3% 64.3% 54.2% 44.1% 40.3% 37.7% 35.6% 36.3%
nd3k 296.6(110.3% 66.7% 48.4% 40.0% 35.5% 34.0% 33.8% 38.2% 47.5% 64.6%
ship_001 451.9/113.7% 68.9% 48.8% 37.1% 30.0% 24.7% 23.0% 26.3% 32.7% 45.9%
shipsec5 |1,250.6/126.9% 71.7% 41.0% 27.9% 20.8% 16.7% 13.9% 12.4% 11.0% 10.6%
G3_circuit |1,298.3|182.1% 102.7% 77.8% 70.2% 63.8% 50.0% 50.0% 50.6% 50.6% 50.6%
hood 1,351.0[138.8% 79.1% 48.2% 29.6% 22.4% 17.4% 16.3% 16.0% 18.2% 26.3%
crankseg_1| 930.5| 61.5% 38.7% 25.6% 18.4% 16.7% 15.6% 16.4% 16.5% 19.5% 24.9%

E.2 e Fault-tolerant Sparse Matrix-Vector Multiplications 169

Tables E.6 and E.7 show the error coverage with respect to the balanced F;-score of the

protected sparse matrix-vector multiplication in case of errors.

Vv Table E.6 — Balanced F;-score of the protected sparse matrix-vector multiplication
in case of single-bit flip errors for different block sizes.

MATRIX BALANCED F|-sCORE FOR BLOCK SIZE 0}
NAME 1 2 4 8 16 32 64 128 256 512
nos3 063 0.61 0.63 062 0.64 061 064 0.62 0.61 0.65

besstk10 093 092 094 093 094 092 093 093 091 091
msc01050 091 084 084 084 080 087 081 081 0.83 0.80
besstk21 079 0.79 074 0.72 0.71 075 0.77 0.71 0.76 0.73
besstk11 0.77 0.76 0.73 0.73 0.72 0.72 0.67 0.70 0.73 0.79
nasa2146 092 098 092 096 091 090 092 092 092 0.96
sts4098 092 091 088 085 080 082 088 092 0.88 0.88
besstk13 092 0.89 091 087 0.83 087 082 0.84 090 0.86
msc04515 0.79 0.80 0.79 080 0.77 0.75 0.83 0.85 0.71 0.72

ex9 092 090 094 088 082 0.78 092 087 0.86 0.90
bodyy4 095 092 093 092 091 092 093 092 090 0.94
bodyy5 095 095 088 088 086 093 093 093 093 0.93
bodyy6 094 091 096 098 094 097 098 0.93 093 0.96
Muu 096 095 090 091 091 092 088 0.92 0.87 0.90

s3rmt3m3 | 0.92 091 0.88 0.82 0.87 085 0.90 0.85 0.87 0.84
s3rmt3m1 | 0.85 0.77 0.76 0.73 0.77 082 0.83 0.78 0.85 0.85
besstk28 0.71 0.65 0.69 063 0.74 0.68 0.75 0.72 0.67 0.67
s3rmg4ml | 0.88 0.81 0.78 0.81 0.88 0.79 0.82 0.79 086 0.91
besstk16 0.69 068 069 068 068 070 071 073 064 0.68
Kuu 0.62 0.64 058 061 0.61 063 064 0.64 0.64 0.64
besstk38 092 098 094 092 0.87 085 093 095 0.89 0.94
msc23052 094 097 098 095 093 093 097 095 095 0.95
msc10848 082 0.81 076 0.75 0.74 0.71 0.73 0.76 0.68 0.76
cfd2 095 091 089 091 0.89 0.89 087 0.89 0.89 0.87
nd3k 094 091 091 092 092 089 091 0.90 0.89 0.79
ship_001 094 095 097 096 097 094 097 094 095 0.95
shipsec5 0.89 0.89 090 0.88 0.88 0.87 090 0.85 0.88 0.82
G3_circuit | 0.77 0.79 0.77 0.78 0.71 0.75 0.74 0.74 0.73 0.74
hood 094 097 098 097 094 099 098 0.99 094 0.96
crankseg_1 | 0.93 092 0.89 0.92 091 084 0.85 0.86 0.86 0.86

170 Appendix E e Experimental Setup and Data

v Table E.7 — Balanced F;-score of the protected sparse matrix-vector multiplication
in case of multi-bit flip errors for different block sizes.

MATRIX BALANCED F|-SCORE FOR BLOCK SIZE 0}
NAME 1 2 4 8 16 32 64 128 256 512
nos3 0.63 0.62 0.62 0.63 0.62 0.62 065 0.63 0.66 0.65

besstk10 094 094 093 093 094 092 094 093 091 094
msc01050 091 0.87 085 0.83 0.82 088 083 0.82 0.84 0.1
besstk21 0.79 0.80 078 0.77 0.77 076 0.78 0.75 0.76 0.74
besstk11 0.77 0.78 0.77 0.7 0.76 0.75 0.72 0.73 0.75 0.80
nasa2146 092 098 098 097 095 093 093 096 098 0.98
sts4098 092 095 093 091 085 088 092 092 091 0.93
besstk13 092 094 093 090 084 087 088 0.89 091 0.90
msc04515 0.79 0.82 081 0.81 0.80 0.75 0.84 0.87 0.74 0.78

ex9 092 096 096 089 0.87 079 093 091 091 0.93
bodyy4 096 097 095 095 094 094 097 097 094 0.94
bodyy5 095 096 092 091 090 095 094 095 096 0.97
bodyy6 094 097 1.00 0.98 098 098 0.98 098 097 0.99
Muu 096 097 093 095 094 093 092 094 091 0.92

s3rmt3m3 | 0.92 093 091 0.8 0.89 0.89 091 0.87 0.89 0.87
s3rmt3m1 | 0.86 0.82 0.80 0.78 0.80 0.83 0.83 0.84 0.87 0.86
besstk28 0.71 0.70 0.70 0.69 0.76 0.72 0.80 0.73 0.73 0.71
s3rmg4ml | 0.88 0.83 0.80 0.83 090 0.83 0.82 0.83 0.86 0.95
besstk16 0.69 0.70 0.69 0.70 0.70 0.72 0.72 0.73 0.68 0.73
Kuu 0.63 0.66 0.61 0.66 0.65 065 0.66 0.66 0.66 0.67
besstk38 092 098 097 096 090 087 0.96 0.97 095 0.95
msc23052 094 1.00 099 1.00 098 099 098 099 098 0.99
msc10848 0.82 085 0.77 0.77 078 075 074 078 071 0.80
cfd2 095 096 094 093 093 092 091 091 092 0.89
nd3k 094 096 092 094 093 093 092 093 091 0.84
ship_001 094 099 099 1.00 1.00 1.00 1.00 0.99 1.00 1.00
shipsec5 0.90 090 090 0.93 0.89 091 091 0.87 0.89 0.86
G3_circuit | 0.77 0.79 080 0.82 0.73 076 0.76 0.78 0.76 0.79
hood 094 098 098 0.98 1.00 1.00 1.00 1.00 0.99 1.00
crankseg 1 | 0.93 092 094 094 095 089 091 091 088 091

E.3 e Fault Tolerance for Conjugate Gradient Solvers 171

E.3 Fault Tolerance for Conjugate Gradient Solvers

Vulnerability of unprotected Conjugate Gradient Solvers

Tables E.8, E.9, E.10, and E.11 show the vulnerability of the evaluated Conjugate Gradient

Solvers when no fault tolerance technique is applied in case of errors.

v Table E.8 — Number of successfully converged experiments (Conv.), diverged
experiments (Div.), and experiments that resulted in silent data corruptions (SDC) in
case of single-bit flip error injections (i.e. one error injection per experiment).

MATRIX No Jaconr ICC
NAME PRECONDITIONER | PRECONDITIONER | PRECONDITIONER
Conv. Div. SDC | Conv. Div. SDC | Conv. Div. SDC
nos3 459 109 432 427 120 453 429 71 500
bcsstk10 405 357 238 358 370 272 375 125 500
msc01050 328 165 507 382 162 456 367 33 600
bcesstk21 417 229 354 560 200 240 500 0 500
besstk11 542 29 429 571 58 371 550 75 375
nasa2146 203 159 638 222 167 611 269 116 615
sts4098 880 0 120 487 0 513 425 0 575
besstk13 122 123 755 381 48 571 238 95 667
msc04515 111 89 800 500 100 400 525 100 375
ex9 0 125 875 48 95 857 25 125 850
bodyy4 800 50 150 750 50 200 775 50 175
bodyy5 563 62 375 588 59 353 650 50 300
bodyy6 563 124 313 444 167 389 374 188 438
Muu 429 0 571 400 200 400 454 91 455

s3rmt3m3 714 0 286 478 44 478 444 334 222
s3rmt3m1 783 87 130 810 47 143 850 75 75

besstk28 200 200 600 61 30 909 56 111 833
s3rmq4m1 750 62 188 636 91 273 666 167 167
besstk16 71 48 881 200 133 667 200 67 733
Kuu 474 52 474 526 53 421 583 84 333
besstk38 393 0 607 600 50 350 545 91 364
msc23052 91 386 523 7325 902 24 49 927
msc10848 122 82 796 172 0 828 166 42 792
cfd2 897 26 7 821 25 154 880 0 120
nd3k 556 0 444 375 0 625 250 125 625
ship_001 45 46 909 51 77 872 52 104 844
shipsec5 643 71 286 400 57 543 388 68 544
G3_circuit 857 0 143 778 0 222 633 0 367
hood 583 84 333 130 0 870 51 26 923
crankseg_1 266 167 567 383 0 617 225 0 775

172 Appendix E e Experimental Setup and Data

v Table E.9 — Number of successfully converged experiments (Conv.), diverged
experiments (Div.), and experiments that resulted in silent data corruptions (SDC) in
case of multi-bit flip error injections (i.e. one error injection per experiment).

MATRIX No Jacosl ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
Conv. Div. SDC ‘ Conv. Div. SDC | Conv. Div. SDC

nos3 427 120 453 408 132 460 417 83 500
besstk10 353 388 259 354 390 256 313 187 500
msc01050 319 181 500 338 169 493 300 50 650
besstk21 417 200 383 537 204 259 462 0 538
besstk11 0926 53 421 528 56 416 462 76 462
nasa2146 180 157 663 205 178 617 250 83 667
sts4098 833 0 167 463 0 537 447 0 553
besstk13 132 151 717 368 105 527 227 91 682
msc04515 167 83 750 475 100 425 525 100 375
ex9 0 1256 875 23 140 837 25 125 850
bodyy4 800 25 175 725 50 225 775 90 175
bodyy5 533 67 400 563 63 374 647 59 294
bodyy6 428 143 429 412 176 412 286 214 500
Muu 333 0 667 333 222 445 455 90 455

s3rmt3m3 750 0 250 450 50 500 375 250 375
s3rmt3m1 773 91 136 800 50 150 850 75 75

besstk28 100 200 700 29 29 942 625 75 300
s3rmq4ml 733 67 200 550 100 350 611 167 222
besstk16 49 49 902 154 154 692 211 52 737
Kuu 470 59 471 500 56 444 938 77 385
besstk38 393 18 589 975 100 325 529 86 385
msc23052 69 326 605 o7 29 914 30 89 911
msc10848 102 82 816 154 0 846 146 68 786
cfd2 897 26 7 816 26 158 750 50 200
nd3k 500 0 500 2% 0 778 200 100 700
ship_001 22 89 889 26 79 895 39 108 853
shipsec5 444 56 500 387 65 548 374 70 556
G3_circuit 800 0 200 945 0 455 589 0 411
hood 500 83 417 50 20 930 24 49 927

crankseg_1 271 83 646 170 200 630 154 0 846

E.3 e Fault Tolerance for Conjugate Gradient Solvers

173

v Table E.10 — Average number of iterations in the error-free case I, average number
of iterations in case of single-bit flip error injections I (i.e. one error injection per
experiment) and average resulting iteration overhead Of to converge to correct results.

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
Is Ir Op| Is Ik O | I I O
[%] (%] [%]
nos3 275 4189 52.3 250 467.1 86.8 142 261.2 83.9
bcesstk10 3,093 3,240.9 4.8 1,062 1,186.1 11.7 554 611.6 104
msc01050 5,606 7,391.5 30.7 1,359 2,110.2 55.3| 1,481 2,600.0 75.6
bcesstk21 10,937 12,928.8 18.2 790 887.3 12.3 329 384.0 16.7
besstk11 19,259 22,557.2 17.1 5,741 6,810.6 18.6|22,993 24,497.2 6.5
nasa2146 506 720.3 42.3 415 545.0 31.3 359 422.1 17.6
sts4098 15,688 16,758.8 6.8 604 7104 17.6 563 635.7 12.9
besstk13 1,889 3,076.5 62.9 1,573 3,102.6 97.2] 1,489 2,561.9 72.1
msc04515 5,631 9,9876 77.4| 4,827 §,9789 86.0| 4,384 7,160.7 63.3
ex9 77,631 99,179.4 27.8| 17,290 20,340.6 17.6|15,369 25,776.0 67.7
bodyy4 226 256.2 13.3 213 264.0 24.0 284 345.3 21.6
bodyy5 717 764.1 6.6 538 584.7 87| 1,466 1,565.9 6.8
bodyy6 2,184 2,644.5 21.1 1,271 1,295.2 1.9| 1,090 1,212.3 11.2
Muu 44 47.8 8.6 17 19.5 14.8 12 14.7 22.8
s3rmt3m3 838 876.1 4.5| 15,436 16,193.8 4.9|10,935 13,536.1 23.8
s3rmt3ml 76,595 86,501.5 12.9| 11,692 14,826.6 26.8|65,550 71,643.7 9.3
bcsstk28 13,776 24,199.0 75.7| 5,142 §,309.1 61.6| 3,138 6,213.0 98.0
s3rmq4ml | 50,410 72,210.5 43.2 8,070 10,550.5 30.7[48,955 72,914.6 48.9
bcesstk16 620 630.7 1.7 279 2849 2.1 225 228.8 1.7
Kuu 684 697.5 2.0 545 585.0 7.4 243 261.7 7.7
bcsstk38 19,575 21,2327 85| 15,001 15,333.8 2.2|37,301 39,232.7 5.2
msc23052 | 284,012 309,322.2 8.9(217,329 243,577.5 12.1|37,100 41,234.5 11.1
msc10848 | 110,121 122,343.4 11.1 5,782 6,767.9 17.1| 5,147 6,095.3 184
cfd2 2,395 2,544.7 6.3| 4,984 5,103.3 24| 2,010 2,239.3 114
nd3k 4,214 4,789.4 13.7| 7,509 9,665.2 28.7| 4,338 4,792.5 10.5
ship_001 96,123 101,334.2 54| 59,961 66,094.0 10.2|86,456 98,232.7 13.6
shipsec5 8,144 9,123.6 12.0| 4,814 5,606.6 16.5| 7,156 7,423.9 3.7
G3_circuit 9,391 9,491.5 1.1 3,070 3,914.9 27.5| 6,231 11,661.1 87.1
hood 17,592 27,938.2 58.8 7,299 15,234.6 108.7| 7,295 7,450.0 2.1
crankseg_1 2,884 3,126.7 8.4 958 980.6 2.4 742 759.4 24

174 Appendix E e Experimental Setup and Data

v Table E.11 — Average number of iterations in the error-free case Ig, average number
of iterations in case of multi-bit flip error injections I (i.e. one error injection per
experiment) and resulting average iteration overhead O to converge to correct results.

MATRIX No Jacosl ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
Is I O | Is I O | Is Ir O
[%] (%] [%]
nos3 275 488.6 T77.7 250 494.3 97.7 142 260.5 83.5
bcsstk10 3,093 3,532.7 14.2| 1,062 1,173.5 10.5 554 607.3 9.6
msc01050 5,606 7,901.5 39.7| 1,359 @ 2,295.8 68.9| 1,481 2,845.8 92.2
bcesstk21 10,937 12,965.5 18.5 790 942.2 19.3 329 399.3 214
besstk11 19,259 23,751.2 23.3| 5,741 7,256.8 26.4|22,993 29,114.2 26.6
nasa2146 506 721.5 42.6 415 545.9 31.5 359 504.8 40.6
sts4098 15,688 17,0754 8.8 604 725.2 20.1 563 688.0 22.2
besstk13 1,889 4,634.6 145.3| 1,573 4,111.8 161.4| 1,489 2,642.9 77.5
msc04515 5,631 11,122.6 97.5| 4,827 9,521.2 97.2| 4,384 7,473.0 70.5
ex9 77,631 96,342.6 24.1| 17,290 21,333.6 23.4|15,369 25,613.0 66.7
bodyy4 226 286.2 26.6 213 274.4 28.8 284 385.3 35.7
bodyy5 717 774.0 8.0 538 592.7 10.2| 1,466 1,968.8 34.3
bodyy6 2,184 2,247.0 29| 1,271 1,396.8 9.9| 1,090 1,213.6 11.3
Muu 44 48.8 10.9 17 20.0 17.6 12 18.5 54.2
s3rmt3m3 838 896.5 7.0| 15,436 16,793.9 8.8/10,935 13,437.6 22.9
s3rmt3m1 76,595 92,642.6 21.0| 11,692 13,880.0 18.7|65,550 75,203.5 14.7
bcsstk28 13,776 34,631.9 151.4| 5,142 11,381.6 121.3| 3,138 6,261.5 99.5
s3rmq4ml | 50,410 75,214.5 49.2] 8,070 11,796.7 46.2]48,955 73,153.8 49.4
bcesstk16 620 630.7 1.7 279 290.4 4.1 225 235.7 4.7
Kuu 684 695.6 1.7 545 596.1 9.4 243 2617 7.7
bcsstk38 19,575 21,354.6 9.1| 15,001 15,739.4 4.9|37,301 42,232.2 13.2
msc23052 |284,012 315,043.5 10.9|217,329 254,932.0 17.3|37,100 41,133.2 10.9
mscl10848 |[110,121 133,443.7 21.2| 5,782 6,807.5 17.7| 5,147 5,892.1 14.5
cfd2 2,395 2,544.7 6.3| 4,984 5,162.3 3.6| 2,010 2,112.8 5.1
nd3k 4,214 4,988.5 18.4| 7,509 9,915.3 32.0| 4,338 4,760.2 9.7
ship_001 96,123 101,483.7 5.6| 59,961 67,393.1 12.4]86,456 98,242.2 13.6
shipsec5 8,144 9,712.2 19.3| 4,814 5,820.0 20.9| 7,156 §,423.6 17.7
G3_circuit 9,391 15,486.6 64.9| 3,070 4,050.6 31.9| 6,231 9,416.1 51.1
hood 17,592 37,9474 115.7| 7,299 16,361.0 124.2| 7,295 15,523.6 112.8
crankseg 1| 2,884 3,093.3 7.3 958 996.0 4.0 742 7549 1.7

E.3 e Fault Tolerance for Conjugate Gradient Solvers 175

Runtime overhead for error detection

Table E.12 shows the runtime overhead for error detection that the fault tolerence

technique presented in Chapter 4 induces.

Vv Table E.12 — Average execution time for unprotected solver execution Tg, average
execution time for protected solver execution Tp, average runtime overhead for error
detection Op in the error-free case.

MATRIX No Jacosi ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
Ts T, Op| Ts T, Op| Ts T, Op
[s] [s]1 (%] I[s] [s] [%] (s] (s] (%]
nos3 0.045 0.046 3.83 0.045 0.046 2.30 0.215 0.216 0.41
bcesstk10 0.421 0.432 2.59 0.168 0.172 2.23 1.337 1.339 0.15
msc01050 1.301 1.335 2.61 0.338 0.346 2.41 1.266 1.274 0.70
besstk21 1.995 2.044 2.42 0.160 0.163 2.18 0.230 0.231 0.63
besstk11 3.092 3.172 2.60 1.025 1.049 2.34 44.488 44.584 0.22
nasa2146 0.078 0.080 2.26 0.072 0.073 2.00 0.984 0.985 0.13
sts4098 4.249 4.343 2.23 0.175 0.179 2.08 1.341 1.344 0.25
bcesstk13 0.403 0.414 2.77 0.366 0.375 2.55 7.701 7.710 0.11
msc04515 1.142 1.177 3.04 1.073 1.103 2.78 12.910 12.937 0.21
ex9 13.141 13.509 2.79 3.252 3.334 2.51 97.834 97.906 0.07
bodyy4 0.320 0.322 0.61 0.309 0.310 0.60 1.685 1.688 0.15
bodyy5 0.996 1.001 0.48 0.761 0.765 0.47 8.172 8.182 0.12
bodyy6 2.827 2.842 0.52 1.679 1.687 0.51 5.458 5.465 0.13
Muu 0.015 0.015 2.23 0.006 0.006 2.09 0.037 0.037 0.25

s3rmt3m3 0.186 0.191 2.73| 3.758 3.852 2.49| 110.578 110.644 0.06
s3rmt3m1 17.036 17.506 2.76 2.829 2901 2.53| 286.574 286.976 0.14

besstk28 3.242 3.326 2.58 1.311 1.342 2.38 27.571 27.590 0.07
s3rmg4ml | 11.941 12.253 2.62 2079 2129 241| 264.145 264.448 0.11
besstk16 0.142 0.146 2.62 0.070 0.071 2.41 1.936 1.937 0.07
Kuu 0.198 0.202 2.12 0.169 0.173 1.98 1.476 1.477 0.10
besstk38 7930 8.051 1.53| 6.393 6486 1.46| 780.942 781.173 0.03

msc23052 | 601.164 603.248 0.35|466.721 468.315 0.34| 213.110 213.382 0.13
msc10848 | 220.138 220.918 0.35| 11.716 11.757 0.35 76.324 76.361 0.05
cfd2 8.0568 8.079 0.26| 17.130 17.174 0.26 54.529 54.547 0.03
nd3k 8.080 8.106 0.33| 14.562 14.609 0.32 95.078 95.105 0.03
ship_001 247.141 247.815 0.27|156.082 156.503 0.27|1,778.494 1,779.100 0.03
shipsec5 44.174 44.254 0.18| 26.574 26.622 0.18 | 206.376 206.447 0.03
G3_circuit |213.697 214.191 0.23| 71.989 72.150 0.22| 333.831 334.158 0.10
hood 112.940 113.170 0.20 | 47.689 47.784 0.20| 149.683 149.778 0.06
crankseg 1| 14.277 14.299 0.15 4.782 4.789 0.15 23.146 23.152 0.02

176 Appendix E e Experimental Setup and Data

Error correction overhead

Tables E.13, E.14, E.15, and E.16 show the iteration overhead required for convergence
to a correct result in case of single-bit flip error injections. Experiments using rounding
error thresholds T that lead to false positive error detections in error-free executions

are indicated by n/a.

v Table E.13 — Average iteration overhead for error correction in case of one single-bit
flip error injection with respect to different 7 € [10710, 1076].

MATRIX No Jacosl ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
7:=1107° 107 10® 1077 107¢|107° 107 10™® 1077 10°%{107'° 107 107® 1077 107

(%] [%] [%] [%] [%]|[%] [%] [%] [%] [%]|[%] [%] [%] [%] [%]

nos3 99 99 99 88 96| 114 81 81 83 5.7 13.1 12.011.9 94 9.6
besstk10 83 9.6 9.5 99 93| 96 83 81 52 5.0/ 152108 11.1 9.6 8.0
msc01050 n/a n/a 7.8 3.6 3.0/ n/a n/a 2.1 4.5 13.0/ n/a n/a 9.1 87 9.8
besstk21 3.5 69 7.7 6.2 65| 82 6.1 33 3.7 26/ 6.3 6.1 39 36 29
besstk11 n/a n/a 11.5 12.0 9.7| n/a n/a 13.6 15.6 10.0| n/a n/a 8.0 9.2 8.6
nasa2146 1.7 2.1 1.1 1.2 1.3| 23 25 24 24 24| n/a n/a 6.7 58 4.3
sts4098 n/a n/a 2.7 2.5 3.0/ 3.0 41 5.0 5.0 3.7 7.1 6.3 6.1 6.2 4.6
besstk13 n/a n/a 0.5 09 25| 21 24 93 9.7 59| 81122 83128 9.9
msc04515 | 12.7 86 5.0 39 39| 3.7 46 7.0 121 73| n/a n/a 10.1 9.2 11.3

ex9 n/a n/a 02 13 34| 1.7 1.7 0.8 04 12| n/a n/a 3.7 3.3 3.2
bodyy4 06 1.0 06 0.6 06| 06 0.0 0.0 07 03| n/a n/a 04 0.5 0.7
bodyy5 04 1.7 14 13 11| 1.8 1.7 16 1.6 1.6| n/a n/a 09 1.3 1.6
bodyy6 n/a n/a 0.2 03 0.1 0.7 0.7 1.1 1.0 1.8/ 08 0.8 1.1 1.2 1.5
Muu 1.8 23 23 24 23| 09 09 09 09 09| 38 38 38 38 3.8

s3rmt3m3 | 0.2 1.1 10.5 10.5 10.8| 5.7 5.7 7.3 11.6 11.7| n/a n/a 12.8 20.0 26.9
s3rmt3m1 | 3.1 4.1 3.0 41 16| 6.7 7.7 78 7.7 88| n/a n/a 11.1 10.0 13.5
besstk28 n/a n/a 3.2 6.8 12.5| n/a n/a 5.2 3.1 14.4| n/a n/a 11.6 12.7 15.8
s3rmg4m1 | 5.1 3.6 6.9 7.1 43| 99109 100 80 2.7 n/a n/a 42 42 53
besstk16 3.5 14.7 13.1 13.0 12.6| 12.3 12.7 10.5 85 7.7] 123 11.8 10.1 8.3 6.9
Kuu 3.8 35 35 35 24| 96 93 92 93 85| n/a n/all4 11.0 9.8
besstk38 n/a n/a 83 42 54| 60 72 56 4.0 40| n/a n/a 03 04 49
msc23052 30 1.2 05 03 04 45 47 3.7 3.6 41| n/a n/a 55 4.2 152
msc10848 n/a n/a 2.9 18 2.7| n/a n/a 81 9.4 11.7| n/a n/a 13.6 10.2 10.1
cfd2 5.5 11.8 11.5 11.1 11.3| 2.7 2.7 27 24 3.3]12.1 12.1 11.9 11.7 11.7
nd3k 1.9 1.2 12 03 17 19 25 20 20 33| 94102 91 73 84
ship_001 n/a n/a 40 3.1 3.9| n/a n/a 4.0 2.5 25| n/a n/a 02 0.7 4.7
shipsec5 n/a n/a 0.7 1.4 10.3| n/a n/a 2.0 1.3 2.5| n/a n/a 1.1 1.6 7.9
G3_circuit | 0.6 0.6 04 0.3 04| 28 2.7 2.7 26 42| n/a n/a 33 24 24
hood 36 28 39 26 7.7 08 14 14 15 2.7 3.0 25 24 22 26
crankseg_1| n/a n/a 5.6 54 73| n/a n/a 48 48 6.5 n/a n/a 9.4 12.2 12.1

E.3 e Fault Tolerance for Conjugate Gradient Solvers

177

v Table E.14 — Average iteration overhead for error correction in case of two single-bit
flip error injections with respect to different T € [107°,107%].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=(107'% 107 107® 1077 107°[107*° 107 107® 1077 107|107 107 107® 1077 107°
(%] [%] [%] [%] [%]] (%] [%] [%] [%] [%]][%] [%] [%] [%] [%]
nos3 18.3 17.7 19.9 15.2 13.9| 19.0 18.9 18.6 19.0 13.8| 21.9 22.5 20.2 17.2 14.2
besstk10 9.7 9.7 9.8 10.0 9.9/ 14.1 17.2 13.6 12.7 12.8| 22.2 18.2 15.8 15.2 14.4
msc01050 n/a n/a 80 5.6 12.8| n/a n/a 4.6 9.2 16.1| n/a n/a 17.3 17.7 18.6
besstk21 3.7 85 80 7.9 7.6|13.110.7 88 7.9 7.0|12.3 10.7 11.1 11.4 11.0
besstk11 n/a n/a 15.9 14.9 15.1| n/a n/a 24.8 24.4 24.6| n/a n/a 12.7 13.1 14.8
nasa2146 29 2.8 29 34 38 29 32 31 3.0 33| n/a n/a 88 6.7 5.4
sts4098 n/a n/a 6.1 58 57/ 53 53 7.0 68 81| 7.5 6.4 6.2 6.5 6.8
besstk13 n/a n/a 4.3 4.7 3.2| 3.8 9.1 16.2 16.6 15.7| 20.2 22.0 19.6 21.9 22.8
msc04515 | 15.2 10.8 10.4 11.7 89| 14.1 13.2 10.4 12.3 12.1| n/a n/a 16.1 154 11.7
ex9 n/a n/a 3.2 49 53|168 88 1.7 1.2 1.2| n/a n/a 85 5.1 10.8
bodyy4 0.8 1.5 1.5 1.6 1.6/ 0.8 0.7 0.7 0.8 0.7] n/a n/a 0.9 13 2.1
bodyy5 06 1.7 1.6 14 13| 22 21 21 1.7 17| n/a n/a 19 23 28
bodyy6 n/a n/a 1.2 1.0 2.5 41 3.9 3.0 3.3 3.0/ 3.1 2.7 25 2.6 2.7
Muu 24 3.1 31 34 35| 38 38 3.8 3.8 4.1|14.6 15.8 15.8 16.3 17.1
s3rmt3m3 2.0 2.5 13.7 13.6 11.6| 13.5 14.0 14.7 17.1 28.0| n/a n/a 19.6 20.3 31.2
s3rmt3ml 52 46 4.6 4.6 3.7] 12.1 16.1 17.0 23.9 17.5| n/a n/a 19.6 20.1 22.9
besstk28 n/a n/a 4.6 6.8 17.0| n/a n/a 9.2 8.0 30.9| n/a n/a 20.8 21.3 26.0
s3rmq4ml | 5.3 6.5 7.0 7.5 8.6| 10.8 12.2 14.0 14.9 24.8| n/a n/a 11.5 10.9 12.1
bcesstk16 3.6 15.5 15.5 15.6 14.4| 15.8 14.4 13.7 13.6 12.6| 13.2 13.4 13.5 14.0 14.4
Kuu 7.7 6.7 6.8 59 53| 134 12.6 12.2 12.6 11.3| n/a n/a 16.9 15.3 13.7
bcsstk38 n/a n/a 84 6.3 14.8| 10.3 10.7 88 7.5 8.4| n/a n/a 15.0 15.4 8.1
msc23052 44 3.8 22 1.3 0.5 4.7 51 53 53 44| n/a n/a 104 9.9 15.8
msc10848 n/a n/a 3.8 3.1 2.7| n/a n/a 16.5 18.0 13.4| n/a n/a 20.6 20.6 17.7
cfd2 6.2 12.3 12.1 11.7 12.0] 4.3 4.6 4.0 4.0 3.7 12.4 12.3 12.2 12.2 12.3
nd3k 2.8 43 42 6.3 19| 7.0 85 87 59 4.5/ 10.7 10.8 11.1 10.5 11.1
ship_001 n/a n/a 4.0 3.9 5.0/ n/a n/a 10.7 10.2 7.1| n/a n/a 0.5 1.3 5.9
shipsec5 n/a n/a 3.7 10.8 10.3| n/a n/a 24 1.7 2.6| n/a n/a 1.6 1.6 12.9
G3_circuit | 0.7 1.0 09 0.8 09| 3.6 33 3.3 33 52| n/a n/a 3.9 2.6 3.5
hood 5.7 83 9.5 55 86| 34 24 24 23 3.0 41 4.0 39 4.0 4.9
crankseg 1| n/a n/a 6.1 6.0 10.9| n/a n/a 9.6 7.5 6.9| n/a n/a 24.5 27.7 23.6

178 Appendix E e Experimental Setup and Data

v Table E.15 — Average iteration overhead for error correction in case of five single-bit
flip error injections with respect to different T € [1071%,1079].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=107"° 107 107® 1077 107%]{107*° 10 107® 107" 107°|107*° 107 10™® 1077 107°
(%] [%] [%] [%] [%]][%] [%] [%] [%] [%]]|[%] [%] [%] [%] [%]
nos3 23.8 27.1 26.5 23.9 19.5| 26.5 26.8 26.6 25.5 25.0| 27.5 27.6 29.7 29.3 28.2
bcsstk10 11.5 12.9 12.4 11.5 13.8| 21.6 22.4 21.3 22.2 20.5| 28.4 27.3 25.3 24.2 22.8
msc01050 n/a n/a 9.2 5.7 14.9| n/a n/a 6.7 14.3 16.9| n/a n/a 29.8 36.2 35.4
bcesstk21 4.5 11.4 9.6 124 11.0] 21.3 20.2 18.9 19.4 18.5| 18.5 20.5 21.4 20.8 22.3
besstk11 n/a n/a 23.5 20.3 21.8| n/a n/a 29.3 29.6 29.3| n/a n/a 17.5 17.4 20.5
nasa2146 39 46 53 55 6.0/ 46 4.2 4.5 55 88| n/a n/all.l 94 84
sts4098 n/a n/a 83 7.2 9.8 6.0 8.2 12.8 13.3 19.7| 12.9 13.7 13.4 14.4 15.8
besstk13 n/a n/a 6.6 10.8 16.4| 8.0 12.2 22.1 24.0 27.0| 22.4 24.8 35.6 37.7 34.7
msc04515 | 15.7 13.2 12.1 12.1 12.9| 14.5 13.9 20.0 19.4 12.6| n/a n/a 24.7 22.5 28.7
ex9 n/a n/a 6.6 10.6 7.2| 20.2 144 2.8 2.4 4.2| n/a n/a 93 9.8 13.2
bodyy4 1.0 19 1.8 23 30| 09 08 08 15 13| n/a n/a 1.0 1.7 3.9
bodyy5 0.8 25 2.7 26 23| 24 25 2.6 2.7 27| n/a n/a 84 11.0 12.8
bodyy6 n/a n/a 1.4 29 29| 6.3 6.7 6.0 53 57 64 6.6 6.0 55 5.2
Muu 25 42 44 44 47| 82 82 82 85 88|16.7 16.7 17.1 17.1 17.5
s3rmt3m3 3.7 4.8 16.9 16.9 19.5| 22.1 18.6 17.8 25.2 28.4| n/a n/a 23.5 21.3 32.5
s3rmt3m1 | 11.3 14.0 11.7 10.4 12.0| 24.4 26.8 22.8 28.4 29.9| n/a n/a 25.3 22.5 36.7
bcsstk28 n/a n/a 6.7 10.0 22.4| n/a n/a 14.3 10.6 31.4| n/a n/a 35.1 26.3 26.7
s3rmq4m1 | 14.4 18.7 18.9 19.5 18.0| 17.3 23.3 20.7 25.1 26.4| n/a n/a 23.5 18.9 23.3
bcesstk16 6.6 21.4 22.0 20.8 20.8| 18.5 17.4 15.9 17.1 16.2| 20.5 16.6 15.8 17.4 18.0
Kuu 12.2 10.6 10.4 10.0 9.5| 17.8 16.3 16.0 15.2 14.9| n/a n/a 19.5 20.4 19.8
besstk38 n/a n/a 10.6 8.4 27.1| 20.0 24.9 19.0 18.8 18.2| n/a n/a 19.9 15.4 17.5
msc23052 52 50 23 14 21105 9.1 81 84 9.2| n/a n/a 10.7 10.3 17.7
msc10848 n/a n/a 7.1 10.7 9.9 n/a n/a 21.2 24.3 24.1| n/a n/a 21.0 22.8 23.9
cfd2 6.4 12.4 12.1 11.7 12.3| 4.8 4.8 4.6 4.3 4.2| 12.6 12.7 12.5 12.5 12.8
nd3k 6.2 72 7.9 88 7.0 99 10.8 10.3 7.7 7.2| 13.3 12.0 12.9 12.5 12.1
ship_001 n/a n/a 82 59 6.0/ n/a n/a 23.6 16.7 12.0| n/a n/a 0.8 2.1 16.7
shipsec5 n/a n/a 6.9 10.8 10.5| n/a n/a 4.7 3.1 2.8/ n/a n/a 1.8 2.2 18.5
G3_circuit | 1.3 1.6 1.5 1.6 3.0 48 4.2 3.3 3.8 9.5| n/a n/a 52 5.0 5.5
hood 14.8 13.3 14.8 10.2 9.7 55 4.1 3.8 32 52| 55 46 4.1 4.3 5.6
crankseg 1| n/a n/a 9.2 9.9 12.7| n/a n/a 15.4 15.2 15.3| n/a n/a 27.1 28.8 28.7

E.3 e Fault Tolerance for Conjugate Gradient Solvers

179

v Table E.16 — Average iteration overhead for error correction in case of ten single-bit
flip error injections with respect to different T € [107°,107%].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=(107'% 107 107® 1077 107°[107*° 107 107® 1077 107|107 107 107® 1077 107°
(%] [%] [%] [%] [%]] (%] [%] [%] [%] [%]][%] [%] [%] [%] [%]
nos3 24.6 27.3 27.7 25.0 25.6| 29.8 30.0 27.3 29.1 29.6| 27.7 33.0 29.7 29.5 31.0
besstk10 12.8 13.7 14.5 14.7 14.6| 25.4 24.9 23.6 23.7 22.7| 28.6 28.1 26.5 24.9 24.4
msc01050 n/a n/a 11.4 5.9 15.6| n/a n/a 8.3 19.3 20.5| n/a n/a 36.5 36.7 40.5
besstk21 7.0 13.4 17.0 15.7 16.1| 22.4 23.3 23.1 23.6 23.6| 21.5 23.7 22.5 23.4 23.1
besstk11 n/a n/a 24.2 20.6 25.4| n/a n/a 31.7 34.1 31.2| n/a n/a 19.9 17.8 274
nasa2146 46 55 6.4 7.1 6.6/ 53 55 54 59 17.1| n/a n/a 11.3 10.6 9.8
sts4098 n/a n/a 10.5 11.6 16.9| 7.5 10.1 22.2 20.6 20.5| 14.6 19.4 19.1 18.5 21.2
besstk13 n/a n/a 8.9 15.6 17.5| 9.0 15.7 25.1 25.5 32.6| 24.0 28.0 35.8 38.4 38.7
msc04515 | 23.8 23.9 21.8 22.6 21.9| 15.6 17.9 21.2 20.1 14.9| n/a n/a 24.8 23.3 35.9
ex9 n/a n/a 8.8 11.1 8.0| 23.3 15.0 4.6 3.4 6.2| n/a n/a 9.5 10.4 19.4
bodyy4 1.5 3.7 35 36 33| 23 14 15 1.7 3.2| n/a n/a 1.1 2.0 6.5
bodyy5 1.0 42 40 42 4.6 2.8 3.1 3.1 3.3 3.7 n/a n/a 17.5 12.7 14.9
bodyy6 n/a n/a 2.8 3.0 4.6/ 9.6 9.1 85 89 93| 89 9.7 9.1 10.1 9.8
Muu 5.8 6.9 69 69 68| 174 174 174 174 17.4| 27.1 27.1 35.4 35.4 35.4
s3rmt3m3 9.5 9.4 24.4 21.7 21.1| 25.8 27.7 18.0 35.7 29.4| n/a n/a 24.8 24.9 34.4
s3rmt3m1 | 11.7 14.1 14.6 16.2 20.2| 26.3 28.6 30.7 28.9 30.9| n/a n/a 25.6 24.9 40.5
bcesstk28 n/a n/a 8.9 13.4 28.3| n/a n/a 19.8 16.6 32.7| n/a n/a 36.5 27.1 27.0
s3rmq4ml | 24.1 28.2 25.9 24.2 28.7| 28.0 26.7 22.5 28.1 28.2| n/a n/a 24.8 19.7 34.4
besstk16 7.0 25.2 24.9 22.2 26.8| 22.6 22.8 22.3 21.4 23.0| 23.0 22.0 20.6 22.0 22.7
Kuu 14.0 14.9 14.2 12.6 13.0| 18.1 18.8 17.4 18.7 16.0| n/a n/a 21.9 20.8 20.5
bcsstk38 n/a n/a 12.8 15.1 31.6| 23.8 29.5 23.3 24.6 23.2| n/a n/a 30.3 33.6 19.4
msc23052 58 5.0 3.9 25 3.1|11.2 12.3 12.7 12.2 11.1| n/a n/a 11.7 10.5 17.8
msc10848 n/a n/a 8.2 10.9 10.8| n/a n/a 27.9 31.0 27.9| n/a n/a 31.9 28.1 32.9
cfd2 6.9 12.5 12.4 11.9 12.3| 5.6 5.5 54 5.0 6.1| 12.7 12.8 12.5 12.6 13.6
nd3k 10.6 9.4 8.2 10.0 9.0| 13.5 12.3 10.5 7.7 10.2| 16.5 14.0 14.8 16.0 13.1
ship_001 n/a n/a 10.4 10.6 12.6| n/a n/a 25.9 25.3 24.6| n/a n/a 1.0 3.9 17.5
shipsec5 n/a n/a 8.8 11.8 10.5| n/a n/a 80 6.5 85| n/a n/a 2.0 5.0 18.6
G3_circuit 21 26 20 3.0 64| 53 49 50 5.7 11.9| n/a n/a 53 55 7.3
hood 19.2 16.3 15.4 14.2 10.6| 5.8 4.7 4.7 49 9.0, 6.0 58 5.6 6.1 5.8
crankseg 1| n/a n/a 11.5 10.6 23.0| n/a n/a 21.6 21.3 19.6| n/a n/a 28.6 29.7 33.7

180 Appendix E e Experimental Setup and Data

Tables E.17, E.18, E.19, and E.20 show the iteration overhead required for convergence
to a correct result in case of multi-bit flip error injections. Experiments using rounding
error thresholds T that lead to false positive error detections in error-free executions

are indicated by n/a.

v Table E.17 — Average iteration overhead for error correction in case of one multi-bit
flip error injection with respect to different 7 € [10710, 1076].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
7:=1107° 107 107® 1077 107¢|107° 107 10™® 1077 107°%[107'° 107 107® 1077 1076

(%] [%] [%] [%] [%]|[%] [%] [%] [%] [%]|[%] [%] [%] [%] [%]

nos3 12.0 12.0 11.0 11.0 99| 70 74 7.9 8.0 10.2| 12.5 11.5 9.0 9.0 6.7
besstk10 94 95 9.2 91 89| 91 7.7 64 50 6.6/ 189 10.5 89 10.1 7.7
msc01050 n/a n/a 4.6 4.7 12.3| n/a n/a 6.1 4.0 18.4| n/a n/a 9.9 10.7 10.5
besstk21 09 73 82 70 72| 89 6.9 50 3.0 57 7.0 6.3 48 44 4.0
besstk11 n/a n/a 11.0 11.4 10.3| n/a n/a 13.0 15.3 12.8| n/a n/a 9.7 9.3 9.2
nasa2146 26 20 16 14 12| 21 24 23 23 24| n/a n/a 79 57 4.3
sts4098 35 34 27 19 2.6| 34 44 48 48 4.0 6.7 6.4 6.1 59 5.0
besstk13 12.4 11.3 10.3 84 7.7| 11.1 12.4 12,5 10.5 7.0/ 10.3 7.5 69 6.4 4.5
msc04515 | 104 83 5.2 4.1 5.8/ 3.6 84 81 11.0 13.0| n/a n/a 11.9 12.7 10.7

ex9 n/a n/a 04 0.7 12| n/a n/a 0.6 0.7 1.1| n/a n/a 4.7 5.1 54
bodyy4 1.1 1.2 07 05 07| 07 0.7 07 05 0.7/ n/a n/a 0.7 0.7 0.6
bodyy5 02 16 14 12 10| 1.7 16 1.6 1.6 1.5| n/a n/a 1.1 14 15
bodyy6 n/a n/a 0.3 0.2 0.2/ 1.0 1.0 1.0 1.1 1.1, 0.9 0.6 0.6 0.8 0.8
Muu 26 24 25 25 24 0.8 0.8 0.8 0.8 34| 44 44 44 44 4.4

s3rmt3m3 0.6 0.2 11.4 10.0 10.2| 15.3 12.4 7.5 10.3 19.9| n/a n/a 24.6 25.7 27.8
s3rmt3m1 09 1.2 0.8 3.0 1.5]|15.7 13.5 10.3 10.6 12.9| n/a n/a 13.8 13.9 15.0
bcesstk28 n/a n/a 4.7 5.7 13.0/ n/a n/a 6.8 6.6 14.6| n/a n/a 15.2 14.9 14.6
s3rmg4ml | 3.5 2.7 4.1 49 4.7|10.3 11.7 13.3 10.3 7.3| n/a n/a 53 5.2 4.7
besstk16 4.2 139 12,5 12.6 10.5| 11.7 12.1 89 &1 7.7| 12.0 11.0 9.8 6.3 6.5
Kuu 3.8 35 35 35 24| 95 92 9.1 93 84| n/a n/all.l 11.4 10.2
besstk38 n/a n/a 1.8 3.0 2.3|11.0 9.6 51 3.7 3.7 n/a n/a 0.1 0.1 0.0
msc23052 00 00 04 12 02| 48 49 3.8 35 47| n/a n/a 69 69 6.3
msc10848 n/a n/a 1.0 3.0 12.3| n/a n/a 82 11.3 11.3| n/a n/a 15.4 12.1 12.0
cfd2 6.8 12.0 12.0 11.8 11.5| 2.8 2.8 2.8 2.5 25|12.2 124 122 11.9 119
nd3k 04 05 05 21 0.0 19 27 19 1.8 45| 93 89 80 91 7.9
ship_001 n/a n/a 04 0.1 22| n/a n/a 2.7 24 20| n/a n/a 1.0 1.0 1.2
shipsec5 n/a n/a 0.1 0.1 1.3| n/a n/a 19 1.3 13| n/a n/a 2.0 21 1.5
G3_circuit | 0.7 09 0.7 07 04| 29 28 28 32 34| n/a n/a 35 3.0 29
hood 36 31 32 26 21, 1.7 14 15 1.7 40| 3.0 29 23 21 2.1
crankseg_1| n/a n/a 04 1.0 7.6| n/a n/a 48 4.8 6.4| n/a n/a 12.1 12.8 13.0

E.3 e Fault Tolerance for Conjugate Gradient Solvers

181

v Table E.18 — Average iteration overhead for error correction in case of two multi-bit
flip error injections with respect to different T € [107,107%].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=(107'% 107 107® 1077 107°[107*° 107 107® 1077 107|107 107 107® 1077 107°
(%] [%] [%] [%] [%]] (%] [%] [%] [%] [%]][%] [%] [%] [%] [%]
nos3 19.9 21.5 20.3 15.9 12.7| 23.2 19.5 19.2 15.9 14.7| 21.1 21.7 20.4 18.5 15.5
besstk10 10.0 9.9 10.2 9.4 9.3| 17.9 16.3 12.9 12.1 12.2] 19.9 16.3 13.4 16.2 14.1
msc01050 n/a n/a 82 9.9 13.3| n/a n/a 7.0 10.2 21.0| n/a n/a 18.4 18.7 16.6
besstk21 1.5 73 87 88 86| 14.4 12.1 10.4 82 88| 13.512.0 12.1 13.0 9.7
besstk11 n/a n/a 18.1 16.7 16.8| n/a n/a 21.8 21.1 21.7| n/a n/a 12.9 13.6 13.1
nasa2146 2.8 2.7 2.7 33 3.6 25 30 29 28 29| n/a n/a 88 6.7 5.5
sts4098 88 7.9 4.7 55 32| 35 52 6.2 6.1 73| 74 6.5 6.2 6.2 6.2
besstk13 17.2 17.2 16.1 12.8 16.8| 14.4 15.1 22.8 17.1 16.7| 21.3 16.2 23.6 21.9 26.3
msc04515 | 13.8 83 8.1 10.2 6.5| 6.1 10.1 9.2 16.5 14.2| n/a n/a 15.1 15.2 14.5
ex9 n/a n/a 0.7 1.2 19| n/a n/a 14 14 13| n/a n/a 78 83 94
bodyy4 16 14 15 14 13| 08 08 09 0.7 08| n/a n/a 25 25 1.9
bodyy5 05 1.7 15 1.2 1.1 20 2.0 1.9 1.6 1.6/ n/a n/a 1.6 2.2 2.6
bodyy6 n/a n/a 1.1 1.3 2.1} 41 44 33 33 3.5 09 0.8 1.0 1.4 1.7
Muu 49 48 48 49 5.0 3.1 3.1 3.1 3.1 5.5]13.9 15.1 15.1 15.5 16.3
s3rmt3m3 2.7 2.2 12.0 11.2 18.2| 17.0 15.2 15.4 18.9 20.5| n/a n/a 26.7 26.6 28.8
s3rmt3ml 4.2 3.6 3.2 3.7 43| 15.8 14.7 15.2 21.5 21.2| n/a n/a 24.4 24.1 22.2
besstk28 n/a n/a 9.0 9.9 15.8| n/a n/a 13.9 11.2 17.5| n/a n/a 24.5 24.4 26.1
s3rmq4ml | 4.1 42 6.2 6.2 7.5|15.0 18.0 16.1 17.6 23.9| n/a n/a 11.5 11.7 11.6
bcesstk16 4.4 14.8 14.7 14.8 13.6| 14.0 13.1 13.1 13.0 12.2] 12.6 12.7 12.8 12.3 13.8
Kuu 10.5 7.7 7.2 6.9 6.6| 13.7 13.8 12.5 13.3 12.5| n/a n/a 16.2 15.8 15.3
bcsstk38 n/a n/a 7.2 7.3 3.4|13.713.7 86 6.8 7.9| n/a n/a 15.0 15.0 16.0
msc23052 0.3 03 0.6 1.3 13| 6.5 49 6.5 6.4 5.6/ n/a n/a 10.2 10.2 9.9
msc10848 n/a n/a 5.1 7.1 16.3| n/a n/a 19.6 16.6 14.8| n/a n/a 23.7 22.0 19.3
cfd2 7.1 124 12,2 11.9 12.2] 48 4.7 4.1 4.2 4.2|12.4 12.5 124 12.2 12.6
nd3k 5.0 5.7 4.8 55 4.7 56 6.5 6.1 6.0 4.9| 12.2 12.9 11.3 9.7 7.9
ship_001 n/a n/a 04 09 3.0/ n/a n/a 56 3.5 2.7| n/a n/a 2.2 21 1.7
shipsec5 n/a n/a 0.3 0.7 3.1/ n/a n/a 23 3.0 29| n/a n/a 2.7 28 1.6
G3_circuit | 1.1 0.9 1.0 1.2 1.2/ 3.7 33 3.3 34 5.1| n/a n/a 3.7 4.1 3.7
hood 6.6 6.6 6.9 55 39| 27 24 22 1.7 4.0 4.0 38 4.0 43 4.9
crankseg 1| n/a n/a 1.6 2.0 13.3| n/a n/a 10.3 81 6.9| n/a n/a 22.8 24.1 22.3

182 Appendix E e Experimental Setup and Data

v Table E.19 — Average iteration overhead for error correction in case of five multi-bit
flip error injections with respect to different T € [1071%,1079].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=(107' 107 107® 1077 107%]107*° 107 107® 1077 107%|107° 107 107® 107" 107°
(%] [%] [%] [%] [%]][%] [%] [%] [%] [%]]|[%] [%] [%] [%] [%]
nos3 24.8 25.6 27.3 25.1 19.7| 27.1 26.1 28.4 26.8 24.2| 27.8 27.4 29.4 29.5 29.6
bcsstk10 12.5 12.5 12.4 12.5 13.1| 26.1 24.4 23.3 21.7 20.7| 27.8 25.8 24.7 24.9 25.9
msc01050 n/a n/a 18.4 19.6 24.6| n/a n/a 9.9 19.0 26.7| n/a n/a 28.0 35.9 33.5
bcesstk21 6.0 11.4 11.6 12.5 10.8| 23.7 20.4 19.4 20.7 17.7| 22.2 19.8 20.2 20.9 21.6
besstk11 n/a n/a 19.7 20.0 20.8| n/a n/a 27.9 28.5 31.2| n/a n/a 18.0 18.4 18.5
nasa2146 57 5.9 54 55 6.5 47 43 43 5.6 59| n/a n/a 11.3 9.5 83
sts4098 9.8 9.2 54 73 73| 6.0 7.7 13.6 13.7 12.7| 16.6 13.7 13.4 13.6 14.9
besstk13 24.0 21.9 17.2 30.5 23.8| 14.5 18.1 28.5 30.3 34.3| 30.9 34.2 27.7 30.3 30.9
msc04515 | 20.5 15.7 15.3 13.6 11.2| 22.9 26.9 20.0 25.9 25.7| n/a n/a 27.6 28.5 26.8
ex9 n/a n/a 1.1 16 34| n/a n/a 3.6 3.0 4.2| n/a n/a 10.6 11.6 14.4
bodyy4 21 19 1.9 25 31| 09 08 1.0 1.3 1.5/ n/a n/a 3.8 3.6 34
bodyy5 06 25 25 2.6 3.1 29 29 2.7 2.8 27| n/a n/a 6.6 6.7 8.1
bodyy6 n/a n/a 1.8 24 3.7/ 6.3 6.7 6.1 53 6.0, 64 64 6.1 4.8 5.7
Muu 6.8 6.8 6.9 6.8 69| 73 73 73 7.6 7.8|16.7 16.7 17.1 17.1 17.5
s3rmt3m3 3.3 4.3 13.4 17.0 20.8| 20.8 24.2 21.7 24.2 28.8| n/a n/a 32.4 32.9 33.6
s3rmt3m1 | 11.5 9.6 9.8 7.6 10.8| 25.6 22.8 21.6 29.8 26.0| n/a n/a 35.4 35.6 37.0
bcsstk28 n/a n/a 11.9 13.4 23.4| n/a n/a 20.5 14.3 28.7| n/a n/a 31.5 30.7 31.3
s3rmq4m1 | 20.6 18.0 16.1 16.5 13.0] 20.0 29.4 25.1 22.3 28.3| n/a n/a 21.7 22.3 21.2
bcesstk16 6.0 21.6 22.8 21.0 20.9| 18.6 18.5 16.3 16.5 15.9| 20.6 16.1 14.9 16.0 16.5
Kuu 12.5 10.3 10.0 9.6 9.3| 16.9 16.0 16.3 14.2 14.7| n/a n/a 20.7 20.9 19.4
besstk38 n/a n/a 19.8 22.2 28.4| 20.2 26.4 20.7 21.6 18.9| n/a n/a 16.4 16.1 16.5
msc23052 2.7 0.8 1.1 2.1 2.1|10.011.0 10.6 10.5 9.1| n/a n/a 13.3 13.5 13.2
msc10848 n/a n/a 8.0 11.2 24.9| n/a n/a 23.3 22.6 25.3| n/a n/a 28.5 29.0 24.6
cfd2 7.1 12,5 12.6 12.0 12.5] 5.1 4.9 44 4.2 43| 12.8 12.7 12.8 12.6 13.1
nd3k 54 6.6 5.1 7.3 59| 85 81 6.2 64 7.1 13.6 14.0 11.8 12.7 11.7
ship_001 n/a n/a 3.0 4.0 19.3| n/a n/a 22.6 20.3 17.2| n/a n/a 2.4 2.2 2.1
shipsec5 n/a n/a 1.3 1.9 4.0| n/a n/a 42 3.3 3.8/ n/a n/a 3.0 3.2 2.3
G3_circuit | 2.0 2.3 1.7 1.7 29| 45 44 3.6 4.1 11.1| n/a n/a 43 43 4.6
hood 15.3 10.8 9.3 9.9 6.7 44 3.8 34 3.6 4.5 50 43 43 54 5.5
crankseg 1| n/a n/a 3.2 3.9 13.7| n/a n/a 16.6 15.7 15.3| n/a n/a 24.3 25.4 24.2

E.3 e Fault Tolerance for Conjugate Gradient Solvers

183

v Table E.20 — Average iteration overhead for error correction in case of ten multi-bit
flip error injections with respect to different T € [107,107%].

MATRIX No Jacosr ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
T:=(107'% 107 107® 1077 107°[107*° 107 107® 1077 107|107 107 107® 1077 107°
(%] [%] [%] [%] [%]] (%] [%] [%] [%] [%]][%] [%] [%] [%] [%]
nos3 27.7 26.6 28.3 27.8 24.0| 28.9 28.8 28.8 27.8 27.6| 29.1 31.7 30.1 33.5 30.3
besstk10 17.2 17.3 18.0 18.0 20.4| 27.0 26.8 24.3 22.3 22.9| 31.2 27.8 28.2 24.9 27.2
msc01050 n/a n/a 19.5 20.6 30.4| n/a n/a 13.0 19.9 29.8| n/a n/a 28.6 36.4 40.4
besstk21 10.1 13.9 16.4 16.5 16.0| 24.1 22.3 22.1 20.8 22.2| 23.0 22.7 22.9 23.0 21.8
besstk11 n/a n/a 23.2 24.1 22.9| n/a n/a 28.7 29.1 37.1| n/a n/a 27.0 27.5 27.2
nasa2146 5.8 6.6 6.1 64 7.5| 53 53 56 64 6.4| n/a n/a1l.7 9.7 99
sts4098 13.7 14.1 14.2 15.6 23.5| 8.0 9.4 19.5 21.2 20.7| 21.4 20.4 19.5 18.3 20.7
bcesstk13 25.6 23.0 21.4 33.1 24.8| 15.3 21.6 29.8 32.1 38.4| 37.7 34.3 29.5 30.9 33.3
msc04515 | 29.9 26.4 26.3 24.3 23.8| 26.9 28.9 21.6 26.2 27.0| n/a n/a 36.3 37.6 36.9
ex9 n/a n/a 1.6 20 6.1/ n/a n/a 58 4.0 6.8 n/a n/a 15.0 14.9 17.1
bodyy4 38 36 36 35 34| 14 14 13 14 1.7 n/a n/a 70 7.3 6.9
bodyy5 1.9 39 40 42 51| 3.2 3.1 32 34 38| n/a n/a 23.8 24.2 28.6
bodyy6 n/a n/a 2.7 2.5 45| 92 86 10.7 9.0 9.7] 84 81 81 84 89
Muu 85 9.0 9.1 12.4 12.4| 21.0 21.0 21.0 21.0 21.0| 27.4 28.6 28.9 33.1 38.1
s3rmt3m3 9.9 9.2 22.3 22.2 22.0| 29.3 30.0 26.0 33.4 33.8| n/a n/a 33.3 34.2 36.3
s3rmt3m1 | 12.9 11.5 11.7 12.1 19.4| 31.1 30.5 26.8 31.8 27.6| n/a n/a 38.8 39.7 40.0
besstk28 n/a n/a 18.0 20.3 29.2| n/a n/a 23.6 22.2 30.6| n/a n/a 33.4 31.7 31.8
s3rmq4ml1 | 22.6 22.3 22.2 24.2 25.7| 22.0 31.1 29.7 23.1 34.2| n/a n/a 30.4 30.8 32.6
bcesstk16 7.5 24.7 25.2 26.0 26.3| 22.6 22.8 21.7 22.4 23.3| 23.3 22.1 21.1 22.7 22.8
Kuu 16.4 16.6 16.2 15.3 15.5| 18.7 19.9 19.2 18.8 19.7| n/a n/a 21.1 22.2 22.3
bcsstk38 n/a n/a 23.4 27.1 29.2| 20.6 27.4 27.5 26.1 25.2| n/a n/a 26.6 26.6 30.3
msc23052 81 0.8 1.1 6.8 3.7|12.2 13.0 11.7 12.7 12.2| n/a n/a 14.3 14.3 14.8
msc10848 n/a n/a 12.6 14.0 28.8| n/a n/a 27.4 29.2 26.5| n/a n/a 33.4 29.9 35.5
cfd2 7.6 12.6 12.8 12.2 13.0] 52 5.1 54 5.2 55| 12.8 12.8 12.9 13.0 13.1
nd3k 8.9 83 52 89 6.6 15.3 13.1 11.2 11.0 &8.3| 14.9 14.4 15.2 16.0 13.3
ship_001 n/a n/a 3.9 5.0 26.3| n/a n/a 22.6 20.7 25.9| n/a n/a 4.1 43 3.3
shipsec5 n/a n/a 1.7 1.9 10.2| n/a n/a 7.2 7.2 87| n/a n/a 53 53 3.7
G3_circuit | 2.6 3.2 24 2.8 6.0/ 6.1 53 5.0 5.3 11.9| n/a n/a 9.1 95 6.7
hood 15.6 17.1 14.9 15.4 14.3| 5.3 5.1 4.5 4.1 6.5, 56 56 5.1 59 7.5
crankseg 1| n/a n/a 4.2 5.0 15.4| n/a n/a 21.2 20.3 21.7| n/a n/a 34.0 34.0 27.3

184 Appendix E e Experimental Setup and Data

E.4 Conjugate Gradientsolvers on Approximate Com-

puting Hardware

Table E.21 shows the solver iterations for executions on precise and approximate

hardware.

v Table E.21 — Average number of iterations for executions on precise hardware
Is, average number of iterations for executions on approximate hardware I,,,,, and
resulting iteration overhead O, to converge to correct results.

MATRIX No Jaconr ICC

NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
Is Iapx O Is Iapx Oapx Is Iapx Oapx

nos3 275 2814 2.3% 250 253.8 1.5% 142 1529 7.7%

besstk10 3,093 3,095.1 0.1%| 1,062 1,178.2 10.9% 554 632.9 14.2%
msc01050 5,656 6,113.5 81%| 1,359 1,682.4 23.8%| 1,481 1,891.7 27.7%
besstk21 10,937 10,937.0 0.0% 790 859.6 8.8% 329 383.9 16.7%
besstk11 19,259 19,909.1 3.4%| 5,741 6,363.7 10.8%|22,993 23,160.5 0.7%
nasa2146 506 559.5 10.6% 415 4377 5.5% 359 381.2 6.2%
sts4098 15,688 16,149.8 2.9% 604 676.3 12.0% 563 669.5 18.9%
besstk13 1,889 1,889.0 0.0%| 1,573 1,984.2 26.1%| 1,489 1,793.3 20.4%
msc04515 5,631 6,543.0 16.2%| 4,827 5,229.2 83%| 4,384 4,819.6 9.9%

ex9 77,631 80,173.7 3.3%| 17,290 17,435.6 0.8%]|15,369 15,369.0 0.0%
bodyy4 226 2325 2.9% 213 215.6 1.2% 284 305.4 7.5%
bodyy5 717 733.6 2.3% 938 046.1 1.5%| 1,466 1,546.0 5.5%
bodyy6 2,184 2,2269 2.0%| 1,271 1,307.5 2.9%| 1,090 1,201.6 10.2%
Muu 44 44.2 0.5% 17 170 0.0% 12 12.1 0.7%
s3rmt3m3 838 859.3 2.5%| 15,436 15,603.7 1.1%(10,935 11,7289 7.3%

s3rmt3ml1 | 76,595 86,385.8 12.8%| 11,692 11,759.1 0.6%|65,550 65,550.0 0.0%
besstk28 13,776 13,776.0 0.0%| 5,142 5,680.7 10.5%| 3,138 3,866.8 23.2%
s3rmqg4m1 | 50,410 54,403.8 7.9%| &,070 §,170.8 1.2%|48,955 50,740.8 3.6%
besstk16 620 702.6 13.3% 279 313.9 12.5% 225 267.5 18.9%
Kuu 684 704.0 2.9% 045 9514 1.2% 243 258.0 6.2%
besstk38 19,575 20,628.7 5.4%| 15,001 16,658.5 11.0%|37,301 37,301.0 0.0%
msc23052 284,012 284,012.0 0.0%|217,329 217,560.0 0.1%|37,100 37,883.7 2.1%
msc10848 |110,121 110,121.0 0.0%| 5,782 6,043.0 4.5%| 5,147 5,571.1 8.2%

cfd2 2,395 2,4273 1.3%| 4,984 5,007.2 0.5%| 2,010 2,010.0 0.0%
nd3k 4,214 4,214.0 0.0%| 7,509 7,509.0 0.0%| 4,338 4,501.2 3.8%
ship_001 96,123 96,123.0 0.0%| 59,961 61,899.1 3.2%|86,456 86,456.0 0.0%
shipsec5 8,144 §,144.0 0.0%| 4,814 4,953.2 2.9%| 7,156 7,156.0 0.0%
G3_circuit 9,391 9,450.8 0.6%| 3,070 3,070.0 0.0%| 6,231 6,278.5 0.8%
hood 17,592 17,835.3 1.4%| 7,299 7,405.1 1.5%| 7,295 7,442.5 2.0%

crankseg 1| 2,884 2,928.9 1.6% 958 1,003.1 4.7% 742 751.1 1.2%

E.4 e Conjugate Gradient solvers on Approximate Computing Hardware

Energy

185

Table E.22 shows the energy for executions on precise and approximate hardware.

Vv Table E.22 — Average energy for executions on precise hardware Eg, average

energy for executions on approximate hardware E .,

and resulting energy comparison

CEnergy-
MATRIX No Jacos1 ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER

ES Eapx CEnergy ES Eupx CEnergy ES Eapx CEnergy

[J] (] (%] [J] (] (%] [J]] (%]
nos3 42-10742.4-107* 56.6%|4.0-107*2.2-10* 56.5%|3.8-107*3.1-10™* 80.3%
besstk10 [6.0-107% 3.3-107% 54.6%(2.3-107° 1.8-107 78.9%|2.1-107 2.0-107° 95.7%
msc01050 [8.4-1072 8.5-107% 101.3%|1.9-1072 1.6- 107 88.0%|3.6-1073 3.5-107> 96.6%
besstk21 [2.1-1072 1.7-1072 80.0%|1.9-107° 1.9-10™% 97.0%]9.9-107* 1.1-107° 110.4%
besstk1l [5.7-1072 4.1-1072 71.2%/1.9-1072 1.7-1072 91.4%|1.1-107* 1.1-107" 98.8%
nasa2146 [3.2-107%1.8-107% 57.1%[2.7-1072 1.9-107® 68.2%|4.3-1072 4.2-10° 96.5%
sts4098 [8.2:10728.4-1072 102.6%|4.3-1072 3.4-107 78.6%/6.9-1076.7-107° 97.3%
besstk13 [1.4-107° 1.4-107° 100.0%|1.1-1072 1.2-1072 105.0%|2.0- 1072 2.1- 1072 106.2%
msc04515 [4.5-10723.8-1072 83.6%(4.3-1072 4.1-1072 96.9%/6.7-1072 7.8-1072 115.4%
ex9 3.3-1071 3.3-107 101.5%|1.4-107* 1.4-107! 101.3%|2.3-1071 2.3-107' 98.7%
bodyy4 [3.2-10722.3-10% 69.3%|3.4-1072.1-10™% 61.6%|6.8-107% 6.7-10™> 98.0%
bodyy5 [1.1-10728.0-107 73.8%(9.3-107 6.7-107% 72.5%|3.7-1072 3.9-107% 103.9%
bodyy6 [3.5-10723.0-1072 86.1%|2.3-1072 1.7-107% 74.8%|2.9-10722.6-107> 86.6%
Muu 58-10741.6-107* 27.4%|2.4-10748.0-10™° 33.3%|3.0-107*1.8-10* 60.7%
s3rmt3m3 [6.8-107%2.4-107 34.3%/3.0-1071 2.1-107' 69.0%/1.8-107% 1.8-107" 104.4%
s3rmt3m1 [9.3-10718.1-107! 86.9%(2.3-1071 1.5-107! 63.4%| 2.5-10° 2.5-10° 98.9%
besstk28 [3.1-1071 2.7-1071 85.3%|1.0-1071 1.0- 107 100.9%|1.2-107* 1.2-107! 101.5%
s3rmg4m1 [6.8-1071 6.1-107" 90.0%(1.7-1071 1.1-107" 66.6%| 1.6-10° 1.5-10° 91.4%
besstk16 [1.2-10721.1-1072 88.5%6.7-1072 4.9-107 73.9%|1.0-10728.9-107 87.6%
Kuu 1.7-10729.6-107° 57.7%|1.4-10725.7-10™% 40.3%|1.2-1072 1.0-107% 85.2%
besstk38 [2.4-1071 2.4-1070 99.6%4.5-1071 4.1-1071 89.8%/9.3-107° 9.3-107° 100.0%
msc23052 | 2.5-100 2.3-10' 93.7%| 2.1-10" 1.8-10" 82.9%|3.1-107*3.0-10™* 96.7%
msc10848 [2.1-10742.1-107* 100.0%|6.1-107* 5.2-10"! 85.0%| 1.1-10° 1.1-10° 99.2%
cfd2 1.9-1071 1.4-107Y 74.2%| 1.0-10°5.7-107" 57.0%|4.3-1071 4.0-107" 93.1%
nd3k 9.3-1071 4.3-107" 46.8% 1.7-10°8.5-1071 49.8%| 1.6-10°6.9-107' 43.7%
ship_001 [5.7-107* 5.7-107* 100.0%| 1.7-10" 1.5-10" 87.3%|8.4-107* 8.4-107* 100.0%
shipsec5 [4.8-107* 4.8-107* 100.0%| 1.2-10° 1.0-10° 80.3%|6.8-107* 6.8-10™* 100.0%
G3_circuit | 8.7-10° 7.1-10° 81.6%| 3.5-10° 2.6-10° 75.5%| 9.2-10° 9.1-10° 99.5%
hood 6.3-10° 5.7-10° 90.4%| 5.5-10° 4.6-10° 84.5%| 1.1-10* 1.1-10" 100.0%
crankseg 1| 2.5-10° 2.4-10° 97.3%(8.4-1071 6.1-10" 72.4%| 1.6-10° 1.6-10" 100.0%

186 Appendix E e Experimental Setup and Data

Table E.23 shows the contribution of the fault tolerance technique within the energy

demand for solver executions on approximate hardware.

v Table E.23 — Average energy for executions on approximate hardware E, ., average
energy for fault tolerance evaluations Ert, and relative energy contribution of fault
tolerance p.

MATRIX No Jacosl ICC

NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER

Eapx EFT ﬁ Eapx EFT ﬁ Eapx EFT ﬁ
[J] [J] [%] (] (] (%] [J] Ul [%]

nos3 2.4-107* 2.2-107° 9.3%[2.2-107* 2.5-107° 11.3%[3.1-10™* 1.2-107° 3.9%
besstk10 [3.3-107° 25107 7.7%(1.8-107° 1.4-107% 7.6%|2.0-107% 5.6-107° 2.8%
msc01050 [8.5-107° 3.5-107* 4.2%|1.6-107% 1.7-107* 10.5%|3.5-1073 1.3-107* 3.8%
besstk2l [1.7-1072 2.0-107% 11.7%[1.9-1072 2.6-107* 13.6%|1.1-10™% 7.9-10™° 7.3%
besstk1l [4.1-1072 2.2-107% 5.5%|1.7-1072 1.0-107% 6.0%|1.1-107* 2.3-1072 2.1%
nasa2146 [1.8-107% 9.3-10° 5.1%|1.9-107% 9.5-10™° 5.1%|4.2-10™% 6.4-10™° 1.5%
sts4098 [8.4-1072 4.0-107% 4.7%|3.4-1072 2.9-107* 8.6%6.7-1073 2.2-107* 3.2%
besstk13 [1.4-107° 2.2-1077 1.6%|1.2-1072 4.6-107* 3.8%(2.1-1072 4.1-107* 1.9%
msc04515 |3.8-1072 2.3-107% 6.1%(4.1-1072 2.5-107% 5.9%|7.8-1072 2.0-107% 2.5%
ex9 3.3-1071 1.0-107? 3.1%|1.4-107! 5.3-107% 3.8%(2.3-107! 3.7-107% 1.6%
bodyy4 [2.3-1072 2.0-107* 8.7%|2.1-107% 2.7-107* 12.8%|6.7-107 3.0-107* 4.5%
bodyy5 |8.0-107° 6.8-107" 8.5%|6.7-107° 7.7-107* 11.5%3.9-107% 1.1-107% 3.0%
bodyy6 [3.0-1072 2.0-10% 6.5%|1.7-107% 1.9-107 11.0%|2.6-1072 1.3-107% 5.0%
Muu 1.6-107% 2.1-10™° 13.1%|8.0-10™° 1.0-107° 12.7%|1.8-107% 6.0-107° 3.2%
s3rmt3m3 [2.4-107% 1.6-107* 7.0%(2.1-107! 8.9-107% 4.3%|1.8-107* 2.3-107° 1.3%
s3rmt3m1 (8.1-1071 2.4-1072 3.0%|1.5-107' 6.9-107% 4.6%| 2.5-10° 3.0-1072 1.2%
besstk28 2.7-107! 4.9-107% 1.9%(1.0-107% 2.7-107% 2.6%|1.2-107 2.5-107% 2.1%
s3rmg4m1 [6.1-1071 1.6-107% 2.6%[1.1-107" 4.7-10% 4.2%| 1.5-10° 1.9-1072 1.3%
besstk16 |1.1-1072 2.3-107% 2.1%(4.9-1072 1.7-107* 3.4%|8.9-107% 1.1-107* 1.2%
Kuu 9.6-107 3.7-10* 3.8%|5.7-107% 3.9-10™* 6.8%|1.0-1072 1.5-10™* 1.4%
besstk38 [2.4-1071 5.1-107° 2.2%|4.1-107! 1.3-1072 3.2%/9.3-107° 8.7-1077 0.9%
msc23052 | 2.3-10' 4.6-1071 2.0%| 1.8-10' 5.1-107" 2.9%(3.0-107* 2.5-107% 0.8%
msc10848 |2.1-107* 1.2-10°% 0.6%(5.2-107 7.1-107 1.4%| 1.1-10° 5.0-107% 0.5%
cfd2 1.4-107! 5.0-107 3.5%|5.7-107" 3.3-107% 5.8%|4.0-107' 1.1-1072 2.8%
nd3k 43-101 25:107° 0.6%|8.5-107! 6.1-107% 0.7%|6.9-107 8.0-107° 0.0%
ship_001 |5.7-107* 3.8-107° 0.7%| 1.5-10' 2.3-107" 1.5%|8.4-107* 3.8-107° 0.4%
shipsec5 [4.8-107% 1.4-10™° 3.0%| 1.0-10° 5.0-107% 5.0%(6.8-10™* 1.9-107° 2.9%
G3_circuit | 7.1-10° 2.8-107! 4.0%| 2.6-10° 1.5-107" 5.9%| 9.1-10" 2.9-107! 3.2%
hood 5.7-10° 1.5-1071 2.6%| 4.6-10° 1.7-107! 3.6%| 1.1-10' 1.4-107" 1.3%
crankseg 1| 2.4-10° 1.2-107% 0.5%(6.1-107" 5.6-10™ 0.9%| 1.6-10" 4.1-10™® 0.3%

E.4 e Conjugate Gradient solvers on Approximate Computing Hardware 187

Energy Efficiency

Table E.24 shows the energy efficiency gain for executions approximate hardware

compared to its precise counterpart.

Vv Table E.24 — Energy efficiency following Equation 7.6 for executions on precise
hardware 775, energy efficiency for executions on approximate hardware 17,,,,, and
resulting energy efficiency gain G,,.

MATRIX No Jacosr ICC

NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
s Napx Gy s Napx Gy s Napx Gy

nos3 1.1-1071 6.7-1072 172.7%/9.9- 1072 5.7- 1072 174.3%|5.4- 1072 4.7- 1072 115.7%

besstk10 | 1.8-10% 1.0-10' 183.1%| 2.5-10° 2.1-10° 114.3%| 1.2-10° 1.3-10° 91.5%
msc01050 | 4.7-10% 5.2-10' 91.4%| 2.5-10° 2.8-10° 91.8%| 5.4-10° 6.6-10° 81.0%
besstk2l | 2.3-10% 1.9-10% 125.1%| 1.5-10° 1.6-10° 94.7%|3.3-107* 4.2-107" 77.6%
besstk1l | 1.1-10% 8.1-10% 135.8%| 1.1-10% 1.1-10® 98.7%| 2.6-10° 2.5-10% 100.5%
nasa2146 | 1.6-10° 1.0-10° 158.4%| 1.1-10° 8.2-107" 139.0%| 1.6-10° 1.6-10° 97.6%
sts4098 1.3-10° 1.4-10° 94.6%| 2.6-10° 2.3-10° 113.7%| 3.9-10° 4.5-10° 86.4%
besstk13 [2.6-1072 2.6-1072 100.0%| 1.8-10% 2.4-10' 75.5%| 3.0-10' 3.8-10' 78.2%
msc04515 | 2.5-10% 2.5-10% 103.0%| 2.1-10% 2.2-10® 95.3%| 2.9-10® 3.7-10> 78.8%
ex9 2.6-10* 2.7-10* 95.4%| 2.4-10° 2.4-10° 97.9%| 3.5-10° 3.5-10° 101.3%
bodyy4 |7.3-107' 5.2-107" 140.2%|7.3-107 4.6-107" 160.2%| 1.9-10° 2.0-10° 94.9%
bodyy5 7.8-10° 5.9-10° 132.5%| 5.0-10° 3.7-10" 135.9%| 5.5-10' 6.0-10' 91.2%
bodyy6 7.7-10' 6.8-10' 113.9%| 2.9-10' 2.2-10' 129.9%| 3.2-10' 3.1-10'! 104.7%
Muu 2.5-1072 7.0-107° 363.2%|4.1-107° 1.4- 107> 300.4%(3.7-107% 2.2- 1072 163.8%
s3rmt3m3 | 5.7-10° 2.0-10° 284.1%| 4.6-10° 3.2-10° 143.4%| 1.9-10° 2.2-10° 89.3%
s3rmt3m1 | 7.1-10* 7.0-10% 102.0%| 2.7-10° 1.7-10° 156.7%| 1.6-10° 1.6-10° 101.1%
besstk28 | 4.3-10% 3.7-10% 117.3%| 5.2-10® 5.8-10° 89.7%| 3.8-10% 4.7-10®> 79.9%
s3rmg4m1 | 3.4-10% 3.3-10? 103.0%| 1.4-10% 9.3-10% 148.3%| 8.0-10* 7.6-10" 105.6%
besstk16 | 7.6-10° 7.6-10° 99.8%| 1.9-10° 1.5-10° 120.3%| 2.3-10° 2.4-10° 96.1%
Kuu 1.1-10" 6.8-10° 168.5%| 7.8-10° 3.2-10° 245.2%| 3.0-10° 2.7-10" 110.5%
besstk38 | 4.6-10° 4.9-10° 95.2%| 6.8-10° 6.8-10° 100.3%| 3.5-10° 3.5-10° 100.0%
msc23052 | 7.1-10° 6.6-10° 106.7%| 4.6-10° 3.8-10° 120.5%| 1.1-10* 1.1-10' 101.3%
msc10848 | 2.3-10% 2.3-10' 100.0%| 3.5-10% 3.1-10% 112.5%| 5.5-10° 5.9-10° 93.1%
cfd2 4.6-10% 3.5-10% 132.9%| 5.0-10° 2.9-10% 174.6%| 8.7-10% 8.1-10% 107.4%
nd3k 3.9-10° 1.8-10% 213.8%| 1.3-10* 6.4-10% 200.7%| 6.8-10° 3.1-10% 220.4%
ship_001 | 5.4-10" 5.4-10' 100.0%| 1.0-10° 9.2-10° 110.9%| 7.3-10" 7.3-10" 100.0%
shipsec5 | 3.9-10° 3.9-10" 100.0%| 6.0-10° 4.9-10% 121.1%| 4.8-10° 4.8-10" 100.0%
G3_circuit | 8.1-10* 6.7-10* 121.7%| 1.1-10* 8.0-10% 132.5%| 5.7-10* 5.7-10* 99.8%
hood 1.1-10° 1.0-10° 109.1%| 4.0-10* 3.4-10* 116.6%| 7.7-10* 7.9-10* 98.0%
crankseg_1| 7.1-10° 7.0-10% 101.2%| 8.1-10% 6.1-10% 131.8%| 1.2-10° 1.2-10° 98.8%

188 Appendix E e Experimental Setup and Data

Utilization of approximation levels

Tables E.25, E.26, and E.27 show the utilization of the available approximation levels of

the underling hardware over the course of the solver progress.

v Table E.25 — Utilization of available precisions (i.e. number of precise mantissa
bits p) for executions on approximate hardware when no preconditioner is used.

MATRIX UTILIZATION OF P PRECISE MANTISSA BITS
NAME 52 47 42 37 32 27 22 17 12 7 2
(%] (%] (%] (%] (%] (%] [%] [%] [%] [%] [%]
nos3 0.00 0.00 0.00 41.15 54.42 0.37 0.00 0.00 0.00 4.06 0.00
besstk10 3.00 042 010 0.00 9598 0.03 0.06 0.00 0.00 0.38 0.01
msc01050 | 34.01 36.04 17.79 6.95 271 121 046 0.22 0.27 0.09 0.26
besstk21 0.00 0.00 0.00 0.01 40.72 59.13 0.01 0.00 0.01 0.00 0.12
besstk11 25.90 70.89 1.37 0.83 054 032 0.08 0.01 0.01 0.01 0.06
nasa2146 0.00 0.00 13.84 28.06 55.92 0.18 0.00 0.00 0.00 2.00 0.00
sts4098 97.97 0.64 034 026 018 0.4 0.4 0.12 0.0 0.03 0.09

besstk13 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
msc04515 592 5.04 58.62 18.09 11.98 0.17 0.00 0.00 0.00 0.19 0.00

ex9 95.53 099 073 079 145 039 0.07r 0.01 0.00 0.00 0.03
bodyy4 0.00 0.00 1.52 80.55 11.92 0.50 0.00 0.00 0.00 5.51 0.00
bodyy5 0.00 0.00 v7.25 1731 342 0.27 0.00 0.00 0.00 1.76 0.00
bodyy6 3.99 4740 4478 1.75 0.61 085 0.05 0.00 0.00 0.56 0.00
Muu 0.00 0.00 0.00 0.00 0.00 64.86 0.09 2.61 0.00 2.70 29.73

s3rmt3m3 0.00 0.00 3.11 42.85 35.22 11.33 3.52 0.72 0.32 0.24 2.68
s3rmt3ml 8.04 4.08 6890 18.88 0.08 0.00 0.00 0.00 0.00 0.02 0.00
besstk28 98.08 0.72 045 0.16 013 0.12 0.10 0.06 0.08 0.06 0.03
s3rmq4ml 0.00 16.83 64.53 18.51 0.10 0.00 0.00 0.00 0.00 0.03 0.00
besstk16 20.79 130 4.20 6797 331 031 0.07 0.01 0.01 1.98 0.07
Kuu 0.00 0.00 9.31 8648 227 0.16 0.00 0.00 0.00 1.77 0.00
besstk38 03.09 4574 027 0.14 0.11 0.09 0.09 0.17 0.16 0.01 0.12
msc23052 50.62 49.0v 0.12 0.10 0.07 0.01 0.00 0.00 0.00 0.00 0.00
msc10848 | 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cfd2 0.00 0.00 0.00 0.00 99.04 0.08 0.00 0.00 0.00 0.88 0.00
nd3k 0.00 838 1942 7145 0.01 0.28 0.02 0.06 0.03 0.03 0.32
ship_001 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
shipsec5 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G3_circuit 0.00 0.00 2294 76.41 049 0.01 0.00 0.00 0.00 0.00 0.15
hood 0.00 0.00 0.00 0.01 9451 5.40 0.01 0.00 0.00 0.07 0.00
crankseg 1| 9536 133 091 0.57 0.63 044 0.15 0.17 0.02 0.02 0.40

E.4 e Conjugate Gradient solvers on Approximate Computing Hardware 189

v Table E.26 — Utilization of available precisions (i.e. number of precise mantissa
bits p) for executions on approximate hardware when the jacobi preconditioner is used.

MATRIX UTILIZATION OF P PRECISE MANTISSA BITS

NAME 52 47 42 37 32 27 22 17 12 7 2
(%] [%] (%] (%] [%] [%] [%] [%] [%] [%] [%]

nos3 0.00 0.00 0.00 8.73 81.88 450 0.40 0.00 0.00 4.50 0.00

besstk10 0.00 9.61 65.30 20.70 3.31 0.09 0.00 0.00 0.00 0.99 0.00
msc01050 | 59.22 23.32 10.22 3.87 149 0.79 0.12 0.22 0.03 0.69 0.02
besstk21 0.00 0.00 842 3412 56.08 0.12 0.00 0.00 0.00 1.27 0.00
besstk11 0.17 24.51 56.08 17.72 1.22 0.13 0.01 0.00 0.00 0.16 0.00
nasa2146 0.00 6.77 1694 69.49 3.88 0.32 0.00 0.00 0.00 2.60 0.00
sts4098 229 12.05 44.84 3345 325 1.79 0.58 0.00 0.00 1.75 0.00
besstk13 6.64 32.39 38.86 18.78 2.14 0.57 0.11 0.00 0.00 0.52 0.00
msc04515 | 46.32 47.03 544 0.75 023 0.02 0.00 0.00 0.00 0.21 0.00

ex9 97.34 095 055 066 034 008 0.01 0.00 0.00 0.08 0.00
bodyy4 0.00 995 4.28 6751 470 157 3.58 193 0.65 0.49 5.35
bodyy5 0.00 599 75.76 1053 265 0.14 1.40 093 0.20 0.20 2.20
bodyy6 0.00 12.03 32.71 52.04 1.14 0.00 0.62 0.37 0.08 0.08 0.93
Muu 0.00 0.00 0.00 0.00 0.00 14.04 12.28 5.26 5.26 5.26 957.89

s3rmt3m3 3.26 6.60 69.63 20.09 0.13 0.07 0.07 0.00 0.07 0.07 0.00
s3rmt3ml 0.00 0.00 13.21 86.41 0.18 0.09 0.01 0.00 0.00 0.09 0.00
besstk28 21.24 7024 756 032 024 019 0.02 0.00 0.00 0.19 0.00
s3rmq4m]l 6.51 42.75 3990 10.26 0.04 0.14 0.14 0.01 0.13 0.14 0.00
besstk16 0.00 0.00 10.23 40.62 41.65 3.70 0.31 0.00 0.00 3.49 0.00
Kuu 0.00 0.00 0.00 12.58 85.00 0.26 0.00 0.00 0.00 2.16 0.00
besstk38 3191 4185 23.53 210 0.15 0.17 0.07 0.06 0.07 0.01 0.07
msc23052 6.92 56.55 36.45 0.04 0.01 0.01 0.01 0.00 0.00 0.01 0.00
msc10848 8.59 4390 43.77 325 0.12 0.11 0.08 0.00 0.00 0.18 0.00
cfd2 0.00 0.00 0.00 10.25 89.44 0.03 0.00 0.00 0.00 0.28 0.00
nd3k 0.00 0.00 22,55 76.91 0.15 0.02 0.12 0.06 0.02 0.02 0.17
ship_001 12.11 49.78 3742 052 0.07 0.03 0.02 0.00 0.02 0.02 0.00
shipsec5 2.86 25.57 6294 6.89 0.55 024 024 024 024 024 0.00
G3_circuit | 0.00 0.00 9226 6.90 0.02 0.00 0.36 0.03 0.03 0.03 0.36
hood 3.39 49.15 4493 217 0.19 0.01 0.00 0.00 0.00 0.15 0.00
crankseg_1| 5.63 31.19 57.05 1.71 043 145 0.99 0.28 0.13 0.01 1.14

190 Appendix E e Experimental Setup and Data

v Table E.27 — Utilization of available precisions (i.e. number of precise mantissa
bits p) for executions on approximate hardware when the Incomplete Cholesky factor-
ization preconditioner (ICC) is used.

MATRIX UTILIZATION OF P PRECISE MANTISSA BITS

NAME 52 47 42 37 32 27 22 17 12 7 2
[%] (%] (%] (%] (%] (%] (%] [%] [%] [%] [%]

nos3 0.00 0.00 0.00 3344 5498 1.84 0.1 0.67 0.69 0.69 7.58

besstk10 0.00 31.48 48.78 1341 1.77 059 143 043 0.6 0.16 1.78

msc01050 | 45.53 21.49 1859 934 287 0.57 057 041 0.06 037 0.20

besstk21 0.00 0.00 1.26 16.32 46.06 30.56 2.78 0.25 0.00 2.78 0.00

besstk11 88.57 11.03 0.11 0.09 0.05 0.05 0.06 0.04 0.00 0.00 0.00
nasa2146 13.98 69.44 1.82 511 347 3.09 3.09 0.00 0.00 0.00 0.00

sts4098 2.02 31.75 4286 13.70 3.02 1.8 1.21 1.10 0.68 0.16 1.72
besstk13 0.00 575 2932 34.34 2v31 273 0.10 0.00 0.00 0.46 0.00
msc04515 21.52 7525 229 044 024 0.02 0.00 0.00 0.00 0.24 0.00
ex9 95.73 215 108 051 013 0.09 0.06 0.08 0.08 0.08 0.00
bodyy4 18.56 46.03 11.99 745 6.36 0.52 4.02 1.05 0.00 4.02 0.00
bodyy5 91.04 181 165 137 129 083 048 0.74 0.79 0.00 0.00
bodyy6 286 3.23 18.15 49.18 2431 0.00 0.74 0.30 0.12 0.09 1.01
Muu 0.00 0.00 0.00 0.00 0.00 239 9.78 6.52 6.52 6.52 68.26

s3rmt3m3 88.67 579 261 131 058 038 0.17 0.09 0.18 0.21 0.00
s3rmt3ml 99.84 0.04 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.00 0.00

besstk28 0.00 0.69 147 9.15 1942 39.16 24.41 5.42 0.22 0.07 0.00
s3rmg4m]l 6.50 67.82 23.28 222 0.04 0.04 0.03 0.03 0.03 0.03 0.00
besstk16 0.00 0.00 3.87 6441 26.86 040 0.00 0.00 0.00 4.45 0.00
Kuu 0.00 0.00 42.65 47.74 459 0.54 0.01 0.00 0.00 4.46 0.00

besstk38 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
msc23052 | 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
msc10848 12.53 57.54 2724 157 038 0.22 0.08 0.13 0.09 0.21 0.00
cfd2 0.00 0.00 0.00 0.00 0.09 98.85 0.00 0.09 0.00 0.00 0.97
nd3k 0.99 0.00 0.00 97.82 0.00 0.00 0.72 0.03 0.03 0.03 0.37
ship_001 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
shipsec5 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G3_circuit | 9549 347 039 021 0.00 0.20 0.02 0.00 0.00 0.20 0.01
hood 6.70 53.28 39.18 0.51 0.17 0.01 0.00 0.00 0.00 0.15 0.00
crankseg_ 1| 62.22 20.09 745 393 1.02 061 0.74 134 121 024 1.14

E.4 e Conjugate Gradient solvers on Approximate Computing Hardware 191
Table E.28 shows the minimum, maximum, and average number of precise mantissa
bits p in the course of solver executions.

v Table E.28 — Minimum, maximum, and average number of precise mantissa bits p
in the course of solver executions.

MATRIX No Jacosi I1CC

NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
minp avgp maxp minp avgp maxp |minp avgp maxp

nos3 7.00 33.03 37.00| 7.00 31.05 37.00| 2.00 30.88 37.00

besstk10 2.00 32,57 52.00| 7.00 40.75 47.00| 2.00 41.43 47.00
msc01050 2.00 46.04 52.00| 2.00 48.29 52.00| 2.00 46.35 52.00
besstk21 2.00 29.00 37.00| 7.00 34.22 42.00| 7.00 30.41 42.00

besstk11 2.00 4795 52.00| 7.00 42.15 52.00| 17.00 51.37 52.00
nasa2146 7.00 34.28 42.00| 7.00 37.52 47.00| 22.00 45.19 52.00
sts4098 2.00 51.64 52.00| 7.00 39.84 52.00| 2.00 41.07 52.00

besstk13 52.00 52.00 52.00| 7.00 42.84 52.00| 7.00 37.25 47.00
msc04515 7.00 40.65 52.00| 7.00 48.85 52.00| 7.00 47.78 52.00

ex9 2.00 51.33 52.00| 7.00 51.68 52.00| 7.00 51.54 52.00
bodyy4 7.00 34.78 42.00| 2.00 34.71 47.00| 7.00 42.60 52.00
bodyy5 7.00 40.14 42.00| 2.00 39.96 47.00| 12.00 50.36 52.00
bodyy6 7.00 44.29 52.00| 2.00 39.24 47.00| 2.00 36.86 52.00
Muu 2.00 1876 27.00| 2.00 954 27.00| 200 6.51 27.00

s3rmt3m3 2.00 32.50 42.00| 7.00 41.57 52.00| 7.00 50.79 52.00
s3rmt3m1 7.00 42.05 52.00| 7.00 37.61 42.00| 7.00 51.97 52.00
besstk28 2.00 51.71 52.00| 7.00 47.50 52.00| 7.00 27.43 47.00
s3rmqg4m]l 7.00 41.90 47.00| 7.00 44.13 52.00| 7.00 45.89 52.00
besstk16 2.00 39.63 52.00| 7.00 33.97 42.00| 7.00 34.48 42.00
Kuu 7.00 36.80 42.00| 7.00 32.08 37.00| 7.00 37.51 42.00
besstk38 2.00 49.41 52.00| 2.00 47.06 52.00| 52.00 52.00 52.00
msc23052 2.00 49.50 52.00| 7.00 45.51 52.00| 52.00 52.00 52.00
msc10848 | 52.00 52.00 52.00| 7.00 44.79 52.00| 7.00 45.83 52.00
cfd2 7.00 3178 32.00| 7.00 3244 37.00| 2.00 26.75 32.00
nd3k 2.00 38.64 47.00| 2.00 38.02 42.00| 2.00 36.88 52.00
ship_001 52.00 52.00 52.00| 7.00 45.65 52.00| 52.00 52.00 52.00
shipsec5 52.00 52.00 52.00| 7.00 42.87 52.00| 52.00 52.00 52.00
G3_circuit 2.00 38.07 42.00| 2.00 41.41 42.00| 2.00 51.60 52.00
hood 7.00 3171 3700| 7.00 44.61 52.00| 7.00 45.24 52.00
crankseg 1| 2.00 51.20 52.00| 2.00 43.01 52.00| 2.00 47.45 52.00

192 Appendix E e Experimental Setup and Data

E.5 Parameter Evaluation and Estimation

Tables E.29 and E.30 present the validation results of the presented simulation-based
parameter evaluation method that were obtained for the underlying operations of the

sparse matrix-vector multiplications.

v Table E.29 — Difference between dynamic power results obtained by the simulation-
based method and the commercial tool chain with different numbers of precise mantissa
bits.

MATRIX k PRECISE MANTISSA BITS

NAME 52 47 42 37 32 27 22 17 12 7 2
[MW] mW] [mW] [mW] [mW] [mW] mW] [mW] [mW] [mW] [mW]

nos3 0.096 0.071 0.044 0.057 0.066 0.069 0.066 0.067 0.053 0.032 0.019

besstk10 0.090 0.117 0.085 0.067 0.064 0.078 0.078 0.069 0.052 0.032 0.018
msc01050 | 0.102 0.063 0.076 0.074 0.074 0.055 0.081 0.062 0.047 0.032 0.019
besstk21 0.058 0.050 0.049 0.052 0.055 0.068 0.071 0.064 0.050 0.029 0.017
besstk11 0.068 0.100 0.068 0.053 0.062 0.070 0.077 0.067 0.051 0.031 0.018
nasa2146 | 0.118 0.112 0.085 0.078 0.082 0.092 0.090 0.075 0.053 0.031 0.019
sts4098 0.097 0.067 0.055 0.063 0.065 0.088 0.082 0.071 0.055 0.032 0.019
besstk13 0.057 0.060 0.021 0.035 0.045 0.068 0.074 0.071 0.054 0.032 0.019
msc04515 | 0.004 0.021 0.023 0.012 0.044 0.070 0.090 0.070 0.054 0.033 0.018
ex9 0.107 0.073 0.064 0.070 0.067 0.078 0.086 0.080 0.053 0.032 0.019
bodyy4 0.110 0.095 0.118 0.099 0.094 0.101 0.098 0.079 0.056 0.034 0.020
bodyy5 0.117 0.092 0.108 0.114 0.099 0.104 0.100 0.080 0.056 0.033 0.020
bodyy6 0.110 0.102 0.111 0.110 0.109 0.109 0.099 0.081 0.057 0.035 0.020
Muu 0.129 0.124 0.106 0.099 0.113 0.119 0.080 0.073 0.053 0.029 0.017
s3rmt3m3 | 0.110 0.086 0.059 0.059 0.061 0.079 0.082 0.067 0.050 0.030 0.018
s3rmt3m1 | 0.121 0.130 0.098 0.080 0.080 0.082 0.085 0.074 0.052 0.032 0.018
besstk28 0.111 0.102 0.117 0.093 0.092 0.094 0.092 0.075 0.052 0.031 0.018
s3rmg4m1 | 0.056 0.047 0.039 0.058 0.037 0.021 0.034 0.047 0.044 0.031 0.019
besstk16 0.087 0.118 0.127 0.072 0.079 0.062 0.068 0.065 0.046 0.027 0.016
Kuu 0.098 0.091 0.078 0.046 0.020 0.023 0.062 0.065 0.052 0.033 0.019
besstk38 0.108 0.090 0.109 0.091 0.082 0.084 0.088 0.074 0.051 0.031 0.019
msc23052 | 0.082 0.090 0.073 0.094 0.067 0.088 0.046 0.063 0.045 0.034 0.018
msc10848 | 0.089 0.095 0.093 0.078 0.081 0.087 0.086 0.070 0.050 0.030 0.018
cfd2 0.084 0.125 0.075 0.076 0.075 0.084 0.084 0.070 0.052 0.032 0.019
nd3k 0.125 0.114 0.054 0.053 0.077 0.074 0.078 0.069 0.050 0.031 0.018
ship_001 0.095 0.078 0.061 0.077 0.032 0.077 0.088 0.057 0.048 0.027 0.019
shipsec5 0.121 0.089 0.077 0.069 0.055 0.087 0.074 0.076 0.057 0.029 0.019
G3_circuit | 0.123 0.076 0.057 0.047 0.029 0.072 0.071 0.067 0.059 0.031 0.020
hood 0.120 0.128 0.070 0.061 0.046 0.082 0.075 0.071 0.053 0.026 0.019
crankseg_1| 0.072 0.122 0.051 0.040 0.022 0.069 0.062 0.058 0.041 0.019 0.018

E.5 e Parameter Evaluation and Estimation 193

v Table E.30 — Runtime of simulation-based parameter evaluation with respect to
different numbers of precise mantissa bits.

MATRIX
NAME

k PRECISE MANTISSA BITS
52 47 42 37 32 27 22 17 12 7 2

[s]1 [[s] [sT [s] [s] [s] [s] [s] [s] [s]

nos3
bcesstk10
msc01050
besstk21
besstk11
nasa2146
sts4098
besstk13
msc04515
ex9
bodyy4
bodyy5
bodyy6
Muu
s3rmt3m3
s3rmt3m1
bcsstk28
s3rmq4m1
besstk16
Kuu
besstk38
msc23052
msc10848
cfd2

nd3k
ship_001
shipsec5
G3_circuit
hood
crankseg_1

096 089 081 0.73 0.66 061 057 0.57 051 048 049
134 132 113 103 093 094 078 073 071 0.73 0.68
1.76 156 1.41 128 1.24 1.07 100 094 095 0.88 0.86
1.33 127 128 112 1.08 1.03 1.02 094 092 0.87 0.92
218 194 175 158 150 133 124 116 1.18 1.06 1.06
414 376 344 298 267 247 221 205 193 192 1.82
4.05 3.68 339 295 264 245 218 204 195 192 1.83
4.74 438 389 3,50 322 287 265 253 235 227 227
5.18 4.85 427 383 3.55 317 291 275 2,57 247 247
551 5.09 447 398 3.61 320 293 275 256 245 241
6.91 6.17 5.57 491 437 407 360 336 323 3.06 298
735 6.61 594 521 465 428 3.8 358 343 324 3.19
762 7.00 6.16 549 499 446 4.05 388 3.59 344 342
954 869 764 691 6.09 551 507 467 442 428 4.14
11.56 10.46 9.38 8.26 742 6.62 6.01 5.66 525 0505 4.94
12.27 1113 997 881 791 7.09 6.50 598 565 548 5.31
1237 1117 999 884 795 7.09 650 598 564 546 529
14.98 13.70 12.20 11.00 9.77 890 806 7.56 7.09 6.89 6.66
15.83 14.27 1278 11.33 10.21 9.16 841 774 737 7.02 6.90
18.18 16.61 14.76 13.24 11.77 10.72 9.72 9.14 857 825 8.03
19.87 17.94 1587 14.17 12,56 11.35 10.25 9.53 896 8.66 8.39
63.77 57.58 51.08 45.44 40.25 36.27 32.99 30.45 28.86 27.59 26.95
68.07 61.43 54.53 48.35 43.00 38.74 35.05 32.44 30.62 29.35 28.70
169.44 153.25 136.16 121.08 107.47 96.82 87.93 81.44 77.05 73.72 72.14
181.45 164.28 145.41 128.99 114.53 103.17 93.76 86.59 81.71 78.50 76.54
240.26 219.21 195.80 175.16 156.92 142.44 130.22 121.37 115.36 110.66 108.26
453.45 421.02 382.62 347.92 317.27 292.34 271.93 257.41 246.73 239.94 235.01
381.23 348.65 311.10 281.41 257.54 232.39 212.81 199.20 188.86 181.69 177.99
267.75 515.07 458.85 408.98 365.60 330.83 301.72 280.89 266.83 256.05 251.06
589.40 530.65 470.41 416.51 369.59 333.51 301.69 280.16 263.73 253.42 247.50

Tables E.31 and E.32 present the simulation-based parameter evaluation results obtained

for executions of sparse matrix-vector multiplications.

194 Appendix E e Experimental Setup and Data

v Table E.31 — Energy demand for sparse matrix-vector multiplication with respect
to different numbers of precise mantissa bits.

MATRIX k PRECISE MANTISSA BITS
NAME 52 47 42 37 32 27 22 17 12 7 2
W W W W W W W W Wl Wl W]
nos3 54 48 40 32 25 19 15 11 08 0.6 04
besstk10 78 69 57 46 36 28 21 16 12 08 06
msc01050 91 &1 67 54 43 33 25 18 13 10 0.7
besstk21 48 44 40 36 32 28 23 18 14 1.0 07
besstk11 119 105 87 70 55 43 32 24 1.7 12 09
nasa2146 26.8 236 195 156 122 94 70 50 35 23 1.5
sts4098 256 226 187 150 118 91 68 49 35 24 1.7
besstk13 28.8 254 21.1 169 134 104 79 58 42 30 21
msc04515 315 281 234 193 155 123 95 7.1 51 36 26
ex9 36.3 321 266 214 168 131 99 73 53 38 28
bodyy4 45.6 40.1 332 266 21.0 162 122 89 64 45 3.2
bodyy5 483 425 351 282 222 172 129 95 6.8 48 3.5
bodyy6 50.2 442 365 293 230 178 134 99 71 51 37
Muu 62.0 54.6 450 360 283 21.8 164 11.8 83 55 3.8
s3rmt3m3 | 76.7 67.6 558 44.7 350 27.0 203 149 107 7.3 5.1
s3rmt3m1 | 79.9 704 580 465 366 281 21.1 156 11.1 7.7 5.5
besstk28 81.4 716 59.1 474 371 286 21.3 153 106 7.2 4.8
s3rmqdml | 91.3 80.7 67.1 542 429 333 252 186 134 94 6.6
besstk16 101.4 89.3 737 593 469 364 275 202 144 102 7.4
Kuu 1127 999 83.0 674 534 413 317 237 173 125 94
besstk38 131.2 1153 951 762 59.6 459 344 250 17.7 122 85
msc23052 | 424.6 373.6 308.3 246.9 193.2 1489 111.3 80.1 55.7 37.5 24.9
mscl10848 | 452.8 397.9 327.6 261.5 204.2 156.5 116.3 82.7 56.5 37.3 24.2
cfd2 1128.6 993.6 820.7 662.8 523.1 405.7 304.3 220.3 157.0 109.2 74.3
nd3k 1194.2 1051.4 859.2 683.6 533.6 404.4 299.8 217.7 150.7 99.4 65.1
ship_001 |1432.8 1268.0 1052.2 834.3 655.2 501.8 377.8 277.5 200.7 144.1 107.4
shipsec5 |1930.7 1693.6 1416.1 1159.9 9125 735.0 565.3 436.4 331.1 247.4 186.2
G3_circuit [2684.9 2246.7 1849.9 1554.7 1235.5 977.9 714.4 533.5 381.0 270.5 193.2
hood 3743.1 3033.4 2702.6 2259.0 1644.1 1354.1 998.2 697.9 489.9 340.1 226.0

crankseg_1

3959.9 3141.9 2793.7 2334.8 1682.2 1378.1 1012.5 701.1 482.3 323.7 208.9

E.5 e Parameter Evaluation and Estimation 195

v Table E.32 — Relative error for sparse matrix-vector multiplication with respect to
different numbers of precise mantissa bits.

MATRIX k PRECISE MANTISSA BITS
NAME 52 47 42 37 32 27 22 17 12 7 2
[107'°] [107"%] [107"] [107'%] [107°] [1077] [107°] [207*] [107%] [107']
nos3 0.0 4.38 1.81 5.91 1.50 598 2.16 6.11 1.73 6.52 1.60
bcesstk10 0.0 4.38 1.56 5.17 1.67 528 1.71 543 1.76 544 1.62
msc01050 (0.0 4.02 1.42 4.90 1.61 498 1.57 5,51 1.51 488 1.48
besstk21 0.0 2.58 0.95 2.99 093 3.09 1.01 420 154 5.05 1.73
besstk11 0.0 4.91 1.66 5.46 164 547 182 551 184 bH.77 1.64
nasa2146 (0.0 4.69 1.64 5.29 1.68 539 1.75 554 1.76 560 1.63
sts4098 0.0 4.48 1.57 5.17 1.68 525 169 533 173 554 1.64
bcesstk13 0.0 4.53 1.60 5.07 1.60 522 1.72 541 1.74 560 1.65
msc04515 [0.0 4.05 1.52 4.69 148 488 1.57 530 1.89 5.89 1.70
ex9 0.0 4.64 1.65 5.31 1.68 538 1.74 554 1.78 5.61 1.65
bodyy4 0.0 4.71 1.64 5.28 1.69 538 1.73 553 1.77 5.63 1.65
bodyy5 0.0 4.71 1.64 5.26 1.69 537 1.73 5.53 1.77 563 1.65
bodyy6 0.0 4.71 1.64 5.25 1.69 536 172 553 1.76 564 1.66
Muu 0.0 4.79 1.71 5.33 1.61 5.01 191 597 1.80 5.69 1.50
s3rmt3m3 |0.0 4.66 1.64 5.23 1.67 537 1.7v3 5.51 1.75 561 1.65
s3rmt3m1 (0.0 4.65 1.65 5.16 1.67 534 1.73 550 177 545 1.65
bcsstk28 0.0 4.69 1.64 5.26 1.68 539 1.74 552 1.76 561 1.64
s3rmq4m1 (0.0 4.11 1.47 4.62 1.51 481 154 498 1.59 491 1.50
bcsstk16 0.0 4.65 1.63 5.13 1.69 531 1.72 541 1.76 5.52 1.61
Kuu 0.0 4.12 1.46 4.89 1.57 485 148 500 1.68 5.29 1.65
besstk38 0.0 4.68 1.64 5.24 1.67 537 172 552 177 559 1.64
msc23052 (0.0 4.65 1.62 5.19 1.67 533 171 549 1.75 559 1.62
msc10848 |0.0 4.72 1.64 5.26 1.69 539 173 555 177 562 1.64
cfd2 0.0 4.53 1.59 5.11 1.63 523 1.67 536 1.71 547 1.59
nd3k 0.0 4.70 1.65 5.28 1.68 540 1.73 553 1.77 560 1.64
ship_001 0.0 3.89 1.37 4.39 1.41 450 144 464 148 474 1.38
shipsec5 0.0 2.13 0.75 2.43 0.78 246 0.78 2.50 0.81 2.58 0.75
G3_circuit |0.0 3.69 1.37 4.58 1.37 458 1.67 445 1.51 493 1.40
hood 0.0 4.34 1.52 4.88 1.56 5.00 160 5.11 164 5.22 1.53
crankseg_l 0.0 4.65 1.62 5.18 1.66 531 170 553 1.78 565 1.64

196 Appendix E e Experimental Setup and Data

Table E.33 compares the results of the combined parameter estimation method against
the results of the simulation-based parameter evaluation methods for complete solver

executions.

Vv Table E.33 — Comparison of runtime for estimation-based T and simulation-based

methods T, as well as energy estimation error e of the estimation-based method.

MATRIX No Jacosi ICC
NAME PRECONDITIONER PRECONDITIONER PRECONDITIONER
TS TE e TS TE e TS TE e
(s] (s] (%] | [s] [s] (%] | [s] [s] (%]
nos3 10.3 11,2819 11.5 10.9 1,165.4 12.6 11.6 847.1 13.1
bcsstk10 13.2 5,481.3 7.3 13.8 5,481.3 4.1 14.9 3,982.2 6.0
msc01050 15.9 5,290.9 6.7 16.6 5,290.9 8.4 18.1 7,435.1 6.8
besstk21 14.3 6,349.7 14.1 15.0 5,016.2 13.0 16.0 2,653.7 6.9
bcesstk11 19.7 5,435.3 74 20.3 5,435.3 6.3 22.3 8,021.4 79
nasa2146 33.5 3,676.1 6.6 34.1 3,015.0 6.6 38.6 4,449.1 4.3
sts4098 33.5 7,658.6 8.6 34.2 4,625.8 2.1 38.5 7,143.7 8.3
bcesstk13 384 7,785.4 0.6 39.1 7,785.4 5.3 44.1 13,549.8 14
msc04515 42.7 8,508.9 6.3 43.4 8,508.9 4.5 48.9 14,784.7 2.2
ex9 46.3 7,936.6 6.9 471 7,936.6 5.1 52.9 14,548.0 6.4
bodyy4 54.8 3,173.7 6.6 56.4 2,991.1 8.0 63.1 6,353.1 2.6
bodyy5 57.6 9,531.7 74 59.2 7,304.9 5.8 66.4 22,361.0 3.9
bodyy6 60.0 14,352.7 3.3 61.7 14,352.7 5.5 69.1 23,412.4 5.6
Muu 34.0 221.8 3.6 34.8 126.0 10.2 45.3 262.0 4.2
s3rmt3m3 84.7 §,321.9 8.0 85.5 11,276.3 4.5 98.4 24,983.3 0.2
s3rmt3m1 94.4 12,084.8 10.6 95.1 12,084.8 4.6 109.0 26,753.0 4.6
bcesstk28 92.7 11,095.8 8.2 934 11,095.8 6.1| 1074 25,855.1 6.8
s3rmq4ml 113.1 13,9224 10.3| 113.9 13,9224 3.4| 130.8 31,683.4 3.9
bcsstk16 116.5 7,3234 6.9 1173 3,929.3 3.4| 1354 7,423.7 3.7
Kuu 1344 11,1394 6.5 135.2 §,875.7 4.4| 156.1 9,222.2 12.7
bcsstk38 148.,5 17,043.7 6.9| 1494 17,043.7 39| 1719 40,454.3 2.5
msc23052 602.6 47,631.8 6.8| 604.4 47,631.8 6.5| 677.6 122,641.8 9.2
msc10848 481.6 45,569.3 8.0| 482.8 45,569.3 5.3| 561.5 125,444.5 3.5
cfd2 1,229.2 145,999.1 6.9|1,237.4 145,999.1 6.7]1,430.6 347,344.1 12.6
nd3k 1,258.1 111,753.6 3.6|1,259.2 111,753.6 4.9|1,468.9 322,549.7 2.0
ship_001 1,801.5 158,407.9 1.9|1,804.2 158,407.9 5.6|2,084.1 440,928.9 2.9
shipsec5 3,493.1 377,650.4 10.8|3,504.8 377,650.4 1.8/4,034.4 918,990.7 3.0
G3_circuit |3,121.0 826,055.6 3.3|3,220.5 826,055.6 7.1|3,579.5 1,284,599.7 3.8
hood 4,109.5 412,303.0 6.0(4,123.9 412,303.0 6.9|4,779.8 1,082,567.0 5.5
crankseg_1|4,094.7 361,439.9 5.1(4,098.5 346,259.4 3.9|4,783.0 778,9494 4.1

[Abadi16]

[Advan14]

[Amarul3]

[Ament10]

[Asano06]

BIBLIOGRAPHY

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A System for Large-scale
Machine Learning. In Proceedings of the 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI). 2016. [page 9]

S. Advani, N. Chandramoorthy, K. Swaminathan, K. Irick, Y. C. P. Cho,
J. Sampson, and V. Narayanan. Refresh Enabled Video Analytics (REVA):
Implications on Power and Performance of Dram Supported Embedded
Visual Systems. In 32nd IEEE International Conference on Computer Design
(ICCD), pages 501-504. 2014. [page 47]

L. Amaru, P.-E. Gaillardon, J. Zhang, and G. De Micheli. Power-gated Differ-
ential Logic Style Based on Double-gate Controllable-polarity Transistors.
IEEE Transactions on Circuits and Systems II: Express Briefs, 60(10):672-676,
2013. [page 14]

M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. A Parallel Precondi-
tioned Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU
Platform. In 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 583-592. 2010. [page 6]

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, and S. W. Williams. The Landscape
of Parallel Computing Research: A View from Berkeley. Technical report,
Technical Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, 2006. [page 5]

198 Bibliography

[Avizi04]

[Avram17]

[Balay16]

[Barba16]

[Barlo85]

[Bastr12]

[Beche16]

[Becke10]

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11-33, 2004. [pages 2 and 26]

E. Avramidis and O. E. Akman. Optimisation of an Exemplar Oculomotor
Model Using Multi-objective Genetic Algorithms Executed on a GPU-CPU
Combination. BMC Systems Biology, 11(1):40, 2017. [page 8]

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne Na-
tional Laboratory, 2016. [page 44]

M. Barbareschi, F. lannucci, and A. Mazzeo. An Extendible Design Ex-
ploration Tool for Supporting Approximate Computing Techniques. In
International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), pages 1-6. 2016. [pages 53, 56, 98, 101, and 105]

J. L. Barlow and E. Bareiss. On Roundoff Error Distributions in Float-

ing Point and Logarithmic Arithmetic. Computing, 34(4):325-347, 1985.
[page 40]

S. Bastrakov, R. Donchenko, A. Gonoskov, E. Efimenko, A. Malysheyv,
I. Meyerov, and I. Surmin. Particle-in-cell Plasma Simulation on Hetero-
geneous Cluster Systems. Journal of Computational Science, 3(6):474-479,
2012. [page 8]

A. Becher, J. Echavarria, D. Ziener, S. Wildermann, and J. Teich. A LUT-
Based Approximate Adder. In IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 27-27.
2016. [page 48]

B. Becker, S. Hellebrand, I. Polian, B. Straube, W. Vermeiren, and H.-J.
Wunderlich. Massive Statistical Process Variations: A Grand Challenge
for Testing Nanoelectronic Circuits. In IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 95-100.
2010. [page 11]

[Beign13]

[Benzi02]

[Bhard13]

[Bhard14]

[Bini05]

[Boore14]

[Borka05]

[Borka10]

[Boute15]

Bibliography 199

E. Beigné, A. Valentian, B. Giraud, O. Thomas, T. Benoist, Y. Thonnart,
S. Bernard, G. Moritz, O. Billoint, Y. Maneglia, et al. Ultra-wide Voltage
Range Designs in Fully-depleted Silicon-on-insulator FETs. In Proceedings
of the Conference on Design, Automation and Test in Europe (DATE), pages
613-618. 2013. [page 14]

M. Benzi. Preconditioning Techniques for Large Linear Systems: a Survey.
Journal of Computational Physics, 182(2):418-477, 2002. [pages 22 and 82]

K. Bhardwaj and P. S. Mane. ACMA: Accuracy-configurable Multiplier
Architecture for Error-resilient System-on-chip. In 8th International Work-
shop on Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), pages 1-6. 2013. [page 48]

K. Bhardwaj, P. S. Mane, and J. Henkel. Power-and Area-efficient Ap-
proximate Wallace Tree Multiplier for Error-resilient Systems. In 15th
International Symposium on Quality Electronic Design (ISQED), pages 263—
269. 2014. [page 48]

D. A. Bini, N. J. Higham, and B. Meini. Algorithms for the Matrix p-th
Root. Numerical Algorithms, 39(4):349-378, 2005. [page 51]

D. M. Boore, J. P. Stewart, E. Seyhan, and G. M. Atkinson. NGA-west2
Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow
Crustal Earthquakes. Earthquake Spectra, 30(3):1057-1085, 2014. [page 6]

S. Borkar. Designing Reliable Systems from Unreliable Components: The
Challenges of Transistor Variability and Degradation. IEEE Micro, 25(6):10-
16, 2005. [page 11]

S. Borkar. The Exascale Challenge. In International Symposium on VLSI
Design Automation and Test (VLSI-DAT), pages 2-3. 2010. [page 13]

A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra. Algorithm-
Based Fault Tolerance for Dense Matrix Factorizations, Multiple Failures
and Accuracy. ACM Transactions on Parallel Computing, 1(2):10:1-10:28,
2015. [page 32]

200 Bibliography

[Bouvil4]

[Braun12a]

[Braun12b]

[Braun14]

[Brone08]

[Brook00]

[Buato09]

[Bushn04]

D. Bouvier, B. Cohen, W. Fry, S. Godey, and M. Mantor. Kabini: An AMD
Accelerated Processing Unit System on a Chip. IEEE Micro, 34(2):22-33,
2014. [page 43]

C. Braun, S. Holst, H.-J. Wunderlich, J. M. Castillo, and J. Gross. Ac-
celeration of Monte-Carlo Molecular Simulations on Hybrid Computing
Architectures. In Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD’12), pages 207-212. 2012. [page 8]

C. Braun, M. Daub, A. Scholl, G. Schneider, and H.-J. Wunderlich. Paral-
lel Simulation of Apoptotic Receptor-Clustering on GPGPU Many-Core
Architectures. In Proceedings of the IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM’12), pages 1-6. 2012. [page 8]

C. Braun, S. Halder, and H.-J. Wunderlich. A-ABFT: Autonomous
Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics
Processing Units. In Proceedings of the 44th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN’14), pages 443-454. 2014.
[pages 32 and 40]

G. Bronevetsky and B. de Supinski. Soft Error Vulnerability of Iterative
Linear Algebra Methods. In Proceedings of the International Conference on
Supercomputing, pages 155-164. 2008. [pages 29, 32, 35, 37, 41, 66, 68, 74,
114, and 116]

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proceedings of
the 27th Annual International Symposium on Computer Architecture, pages
83-94. 2000. [page 54]

L. Buatois, G. Caumon, and B. Levy. Concurrent Number Cruncher: a GPU
Implementation of a General Sparse Linear Solver. International Journal of
Parallel, Emergent and Distributed Systems, 24(3):205-223, 2009. [page 6]

M. Bushnell and V. Agrawal. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, volume 17. Springer Science &
Business Media, 2004. [page 29]

Bibliography 201

[Camus15] V. Camus, J. Schlachter, and C. Enz. Energy-Efficient Inexact Speculative

[Cappel4]

[Carbi13]

[Castil5]

[Catan08]

[Chakr10]

[Chand17]

[Chatt09]

[Chen12]

Adder with High Performance and Accuracy Control. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 45-48. 2015. [page 48]

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. To-
ward Exascale Resilience: 2014 Update. In Supercomputing Frontiers and

Innovations, volume 1. 2014. [pages 1 and 26]

M. Carbin, S. Misailovic, and M. C. Rinard. Verifying Quantitative Reliabil-
ity for Programs that Execute on Unreliable Hardware. In ACM SIGPLAN
Notices, volume 48, pages 33-52. 2013. [page 49]

L. R. F. Castillo. The large hadron collider. In The Search and Discovery of
the Higgs Boson. Morgan & Claypool Publishers, 2015. [page 9]

B. Catanzaro, N. Sundaram, and K. Keutzer. Fast Support Vector Machine
Training and Classification on Graphics Processors. In Proceedings of the

25th International Conference on Machine Learning, pages 104-111. 2008.
[page 9]

S.T. Chakradhar and A. Raghunathan. Best-effort Computing: Re-thinking
Parallel Software and Hardware. In 47th ACM/IEEE Design Automation
Conference (DAC’10), pages 865-870. 2010. [page 47]

A. Chandrasekharan, D. Grof3e, and R. Drechsler. Proact: A Processor for
High Performance On-demand Approximate Computing. In Proceedings
of the on Great Lakes Symposium on VLSI 2017, pages 463—-466. ACM, 2017.
[pages 3, 43, and 49]

D. Chatterjee, A. DeOrio, and V. Bertacco. Event-driven Gate-level Simu-
lation with GP-GPUs. In Proceedings of the 46th Annual ACM/IEEE Design
Automation Conference (DAC), pages 557-562. ACM, 2009. [page 8]

L. Chen, X. Huo, and G. Agrawal. Accelerating MapReduce on a Coupled
CPU-GPU Architecture. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, page 25.
IEEE Computer Society Press, 2012. [page 9]

202 Bibliography

[Chen13]

[Chen14]

[Chen15a]

[Chen15b]

[Chen16]

[Cheng99]

[Chien16]

[Chipp13]

Z. Chen. Online-ABFT: An Online Algorithm Based Fault Tolerance
Scheme for Soft Error Detection in Iterative Methods. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 167-176. 2013. [pages 41, 42, and 78]

C. P. Chen and C.-Y. Zhang. Data-intensive Applications, Challenges,
Techniques and Technologies: A Survey on Big Data. Information Sciences,
275:314-347, 2014. [page 9]

B. Chen, B. Bottoms, D. Armstrong, and A. Isobayashi. ITRS 2.0: Het-
erogeneous Integration. Solid State Technology, 58(3):13-17, 2015. URL
http://www.itrs2.net/itrs-reports.html. [pages 1 and 43]

K. Chen, F. Lombardi, and J. Han. Matrix Multiplication by an Inexact
Systolic Array. In Proceedings of the IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH’15), pages 151-156. 2015. [pages 48
and 54]

Y. Chen, X. Yang, F. Qiao, J. Han, Q. Wei, and H. Yang. A Multi-accuracy-
Level Approximate Memory Architecture Based on Data Significance
Analysis. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 385-390. 2016. [page 48]

K.-T. Cheng, S.-Y. Huang, and W.-J. Dai. Fault Emulation: A New Method-
ology for Fault Grading. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(10):1487-1495, 1999. [page 28]

A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein,
Z. Zheng, J. Hammond, I. Laguna, et al. Exploring Versioned Distributed
Arrays for Resilience in Scientific Applications: Global View Resilience.
International Journal of High Performance Computing Applications, pages
1-27, 2016. [page 41]

V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Analysis and
Characterization of Inherent Application Resilience for Approximate Com-
puting. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation
Conference (DAC’13), pages 1-9. 2013. [pages 47, 51, 52, 53, 56, 83, 98, 105,
and 106]

http://www.itrs2.net/itrs-reports.html

[Cho14]

[Choi09]

[Chowd96]

[Chung10]

[Cools16]

[Cuil3]

[DAzev05]

[Davis11]

Bibliography 203

K. Cho, Y. Lee, Y. H. Oh, G.-c. Hwang, and J. W. Lee. eDRAM-based Tiered-
Reliability Memory with Applications to Low-power Frame Buffers. In
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pages 333-338. 2014. [page 48]

J. G. Choi and P. H. Seong. Reliability of Electronic Components. In
Reliability and Risk Issues in Large Scale Safety-critical Digital Control
Systems, pages 3—-24. Springer, 2009. [page 12]

A.-R. Chowdhury and P. Banerjee. A New Error Analysis Based Method for
Tolerance Computation for Algorithm-Based Checks. IEEE Transactions
on Computers, 45(2):238-243, 1996. [pages 40, 66, 120, and 160]

E.S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip Heterogeneous
Computing: Does the Future include Custom Logic, FPGAs, and GPGPUs?
In Proceedings of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 225-236. 2010. [pages 1, 7, and 43]

S. Cools, W. Vanroose, E. F. Yetkin, E. Agullo, and L. Giraud. On Rounding
Error Resilience, Maximal Attainable Accuracy and Parallel Performance
of the Pipelined Conjugate Gradients method for Large-Scale Linear Sys-
tems in PETSc. In Proceedings of the Exascale Applications and Software
Conference, pages 3:1-10. 2016. [pages 25, 84, 87, 91, 92, 93, and 113]

Y. Cui, E. Poyraz, K. B. Olsen, J. Zhou, K. Withers, S. Callaghan, J. Larkin,
C. Guest, D. Choi, A. Chourasia, et al. Physics-based Seismic Hazard
Analysis on Petascale Heterogeneous Supercomputers. In Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, page 70. ACM, 2013. [page 8]

E. F. D’Azevedo, M. R. Fahey, and R. T. Mills. Vectorized Sparse Matrix
Multiply for Compressed Row Storage Format. In Computational Sci-

ence, volume 1 of Lecture Notes in Computer Science, pages 99-106. 2005.

[page 113]

T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38(1):1:1-1:25, 2011. [pages 9
and 112]

204 Bibliography

[Dehiy17]

[Dell97]

[Deng16]

[Denna74]

[Desch06]

[Di Ma16]

[Diche16]

[Donga12]

[Dongal5]

R. Dehiya, A. Singh, P. K. Gupta, and M. Israil. Optimization of Com-
putations for Adjoint Field and Jacobian Needed in 3D CSEM Inversion.
Journal of Applied Geophysics, 136:444-454, 2017. [page 5]

T. J. Dell. A White Paper on the Benefits of Chipkill-correct ECC for PC
Server Main Memory. IBM Microelectronics Division, 11, 1997. [page 30]

L. Deng, H. Bai, F. Wang, and Q. Xu. CPU/GPU Computing for An Im-
plicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous
Platform. In International Journal of Modern Physics: Conference Series,
volume 42. 2016. [page 9]

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of Ion-implanted MOSFET’s with Very Small Physical Dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256-268, 1974. [pages 2 and 14]

J.-P. Deschamps, G. J. Bioul, and G. D. Sutter. Synthesis of Arithmetic
Circuits: FPGA, ASIC and Embedded Systems. John Wiley & Sons, 2006.

[page 115]

C. Di Martino, Z. Kalbarczyk, and R. Iyer. Measuring the Resiliency of
Extreme-Scale Computing Environments. In Principles of Performance
and Reliability Modeling and Evaluation, pages 609-655. Springer, 2016.
[pages 10, 29, and 115]

K. Dichev and D. S. Nikolopoulos. TwinPCG: Dual Thread Redundancy
with Forward Recovery for Preconditioned Conjugate Gradient Methods.
In 2016 IEEE International Conference on Cluster Computing (CLUSTER),
pages 506—514. 2016. [pages 42 and 114]

J. Dongarra, T. Dong, M. Gates, A. Haidar, S. Tomov, and 1. Yamazaki.
MAGMA: A New Generation of Linear Algebra Library for Gpu and Mul-
ticore Architectures. International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC’12), 2012. [page 44]

J. Dongarra, M. A. Heroux, and P. Luszczek. HPCG Benchmark: A New Met-
ric for Ranking High Performance Computing Systems. Technical Report,
Electrical Engineering and Computer Science Department, 2015. [page 9]

[Donga9d4]

[Dui12]

[Duffo2]

[Ehler17]

[Eldri14]

[Esmael2a]

[Esmael2b]

[Esmael2c]

Bibliography 205

J. Dongarra, A. Lumsdaine, X. Niu, R. Pozo, and K. Remington. A Sparse
Matrix Library in C++ for High Performance Architectures. 1994. [page 44]

P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-
Based Fault Tolerance for Dense Matrix Factorizations. In Proceedings of
the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 225-234. 2012. [page 32]

L. S. Duff, M. A. Heroux, and R. Pozo. An Overview of the Sparse Basic
Linear Algebra Subprograms: The New Standard from the BLAS Technical
Forum. ACM Transactions on Mathematical Software (TOMS), 28(2):239-267,
2002. [page 44]

W. Ehlers and C. Luo. A phase-field approach embedded in the theory
of porous media for the description of Dynamic Hydraulic Fracturing.
Computer Methods in Applied Mechanics and Engineering, 315:348-368,
2017. [page 10]

S. Eldridge, F. Raudies, D. Zou, and A. Joshi. Neural Network-based
Accelerators for Transcendental Function Approximation. In Proceedings
of the 24th Edition of the Great Lakes Symposium on VLSI, GLSVLSI *14,
pages 169-174. 2014. [page 48]

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture Sup-
port for Disciplined Approximate Programming. In Proceedings of the
Seventeenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 301-312. 2012. [pages 3, 43,
and 48]

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark Silicon and the End of Multicore Scaling. IEEE Micro, 32(3):122-134,
2012. [page 15]

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural Acceleration
for General-Purpose Approximate Programs. In Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
45, pages 449-460. 2012. [page 48]

206 Bibliography

[Esmael3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.

[Espos16]

[Fang16]

[Farsh13]

[Fasi16]

[Feich15]

[Feng10]

[Ferle13]

[Filip17]

Power Challenges May End the Multicore Era. Communications of the
ACM, 56(2):93-102, 2013. [pages 2, 3, and 14]

D. Esposito, G. Castellano, D. D. Caro, E. Napoli, N. Petra, and A. G. M.
Strollo. Approximate Adder with Output Correction for Error Tolerant
Applications and Gaussian Distributed Inputs. In IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 1970-1973. 2016. [page 48]

B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. A Systematic
Methodology for Evaluating the Error Resilience of GPGPU Applications.
IEEE Transactions on Parallel and Distributed Systems, 27(12):3397-3411,
2016. [page 29]

F. Farshchi, M. S. Abrishami, and S. M. Fakhraie. New Approximate Multi-
plier for Low Power Digital Signal Processing. In 17th CSI International
Symposium on Computer Architecture and Digital Systems (CADS), pages
25-30. 2013. [page 48]

M. Fasi, J. Langou, Y. Robert, and B. Ugar. A Backward/Forward Recovery
Approach for the Preconditioned Conjugate Gradient Method. journal of
Computational Science, 17:522-534, 2016. [pages 32, 37, 38, and 116]

C. Feichtinger, J. Habich, H. Kostler, U. Riide, and T. Aoki. Performance
Modeling and Analysis of Heterogeneous Lattice Boltzmann Simulations
on CPU-GPU Clusters. Parallel Computing, 46:1-13, 2015. [page 9]

Z. Feng and Z. Zeng. Parallel Multigrid Preconditioning on Graphics
Processing Units (GPUs) for Robust Power Grid Analysis. In Proceedings of
the 47th ACM/EDAC/IEEE Design Automation Conference (DAC’10), pages
661-666. 2010. [page 5]

V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker. Single Event Tran-
sients in Digital CMOS-A Review. IEEE Transactions on Nuclear Science,
60(3):1767-1790, 2013. [page 12]

S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo. Sparse Matrix-
Vector Multiplication on GPGPUs. ACM Transactions on Mathematical
Software (TOMS), 43(4):30, 2017. [page 6]

[Flich16]

[Gaill14]

[Gallo15]

[Gan15]

[Gao16a]

[Gao16b]

[Gokhb16]

[Golub13]

[Gotti16]

Bibliography 207

J. Flich, G. Agosta, P. Ampletzer, D. A. Alonso, C. Brandolese, A. Cilardo,
W. Fornaciari, Y. Hoornenborg, M. Kova¢, B. Maitre, et al. Enabling HPC
for QoS-sensitive Applications: the MANGO Approach. In Proceedings
of the Design, Automation & Test in Europe Conference Exhibition (DATE),
pages 702-707. 2016. [page 3]

P.-E. Gaillardon, L. Amaru, J. Zhang, and G. De Micheli. Advanced System
on a Chip Design Based on Controllable-polarity FETs. In Proceedings
of the Design, Automation & Test in Europe Conference Exhibition (DATE),
page 235. European Design and Automation Association, 2014. [page 14]

E. Gallopoulos, B. Philippe, and A. Sameh. Parallelism in Matrix Computa-
tions. Scientific Computation. Springer, 2015. [page 72]

L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang,.
Solving the Global Atmospheric Equations through Heterogeneous Recon-
figurable Platforms. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 8(2):11, 2015. [page 8]

Y. Gao and P. Zhang. A Survey of Homogeneous and Heterogeneous Sys-
tem Architectures in High Performance Computing. In IEEE International
Conference on Smart Cloud (SmartCloud), pages 170-175. 2016. [page 1]

Z. Gao, P. Reviriego, and J. A. Maestro. Efficient Fault Tolerant Parallel
Matrix-Vector Multiplications. In IEEE 22nd International Symposium on
On-Line Testing and Robust System Design (IOLTS’16), pages 25-26. 2016.

[page 38]

A. Gokhberg and A. Fichtner. Full-waveform Inversion on Heterogeneous
HPC Systems. Computers & Geosciences, 89:260-268, 2016. [page 8]

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins
University Press, 4th edition, 2013. [pages 5, 20, 24, 39, 150, 153, and 160]

K. C. Gottiparthi, R. Sankaran, and J. C. Oefelein. High Fidelity Large Eddy
Simulation of Reacting Supercritical Fuel Jet-in-Cross-Flow using GPU
acceleration. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, page
4791. 2016. [page 9]

208 Bibliography

[Grigol4a]

[Grigo14b]

[Grigo15]

[Gulatos]

[Gulat09]

[Guptall]

[Guptal3]

[Hakka15]

B. Grigorian and G. Reinman. Dynamically Adaptive and Reliable Approx-
imate Computing using Light-weight Error Analysis. In Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS’14), pages
248-255. 2014. [pages 46 and 48]

B. Grigorian and G. Reinman. Improving Coverage and Reliability in
Approximate Computing using Application-Specific, Light-Weight Checks.
In Workshop on Approximate Computing Across the System Stack (WACAS).
2014. [page 46]

B. Grigorian, N. Farahpour, and G. Reinman. BRAINIAC: Bringing Reliable
Accuracy into Neurally-implemented Approximate Computing. In IEEE
21st International Symposium on High Performance Computer Architecture
(HPCA), pages 615-626. 2015. [page 48]

K. Gulati and S. P. Khatri. Towards Acceleration of Fault Simulation
Using Graphics Processing Units. In Proceedings of the 45th Annual
ACM/EDAC/IEEE Design Automation Conference (DAC’08), pages 822-827.
2008. [page 8]

K. Gulati, J. F. Croix, S. P. Khatr, and R. Shastry. Fast Circuit Simulation
on Graphics Processing Units. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 403-408. 2009. [page 8]

V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy. IMPACT:
Imprecise Adders for Low-power Approximate Computing. In Proceedings
of the 17th IEEE/ACM International Symposium on Low-power Electronics
and Design, (ISLPED), pages 409-414. 2011. [page 48]

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power Digi-
tal Signal Processing Using Approximate Adders. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(1):124-137,
2013. [page 48]

D. Hakkarinen, P. Wu, and Z. Chen. Fail-Stop Failure Algorithm-Based
Fault Tolerance for Cholesky Decomposition. IEEE Transactions on Parallel
and Distributed Systems, 26(5):1323-1335, 2015. [page 32]

Bibliography 209

[Hamer05] G. Hamerly, E. Perelman,]. Lau, and B. Calder. SimPoint 3.0: Faster

[Han13]

[Han16]

[Hashe15]

[Helfe12]

[Heraul6]

[Herke14]

[Heste52]

and More Flexible Program Phase Analysis. Journal of Instruction-Level
Parallelism, 7:1-28, 2005. [pages 55, 56, 98, 99, 101, and 107]

J. Han and M. Orshansky. Approximate Computing: An Emerging
Paradigm for Energy-efficient Design. In 18th IEEE European Test Sympo-
sium (ETS), pages 1-6. 2013. [pages 3 and 46]

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
EIE: Efficient Inference Engine on Compressed Deep Neural Network. In
Proceedings of the 43rd International Symposium on Computer Architecture,
pages 243-254. 2016. [page 5]

S. Hashemi, R. Bahar, and S. Reda. Drum: A Dynamic Range Unbiased
Multiplier for Approximate Applications. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pages 418-425. 2015.

[page 48]

R. Helfenstein and]J. Koko. Parallel Preconditioned Conjugate Gradient
Algorithm on GPU. In Proceedings of the 15th International Congress on
Computational and Applied Mathematics (ICCAM), volume 236, pages 3584
- 3590. 2012. [page 6]

T. Herault and Y. Robert. Fault-Tolerance Techniques for High-Performance
Computing. Springer, 2016. [page 13]

A. Herkersdorf, H. Aliee, M. Engel, M. Glaf}, C. Gimmler-Dumont,
J. Henkel, V. Kleeberger, M. A. Kochte, J. M. Kithn, D. Mueller-Gritschneder,
S. R. Nassif, H. Rauchfuss, W. Rosenstiel, U. Schlichtmann, M. Shafique,
M. B. Tahoori, J. Teich, N. Wehn, C. Weis, and H. Wunderlich. Resilience Ar-
ticulation Point (RAP): Cross-layer Dependability Modeling for Nanometer
System-On-Chip Resilience. Microelectronics Reliability, 54(6-7):1066—-1074,
2014. [page 29]

M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving
Linear Systems, volume 49. Journal of Research of the National Bureau of
Standards, 1952. [page 21]

210 Bibliography

[Higha96]

[Hoang13]

[Holik16]

[Holst12]

[Holst15]

[Holst16]

[Hsieh98]

[Hsu05]

[Hsueh97]

[Hu15]

N. J. Higham. Accuracy and Stability of Numerical Algorithms. 48. Siam,
1996. [page 40]

R. V. Hoang, D. Tanna, L. C. Jayet Bray, S. M. Dascalu, and F. C. Harris Jr. A
Novel CPU/GPU Simulation Environment for Large-scale Biologically Re-
alistic Neural Modeling. Frontiers in Neuroinformatics, 7:19, 2013. [page 8]

L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek, and T. Vojnar.
Towards Formal Relaxed Equivalence Checking in Approximate Comput-
ing Methodology. 2nd Workshop on Approximate Computing (WAPCO’16),
2016. [page 48]

S. Holst, E. Schneider, and H.-J. Wunderlich. Scan Test Power Simulation
on GPGPUs. In IEEE 21st Asian Test Symposium (ATS), pages 155-160. 2012.

[page 8]

S. Holst, M. E. Imhof, and H.-J. Wunderlich. High-throughput Logic
Timing Simulation on GPGPUs. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 20(3):37, 2015. [pages 8 and 103]

S. Holst, E. Schneider, X. Wen, S. Kajihara, Y. Yamato, H.-J. Wunderlich,
and M. A. Kochte. Timing-Accurate Estimation of IR-Drop Impact on
Logic-and Clock-Paths During At-Speed Scan Test. In IEEE Asian Test
Symposium (ATS), pages 19-24. 2016. [page 8]

C.-T. Hsieh and M. Pedram. Microprocessor Power Estimation Using
Profile-driven Program Synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(11):1080-1089, 1998. [pages 55,
56, 98, and 107]

C.-H. Hsu and W.-C. Feng. A Power-aware Run-Time System for High-
Performance Computing. In Proceedings of the ACM/IEEE Conference on
Supercomputing. 2005. [page 15]

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection Techniques and
Tools. Computer, 30(4):75-82, 1997. [page 28]

J. Hu and W. Qian. A New Approximate Adder with Low Relative Error
and Correct Sign Calculation. In Proceedings of the 2015 Design, Automation

[Huang12]

[Huang84]

[Hurre13]

[IEEE 08]

[ITR]

[Intel17]

[Jain16]

[Jeong16]

[Jiang15]

Bibliography 211

& Test in Europe Conference & Exhibition (DATE), pages 1449-1454. 2015.
[page 48]

J. Huang, J. Lach, and G. Robins. A Methodology for Energy-Quality Trade-
off using Imprecise Hardware. In Proceedings of the 49th ACM/EDAC/IEEE
Annual Design Automation Conference (DAC’12), pages 504-509. 2012.

[page 106]

K.-H. Huang and]J. A. Abraham. Algorithm-Based Fault Tolerance for
Matrix Operations. IEEE Transactions on Computers, C-33(6):518—528, 1984.
[pages 2, 13, 32, 33, and 39]

J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, J.-F.
Lamarque, W. G. Large, D. Lawrence, K. Lindsay, et al. The Community
Earth System Model: A Framework for Collaborative Research. Bulletin
of the American Meteorological Society, 94(9):1339-1360, 2013. [pages 6
and 10]

IEEE Standards Committee. 754-2008 IEEE Standard for Floating-Point
Arithmetic. IEEE Computer Society, 2008. [pages 113, 153, 155, and 157]

The International Technology Roadmap for Semiconductors 2013 Edi-
tion. URL http://www.itrs.net/Links/2013ITRS/Home2013.htm.

[page 2]
Intel Corporation. 7th Generation Intel Core Fact Sheet, 2017. [page 43]

A. Jain, P. Hill, S. C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Concise Loads and Stores: The Case
for an Asymmetric Compute-memory Architecture for Approximation.
In 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1-13. 2016. [page 48]

D. Jeong, Y. H. Oh, J. W. Lee, and Y. Park. An eDRAM-Based Approximate
Register File for GPUs. IEEE Design & Test, 33(1):23-31, 2016. [page 48]

H. Jiang, J. Han, and F. Lombardi. A Comparative Review and Evaluation
of Approximate Adders. In Proceedings of the Great Lakes Symposium on
VLSI, pages 343-348. 2015. [page 15]

http://www.itrs.net/Links/2013ITRS/Home2013.htm

212 Bibliography

[Jou86]

[Joupp17]

[Kaesl14]

[Kahng12]

[Kanaw92]

[Kapre09]

[Kessl15]

[Keyes13]

[Khudi13]

J.-Y. Jou and J. A. Abraham. Fault-tolerant Matrix Arithmetic and Signal
Processing on Highly Concurrent Computing Structures. Proceedings of
the IEEE, 74(5):732-741, 1986. [pages 32 and 34]

N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, and A. Borchers. In-datacenter performance anal-

ysis of a tensor processing unit. International Symposium on Computer
Architecture (ISCA), 2017. [page 9]

H. Kaeslin. Top-down Digital VLSI Design: From Architectures to Gate-level
Circuits and FPGAs. Morgan Kaufmann, 2014. [pages 3 and 44]

A. B. Kahng and S. Kang. Accuracy-Configurable Adder for Approximate
Arithmetic Designs. In Proceedings of the 49th Annual ACM/EDAC/IEEE
Design Automation Conference, pages 820-825. 2012. [page 48]

G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. FERRARI: A Tool for
The Validation of System Dependability Properties. In The 22nd Annual
International Symposium on Fault-Tolerant Computing (FTCS), pages 336—
344. 1992. [page 29]

N. Kapre and A. DeHon. Performance Comparison of Single-precision
Spice Model-evaluation on FPGA, GPU, Cell, and Multi-core Processors.
In Proceedings of the IEEE International Conference on Field Programmable
Logic and Applications (FPL), pages 65-72. 2009. [page 8]

A. Kefiler, K. Schrader, and C. Konke. Distributed FE Analysis of Mul-
tiphase Composites for Linear and Nonlinear Material Behaviour. In
High Performance Computing in Science and Engineering, pages 661-669.
Springer, 2015. [page 9]

D. E. Keyes, L. C. Mclnnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,
J. Bell, J. Brown, A. Clo, J. Connors, et al. Multiphysics Simulations: Chal-
lenges and Opportunities. The International Journal of High Performance
Computing Applications, 27(1):4-83, 2013. [page 6]

D. S. Khudia and S. Mahlke. Low Cost Control Flow Protection Using
Abstract Control Signatures. In ACM SIGPLAN Notices, volume 48, pages
3-12. ACM, 2013. [page 114]

[Kim13]

[Kim14]

[Kocht10]

[Koren07]

[Kouts17]

[Kreut16]

[Kulka11]

[Kyaw10]

[Lashu12]

Bibliography 213

Y. Kim, Y. Zhang, and P. Li. An Energy Efficient Approximate Adder with
Carry Skip for Error Resilient Neuromorphic VLSI Systems. In ICCAD,
pages 130-137. 2013. [page 48]

H.-S. Kim, G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth,
A.Rosati, F. Zeng, and M. Zhao. Tropical Cyclone Simulation and Response
to CO2 Doubling in the Gfdl Cm2. 5 High-resolution Coupled Climate
Model. Journal of Climate, 27(21):8034-8054, 2014. [page 6]

M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin. Efficient Fault
Simulation on Many-core Processors. In Proceedings of the 47th ACM/IEEE
Design Automation Conference (DAC), pages 380-385. ACM, 2010. [page 8]

I. Koren and C. M. Krishna. Fault-Tolerant Systems. Elsevier, 1 edition,
2007. [pages 2, 12, 30, and 151]

P. Koutsovasilis, C. Kalogirou, C. Konstantas, M. Maroudas, M. Spyrou,
and C. D. Antonopoulos. AcHEe: Evaluating Approximate Computing and
Heterogeneity for Energy Efficiency. Parallel Computing, 2017. [page 49]

M. Kreutzer,]J. Thies, A. Pieper, A. Alvermann, M. Galgon, M. Rohrig-
Zdllner, F. Shahzad, A. Basermann, A. R. Bishop, H. Fehske, et al. Perfor-
mance Engineering and Energy Efficiency of Building Blocks for Large,
Sparse Eigenvalue Computations on Heterogeneous Supercomputers.
In Software for Exascale Computing-SPPEXA 2013-2015, pages 317-338.
Springer, 2016. [page 44]

P. Kulkarni, P. Gupta, and M. Ercegovac. Trading Accuracy for Power with
an Underdesigned Multiplier Architecture. In 24th International Conference
on VLSI Design (VLSI Design), pages 346-351. 2011. [page 48]

K. Y. Kyaw, W. L. Goh, and K. S. Yeo. Low-Power High-Speed Multiplier
for Error-Tolerant Application. In IEEE International Conference of Electron
Devices and Solid-State Circuits (EDSSC), pages 1-4. 2010. [page 48]

L. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sam-
path, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A
Massively Parallel Adaptive Fast Multipole Method on Heterogeneous
Architectures. Communications of the ACM, 55(5):101-109, 2012. [page 8]

214 Bibliography

[Lass17]

[Laure04]

[Lee16]

[Leng15]

[Li09]

[Li13]

[Li15]

[Lin13]

M. Lass, T. D. Kithne, and C. Plessl. Using Approximate Computing for the
Calculation of Inverse Matrix p-th Roots. IEEE Embedded Systems Letters,
2017. [pages 48, 50, 51, and 84]

J. Laurent, N. Julien, E. Senn, and E. Martin. Functional Level Power
Analysis: An Efficient Approach for Modeling the Power Consumption of
Complex Processors. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE). 2004. [pages 53, 54, and 98]

S. Lee, D. Lee, K. Han, E. Shriver, L. K. John, and A. Gerstlauer. Statistical
Quality Modeling of Approximate Hardware. In 17th International Sympo-
sium on Quality Electronic Design (ISQED), pages 163-168. 2016. [pages 53
and 106]

C. Leng, X.-D. Wang, T.-H. Wang, and W.-M. Yan. Multi-parameter Opti-
mization of Flow and Heat Transfer for a Novel Double-layered Microchan-
nel Heat Sink. International Journal of Heat and Mass Transfer, 84:359-369,
2015. [page 5]

S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
MCcPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures. In 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 469—-480.
2009. [page 54]

R.Liand Y. Saad. GPU-accelerated Preconditioned Iterative Linear Solvers.
The Journal of Supercomputing, 63(2):443-466, 2013. [page 6]

P. Li, Y. Luo, N. Zhang, and Y. Cao. HeteroSpark: A Heterogeneous
CPU/GPU Spark Platform for Machine Learning Algorithms. In IEEE
International Conference on Networking, Architecture and Storage (NAS),
pages 347-348. 2015. [page 9]

C.-H. Lin and C. Lin. High Accuracy Approximate Multiplier with Error
Correction. In IEEE 31st International Conference on Computer Design
(ICCD), pages 33-38. 2013. [page 48]

[Liul1]

[Liu12]

[Liul3a]

[Liu13b]

[Liu14]

[Liul5a]

[Liul5b]

[Liule6a]

[Liul6b]

Bibliography 215

H. Liu, T. Davies, C. Ding, C. Karlsson, and Z. Chen. Algorithm-based
Recovery for Newton’s Method without Checkpointing. In IEEE Interna-
tional Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), pages 1541-1548. 2011. [page 58]

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving
DRAM Refresh-power through Critical Data Partitioning. ACM SIGPLAN
Notices, 47(4):213-224, 2012. [page 48]

Y. Liu, A. Wirawan, and B. Schmidt. CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD in-
structions. BMC Bioinformatics, 14(1):117, 2013. [page 8]

X.-X. Liu, H. Wang, and S. X.-D. Tan. Parallel Power Grid Analysis using
Preconditioned GMRES solver on CPU-GPU Platforms. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 561—
568. IEEE, 2013. [page 8]

C. Liu, J. Han, and F. Lombardi. A Low-power, High-performance Approx-
imate Multiplier with Configurable Partial Error Recovery. In Proceedings
of the Design, Automation & Test in Europe Conference Exhibition (DATE),
page 95. 2014. [page 48]

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse Convolu-
tional Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 806-814. 2015. [page 5]

J. Liu, M. C. Kurt, and G. Agrawal. A Practical Approach for Handling
Soft Errors in Iterative Applications. In IEEE International Conference on
Cluster Computing (CLUSTER), pages 158-161. 2015. [pages 42 and 114]

Y. Liu and B. Schmidt. LightSpMV: Faster CUDA-Compatible Sparse
Matrix-Vector Multiplication Using Compressed Sparse Rows. Journal of

Signal Processing Systems, pages 1-18, 2016. [page 6]

X. Liu, Z. Zhong, and K. Xu. A Hybrid Solution Method for CFD Appli-
cations on GPU-accelerated Hybrid HPC Platforms. Future Generation
Computer Systems, 56:759-765, 2016. [page 9]

216 Bibliography

[Liuléc]

[Liul6d]

[Liul7]

[Loh16]

[Lopez15]

[Luks6]

[Mahdi10]

[Marti15]

[Marti16]

L. Liu, L. Ci, W. Liu, et al. Control-Flow Checking Using Branch Sequence
Signatures. In IEEE International Conference on IEEE Cyber, Physical and
Social Computing (CPSCom), pages 839-845. IEEE, 2016. [page 13]

W. Liu, L. Chen, C. Wang, M. O’Neill, and F. Lombardi. Design and
Analysis of Inexact Floating-Point Adders. IEEE Transactions on Computers,
65(1):308-314, 2016. [page 48]

W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi. Design of
Approximate Radix-4 Booth Multipliers for Error-Tolerant Computing.
IEEE Transactions on Computers, 2017. [pages 48 and 54]

F. Loh, K. K. Saluja, and P. Ramanathan. Fault Tolerance through Invariant
Checking for Iterative Solvers. In 29th International Conference on VLSI
Design and 15th International Conference on Embedded Systems (VLSID),
pages 481-486. 2016. [pages 29, 41, and 42]

U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A Survey of Perfor-
mance Modeling and Simulation Techniques for Accelerator-based Com-
puting. IEEE Transactions on Parallel and Distributed Systems, 26(1):272-281,
2015. [page 1]

F. T. Luk. Algorithm-based Fault Tolerance for Parallel Matrix Equation
Solvers. In Real-Time Signal Processing VIII, pages 49-56. 1986. [page 32]

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-inspired
Imprecise Computational Blocks for Efficient VLSI Implementation of
Soft-computing Applications. IEEE Transactions on Circuits and Systems I:
Regular Papers, 57(4):850-862, 2010. [page 48]

V. Martinez, D. Michéa, F. Dupros, O. Aumage, S. Thibault, H. Aochi,
and P. O. Navaux. Towards Seismic Wave Modeling on Heterogeneous
Many-core Architectures Using Task-based Runtime System. In Com-
puter Architecture and High Performance Computing (SBAC-PAD), 2015 27th
International Symposium on, pages 1-8. IEEE, 2015. [page 8]

H. Martinez, S. Barrachina, M. Castillo, J. Tarraga, I. Medina, J. Dopazo, and

E. S. Quintana-Orti. A Framework for Genomic Sequencing on Clusters of

[Matsu98]

[Mazah16]

[McAfel5]

[McClu14]

[Miao12]

[Miao13]

[Miao16]

Bibliography 217

Multicore and Manycore Processors. International Journal of High Perfor-

mance Computing Applications, page 1094342016653243, 2016. [page 8]

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 8(1):3-30, 1998.
[pages 113 and 114]

S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and]. Henkel. An Area-efficient
Consolidated Configurable Error Correction for Approximate Hardware
Accelerators. In 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1-6. 2016. [page 48]

L. McAfee and K. Olukotun. EMEuro: A Framework for Generating Multi-
purpose Accelerators Via Deep Learning. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
pages 125-135. 2015. [page 49]

J. E. McClure, J. F. Prins, and C. T. Miller. A Novel Heterogeneous Algo-
rithm to Simulate Multiphase Flow in Porous Media on Multicore CPU-
GPU Systems. Computer Physics Communications, 185(7):1865-1874, 2014.

[page 9]

J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling and Synthesis
of Quality-energy Optimal Approximate Adders. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 728-735. 2012.

[page 48]

J. Miao, A. Gerstlauer, and M. Orshansky. Approximate Logic Synthesis
under General Error Magnitude and Frequency Constraints. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 779-
786. 2013. [page 48]

X. Miao, X. Jin, and J. Ding. An Approach to Enhance the Performance
of Large-scale Structural Analysis on CPU-MIC Heterogeneous Clusters.

Concurrency and Computation: Practice and Experience, 2016. [page 9]

218 Bibliography

[Miguel4] J.S. Miguel, M. Badr, and N. E. Jerger. Load Value Approximation. In

[Mishr11]

[Mishr14]

[Mitral1]

[Mitta15]

[Mittal6a]

[Mitta16b]

[Moore65]

[Moreal5]

[Mukhel1]

Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 127-139. 2014. [pages 15 and 48]

P. Mishra, A. Muttreja, and N. K. Jha. FinFET circuit design. In Nanoelec-
tronic Circuit Design, pages 23—54. Springer, 2011. [page 14]

A.K. Mishra, R. Barik, and S. Paul. iACT: A Software-Hardware Framework
for Understanding the Scope of Approximate Computing. In Workshop on
Approximate Computing Across the System Stack (WACAS). 2014. [pages 52,
53, 56, 98, and 105]

S. Mitra, K. Brelsford, Y. M. Kim, H.-H. K. Lee, and Y. Li. Robust System De-
sign to Overcome CMOS Reliability Challenges. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 1(1):30-41, 2011. [page 2]

S. Mittal and J. S. Vetter. A Survey of CPU-GPU Heterogeneous Computing
Techniques. ACM Computing Surveys (CSUR), 47(4):69, 2015. [pages 7
and 43]

S. Mittal. A Survey of Techniques for Approximate Computing. ACM
Computing Surveys (CSUR), 48(4):62, 2016. [page 13]

S. Mittal and J. S. Vetter. A Survey of Techniques for Modeling and Im-
proving Reliability of Computing Systems. IEEE Transactions on Parallel
and Distributed Systems, 27(4):1226-1238, 2016. [pages 80 and 114]

G. Moore. Cramming More Components Onto Integrated Circuits. Elec-
tronics, 38(8), 1965. [page 2]

T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and
M. Oskin. SNNAP: Approximate Computing on Programmable SoCs via
Neural Acceleration. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 603—-614. 2015. [pages 48 and 49]

S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann, 2011.
[pages 10, 11, and 28]

[Mulle10]

[NVIDI17]

[Namha16]

[Nanga]

[Nanju10]

[Nanui14]

[Nebel13]

[Nepal14]

[Ni16]

[Nicol11]

[Nvidia]

Bibliography 219

J.-M. Muller, S. Torres, R. Nathalie, N. Brisebarre, F. de Dinechin, C.-P.
Jeannerod, V. Lefevre, G. Melquiond, and D. Stehle. Handbook of Floating-
Point Arithmetic. Birkhéuser, 2010. [pages 66 and 153]

NVIDIA Corporation. CUDA Software Development Kit (SDK), 2017. URL
https://developer.nvidia.com/cuda-downloads. [page 44]

A. Namhata, S. Oladyshkin, R. M. Dilmore, L. Zhang, and D. V. Nakles.
Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic

Carbon Storage Site. Scientific Reports, 6, 2016. [page 10]

Nangate Inc. 45nm open cell library. http://www.nangate.com. [pages 104
and 115]

M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla. SCGPSim: A fast
SystemC simulator on GPUs. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 149-154. 2010. [page 8]

D. Nanu, P. Roshini, D. Sowkarthiga, and K. S. Al Ameen. Approximate
Adder Design Using CPL Logic for Image Compression. International
Journal of Innovative Research and Development, 2014. [page 48]

W. Nebel and J. Mermet. Low Power Design in Deep Submicron Electronics,
volume 337. Springer Science & Business Media, 2013. [pages 44 and 46]

K. Nepal, Y. Li, R. I. Bahar, and S. Reda. ABACUS: A Technique for Au-
tomated Behavioral Synthesis of Approximate Computing Circuits. In
Proceedings of the Design, Automation & Test in Europe Conference Exhibi-
tion (DATE), pages 361:1-361:6. 2014. [page 48]

P. Ni and S. Law. Hybrid Computational Strategy for Structural Damage
Detection with Short-term Monitoring Data. Mechanical Systems and
Signal Processing, 70:650-663, 2016. [page 9]

M. Nicolaidis. Soft Errors In Modern Electronic Systems. In Frontiers in

Electronic Testing. Springer, 2011. [pages 12 and 28]

Nvidia Corporation. cuBLAS Tookit Documentation.

http://docs.nvidia.com/cuda/cublas/. [page 113]

https://developer.nvidia.com/cuda-downloads

220 Bibliography

[Nvidib]

[Oberk10]

[Obori11]

[Oh02]

[Oh04]

[Oluko98]

[Patte14]

[Pradh96]

[Pullu01]

[Puzyri3]

[Rabae12]

Nvidia Corporation. cuSPARSE Tookit Documentation.
http://docs.nvidia.com/cuda/cusparse/. [page 113]

W. L. Oberkampf and C.]J. Roy. Verification and Validation in Scientific
Computing. Cambridge University Press, 2010. [pages 1, 6, and 10]

F. Oboril, M. Tahoori, V. Heuveline, D. Lukarski, and J.-P. Weiss. Numerical
Defect Correction as an Algorithm-Based Fault Tolerance Technique for
Iterative Solvers. In Proceedings of the IEEE Pacific Rim International Sym-
posium on Dependable Computing (PRDC), pages 144-153. 2011. [page 41]

N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow Checking by
Software Signatures. IEEE Transactions on Reliability, 51(1):111-122, 2002.

[page 13]

K.-S. Oh and K. Jung. GPU Implementation of Neural Networks. Pattern
Recognition, 37(6):1311-1314, 2004. [page 9]

K. Olukotun, M. Heinrich, and D. Ofelt. Digital System Simulation: Method-
ologies and Examples. In Proceedings of the ACM/IEEE-CAS/EDAC Design
Automation Conference (DAC), pages 658-663. 1998. [page 98]

D. A. Patterson and J. L. Hennessy. Computer Organization and Design - The
Hardware / Software Interface (5th Edition). The Morgan Kaufmann Series
in Computer Architecture and Design. Academic Press, 2014. [page 47]

D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice-Hall, 1996.
[pages 2, 12, 30, and 151]

L. L. Pullum. Software Fault Tolerance Techniques and Implementation.
Artech House, 2001. [pages 2, 13, and 26]

V. Puzyreyv, J. Koldan, J. de la Puente, G. Houzeaux, M. Vazquez, and J. M.
Cela. A parallel Finite-element Method for Three-dimensional Controlled-
source Electromagnetic Forward Modelling. Geophysical Journal Interna-
tional, 193(2):678-693, 2013. [page 5]

J. M. Rabaey and M. Pedram. Low Power Design Methodologies. Springer
Science & Business Media, 2012. [page 45]

[Rahal7]

[Rahim13]

[Ranga09]

[Ranja14]

[Regul16]

[Reid72]

[Resch17]

[Rethi14]

[Rexf094]

Bibliography 221

A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan. Energy-
Efficient Reduce-and-Rank Using Input-Adaptive Approximations. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 25(2):462-475,
2017. [page 47]

A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini. A Variability-aware
OpenMP Environment for Efficient Execution of Accuracy-configurable
Computation on Shared-FPU Processor Clusters. In 2013 International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 1-10. 2013. [page 49]

K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread Motion: Fine-grained
Power Management for Multi-core Systems. In ACM SIGARCH Computer
Architecture News, volume 37, pages 302-313. ACM, 2009. [page 14]

R. Ranjan. Streaming Big Data Processing in Datacenter Clouds. IEEE
Cloud Computing, 1(1):78-83, 2014. [page 9]

I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts, P. H. Kelly,
and D. Radford. Acceleration of a Full-scale Industrial CFD Application
with OP2. IEEE Transactions on Parallel and Distributed Systems, 27(5):1265—
1278, 2016. [page 9]

J. K. Reid. The Use of Conjugate Gradients for Systems of Linear Equations
Possessing "Property A". SIAM Journal on Numerical Analysis, 9(2):325-332,
1972. [page 22]

M. Resch, A. Kaminski, and P. Gehring. The Science and Art of Simulation
I: Exploring-Understanding-Knowing, 2017. [page 6]

S. K. Rethinagiri, O. Palomar, O. S. Unsal, A. Cristal, R. B. Atitallah, and
S. Niar. PETS: Power and Energy Estimation Tool at System-level. In
Fifteenth International Symposium on Quality Electronic Design, (ISQED),
pages 535-542. 2014. [pages 54 and 98]

J. Rexford and N. Jha. Partitioned Encoding Schemes for Algorithm-Based
Fault Tolerance in Massively Parallel Systems. IEEE Transactions on Parallel
and Distributed Systems, 5(6):649-653, 1994. [pages 34 and 58]

222 Bibliography

[Ringe15]

[Rodri16]

[Roten16]

[Roy14]

[Rupp10]

[Saad03]

[Samad13]

[Samad14]

[Samps11]

M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman. Mon-
itoring and Debugging the Quality of Results in Approximate Programs.
In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 399-411. 2015.
[page 46]

L. Rodriguez Goémez and H.-]. Wunderlich. A Neural-Network-Based Fault
Classifier. In Proceedings of the 25th IEEE Asian Test Symposium (ATS’16),
pages 144-149. 2016. [page 9]

D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers, W. H. Savran, P. Wang,
and D. Mu. High-frequency Nonlinear Earthquake Simulations on Petas-
cale Heterogeneous Supercomputers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis, page 82. IEEE Press, 2016. [page 8]

P. Roy, R. Ray, C. Wang, and W. F. Wong. ASAC: Automatic Sensitivity
Analysis for Approximate Computing. In ACM SIGPLAN Notices, vol-
ume 49, pages 95-104. 2014. [pages 52 and 53]

K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL-a High Level Linear Algebra
Library for GPUs and multi-core CPUs. In International Workshop on GPUs
and Scientific Applications, pages 51-56. 2010. [page 44]

Y. Saad. Iterative Methods for Sparse Linear Systems. Siam, 2003. [pages 5,
21, 23, 50, 84, and 149]

M. Samadji, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. SAGE: Self-
tuning Approximation for Graphics Engines. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 13-24. 2013. [page 49]

M. Samadi, D. A. Jamshidi,]. Lee, and S. Mahlke. Paraprox: Pattern-based
Approximation for Data Parallel Applications. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’14), pages 35-50. 2014. [page 48]

A.Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-

man. Ener]: Approximate Data Types for Safe and General Low-Power

[Sao13]

[Sarwal6]

[Schaf14]

[Schnel6]

[Schol14]

[Schol15]

[Schol16a]

Bibliography 223

Computation. In ACM SIGPLAN Notices, volume 46, pages 164-174. 2011.
[pages 49, 54, and 96]

P.Sao and R. Vuduc. Self-stabilizing Iterative Solvers. In Latest Advances in
Scalable Algorithms for Large-Scale Systems, pages 4:1-4:8. 2013. [pages 41
and 42]

S.S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy. Multiplier-
less Artificial Neurons Exploiting Error Resiliency for Energy-efficient
Neural Computing. In Proceedings of the Design, Automation & Test in
Europe Conference Exhibition (DATE), pages 145-150. 2016. [page 50]

M. Schaftner, F. K. Giirkaynak, A. Smolic, H. Kaeslin, and L. Benini. An
Approximate Computing Technique for Reducing the Complexity of a
Direct-solver for Sparse Linear Systems in Real-time Video Processing.
In Proceedings of the 51st Annual Design Automation Conference (DAC’14),
pages 1-6. 2014. [pages 47, 50, and 84]

E. Schneider, M. A. Kochte, S. Holst, X. Wen, and H.-J. Wunderlich.
GPU-Accelerated Simulation of Small Delay Faults. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 36(5), 2016.

[page 8]

A. Scholl, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich. Adaptive
Parallel Simulation of a Two-Timescale-Model for Apoptotic Receptor-
Clustering on GPUs. In Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine (BIBM’14), pages 424-431. 2014. [page 8]

A. Scholl, C. Braun, M. A. Kochte, and H.-J. Wunderlich. Low-Overhead
Fault-Tolerance for the Preconditioned Conjugate Gradient Solver. In
Proceedings of the International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT’15), pages 60-66. October 2015.

[page 73]

A. Scholl, C. Braun, M. A. Kochte, and H.-J. Wunderlich. Efficient
Algorithm-Based Fault Tolerance for Sparse Matrix Operations. In Proceed-
ings of the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’16), pages 251-262. 2016. [page 57]

224 Bibliography

[Schol16b]

[Segal88]

[Segur04]

[Semer02]

[Senn04]

[Shafi16]

[Shant11]

[Shant12]

A. Scholl, C. Braun, and H.-J. Wunderlich. Applying Efficient Fault Tol-
erance to Enable the Preconditioned Conjugate Gradient Solver on Ap-
proximate Computing Hardware. In Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT’16), pages 21-26. 2016. [page 83]

Z. Segall, D. F. Vrsalovic, D. P. Siewiorek, D. A. Yaskin, J. Kownacki, J. H.
Barton, R. Dancey, A. Robinson, and T. Lin. FIAT-Fault Injection Based Au-
tomated Testing Environment. In Proceedings of the 18th International Sym-
posium on Fault-Tolerant Computing (FTCS), pages 102-107. 1988. [page 29]

J. Segura and C. F. Hawkins. CMOS Electronics: How It Works, How It Fails.
John Wiley & Sons, 2004. [page 11]

G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott. Energy-efficient Processor Design Us-
ing Multiple Clock Domains with Dynamic Voltage and Frequency Scaling,.
In Eighth International Symposium on High-Performance Computer Archi-
tecture, pages 29-40. 2002. [page 14]

E. Senn, J. Laurent, N. Julien, and E. Martin. SoftExplorer: Estimation,
Characterization, and Optimization of the Power and Energy Consumption
at the Algorithmic Level. In International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 342-351. 2004.
[pages 53 and 54]

M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel. Invited:
Cross-layer Approximate Computing: From Logic to Architectures. In
53nd ACM/EDACY/IEEE Design Automation Conference (DAC), pages 1-6.
2016. [pages 15, 47, and 48]

M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the
Impact of Soft Errors on Iterative Methods in Scientific Computing. In
Proceedings of the International Conference on Supercomputing, pages 152
161. 2011. [pages 10, 41, 66, and 74]

M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault Tolerant Pre-

conditioned Conjugate Gradient for Sparse Linear System Solution. In

[Shen16]

[Shin16]

[Sidir11]

[Sloan12]

[Sloan13]

[Smith13]

[Soeke16]

[Song16]

Bibliography 225

Proceedings of the ACM International Conference on Supercomputing, pages
69-78. 2012. [pages 32, 37, 38, 68, and 116]

Y. Shen and C. E. Cesnik. Hybrid Local FEM/global LISA Modeling of
Damped Guided Wave Propagation in Complex Composite Structures.
Smart Materials and Structures, 25(9):095021, 2016. [page 9]

C. Shin. Variation-aware Advanced CMOS Devices and SRAM. Springer
Series in Advanced Microelectronics, 56, 2016. [page 11]

S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Man-
aging Performance Vs. Accuracy Trade-offs with Loop Perforation. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pages 124-134. 2011.
[pages 15 and 49]

J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic Approaches to Low
Overhead Fault Detection for Sparse Linear Algebra. In Proceedings of
the 42nd IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’12), pages 1-12. 2012. [pages 37, 38, 40, 51, 68, 114, and 116]

J. Sloan, R. Kumar, and G. Bronevetsky. An Algorithmic Approach to
Error Localization and Partial Recomputation for Low-Overhead Fault
Tolerance. In Proceedings of the 43rd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’13), pages 1-12. 2013. [pages 13,
36, 37, 38, 40, 68, 114, 116, 118, and 119]

I. Smith, D. Griffiths, and L. Margetts. Programming the Finite Element
Method. Wiley, 4 edition, 2013. [page 5]

M. Soeken, D. Grof3e, A. Chandrasekharan, and R. Drechsler. BDD Mini-
mization for Approximate Computing. In Proceedings of the 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 474-479.
IEEE, 2016. [page 48]

M. Song, W. Li, W. Lj, E. Liu, and D. Yu. A Hybrid Parallel Computing
Model to Support Scalable Processing of Big Oceanographic Spatial Data.
In International Conference on Geo-Informatics in Resource Management

and Sustainable Ecosystems, pages 276—285. Springer, 2016. [page 8]

226 Bibliography

[Stone10]

[Subrai13]

[Suraa14]

[Tagli16]

[Tao16]

[Thomp79]

[Tiwar15a]

[Tiwar15b]

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in Science &
Engineering, 12(3):66—-73, 2010. [page 44]

B. Subramaniam, W. Saunders, T. Scogland, and W.-C. Feng. Trends in
Energy-efficient Computing: A Perspective from the Green500. In Interna-
tional Green Computing Conference (IGCC), pages 1-8. 2013. [page 13]

M. P. R. Suraana and N. Thoutam. A Review on Evaluation of Multi-
level Checkpointing System in Distributed Environment. Intl. Journal

of Electronics, Communication and Soft Computing Science & Engineering
(IJECSCSE), 3(7):25-32, 2014. [page 13]

G. Tagliavini, A. Marongiu, D. Rossi, and L. Benini. Always-on Motion De-
tection with Application-level Error Control on a Near-threshold Approxi-
mate Computing Platform. In IEEE International Conference on Electronics,
Circuits and Systems (ICECS), pages 552—555. 2016. [page 47]

D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, and Z. Chen. New-Sum: A Novel Online ABFT Scheme for
General Iterative Methods. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pages
43-55. 2016. [pages 41, 42, and 114]

C. D. Thompson. Area-Time Complexity for VLSI. In Proceedings of the
11th Annual ACM Symposium on Theory of Computing, pages 81-88. 1979.

[page 44]

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, and P. Navaux. Understand-
ing GPU Errors on Large-Scale HPC Systems and the Implications for
System Design and Operation. In IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 331-342. 2015.

[page 2]

D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell. Reliability

Lessons Learned from GPU Experience with the Titan Supercomputer at

[Tiwar94]

[Tiwar96]

[Valer17]

[Van R79]

[Vassil5]

[Venkall]

[Venka12]

[Venkal3a]

Bibliography 227

Oak Ridge Leadership Computing Facility. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 38-50. 2015. [page 30]

V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design ICCAD,
pages 384-390. 1994. [pages 53, 54, and 98]

V. Tiwari, S. Malik, A. Wolfe, and M. T. Lee. Instruction Level Power
Analysis and Optimization of Software. In International Conference on
VLSI Design, pages 326-328. 1996. [page 53]

P. Valero-Lara and]. Jansson. Heterogeneous CPU+GPU approaches for
mesh refinement over Lattice-Boltzmann simulations. Concurrency and

Computation: Practice and Experience, 29(7), 2017. [page 9]
C. Van Rijsbergen. Information Retrieval. Butterworths, 1979. [page 120]

V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis, N. Bel-
las, H. Vandierendonck, and D. S. Nikolopoulos. A Programming Model
and Runtime System for Significance-Aware Energy-Efficient Computing.
SIGPLAN Not., 50(8):275-276, 2015. [page 49]

R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO: Mod-
eling and Analysis of Circuits for Approximate Computing. In Proceedings
of tje IEEE/ACM International Conference Computer-Aided Design (ICCAD),
pages 667-673. 2011. [page 48]

S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan.
SALSA: Systematic Logic Synthesis of Approximate Circuits. In Proceedings
of the 49th Annual Design Automation Conference (DAC’12), pages 796—801.
2012. [page 48]

S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan. Quality Programmable Vector Processors for Approximate Com-
puting. In Proceedings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 1-12. 2013. [pages 3, 49, and 96]

228 Bibliography

[Venkal3b] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-and-simplify:

[Venka14]

[Venkal5]

[Venkal6]

[Vermal5]

[Vinco12]

[Von N56]

[Wang14]

A Unified Design Paradigm for Approximate and Quality Configurable Cir-
cuits. In Proceedings of the Design, Automation & Test in Europe Conference
Exhibition (DATE), pages 1367-1372. 2013. [page 48]

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. AxXNN: Energy-
efficient Neuromorphic Systems Using Approximate Computing. In Pro-
ceedings of the IEEE/ACM International Symposium Low Power Electronics
and Design (ISLPED), pages 27-32. 2014. [page 50]

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan. Approxi-
mate Computing and the Quest for Computing Efficiency. In Proceedings of
the 52nd ACM/EDAC/IEEE Annual Design Automation Conference (DAC’15),
page 120. 2015. [pages 3, 15, and 47]

R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxilyzer:
Towards a Systematic Framework for Instruction-level Approximate Com-
puting and Its Application to Hardware Resiliency. In Proceedings of
the 49th Annual IEEE/ACM International Symposium of Microarchitecture
(MICRO), pages 1-14. 2016. [pages 52 and 53]

A. K. Verma, P. Gautam, T. Singh, and R. Bajpai. Numerical Simulation of
High Level Radioactive Waste for Disposal in Deep Underground Tunnel.
In Engineering Geology for Society and Territory-Volume 1, pages 499-504.
Springer, 2015. [page 10]

S. Vinco, V. Bertacco, D. Chatterjee, and F. Fummi. SAGA: SystemC Accel-
eration on GPU Architectures. In Proceedings of the 49th ACM/EDAC/IEEE
Design Automation Conference (DAC’12), pages 115-120. 2012. [page 8]

J. Von Neumann. Probabilistic Logics and the Synthesis of Reliable Or-

ganisms from Unreliable Components. Automata studies, 34:43-98, 1956.

[page 44]

Z. Wang. High-order Computational Fluid Dynamics Tools for Aircraft De-
sign. Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 372(2022):20130318, 2014. [page 9]

[Wang16]

[Weste15]

[Wilke14]

[Woznil6]

[Wu12]

[Wu14]

[Wul16]

[Wunde03]

Bibliography 229

Q. Wang, Y. Li, and P. Li. Liquid State Machine Based Pattern Recognition
on FPGA with Firing-Activity Dependent Power Gating and Approximate
Computing. In Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pages 361-364. 2016. [page 47]

N. H. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson India, 2015. [page 12]

M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and D. R.
Kaeli. Calculating Architectural Vulnerability Factors for Spatial Multi-Bit
Transient Faults. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 293-305. 2014. [page 28]

B. D. Wozniak, F. D. Witherden, F. P. Russell, P. E. Vincent, and P. H.
Kelly. Gimmik-generating bespoke matrix multiplication kernels for
accelerators: Application to high-order computational fluid dynamics.

Computer Physics Communications, 202:12-22, 2016. [page 5]

X. Wu, A. Koslowski, and W. Thiel. Semiempirical Quantum Chemical
Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing
Platform. Journal of Chemical Theory and Computation, 8(7):2272-2281,
2012. [page 8]

P. Wu and Z. Chen. FT-ScaLAPACK: Correcting soft errors on-line for
ScaLAPACK Cholesky, QR, and LU factorization routines. In Proceedings
of the 23rd International Symposium on High-Performance Parallel and
Distributed Computing, pages 49-60. 2014. [page 32]

P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang, J. Chen,
and Z. Chen. Towards Practical Algorithm Based Fault Tolerance in Dense
Linear Algebra. In Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, pages 31-42. 2016.
[pages 29 and 32]

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accel-
erating Microarchitecture Simulation via Rigorous Statistical Sampling.
In Proceedings of the 30th Annual International Symposium on Computer
Architecture, pages 84-95. 2003. [pages 55, 56, 98, 99, and 107]

230 Bibliography

[Wunde10] H.-J. Wunderlich and S. Holst. Generalized Fault Modeling for Logic Di-

[Xu12]

[Yang13a]

[Yang13b]

[Yazda15]

[Yazdalé6a]

[Yazdal6b]

[Yin16]

[Yonke16]

agnosis, volume 43, pages 133—-155. Springer-Verlag Heidelberg, 2010.
[page 29]

M. Xu, F. Chen, X. Liu, W. Ge, and J. Li. Discrete Particle Simulation of Gas-
solid Two-phase Flows with Multi-scale CPU-GPU Hybrid Computation.
Chemical Engineering Journal, 207:746-757, 2012. [page 8]

C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun, G. Yang, and
W. Zheng. A Peta-scalable CPU-GPU Algorithm for Global Atmospheric
Simulations. In ACM SIGPLAN Notices, volume 48, pages 1-12. 2013.

[page 8]

Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. Approximate
XOR/XNOR-based Adders for Inexact Computing. In Proceedings of the
IEEE Conference on Nanotechnology (IEEE-NANQO’13), pages 690-693. 2013.
[pages 48 and 54]

A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar,
S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi,
H. Esmaeilzadeh, and K. Bazargan. Axilog: Language Support for Approx-
imate Hardware Design. In Proceedings of the Design, Automation & Test
in Europe Conference Exhibition (DATE), pages 812—-817. 2015. [page 48]

A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko, O. Mutlu,
and T. C. Mowry. Mitigating the Memory Bottleneck With Approximate
Load Value Prediction. IEEE Design & Test, 33(1):32-42, 2016. [page 48]

A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu,
and T. C. Mowry. RFVP: Rollback-Free Value Prediction with Safe-to-
Approximate Loads. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 12(4):62:1-62:26, 2016. [page 48]

P. Yin, C. Wang, W. Liu, and F. Lombardi. Design and Performance Evalua-
tion of Approximate Floating-Point Multipliers. In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 296-301. 2016. [page 48]

N. Yonkee and J. C. Sutherland. PoKiTT: Exposing Task and Data Paral-

lelism on Heterogeneous Architectures for Detailed Chemical Kinetics,

[Zabel15]

[Zhang14a]

[Zhang14b]

[Zhang15a]

[Zhang15b]

Bibliography 231

Transport, and Thermodynamics Calculations. SIAM Journal on Scientific
Computing, 38(5):S264-S281, 2016. [page 8]

S. Zabelok, R. Arslanbekov, and V. Kolobov. Adaptive Kinetic-fluid Solvers
for Heterogeneous Computing Architectures. Journal of Computational
Physics, 303:455-469, 2015. [page 9]

Q. Zhang, F. Yuan, R. Ye, and Q. Xu. ApproxIt: An Approximate Computing
Framework for Iterative Methods. In Proceedings of the 51st ACM/IEEE
Design Automation Conference (DAC’14), pages 1-6. 2014. [pages 46, 48,
50, 56, 83, 84, and 99]

H. Zhang, W. Zhang, and J. Lach. A Low-power Accuracy-configurable
Floating Point Multiplier. In 32nd IEEE International Conference on Com-
puter Design (ICCD), pages 48-54. 2014. [pages 48 and 115]

Q. Zhang, Y. Tian, T. Wang, F. Yuan, and Q. Xu. ApproxEigen: An Approx-
imate Computing Technique for Large-Scale Eigen-Decomposition. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pages 824-830. 2015. [pages 46, 50, 51, and 84]

Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. ApproxANN: An Approxi-
mate Computing Framework for Artificial Neural Network. In Proceedings
of the Design, Automation & Test in Europe Conference Exhibition (DATE),
pages 701-706. 2015. [pages 48 and 50]

INDEX

A-orthogonality, 22 vector, 32, 61
accuracy, 45 column checksum vector, see checksum
demand, 16, 83 computation tuple, 102
Algorithm-based Fault Tolerance, 13, 32 condition number, 22
matrix-vector multiplication, 57 Conjugate Gradient solver, 21, 113, 149
approximate computing, 3, 15, 44 algorithm, 25, 149
application scope, 47 fault-tolerant, 73
error metrics, 15, 46 inherent relations, 24, 73
hardware design, 48, 115 intermediate result, 75, 84
model, 115 preconditioned, 22
technique, 47 residual, 23, 87
approximation level, 87 stagnation point, 92
offset, 88 residual difference, 25, 92
approximation level step function, 87 estimation, 93
Architectural Vulnerability Factor, 28 residual vector, 23, 75, 92
area-time complexity, 44 search direction, 23, 75

true residual, 25, 92
vulnerability, 41, 122

benchmark matrices, 112
bit flip error model, see error
block size, see matrix

decision-making process, 10
block vector, see vector

defect, 27
checkpoint, 13, 31, 58, 79 Dennard scaling, 2, 14
interval, 125 dense matrix, 20
checksum, 32, 75 dependability, 27, 151
checksum-based error detection, 58 attributes, 27, 151
matrix, 61 failure probability function, 151

relation, 76 failure rate, 152

234 Index

lifetime of a system, 151
mean time between failures, 152
probability density function of life-
time T, 151
reliability, 152
Dual Modular Redundancy, see fault tol-
erance
Duplication with Comparison, see fault

tolerance

ECC, see Error Detecting and Correcting
Codes
efficiency, 13, 44
energy efficiency, 45, 140
metrics, 44
energy, 108, 138
demand, 108, 133, 138
energy efficiency, 45, 140
energy-per-instruction, 45
signal transition, 104
energy-time product, 45, 140
error, 27
bit flip, 29, 30, 114
checking interval, 75
coverage, 119, 126
model, 114
rate, 46
Silent Data Corruption, 10, 114
Error Detecting and Correcting Codes,
31, 80, 114
error metric, see approximate comput-
ing

error resilience, 15, 83

Fy-score, 120

failure, 27

rate, see dependability
fault, 2, 27
emulation, 28
injection, 28
hardware-based, 28
software-based, 29, 114
model, 28
simulation, 8
fault tolerance, 27
algorithm-based, see Algorithm-based
Fault Tolerance
Dual Modular Redundancy, 30
technique, 28, 30, 57, 73
Triple Modular Redundancy, 30
floating-point, 153
arithmetic, 153
normalization, 154
number, 153
representation, 160

rounding, see rounding

gate-level timing simulation
GPU-accelerated, 103

heterogeneous computer architecture, 7,
43,113

instruction interval
remaining, 107
representative, 107
instruction mix, 47
intermediate result, see Conjugate Gra-

dient solver

linear system, 21, 113

optimization function, 84

machine epsilon, 66, 160
matrix, 20, 112
element, 32
fault-tolerant, 57
positive-definite, 21
row block matrix, 20, 58
row block size, 20, 58
symmetric, 21
matrix-vector multiplication, 20
block-based, 21
fault-tolerant, 57
minimum residual, 93
MIPS, 45

Moore’s law, 2

normalization, see floating-point
number of non-zero elements, see sparse

matrix

observables
weighted switching activity, 104
operand vector, 101

optimization function, 84

parameter
estimation, 97, 99
combined method, 106
model-based, 104
runtime, 98
technique, 52
evaluation, 99
simulation-based, 103
parameter estimation, see parameter
parameter estimation runtime, see pa-
rameter

parameter evaluation, see parameter

Index 235

positive-definite, see matrix
power and efficiency wall, 13
power density problem, see Dennard scal-
ing
power dissipation, 46, 108
sources, 46
power-clock cycle product, 44
precision, 45
Preconditioned Conjugate Gradient solver,
see Conjugate Gradient solver
preconditioner, 22, 150
Incomplete Cholesky Factorization
preconditioner, 150
Jacobi preconditioner, 150

preconditioner matrix, 22

reliability, 10, 27, 152
threats, 10, 27
device lifetime, 11
environmental, 12
manufacturing, 11
transient event, 4, 27, 114
remaining instruction interval, see in-
struction interval
representative instruction interval, see
instruction interval
residual, see Conjugate Gradient solver
residual difference estimation, see Con-
jugate Gradient solver
residual stagnation point, see Conjugate
Gradient solver
Resilience Articulation Point, 29
rounding, 154
error, 39, 154, 160

error bound, 39

236 Index

error bound for sparse matrix oper-
ations, 67
error bound vector, 65
mode, 154
rounding error
threshold, 78
row block matrix, see matrix
row block size, see matrix
row checksum vector, see checksum
runtime overhead, 4, 17, 37, 116, 125, 137

scientific computing, 4, 6
computer-based simulation, 6
in-silico experiment, 6
simulation technology, 6

search direction, see Conjugate Gradient

solver

semiconductor technology scaling, 14,

43

Silent Data Corruption, see error

space redundancy, see fault tolerance

sparse matrix, 20, 57, 112
number of non-zero elements, 20

sparse matrix-vector multiplication, see

matrix-vector multiplication
symmetric, see matrix

syndrome, 34
vector, 34, 62

technology scaling, see semiconductor
technology scaling

throughput, 7, 43

transient event, see reliability

Triple Modular Redundancy, see fault
tolerance

truncation-and-random-fill, 105

update vector, 85

vector, 20
block vector, 21
vulnerability, 2, 11

assessment, 28

Watt-per-MIPS, 45
weight, 32, 59
matrix, 59
vector, 32, 59
weighted switching activity, see observ-

ables

PUBLICATIONS OF THE AUTHOR

o C.Braun, M. Daub, A. Scholl, G. Schneider and H.-J. Wunderlich, Parallel Simu-
lation of Apoptotic Receptor-Clustering on GPGPU Many-Core Architectures,
Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine
(BIBM’12), Philadelphia, Pennsylvania, USA, 4-7 October 2012, pp. 1-6.

« A. Scholl, C. Braun, M. Daub, G. Schneider and H.-J. Wunderlich, Adaptive
Parallel Simulation of a Two-Timescale-Model for Apoptotic Receptor-Clustering
on GPUs, Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine (BIBM’14), Belfast, United Kingdom, 2-5 November 2014, pp. 424-431,
SimTech Best Paper Award.

« A. Scholl, C. Braun, M.A. Kochte and H.-J. Wunderlich, Efficient On-Line Fault-
Tolerance for the Preconditioned Conjugate Gradient Method, Proceedings of the
21st IEEE International On-Line Testing Symposium (IOLTS’15), Elia, Halkidiki,
Greece, 6-8 July 2015, pp. 95-100.

« A. Scholl, C. Braun, M.A. Kochte and H.-J. Wunderlich, Low-Overhead Fault-
Tolerance for the Preconditioned Conjugate Gradient Solver, Proceedings of the
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT’15), Amherst, Massachusetts, USA, 12-14 October 2015, pp. 60-65.

« H.-J. Wunderlich, C. Braun and A. Schéll, Fault Tolerance of Approximate Com-
pute Algorithms, Proceedings of the 34th VLSI Test Symposium (VTS’16), Caesars
Palace, Las Vegas, Nevada, USA, 25-27 April 2016.

238

A. Scholl, C. Braun, M.A. Kochte and H.-J. Wunderlich, Efficient Algorithm-Based
Fault Tolerance for Sparse Matrix Operations, Proceedings of the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’16),
Toulouse, France, 28 June-1 July 2016, pp. 251-262.

H.-J. Wunderlich, C. Braun and A. Schéll, Pushing the Limits: How Fault Tolerance
Extends the Scope of Approximate Computing, Proceedings of the 22nd IEEE
International Symposium on On-Line Testing and Robust System Design (IOLTS’16),
Sant Feliu de Guixols, Catalunya, Spain, 4-6 July 2016, pp. 133-136.

A. Scholl, C. Braun and H.-J. Wunderlich, Applying Efficient Fault Tolerance to
Enable the Preconditioned Conjugate Gradient Solver on Approximate Computing
Hardware, Proceedings of the IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT’16), University of Connecticut,
USA, 19-20 September 2016, pp. 21-26, DFT 2016 Best Paper Award.

A.Scholl, C. Braun and H.-J. Wunderlich, Hardware/Software Co-Characterization
for Approximate Computing, Workshop on Approximate Computing, Pittsburgh,
Pennsylvania, USA, 6 October 2016.

A. Scholl, C. Braun and H.-J. Wunderlich, Energy-efficient and Error-resilient
Iterative Solvers for Approximate Computing, Proceedings of the 23nd IEEE In-
ternational Symposium on On-Line Testing and Robust System Design (IOLTS’17),
Thessaloniki, Greece, 3-5 July, 2017.

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no

stage was any collaboration entered into

with any other party.

Alexander Scholl

240

	Title Page
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abbreviations and Notation
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Contributions of this Thesis
	1.2 Scientific Computing and Simulation Technology
	1.3 Reliability Challenges and Demands
	1.4 Efficiency Challenges and Demands
	1.5 Outline

	2 Background and Related Work
	2.1 Sparse Linear Algebra Operations
	2.1.1 Dense and Sparse Matrix Operations
	2.1.2 Conjugate Gradient Solvers

	2.2 Reliability and Fault Tolerance
	2.2.1 Definitions
	2.2.2 Vulnerability Assessment
	2.2.3 Fault Tolerance Strategies

	2.3 Related Fault Tolerance Techniques for Linear Algebra Operations
	2.3.1 Fault Tolerance Techniques for Matrix Multiplications
	2.3.2 Related Fault Tolerance Techniques for Conjugate Gradient Solvers

	2.4 Heterogeneous Computer Architectures and Approximate Computing
	2.4.1 Heterogeneous Computer Architectures
	2.4.2 The Approximate Computing Paradigm

	2.5 Related Approximate Computing Techniques
	2.5.1 Related Approximate Computing Techniques for Scientific Computing Tasks
	2.5.2 Related Parameter Estimation Techniques for Application Executions on Approximate Computing Hardware

	3 Efficient Fault-Tolerant Sparse Matrix-Vector Multiplication
	3.1 Method Overview
	3.2 Analytical Rounding Error Bound for Sparse Matrices
	3.3 Algorithmic Steps
	3.4 Error Detection and Correction
	3.5 Computational and Memory Overhead

	4 Efficient Fault Tolerance for the Conjugate Gradient Solvers
	4.1 Method Overview
	4.2 Error Detection
	4.3 Error Correction
	4.4 Algorithmic steps
	4.5 Computational and Memory Overhead

	5 Enabling the Conjugate Gradient Solvers on Approximate Computing Hardware
	5.1 Method Overview
	5.2 Evaluation of the Estimation
	5.3 Algorithmic Steps
	5.4 Calibrating the Approximation Estimation Process
	5.5 Computational and Memory Overhead

	6 Parameter Estimation for Application Executions on Approximate Computing Hardware
	6.1 Overview of Parameter Evaluation and Estimation Methods
	6.2 Instrumentation of Applications
	6.3 Simulation-based Parameter Evaluation
	6.4 Model-based Parameter Estimation
	6.5 Combined Parameter Estimation

	7 Experimental Evaluation and Results
	7.1 Benchmark Matrices and Setup
	7.2 Error Model
	7.3 Approximation Model
	7.4 Fault-tolerant Sparse Matrix-Vector Multiplication
	7.4.1 Runtime Overhead
	7.4.2 Error Coverage
	7.4.3 Discussion of Experimental Results

	7.5 Fault Tolerance for Conjugate Gradient Solvers
	7.5.1 Vulnerability of Conjugate Gradient Solvers
	7.5.2 Runtime Overhead for Error Detection
	7.5.3 Error Coverage
	7.5.4 Error Correction Overhead
	7.5.5 Discussion of Experimental Results

	7.6 Parameter Evaluation and Estimation Methods
	7.6.1 Simulation-based Parameter Evaluation
	7.6.2 Combined Parameter Estimation
	7.6.3 Discussion of Experimental Results

	7.7 Conjugate Gradient solvers on Approximate Computing Hardware
	7.7.1 Solver Iterations
	7.7.2 Energy
	7.7.3 Energy Efficiency
	7.7.4 Utilization of Approximation Levels
	7.7.5 Discussion of Experimental Results

	8 Conclusion
	A Linear Solvers and Preconditioners
	A.1 The Conjugate Gradient Solver
	A.2 Preconditioners

	B Dependability Attributes
	C Floating-point Arithmetic
	C.1 Floating-point Numbers
	C.2 Rounding and Rounding Errors
	C.3 IEEE Standard for Floating-Point Arithmetic

	D Additional Proofs
	D.1 Rounding Error Bound for Sparse Matrices

	E Experimental Setup and Data
	E.1 Hardware and Software Parameter
	E.2 Fault-tolerant Sparse Matrix-Vector Multiplications
	E.3 Fault Tolerance for Conjugate Gradient Solvers
	E.4 Conjugate Gradient solvers on Approximate Computing Hardware
	E.5 Parameter Evaluation and Estimation

	Bibliography
	Index
	Publications of the Author

