
Institut für
Höchstleistungsrechnen

Mathias Nachtmann

MODEL-CENTRIC TASK DEBUGGING
AT SCALE

 FORSCHUNGS- UND ENTWICKLUNGSBERICHTE

ISSN 0941 - 4665 2017 HLRS-17

MODEL-CENTRIC TASK DEBUGGING
AT SCALE

Höchstleistungsrechenzentrum
Universität Stuttgart
Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h. M. Resch
Nobelstrasse 19 - 70569 Stuttgart
Institut für Höchstleistungsrechnen

von der Fakultät Energie-, Verfahrens- und Biotechnik
der Universität Stuttgart zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Mathias Nachtmann
aus Backnang

Hauptberichter: Prof. Dr.- Ing. Dr. h.c. Dr. h.c. Prof. E.h.
 Michael M. Resch
Mitberichter: Prof. Jesùs Labarta
Tag der Einreichung: 19.06.2017
Tag der mündlichen Prüfung: 14.05.2018
CR-Klassifikation: I.3.2, I.6.6

ISSN 0941 - 4665 2017 HLRS-17

D93

Abstract

Chapter 1, Introduction, presents state of the art debugging techniques in high-

performance computing. The lack of information out of the programming model,

these traditional debugging tools suffer, motivated the model-centric debugging

approach. Chapter 2, Technical Background: Parallel Programming Models &

Tools, exemplifies the programming models used in the scope of my work. The

differences between those models are illustrated, and for the most popular pro-

gramming models in HPC, examples are attached in this chapter. The chapter

also describes Temanejo, the toolchain’s front-end, which supports the applica-

tion developer during his actions. In the following chapter (Chapter 4), Design:

Events & Requests in Ayudame, the theory of “task” and “dependency” repre-

sentation is stated. The chapter includes the design of different information types,

which are later on used for the communication between a programming model

and the model-centric debugging approach. In chapter 5, Design: Communication

Back-end Ayudame, the design of the back-end tool infrastructure is described

in detail. This also includes the problems occurring during the design process and

their specific solutions. The concept of a multi- process environment and the us-

age of different programming models at the same time is also part of this chapter.

The following chapter (Chapter 6), Instrumentation of Runtime Systems, briefly

describes the information exchange between a programming model and the model-

centric debugging approach. The different ways of monitoring and controlling an

application through its programming model are illustrated. In chapter 7, Case

Study: Performance Debugging, the model-centric debugging approach is used for

optimising an application. All necessary optimisation steps are described in detail,

with the help of mock-ups. Additionally a description of the different optimised

versions is included in this chapter. The evaluation, done on different hardware

architectures, is presented and discussed. This includes not only the behaviour of

the versions on different platform, but also architecture specific issues.

Zusammenfassung

Kapitel 1, Introduction, behandelt aktuelle Debugging Technologien im HPC-

Umfeld. Der Mangel an Information aus dem Programmiermodell, den diese

Werkzeuge aufweisen, motiviert den modell-zentrischen Debugging-Ansatz. Kapi-

tel 2, Technical Background: Parallel Programming Models & Tools, erläutert

die verschiedenen Programmiermodelle, welche im Rahmen dieser Arbeit einge-

setzt wurden. Die Unterschiede zwischen den verschiedenen Programmiermodell-

ansätzen werden aufgezeigt und Beispiele für die gängigsten Programmiermod-

elle werden aufgeführt. Desweiterem wird Temanejo dargelegt, das Front-End

des entworfenen Tools, welches den Anwender während der Softwareentwicklung

unterstützt. Im folgenden Kapitel (Kapitel 4), Design: Events & Requests in

Ayudame, werden die Konzepte von “Tasks” und “Abhängigkeiten” spezifiziert.

Das Kapitel zeigt zusätzlich das Design der verschiedenen Informationstypen,

welche später für die Kommunikation zwischen einem beliebigen Programmier-

modell und dem modell-zentrischen Debugging-Ansatz benötigt werden auf. In

Kapitel 5, Design: Communication Back-end Ayudame, wird das Design der

Back-End Infrastruktur detailliert beschrieben. Zusätzlich beinhaltet dieses Kapi-

tel Analysen der Probleme, die während des Designprozesses aufgetreten sind. Hi-

erfür wurden problemspezifischen Lösungen entwickelt und detailliert beschrieben.

Außerdem behandelt das Kapitel den Einsatz von modell-zentrischem Debugging

in einer Multi-Prozess Umgebung, bei zeitgleicher Benutzung von verschiedenen

Programmiermodellen. Das folgende Kapitel (Kapitel 6), Instrumentation of Run-

time Systems, beschreibt in kürze den Informationsaustausch zwischen einem Pro-

grammiermodell und dem modell-zentrischen Debugging-Ansatz. Die verschieden

Möglichkeiten eine Anwendung durch ein Programmiermodell zu überwachen und

zu kontrollieren werden ebenfalls aufgezeigt. In Kapitel 7, Case Study: Perfor-

mance Debugging, wird der modell-zentrische Ansatz zur Optimierung einer An-

wendung eingesetzt. Alle notwendigen Optimierungsschritte werden unter Zuhil-

fenahme von Mock-ups detailliert aufgezeigt. Die drei optimierte Versionen der

Anwendung werden in Detail beschrieben. Die Auswertung der drei Versionen wird

auf verschiedenen Hardware-Architekturen ausgeführt und anschließend diskutiert.

Dies beinhaltet nicht nur das Verhalten der Versionen auf verschiedenen Plattfor-

men, sondern auch Architekturen-spezifische Probleme.

Acknowledgements/Danksagung

An erster Stelle danke ich meinen Eltern, die mich während meiner schulischen und

universitären Ausbildung stets unterstützten und somit diese Promotion überhaupt

erst ermöglicht haben.

An zweiter Stelle geht besonderen Dank an Dr. José Gracia, der mir vor fünf

Jahren am Bundeshöchstleistungsrechenzentrum Stuttgart (HLRS) als Wiss. Mi-

tarbeiter die Chance zur Promotion gab. Seine Ratschläge und Hilfe jeglicher

Art, aber auch die Freiheit die er mir für meine wissenschaftlichen Tätigkeiten

einräumte, ermöglichte die in dieser Arbeit präsentierten Ergebnisse.

Ebenso danke ich Herrn Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Hon.-Prof. Michael M.

Resch, für die Möglichkeit als Wissenschaftlicher Mitarbeiter am HLRS arbeiten

zu dürfen.

Auch möchte ich mich bei allen Projektpartern des Mont-Blanc Projekts bedanken.

Viele Ideen und Konzepte sind erst durch Diskussionen innerhalb des Projektes

entstanden. Besonderer Dank gilt hier Prof. Jesús Labarta der durch seine Ex-

pertise im Bereich Performanceoptimierung stets die richtigen Fragen stellte.

Ebenso möchte ich mich an dieser Stelle auch bei B.Sc. Jutta Wieland, die mich

tatkräftig unterstützte, und bei Dipl.-Phys. Claudius Weimann, ohne den ich

sicherlich nicht diesen Weg der Promotion eingeschlagen hätte, bedanken.

Herzlichen Dank gilt natürlich auch allen Freunden, Bekannten und Kollegen.

Mathias Nachtmann Stuttgart Juni 2017

v

Contents

Abstract iii

Zusammenfassung iv

Acknowledgements v

Contents vii

List of Figures xi

Abbreviations xv

1 Introduction 1

1.1 Motivation and Goal . 2

1.2 Programming Model . 3

1.3 Traditional versus Model-Centric Debugging 5

1.4 Model-Centric Debugging for Task-Based Programming Models . . . 7

1.5 Performance Relevance for Model-Centric Debugging 8

1.6 Performance Debugging as Case Study 9

1.7 Outline of the Thesis . 12

2 Technical Background: Parallel Programming Models & Tools 13

2.1 Programming Model Overview . 13

2.2 OpenMP: Open Multi-Processing . 14

2.3 OmpSs: OpenMP SuperScalar . 16

2.4 StarPU . 19

2.5 MPI: Message Passing Interface . 20

2.6 Hybrid Programming Models . 23

2.7 Temanejo . 23

3 Related Work 25

3.1 Ayudame . 25

vii

Contents viii

3.2 Traditional Debugging tools . 26

3.2.1 DDT . 26

3.2.2 Totalview . 26

3.3 Programming-Model-Centric Debugging for multicore embedded sys-
tems . 26

4 Design: Events & Requests in Ayudame 29

4.1 Introduction . 29

4.2 Events in Ayudame . 29

4.2.1 Mandatory Information . 30

4.2.2 Additional Information . 31

4.2.3 Interfaces for C and C++ . 33

4.3 Requests in Ayudame . 35

5 Design: Communication Back-end Ayudame 37

5.1 Introduction . 37

5.2 Motivation . 39

5.3 Runtime Monitoring and Controlling 40

5.4 Ayudame internals . 42

5.4.1 Event Handler for specific programming models 44

5.4.2 Connect Handler . 45

5.4.3 Ayu Socket . 45

5.4.4 Intern Event . 46

5.5 Multi process node environment . 46

5.5.1 Connection tree . 47

5.6 Identification and Information routing 50

5.6.1 Routing events and requests . 50

5.6.2 Unique ID . 52

5.7 MPI Matcher . 53

6 Instrumentation of Runtime Systems 55

6.1 Introduction . 55

6.2 Monitoring . 56

6.2.1 OmpSs instrumentation . 56

6.2.2 OpenMP Tools Application Programming Interfaces for Per-
formance Analysis and Debugging - OMPT 61

6.3 Controlling . 62

6.3.1 Tasking Control API - TCA . 62

6.4 Simple Stepper . 70

7 Case Study: Performance Debugging 71

7.1 Introduction . 71

7.2 Optimization . 73

7.2.1 Fork Join . 75

7.2.2 Communication hiding . 77

Contents ix

7.2.3 Communication Overlap . 80

7.2.4 Iteration Overlap . 82

7.3 Performance Evaluation . 83

7.3.1 Evaluation Platform . 84

7.3.2 Tuning of number of OmpSs workers and process placement 84

7.3.3 Benchmark on Hazel Hen . 86

7.3.4 Benchmark on the Mont-Blanc prototype 86

7.3.5 Comparing the Cavium ThunderX with the Cray XC40 . . . 87

7.4 Use Case Conclusion . 89

8 Conclusions & Open research topics 91

8.1 Discussion . 91

8.1.1 Evaluation of the design . 92

8.2 Open research topics . 93

A Appendix 95

A.1 Hardware Technology . 95

A.1.1 Non-uniform memory access . 95

A.1.2 Memory layers . 98

A.1.3 Distributed memory . 99

A.1.4 Heterogeneous systems . 99

A.1.5 Knights Landing . 99

Bibliography 101

List of Figures

1.1 HPC systems placed in the TOP500 (November 2016) including
their node and core number. 2

1.2 shows different abstraction layers. The level of understanding is
placed between the User and the Programming Model. 4

1.3 shows the different abstraction layers, in addition the Tools are
placed at the same abstraction level as the low-level Software. 6

1.4 shows the different abstraction layers, including the Model-Centric
Debugging approach (located at the same abstraction level as the
Programming Model). 7

1.5 shows a two level domain decomposition. The coarse grained de-
composition can be used for distributed memory programming mod-
els and the fine grained decomposition can be used for taskification. 10

1.6 shows a domain decomposition with marked neighbour tasks. For
example: The blue task(4,3) has its neighbours marked in light
blue(tasks: (3,3), (5,3), (4,2), (4,4)). 11

2.1 shows the most relevant programming models for HPC 14

2.2 shows a listing of an “OpenMP parallel for” example. Every itera-
tion can be executed by a different thread independently. 15

2.3 shows a listing of an “OpenMP section” example. Every section
can be executed by a different thread. 15

2.4 shows a listing of an “OpenMP task” example. Both foo tasks can
be executed in parallel. The bar task depends on the foo tasks. . . . 15

2.5 shows a listing of an “OmpSs task” example including dependencies
between the tasks. According to the dependencies the tasks can be
executed. 17

2.6 shows the task-dependency graph of the listing in Figure 2.5. Ac-
cording to the dependencies the tasks 4,5 and 6,7 can be executed
in parallel. 18

2.7 shows a listing of an StarPU example code. 20

2.8 shows a listing of an MPI ring example. 21

xi

List of Figures xii

2.9 displays a MPI ring application. The dependency graph is gen-
erated with Temanejo. Each colour in the dependency graph
represents a different MPI rank. The different MPI operations
are represented with different shapes (square: MPI Init, trapezoid:
MPI Send, turned trapezoid: MPI Recv, turned square: MPI Finalize).
The red lines represent the data transfer between MPI ranks, the
blue marked dependencies arises from the program order of the MPI
calls within a process. 22

4.1 The runtime informs Ayudame about any relevant changes. The
events are forwarded to Temanejo . 30

4.2 shows examples for task and dependency properties. 32

4.3 C interface of Ayudame . 33

4.4 C++ interface of Ayudame . 34

4.5 C interface of the Ayudame userdata event. 34

4.6 Temanejo controls the runtime/application via Ayudame by send-
ing request. Requests are forwarded to the runtime. 35

5.1 Modules and their functionality used in Ayudame. The data ex-
change inside an Ayudameis accomplished by the internal “Buffers”.
The inter process data exchange is done by socket communication. . 38

5.2 shows the overall control and request flow inside an Ayudame in-
stance. 41

5.3 shows an example of attaching Ayudame to a programming model. 41

5.4 shows multiple runtimes (in one process) attached to Ayudame. In
addition, the possible outputs of Ayudameare also illustrated. . . . 43

5.5 One Process at a node is connected to Temanejo. 47

5.6 Multiple Process at a node are connected to Temanejo 48

5.7 Multiple Process at multiple nodes are connected to Temanejo.
The communication is spanned up in a “All to one” fashion. 49

5.8 Multiple Process at multiple nodes are connected to Temanejo.
The communication is spanned up as a “Communication Tree”,
e.g. the messages are routed through Ayudame instances. 50

5.9 shows the algorithm spanning up the“Communication Tree”. 51

5.10 shows the “Communication Tree” used for multi-process debugging. 51

5.11 The function set master id shifts the master id into the m id, the
second function returns the master id out of the m id 53

5.12 The function set proc id shifts the procc id into the m id, the second
function returns the procc id out of the m id 53

5.13 The function set client id shifts the client id into the m id, the sec-
ond function returns the client id out of the m id 54

6.1 shows the different possible Ayudame instrumentations. Some pro-
gramming models need an InCode instrumentation, others can be
accessed through an API. 56

List of Figures xiii

6.2 shows the “addEventList” code part, used for instrumenting OmpSs.
The function splits the different runtime events into “addTask”,
“addDependency”, etc. 57

6.3 shows the “addResumeTask” code part, used for instrumenting
OmpSs. The function detects the tasks states and generates an
Ayudame event. 58

6.4 shows the “addTask” code part, used for instrumenting OmpSs.
The function generates an Ayudame task creation event. 59

6.5 shows the “addDependency” code part, used for instrumenting OmpSs.
The function generates an Ayudame dependency creation event. . . 60

6.6 Stage one of the OMPT initialization 61

6.7 Stage two of the OMPT initialization 62

6.8 Interaction of Temanejo with a runtime system through TCA . . . 63

6.9 Interaction between the runtime and the tool, through TCA 66

6.10 shows the tca initialize implementation inside the tool. 68

6.11 shows the lookup implementation inside the runtime. 68

6.12 shows tca initialize process inside the runtime. 69

7.1 default code structure . 72

7.2 Task colouring and their meaning. 74

7.3 Fork/Join code structure. 76

7.4 Fork/Join dependency graph . 76

7.5 Fork/Join timeline without compute task differentiation 77

7.6 Fork/Join timeline with compute task differentiation 77

7.7 Comm hiding code structure. 78

7.8 Comm hiding dependency graph with differentiation in inner and
outer tasks. 78

7.9 Comm hiding timeline with normal behaviour. 79

7.10 Comm hiding timeline with delay in the MPI communication. 79

7.11 Comm overlap timeline with runtime aware MPI task behaviour. . . 81

7.12 Iteration overlap dependency graph. The necessary dependencies
are getting complex. 82

7.13 Iteration overlap timeline. 83

7.14 timeline of combied Iteration overlap and Comm hiding 83

7.15 shows the performance as a function of MPI processes and OmpSs
worker threads per node. 85

7.16 show the performance comparison of the different LBC versions
(strong scaling experiment). These results were generated on the
Hazel Hen. 86

7.17 shows the comparison of two OmpSs versions with the pure-MPI
implementation of LBC(weak scaling experiment). These results
were generated on the Mont-Blanc prototype 87

7.18 shows a weak scaling experiment running on the target systems. . . 88

7.19 sets the MLUPs in relation to the peak performance of the system
(Cavium: 345 GFLOPs, XC40: 960 GFLOPs). 88

List of Figures xiv

7.20 sets the MLUPs in relation to the measurable memory bandwidth
(Cavium: 70 GBs, XC40: 113 GBs). 88

7.21 shows the fraction of peak performance the application reaches on
the target platform. 89

A.1 Ring . 95

A.2 Cross link . 95

A.3 Memory bandwidth 4 socket system with 4 cores per socket. In
this system no cross link available and therefore a second stage
performance drop is measurable . 96

A.4 Memory bandwidth 4 socket system with 6 cores per socket. In
this system a cross link available and therefore no second stage
performance drop is measurable . 96

A.5 Non-Uniform Memory Systems @ HLRS 97

A.6 Two socket architecture. Each socket has its own Memory 97

A.7 Interlagos architecture. 98

A.8 Nehalem EX architecture. 98

Abbreviations

HPC High Performance Computing

LBC Lattice-Boltzmann Code

MPI Message Parsing Interface

BEST Boltzmann Equation Solver Tool

SIMD Single Instruction, Multiple Data

TCA Tasking Control API

OMPT OpenMP Tools Application Programming

PGAS Partitioned Global Address Space

DAG Directed Acyclic Graph

DAC Unified Parallel C

NUMA Non-Uniform Memmory Access

UMA Uniform Memmory Access

HBM High Bandwidth Memory

HMC Hybrid Memory Cube

NVM Non Volotile Memory

POSIX Portable Operating System Interface

PGAS Partitioned Global Address Space

GDB The GNU Project Debugger

xv

This thesis is dedicated to my parents
and friends

xvii

Chapter 1

Introduction

This thesis addresses the problems during the application developing process, es-

pecially the issues occurring due to parallelisation. In complex applications, de-

bugging tools and supporting frameworks are essential for the high-performance

computing (HPC) area. Information out of the parallelisation strategy can be

used to give the application developer necessary hints. Temanejo, a task-based

debugger, converts this information and supports the developer in his activities.

This work is highly motivated by the problems appearing during the parallelisation

process of a traditional engineering application. Therefore, this thesis is located

as an interdisciplinary field of engineering and informatics (software development).

Chapter Introduction briefly describes the context the work is placed in. The

section Motivation and Goal issues the increasing complexity of hardware and the

resulting software complexity. This technological progress leads to a need for tools

supporting computer scientists and engineers. On the one hand, there are state

of the art debugging tools. On the other hand, there is a lack of tools trying to

include the means out of the parallelisation technique into the debugging process.

This lack of tools is targeted by the work presented in my thesis. Therefore, Te-

manejo, which is a framework capable of extracting the available programming

model specific information, is introduced. Furthermore in this chapter the term

Model-Centric Debugging is defined, by trying to distinguish it from the tradi-

tional debugging approach. The Model-Centric Debugging approach is inevitable

due to the increasing hardware complexity. The penultimate section Performance

1

Chapter 1. Introduction 2

Debugging as Case Study gives a brief example for an application optimisation

use-case. The thesis outline finalises this chapter.

1.1 Motivation and Goal

In the past decade, the ecosystem complexity of parallel computing has increased

massively. Coming from single core architectures, the system design has evolved

dramatically. The present-day’s computer systems are usually multi-core based.

The cores in these multi-core systems are located in disjointed physical processors

(central processing unit/CPU). Therefore, technologies like non-uniform memory

access, hyper threading, caching and much more, are necessary to operate these

systems efficiently. The systems used in high-performance computing today, scale

up to thousands of nodes comprising millions of independent cores.

System Cores Nodes

Sunway TaihuLight 10.649.600 40.960
Tianhe-2 (MilkyWay-2) 3.120.000 16.000
Titan - Cray XK7 560.640 18.688
Hazel Hen - Cray XC40 185,088 7712

Figure 1.1: HPC systems placed in the TOP500 (November 2016) including
their node and core number.

The table in Figure 1.1 shows the first three systems on the TOP500[1] list in

November 2016. Also listed is the supercomputer Hazel Hen located in Stuttgart.

The huge amount of nodes and cores has the need for a well-designed network

infrastructure, e.g. network bottlenecks. The most important factors which limit

the enlargement of these systems to exascale are cooling and immense power con-

sumption. The work of my thesis is integrated into the hard-and software ecosys-

tem, by introducing several abstraction layers. On the hardware side, there are

technology concepts like 1) non-uniform memory access, 2) memory layers, 3) dis-

tributed memory and 4) heterogeneous systems. The detailed information about

the listed technologies can be found in Appendix A. On the software side, the

hardware trend caused an evolving software environment. This includes different

parallel programming concepts and their parallelization strategies for shared and

distributed memory (Chapter 2.1) systems. These concepts (programming models

chapter 1.2) attempt to simplify the application development process, by giving the

user a framework for application parallelisation. The outcome are highly complex

Chapter 1. Introduction 3

applications, which use different programming models and techniques to achieve

the best performance on a given hardware. The application complexity is hidden

from the application developer by the programming model. Developing and espe-

cially debugging such an application requires fundamental knowledge about hard-

and software. Therefore, tools have to be designed and developed to support the

application developer, by simplifying the development or debugging process.

The objective of this thesis was to design a debugging tool for task-based pro-

gramming models. The tool has to be capable of extracting and processing pro-

gramming model relevant information and assist the application developer in his

actions. During the execution of a parallel application, the most pertinent infor-

mation, supporting the developer, is generated by the programming model itself.

This information can be extracted by a debugging tool and could be visualised in

a programming model specific language. Due to the specific environment in HPC

systems, the debugging tool has to deal with Hybrid Programming Models (Chap-

ter 2.6), which are normally realised using shared and distributed programming

models simultaneously. Therefore, the attention of the presented work is paid to

the design of the debugging tool’s back-end. The quality of the designed tool

is evaluated by the performance improvement of a given application; e.g. Case

Study: Performance Debugging (Chapter 7).

1.2 Programming Model

This chapter briefly introduces the term programming model. In the chapter Tech-

nical Background: Parallel Programming Models & Tools (Chapter 2) the parallel

programming models used in the scope of my thesis are described in detail. Addi-

tionally, chapter 2 classifies the different models and gives examples for the most

common ones.

In the literature, there are a few clear definitions for programming model, but one

is done by Skillicorn and Talia ’98:

Models that abstract from parallelism completely. Such models de-

scribe only the purpose of a program and not how it is to achieve this

Parallel Computation � 135 ACM Computing Surveys, Vol. 30, No.

2, June 1998 purpose. Software developers do not even need to know

Chapter 1. Introduction 4

Figure 1.2: shows different abstraction layers. The level of understanding is
placed between the User and the Programming Model.

if the program they build will execute in parallel. Such models are

necessarily abstract and relatively simple, since programs need be no

more complex than sequential ones. [2]

A programming model is a model of an abstract machine, which provides certain

operations to the programming 1) level above and requires for each of these oper-

ations an implementation on all 2) architectures below. As previously mentioned,

the increasing complexity in hardware results in a growing complexity of the soft-

ware used for programming these systems. Programming models try to hide the

hardware architectures from the application developer. Therefore, they introduce

an abstraction layer called level of understanding, shown in Figure 1.2, between

the hardware and the application developer.

1) In Figure 1.2, the level above is represented by the level of understanding and is

used by the application developer. This level of understanding is used for parallelis-

ing an application. The parallelising technique can be API-based calls like MPI:

Message Passing Interface (Chapter 2.5) or pragma-based like OpenMP: Open

Multi-Processing (Chapter 2.2).

2) The architecture below is represented by the low-level software layer, e.g. POSIX

threads (PThreads [3]). For MPI, this low-level software layer could be a specific

network architecture.

OpenMP and OmpSs: OpenMP SuperScalar (Chapter 2.3), for example, use the

low-level Software PThreads to enable multithreading support in applications.

Chapter 1. Introduction 5

MPI is used for data exchange between different processes or nodes, hiding the

communication structure (InfiniBand, extol, ethernet, Cray XC40 aries).

1.3 Traditional versus Model-Centric Debugging

Debugging is a significant part of any software development process. However,

what does debugger or debugging mean? Most practical definitions of debugging

would probably include the following three aspects: 1) the ability to control the

program execution, in particular, the ability to suspend and resume the program

execution, 2) the possibility to inspect the program state e.g. print a variable’s

current value and 3) optional, the potential to change the program’s state, e.g.

set a variable’s value or set the point where the execution will be resumed. The

traditional debugging process is specific for a programming language. In contrast,

the Model-Centric [4] approach is specific for a programming model. For instance,

pydb is a debugger for Python, while GDB is a debugger for C (C++, Fortran,

etc.). All these debuggers are reasoning about the application at the lowest level,

which is accessible by the programming language. In case of a single threaded C

application, a debugger is reasoning at instruction level or statement level (static

variable, pointers, function). The value of every single variable or pointer can

be accessed, and the whole debugging process is related to the behaviour und

execution on the hardware level. In case of a shared or distributed environment,

the debugger has to reason across different thread or process states. In such a

multi-threaded environment every PThread can have locally allocated variables,

but can also access memory areas simultaneously with other threads. In a multi-

threaded environment the application developer has often to deal with concurrency

and their undefined side effects.

Starting a debugging process, the application developer has to switch from his

high-level programming model abstraction layer to the low-level software layer

or even to the hardware layer below, which is used in the traditional debug-

ging process. In Figure 1.3 the ”level of understanding” is added between the

low-level software layer and the tools, presenting traditional debuggers like To-

talView (Chapter 3.2.2), DTT (Chapter 3.2.1) or GDB. At the low-level software

or the hardware layer the application developer has to care about: instruction

breakpoints, memory watchpoints, event catch points, step-by-step (function, line

or instruction granularity) execution and memory or processor inspection. All

Chapter 1. Introduction 6

Figure 1.3: shows the different abstraction layers, in addition the Tools are
placed at the same abstraction level as the low-level Software.

these traditional techniques are not taking the overall programming model related

information into account. Debuggers, such as GDB, still perceive an OpenMP

application as a collection of low-level threads but without any further semantics.

Other debuggers, in particular, those used in HPC such as DDT and Totalview,

have some awareness of the parallel programming model and allow for instance

to step all threads in a parallel region at the same time. However, Temanejo

(Chapter 2.7), including its back-end Ayudame (Chapter 5), follows a strong

Model-Centric approach and abstracts the application regarding a task dependency

graph, i.e. a directed acyclic graph consisting of tasks and data-dependencies as

node and edges respectively. The user may inspect task inputs and outputs or con-

trol the runtime system to step through the application task-wise or even modify

task dependencies. Temanejo uses for visualisation the same abstraction level

and vocabulary as during application development. This kind of debugging or ap-

plication development (Model-Centric approach) is a supplement to the traditional

debugging process and is using the programming model specific representation.

Today, however, the programming language is just a small part of the program-

mer’s development environment: an application developer relies on third-party

libraries, frameworks or whole programming models. In the ideal case, debuggers

are aware of the development environment as a whole and operate on suitable

abstraction layers, use the appropriate vocabulary, and interact with the runtime

system. This debugging process is called Model-Centric debugging and is opposed

Chapter 1. Introduction 7

Figure 1.4: shows the different abstraction layers, including the Model-Centric
Debugging approach (located at the same abstraction level as the Programming

Model).

to the traditional debugging process. The application developers’ mental represen-

tation differs from the actual execution on the underlying hardware. In Figure 1.4

the Model-Centric Debugging cloud is placed at the same abstraction layer as the

programming model is located.

The objective of my thesis was to provide the application developers with means

for better understanding the state and behaviour of their high-level applications

and let them control the application execution from a Model-Centric perspective.

The enhancement of the hardware and the used software and programming model

also needs a strengthening of tools, e.g. including semantic information into the

debugging process.

1.4 Model-Centric Debugging for Task-Based Pro-

gramming Models

Integrating the programming model concepts into the debugging process gives the

programmer additional information and hints of the overall application execution.

This extracted information could be a specific task, a function execution, a par-

allel loop region/iteration, relationships between entities, code blocks or the data

transfer between two nodes. Monitoring their different states gives a detailed view

Chapter 1. Introduction 8

of the actual application execution, e.g. which tasks are executed, is the scheduling

algorithm (longest path, depths first) working correctly? etc. It is also possible

to interact with the application during execution and influence the application

execution behaviour, e.g. blocking of specific tasks or step-by-step (task-by-task)

execution.

Model-Centric Debugging allows illustrating communication between tasks for syn-

chronous and asynchronous communication and their different communication pat-

terns one-to-one, one-to-many, many-to-one and many-to-many. This allows to

detect deadlocks and bottlenecks in task-based programming models and message-

passing models. Most of these programming models rely on a non-static program-

ming model. That means, the execution of tasks is not necessarily always in the

same order, but through relationships between tasks, the result remains the same.

Interacting and monitoring dynamic application behaviour, depending on the used

programming model, is challenging and needs a structured concept. In most cases,

the high-level programming model concept can be mapped into a graph structure,

representing the application execution. Drawing such a graph illustrates the nat-

ural execution order or behaviour of a given application and gives the application

developer a general view of the application execution.

1.5 Performance Relevance for Model-Centric De-

bugging

Looking at application performance as a functional debugging requirement, Model-

Centric Debugging means to check, verify and debug the correctness of an appli-

cation and additionally to analyse performance relevant issues. It is possible, that

the programming model serialises the application execution, but however the ap-

plication produces correct results. Not exploiting today’s multi-core or multi-node

systems, can also be seen as a bug in the application execution. The necessary in-

formation for finding bottlenecks and performance relevant issues can be extracted

and illustrated in a dependency graph. This technique is used in the visualisation

framework Temanejo (Chapter 2.7). The task placement and its memory access

pattern are influencing the application performance. It is more efficient to execute

tasks on cores located close to each other, because these cores are sharing the same

cache or memory. The necessary tasks data should be placed as close as possible

Chapter 1. Introduction 9

to the thread executing the task. Temanejo is capable visualising the mapping

of tasks to the cores, the tasks are executed on. It is also possible to analyse the

mapping of task to the corresponding NUMA domain.

Model-Centric Debugging comes to a point where not only the process of find-

ing and resolving bugs or detecting incorrect operations, in traditional debugging

techniques, but also the correct usage of the programming model has to be taken

into account. The correct usage includes the accordance of the dependency graph,

the application developer has in mind, with the dependency graph generated by

the programming model, but also the correctness in case of locality and other

performance-relevant facts.

The gathered information allows the user to access the programming model internal

representation. This concept extends the debugging process not only with semantic

information but also with sources of error, having a performance relevant aspect.

This can, for example, be the width of a given graph representing the parallelism

of the application. Some possible examples solving these questionings are 1) Are

there too few tasks for a 24 core system? Does the application reach the maximum

parallelism? 2) How many cores are necessary to get the maximum performance

in case of parallelism out of the application? 3) Are there bottlenecks inside the

MPI communication? Is MPI communication serialised? 3) Are tasks placed on

a wrong NUMA domain and is, therefore, data locality not given? Most of these

problems can be visualised in a graph-based format, which is the most suitable

representation for the user.

1.6 Performance Debugging as Case Study

For any application using multiple programming models to express the best-optimised

parallelisation, the underlying dependency graph gets extremely complex. In chap-

ter Case Study: Performance Debugging (Chapter 7) the complete task-based op-

timisation workflow is shown with all intermediate steps. However, even there,

the sequence and dependency diagrams have to be replaced with mock-ups. This

section only explains the workflow on a fictive, well-optimised problem, which can

be used as a concept for a future application developing process. The same tech-

niques and domain decomposition have been applied to the application explained

in chapter 7. For simplification, the concept is only explained in a two-dimensional

Chapter 1. Introduction 10

Figure 1.5: shows a two level domain decomposition. The coarse grained
decomposition can be used for distributed memory programming models and

the fine grained decomposition can be used for taskification.

domain. The following example is based on an arbitrary stencil code, which re-

quires values for next-neighbours only. The value introduced into the domain at

a given spot, diffuses over time through the domain. Solving such a problem in

a hybrid application approach using MPI and a task-based programming model

(OmpSs) has serval design, implementation and parallelisation steps.

� Figure 1.5 Step 1: Divide the domain into a subdomain for each MPI process.

� Figure 1.5 Step 2: Divide the subdomain into tasks for OpenMP/Ompss.

� Figure 1.5 Step 3: Split the tasks into tasks needed for communication(green)

and tasks without communication (grey).

Chapter 1. Introduction 11

Figure 1.6: shows a domain decomposition with marked neighbour tasks. For
example: The blue task(4,3) has its neighbours marked in light blue(tasks: (3,3),

(5,3), (4,2), (4,4)).

� Figure 1.5 Step 4: Generate one task (red) per process handling the MPI

communication with all neighbouring domains. This task can be executed as

soon as all communication relevant tasks (green) of the same iteration have

been finished.

Implementing these steps and defining the correct dependencies between the tasks

will allow the runtime to schedule tasks in an efficient way. Using this technique

and giving the runtime the hint of prioritising the execution of the green and

red tasks automatically overlaps computation and communication. With double

buffering or multi-buffering (keeping several copies of the domain, one for every

iteration) it is also possible to overlap multiple iterations. In the example the

domain is only divided into inner and outer tasks, this separation can also be seen

as a coarse-grained stencil. A finer-grained definition of the stencil is also possible.

Therefore the dependencies for every task can be built up only on the relevant

neighbouring tasks. This leads to a complex dependency graph expressing the real

data dependencies. Figure 1.6 shows a simple example of a fine-grained stencil.

Task (4,3) for example depends on the previous execution iteration (iteration n-1)

of the task (4,3) itself and the neighbour tasks ((3,3), (5,3), (4,2), (4,4)). Every

green task also depends on the MPI communication task (red) of the previous

iteration.

Even without this overlapping of multiple iterations and without fine-grained sten-

cils the generated dependency graph is getting huge and complex. Without any

tool supporting the application developer in the design, implementation, and par-

allelisation workflow it is a difficult job.

Chapter 1. Introduction 12

1.7 Outline of the Thesis

Concluding this chapter, I briefly summarise: The thesis addresses the lack of in-

formation flow between the programming model (Chapter Technical Background:

Parallel Programming Models & Tools) and the application developer. The work

shown in my thesis tackles this gap by providing a tool for Model-Centric De-

bugging. The infrastructure is implemented in the in Ayudame & Temanejo

toolchain. Chapter Design: Events & Requests in Ayudame contains the de-

sign of events and requests, which are necessary for monitoring and controlling

a runtime, respectively. The design and the issues during the tool development

are present in the chapter Design: Communication Back-end Ayudame. The

interface between the programming model and Ayudame is discussed in the chap-

ter Instrumentation of Runtime Systems. Chapter Case Study: Performance De-

bugging demonstrates the tool usage at an application parallelisation process and

gives, also, a performance evaluation of different optimised versions.

Chapter 2

Technical Background: Parallel

Programming Models & Tools

This chapter gives a brief overview of today’s parallel programming models used

in high-performance computing (HPC). In addition, the chapter contains a sec-

tion about Temanejo the front-end of the designed toolchain. The programming

models are classified into shared and distributed memory programming models

(Chapter 2.1). The most commonly used programming models are MPI for dis-

tributed applications and OpenMP for shared memory applications. Besides these

two traditional models, there is a growing trend and usage of different paralleliza-

tion concepts. The programming models named in the listing of Figure 2.1 are

commonly used in today’s HPC and engineering applications and separated into

shared and distributed programming models. Therefore, I selected them as the

foundation for the evaluation and design process. In the sections below there are

three examples for shared memory programming models (OpenMP chapter 2.2,

the StarSs family Chapter 2.3 and StarPU chapter 2.4). The chapter 2.5 Message

Passing Interface (MPI) includes an example of a distributed memory program-

ming model.

2.1 Programming Model Overview

In today’s computer architecture there is a differentiation between shared and dis-

tributed memory systems and their respective programming models. In distributed

memory systems, each process has its private memory and can only operate on

13

Chapter 2. Technical Background: Parallel Programming Models & Tools 14

its local data. Multiple processes communicate and exchange data through some

kind of network or process interconnect. In shared memory systems, all threads

share the same memory, and they have to care about concurrent data access and

race conditions. A shared memory application can be seen as a single process ap-

plication. As soon as the application uses more than one process, the application

uses a distributed memory architecture. The processes in a distributed memory

could be placed on the same node, but the operation system separates the virtual

memory. The shared memory concept can be extended across the process border;

a framework (PGAS) is handling the data transfer between processes or nodes.

This results in an easy to use unified memory space for the application developers.

� Shared Memory

– OpenMP [5] [6]

– StarSs family (OmpSs, SmpSs) [7] [8] [9] [10]

– StarPU [11] [12] [13]

– fastflow [14]

– Cilk

– Threading Building Blocks

– CUDA

� Distributed Memory

– Message Passing Interface (MPI)

– Partitioned Global Address Space (PGAS)

* Global Address Space Programming Interface (GASPI)

* Dash

Figure 2.1: shows the most relevant programming models for HPC

Traditionally shared memory programming models are used for on node level par-

allelisation. Distributed memory models are used for the interconnection between

different nodes.

2.2 OpenMP: Open Multi-Processing

In high-performance computing, the standard programming model for shared-

memory systems is OpenMP[5, 6]. Until recently, the programming model was

Chapter 2. Technical Background: Parallel Programming Models & Tools 15

1 #pragma omp p a r a l l e l f o r
2 f o r (i = 0 ; i < N; i++) {
3 a [i]= 2 * i ;
4 }

Figure 2.2: shows a listing of an “OpenMP parallel for” example. Every
iteration can be executed by a different thread independently.

1 #pragma omp p a r a l l e l s e c t i o n s
2 {
3 #pragma omp s e c t i o n
4 {
5 p r i n t f (” i d = %d , \n” , omp get thread num ()) ;
6 }
7 #pragma omp s e c t i o n
8 {
9 p r i n t f (” i d = %d , \n” , omp get thread num ()) ;

10 }
11 }

Figure 2.3: shows a listing of an “OpenMP section” example. Every section
can be executed by a different thread.

1 i n t x , y , z , k ;
2 #pragma omp ta sk depend (i n : x) depend (out : y)
3 f oo (x , y) ;
4 #pragma omp ta sk depend (i n : z) depend (out : k)
5 f oo (z , k) ;
6 #pragma omp ta sk depend (i n : y) depend (i n : k)
7 bar (y , k) ;
8 #pragma omp t a s kwa i t

Figure 2.4: shows a listing of an “OpenMP task” example. Both foo tasks
can be executed in parallel. The bar task depends on the foo tasks.

a relatively simple flavour of the fork-join model: independent tasks were grouped

in so-called parallel regions. All tasks within a region could be executed concur-

rently on OpenMP threads, while different regions were synchronised according to

the program order. In fact, the term task did not play a major role in the OpenMP

specification. Starting with version 3.0, however, concepts such as explicit and un-

tied task, data-dependency between asynchronous tasks, and execution target for

offloading of tasks have successively enriched the OpenMP programming model.

With all these changes and the widely usage also the need for an OpenMP Tools

Application Programming (OMPT 6.2.2) came along.

OpenMP is a pragma-based shared memory programming model for C/C++ and

Fortran. The parallel programming model has various parallelisation approaches

Chapter 2. Technical Background: Parallel Programming Models & Tools 16

1) loop-level parallelism, 2) parallel sections and 3) task parallelism. The loop-

level (listing in Figure 2.2) approach is often called fine-grained parallelism. This

technique parallelises individual loops. Each thread is working on a unique range of

loop indexes. The second approach (listing in Figure 2.3) is often used for coarse-

grained parallelisation: a code sections can be parallelised, not just individual

loops. OpenMP 3.0 introduces the concept of tasks; e.g. a task is a self-contained

unit of work. With the OpenMP 4.0 standard, tasks also can have dependencies

between each other (listing in Figure 2.4), this concept is heading in the direction

of the SmpSs family.

In the first and second approaches, the application developer has to care about the

synchronisation between the different parallel regions. Additionally, the data used

in each region can be declared as shared or private. Depending on this declaration

the data is copied in (private) or used as a reference (shared), meaning other

threads can access the data at the same time. If the data is declared as shared,

the application developer has to care about race conditions and may have to

access the variables in an atomic way. In the third approach, the synchronisation

between tasks is given through the dependency graph. The data scoping between

tasks is by default shared, and the access to the parameter is regulated through

the dependency graph. Two tasks, both having the same parameter as input

dependency, are not allowed to run in parallel. The one instantiated first, will be

executed first. The task and dependency concept in OpenMP is similar to the

OmpSs dependency concept and explained in chapter 2.3.

2.3 OmpSs: OpenMP SuperScalar

OmpSs, belongs to the StarSs family and is developed at BSC in Barcelona. In the

StarSs family (but also in OpenMP), the programmer needs to identify suitable

units of work. In general these are functions designated as tasks. This is identi-

fication, done through pragma-based code annotations. In addition to OpenMP

the programming model has a stronger concept of tasks and dependencies. In con-

trast to OpenMP, the StarSs programming model infers the synchronisation from

the data dependencies in the program. In an OpenMP or PThread application

the synchronisation has to be specified by the programmer explicitly. Dependen-

cies between tasks are generated automatically from the pragma directives, given

by the user, to distinguish between input, output and input-output arguments.

Chapter 2. Technical Background: Parallel Programming Models & Tools 17

Tracking the memory addresses of these task parameters allows the programming

model to synchronise data dependencies. At runtime, this information is used to

generate a dynamic task dependency graph. In the simplest case, tasks are exe-

cuted sequentially in the same order as they have been added to the graph. This is

equal to a serial code execution. In most cases, the task graph can expose concur-

rency and independent tasks or tasks with fulfilled dependencies can be executed

in parallel on the available compute cores. The data dependencies ensure that no

task is scheduled before any tasks that modifies the task’s input parameters has

finished its execution.

1 i n t main ()
2 {
3 s i z e t SIZE=8;
4 doub l e *a1 = new doub l e [SIZE] ;
5 doub l e *a2 = new doub l e [SIZE] ;
6

7 #pragma omp ta sk out (a1 , a2) l a b e l (f i l l)
8 f i l l (a1 , a2 , SIZE) ;
9 #pragma omp ta sk i n ou t (a1) l a b e l (add)

10 add (a1 , 13 , SIZE) ;
11 #pragma omp ta sk i n ou t (a2) l a b e l (add)
12 add (a2 , 5 , SIZE) ;
13 #pragma omp ta sk i n ou t (a1) l a b e l (mu l t i p l y)
14 mu l t i p l y (a1 , 3 , SIZE) ;
15 #pragma omp ta sk i n ou t (a2) l a b e l (mu l t i p l y)
16 mu l t i p l y (a2 , 7 , SIZE) ;
17 #pragma omp ta sk i n ou t (a1 , a2) l a b e l (add)
18 add (a1 , a2 , SIZE) ;
19 #pragma omp ta sk i n (a1) l a b e l (dump)
20 dump (a1 , SIZE) ;
21

22 #pragma omp t a s kwa i t
23 f r e e (a1) ;
24 f r e e (a2) ;
25 }

Figure 2.5: shows a listing of an “OmpSs task” example including depen-
dencies between the tasks. According to the dependencies the tasks can be

executed.

The example (listing in Figure 2.5) shows the above-explained code concept, and

Figure 2.6 shows the associated dependency graph. The dependency graph shown

was generated by using Ayudame & Temanejo.

In the line four and five in the listing of Figure 2.5, two arrays get allocated. These

arrays are filled inside the fill function. This task exhibits as output dependency

Chapter 2. Technical Background: Parallel Programming Models & Tools 18

Figure 2.6: shows the task-dependency graph of the listing in Figure 2.5.
According to the dependencies the tasks 4,5 and 6,7 can be executed in parallel.

a1 and a2. Each of these arguments is used at the add function as inout depen-

dency. This allows both add functions being executed independently from each

other. Because the add function is using a1 or a2 as an inout dependency, the

following multiply function can only be performed after the previous add function

in the dependency graph has been finished. The third add function consumes both

dependencies a1 and a2, which were produced by the multiply functions. The last

function inside the dependency graph consumes the inout dependency from the

third add function. Before freeing the memory, the application needs to wait for

all tasks to be finished; this is related to the synchronisation between tasks and

the master thread accessing memory, which is touched inside a task.

This programming model allows writing code without any explicit synchronisation.

Synchronisation is only needed if the master thread is touching memory which is

used inside a task; e.g synchronisation is only necessary between the sequential

code and code executed inside tasks, but not between tasks. This behaviour can

be avoided by taskifiying all relevant parts of the application.

The StarSs programming model has several advantages compared to other shared

memory programming models, which either use parallel loops, static dependen-

cies or explicit synchronisation. A dynamic scheduling process allows an efficient

parallelisation, even for different input data sets. With a bunch of tasks and au-

tomatic load balancing inside the application, such a concept helps to overcome

scalability problems.

Chapter 2. Technical Background: Parallel Programming Models & Tools 19

Some key features give the developer high flexibility:

� The programming models takes care of synchronisation between tasks; the

synchronisation is given through the task-dependency graph.

� The whole process is a dynamic process. It allows efficient parallelisation

even for different input data sets. Every execution has its dynamically gen-

erated graph.

� As the entire process is dynamic, the application can easily handle load

imbalances and adapt its execution.

� Taskifying MPI communication allows the overlapping of communication and

computation in a more simple and efficient way than a hand-written code,

which uses non-blocking MPI communications. Furthermore, the runtime

can be aware or can detect whether the MPI communication has finished,

before rescheduling the task.

2.4 StarPU

The StarPU programming model was developed by the French national research

institute INRIA. The StarPU programming model is a task-based library for hybrid

architectures. The concept is similar to the OmpSs concept, and they also have an

OpenMP 4 compatibility interface. StarPU uses a combination of pragma-based

annotation and library calls. A task has to be declared with attribute ((task)).

The key features of the StarPU programming model are: 1) Portability 2) Depen-

dencies; Dependencies provide the programmer with a flexible way of programming

and designing applications. 3) Heterogeneous Scheduling; Clusters migrate tasks

to different nodes. The communication is done through MPI and the communica-

tion is automatically combined and overlapped with the intra-node data transfer

and the task execution. 4) Out of Order execution 5) Extension to the C lan-

guage with an OpenMP 4 compatible interface. The listing in Figure 2.7 shows

an StarPU example published in the “StarPU Handbook” [15]. In line 16 the

StarPu runtime is initialised. After this a task is asynchronously executed. Before

the runtime is shutting down (line 22) the application has to wait for all tasks to

finish (line 20).

Chapter 2. Technical Background: Parallel Programming Models & Tools 20

1 // ht tp : // s t a r pu . g f o r g e . i n r i a . f r /doc/ s t a r pu . pdf
2 // Chapter 3
3 // Bas i c Examples
4 #i n c l u d e <s t d i o . h>
5

6 // Task d e c l a r a t i o n .
7 s t a t i c vo i d my task (i n t x) a t t r i b u t e ((t a s k)) ;
8

9 // D e f i n i t i o n o f the CPU imp l ementa t i on o f ”my task ” .
10 s t a t i c vo i d my task (i n t x){
11 p r i n t f (” He l l o , wor ld ! With x = %d\n” , x) ;
12 }
13

14 i n t main (){
15 // I n i t i a l i z e StarPU .
16 #pragma s t a r pu i n i t i a l i z e
17 // Do an asynch ronous c a l l to ”my task ” .
18 my task (4 2) ;
19 // Wait f o r the c a l l to complete .
20 #pragma s t a r pu wa i t
21 // Terminate .
22 #pragma s t a r pu shutdown
23 r e t u r n 0 ;
24 }
25

26 }

Figure 2.7: shows a listing of an StarPU example code.

2.5 MPI: Message Passing Interface

The Message Passing Interface (MPI) is a standard, which describes the data

exchange between nodes in a parallel distributed memory application. The API

defines different communication and exchange patterns, which are necessary for

sharing information inside a distributed application. Normally an MPI application

consists of multiple processes which communicate with each other. Usually, these

communication patterns can be classified into 1) one-to-one, 2) one-to-many, 3)

many-to-one and 4) many-to-many.

1) One-to-one is used, for example, to exchange ghost cell information between

neighbours (MPI Send, MPI Recv). 2) One-to-many can be used, for example, to

transfer a global or local density, calculated by one process, to all or a bunch of

other MPI ranks (MPI Scatter, MPI Bcast) 3) Many-to-one operation can be seen

as a reduction. One process has to calculate the global or local density. Therefore

the process needs the density of all or a bunch of processes (MPI Gather). 4) The

last communication pattern is the many-to-many operation. In this operation each

process is sending and receiving values from all other processes (MPI Alltoall).

Chapter 2. Technical Background: Parallel Programming Models & Tools 21

The one-to-one communications are also known as point-to-point communication;

the other three (one-to-many, many-to-one, many-to-many) communication pat-

terns are named collective communication. In addition there is the MPI one-sided

operation, which was introduce in the MPI-2 standard. The MPI one-sided oper-

ations can directly access remote memory. (MPI Put, MPI Get).

The implementation of this standard is done by different vendors (OpenMPI,

MPICH, Cray-MPICH) and is adapted to their underlying network (InfiniBand,

Ethernet, Cray-Aries). The MPI standard is giving a defined interface abstracting

the communication from the application developer.

1 #i n c l u d e <mpi . h>
2 #i n c l u d e <s t d i o . h>
3 #i n c l u d e < s t d l i b . h>
4

5 i n t main (i n t argc , cha r ** argv) {
6 i n t rank , s i z e , token ;
7

8 MPI I n i t (&argc , &argv) ;
9 MPI Comm rank (MPI COMM WORLD, &wo r l d r ank) ;

10 MPI Comm size (MPI COMM WORLD, &s i z e) ;
11

12 i f (wo r l d r ank != 0){
13 MPI Recv(&token , 1 , MPI INT , wo r l d r ank − 1 , 0 , MPI COMM WORLD,
14 MPI STATUS IGNORE) ;
15 } e l s e {
16 token = −1;
17 }
18 MPI Send(&token , 1 , MPI INT , (wo r l d r ank + 1)% s i z e , 0 ,
19 MPI COMMWORLD) ;
20 i f (wo r l d r ank == 0){
21 MPI Recv(&token , 1 , MPI INT , s i z e − 1 , 0 , MPI COMM WORLD,
22 MPI STATUS IGNORE) ;
23 }
24 MPI F i n a l i z e () ;
25 }

Figure 2.8: shows a listing of an MPI ring example.

In course of my thesis, MPI is handled as a task-based programming model. All

the patterns described above can be composed of simple send-recv events. For

example, in case of a broadcast, one node is executing a send to every other node.

Accordingly all other nodes are receiving this message. Looking at these sends and

receives in a task based-view, a visualisation framework (Temanejo) can generate

a dependency graph out of the extracted information. The dependencies between

the nodes in the dependency graph are the data transfers between the different

MPI ranks. Figure 2.9 shows an MPI ring application (listing of Figure 2.8), which

Chapter 2. Technical Background: Parallel Programming Models & Tools 22

0

1 2

3

1

0

1

0

1

2

0

1

0

0

4

1

23

4

3

2

4

2

3

3

4

3

4

2

4

Figure 2.9: displays a MPI ring application. The dependency graph is gen-
erated with Temanejo. Each colour in the dependency graph represents a
different MPI rank. The different MPI operations are represented with different
shapes (square: MPI Init, trapezoid: MPI Send, turned trapezoid: MPI Recv,
turned square: MPI Finalize). The red lines represent the data transfer be-
tween MPI ranks, the blue marked dependencies arises from the program order

of the MPI calls within a process.

uses Temanejo for visualisation. Each colour in the dependency graph represents

a different MPI rank. The shapes represents the MPI Init, MPI Send, MPI Recv,

and MPI Finalize, respectively. The red lines represent the data transfer between

two MPI ranks. The data transfer dependency is generated between the MPI Send

and MPI Recv. At this point, the real data transfer is happening. In addition,

there are blue marked dependencies between the MPI calls on each rank; these

dependencies arise from the sequential MPI call order. The order of the appear-

ance of the MPI operation inside the application, e.g. MPI Init → MPI Recv →
MPI Send → MPI Finalize. Rank 0 (coloured orange) in the ring example calls

first MPI Send and then MPI Recv.

Chapter 2. Technical Background: Parallel Programming Models & Tools 23

2.6 Hybrid Programming Models

In today’s high-performance compution applications, MPI is widely used and could

also be seen as a standard. Actually, MPI is a distributed memory parallelisation

scheme, but it is also commonly used on shared memory systems, as for exam-

ple today’s multi-core CPUs. On such multi-core systems, the usage of a shared

memory parallelisation schemes as for instance OpenMP can lead to a more ef-

ficient utilisation of the hardware. In particular, the communication overhead is

reduced, and computation and communication can be overlapped. The successful

usage of hybrid parallelisation models, consisting of a distributed memory part

(communication through messages between the nodes) and a shared memory part

exploiting all available cores on a node, has been shown. Nevertheless, most ap-

plications are still based on pure MPI implementations and are not benefitting

from a second parallelisation scheme. The classic MPI approach is challenged by

today’s prevalence of multicore and many-core systems. Usually pure MPI applica-

tions can’t efficiently scale with the increasing amount of cores and nodes. Hybrid

applications, however, only have to scale with the number of nodes. Assuming

the MPI-scalability is caused by the growing amount of MPI-ranks, the applica-

tion developer has the opportunity by annotating his application with pragmas

to go hybrid. Going hybrid means, in general, to redesign and rewrite parts of

the application. For some well-structured applications, having a second domain

decomposition besides the MPI domain decomposition, dividing the subdomain of

each MPI-rank into smaller work packages pragmas can be used to enable shared

memory parallelisation.

The scaling effect mostly happens for strong scaling experiments, due to changing

the ratio between computation and communication. The domain stays the same

but is decomposed into several sub domains, one for every MPI process. The

amount of computation for every process decreases, but the total amount of needed

MPI communication increases.

2.7 Temanejo

Temanejo is a graphical debugger for task-based programming models. Strictly

speaking, Temanejo is the front-end of the debugger. It is drawing and analysing

Chapter 2. Technical Background: Parallel Programming Models & Tools 24

the dependency graph and handles user’s interactions. Temanejo is connected

to its back-end library Ayudame by socket communication.

Temanejo is written in Python, using QT as graphical user interface. The socket

communication and the marshalling unmarshaling library is written in C++ and

swigged (Swig [16]) into Temanejo and was formerly developed for Ayudame.

The same library is used for inter-node inter-process communication. Marshalling

means to transform an object or structured data into an easily transportable for-

mat. The counterpart is unmarshaling rebuilding the object or structured data

out of the format used for transportation. Every object has the capability to

transform itself into a byte stream/sequence. Furthermore, every object can be

constructed out of a correctly structured byte stream. These objects can either be

events or requests. In practice, the objects are transformed into an XML-based

format and back into objects.

Chapter 3

Related Work

3.1 Ayudame

Referring to Ayudame in my thesis I always mean Ayudame 2.0. Ayudame 1.0

[17] [18] [19] is not developed by me and is, therefore, part of the related work.

The concept used in both libraries is the same. They are both gathering and ex-

changing information between a programming model and Temanejo. But that

is almost everything they have in common. With the design and implementation

of Ayudame 2.0, there was also the need for a new design and implementation of

Temanejo (called Temanjeo 2.0). Coming from a very static and fixed event

& request system in Ayudame 1.0, Ayudame 2.0 is using a flexible and generic

event & request system to allow different programming models to be easily inte-

grated. Ayudame 1.0 was strictly linked and implemented to support SmpSs and

its successor OmpSs. Ayudame 2.0 supports the usage of hybrid applications us-

ing multiple programming models (MPI+OmpSs). From a single node and a single

process supporting Ayudame 1.0, Ayudame 2.0 moved to a library running on

several processes/nodes and is also capable of scaling with the application.

25

Chapter 3. Related Work 26

3.2 Traditional Debugging tools

3.2.1 DDT

Allinea DDT [20] (based on GNU [21])is one of the leading parallel debuggers used

in HPC. The debugger supports a wide range of parallel architectures even besides

the today’s HPC systems (ARM32, ARM64) and parallel programming models,

including MPI, UPC [22], CUDA and OpenMP. The newest version Allinea Forge,

combines Allinea DDT and Allinea MAP. Allinea MAP is a low-overhead and

line-based profiler for MPI, OpenMP and scalar programs. Allinea DDT is ca-

pable of debugging: 1) single process and multithreaded software, 2) OpenMP

parallel applications, 3) applications using MPI, 4) heterogeneous applications us-

ing GPUs, 5) hybrid applications combining different programming models and

6) Allinea DDT is capable of debugging multi-process applications. The tool sup-

ports the mainstream languages (C, C++, Fortran90, CUDA) used in HPC and

also the most common programming models (MPI, OpenMP, UPC, Co-array For-

tran, etc.). As back-end the debugger uses a modified gdb version.

3.2.2 Totalview

Totalview [23] is the sophisticated software debugger from Rogue Wave Software,

Inc. The debugger is used for debugging and analysing both, serial and parallel

programs. Like DDT the software is also designed for the usage with complex

multi-process and multi-threaded applications. Totalview supports the major HPC

platforms in the U.S., in addition, there are also parts for NEC, etc. available

from 3rd-party sources. The tool supports the mainstream languages (C, C++,

Fortran90, Assembler) used in HPC and the most common programming models

(MPI, OpenMP) as well.

3.3 Programming-Model-Centric Debugging for

multicore embedded systems

This paragraph is related to the work Kevin Pouget did during his PhD thesis [24]

and explains shortly the solution he has chosen. For a short remark, the work I did

Chapter 3. Related Work 27

is directly connected to the programming model. Ayudame monitors and inter-

acts with the runtime. Kevin Pouget has chosen another way for monitoring and

interacting. He developed a Python-based library, interacting with the gdb de-

bugger, called mcgdb. Therefore, he has to detect the low-level instructions of the

runtime and translate this information into programming model behaviour, e.g.

1) instruction x means task creation, 2) instruction y means task execution, etc.

Looking again at the Figure 1.4 his approach is vertical translating from a lower

abstraction layer to a higher layer, while the approach I chose is horizontal, trans-

lating directly from the programming model into the Model-Centric Debugging

approach. Kevin Pouget is using the Temanejo & Ayudame tool infrastructure

to transfer and display the information extracted by mcgdb. He also introduced a

new graphical representation in Temanejo, using sequence diagrams in addition

to the dependency graph representation.

Chapter 4

Design: Events & Requests in

Ayudame

4.1 Introduction

Communicating messages between an application (Chapter 1.6) and a visualisation

front-end (Temanejo chapter 2.7) require a generic interface. This interface is

designed to exchange defined message types in a standardised way. Two major

goals have to be fulfilled: The support of 1) hybrid programming models and

2) distributed applications. The hybrid programming models are located in the

same process, e.g. MPI+OpenMP, but in a distributed application there could be

multiple of these processes, located on different nodes. Information monitored by

the instrumentation of a given programming model are called events (Section 4.2).

Events are always passed from the application towards Temanejo or any user

interface. Messages coming from the visualisation and transferred towards the

programming model are called requests (Section 4.3). These requests can control

the runtime behaviour.

4.2 Events in Ayudame

Events in Ayudame and Temanejo are messages originating from the different

instances of the application. They need to be passed towards the visualisation

front-end. The box in Figure 4.1 shows a brief example of the different event

29

Chapter 4. Design: Events & Requests in Ayudame 30

Events Monitoring

� Task
Parameters: task ID, scope ID, task label

� Dependencies (synchronisation between tasks)
Parameters: dependency ID, from task ID, to task ID, dependency
label

� Properties (tasks or dependency characteristic)
Parameters: property ID, property key, property value

– task state

– priority

– function name

– ...

Figure 4.1: The runtime informs Ayudame about any relevant changes. The
events are forwarded to Temanejo

types, and also the necessary parameters for every event are listed. Events can be

split up into mandatory information (Section 4.2.1), like tasks and dependencies,

and optional or additional information (Section 4.2.2), containing properties and

payload. For building a dependency graph only the mandatory information is

necessary. The additional information is optional and can be used to add task or

dependency characteristics to the graph.

4.2.1 Mandatory Information

Mandatory information is needed to build up the dependency graph in Temanejo.

The two events needed are tasks (Section 4.2.1), representing the nodes in the

dependency graph, and dependencies (Section 4.2.1), the edges between the nodes.

In a dependency graph each task can have several predecessors and only if all of the

predecessors have been executed the task is allowed to run. After the execution of

the task, all successor dependencies are resolved. Tasks with resolved dependencies

can be executed. The dependency graph is represented through a directed acyclic

graph (DAG).

Tasks are the nodes in the dependency graph. With this graph representation

one requirement comes up: Every task can only appear once in the DAG, and has

Chapter 4. Design: Events & Requests in Ayudame 31

a unique identifier (Section 5.6.2) and a scope identifier. This means one task in

the parallel programming model will only be executed once. There can be multiple

task instances from a given code region, but their parameters may be different.

The scope identifier tells the tool if the task is generated from inside another task.

Optional: The node characteristic depends in Temanejo on the properties, which

can be added as additional information through the property event, explained in

section 4.2.2. Node characteristics in Temanejo are for example the node colour,

node shape, margin colour and node label. For any of these characteristics, a

filter can be applied in Temanejo. Through the UI an attached property for a

characteristic can be selected, e.g. the node colour can be set as a representation

for the function name. All nodes with the appropriate property will be coloured

according to their value, e.g. function name ”foo” will be coloured blue, function

name ”bar” will be coloured red, etc.

Dependencies represent the edges in the DAG. Dependencies also have require-

ments, a unique identifier (Section 5.6.2), a from task identifier and a to task

identifier. Equivalent to the task characteristic, further dependency characteristic

can also be set through a property.

Optional: The Edge characteristics in Temanejo are for example the edge colour

and edge label. Like tasks, the dependency characteristic can be adjusted accord-

ing to a property.

4.2.2 Additional Information

Additional Information is not needed to generate a dependency graph. In Te-

manejo there are two different types of additional information: properties and

payload. Properties extend the graph with task or dependency characteristics. The

Payload is information needed by the tool developer, it is either used in Ayudame

or it can be used in Temanejo.

Properties are used for characterising the nodes and edges. The information is

transferred as a key-value pair and belongs to exactly one node or edge (unique

identifier). The following table shows some examples of properties, but they can

vary between different programming models. In some programming models, for

Chapter 4. Design: Events & Requests in Ayudame 32

example OmpSs, there is information about function names available. In contrast

MPI has no function name concept. Figure 4.2 lists some examples for task and

dependency properties.

key value
function name foo, bar
MPI rank 1, 2
priority 99, 1
thread ID 1, 99
numa node 1, 2
cpuid 11, 12
memoryaddress 0x00000000006031c9, 0x000000000040157f

Figure 4.2: shows examples for task and dependency properties.

Payloads are messages with runtime specific information. These messages are

used by modules inside Ayudame or Temanejo. The structure of these messages

contains an identifier followed by ’#’ and then the payload depends on the tool

developers needs. The implementation is shown in the listing of Figure 4.5.

In case of MPI, a matcher module (Chapter 5.7) is implemented inside Ayudame,

this module generates out of two datasets, (for example, MPI Send & MPI Recv)

the correct dependency between two tasks. This is necessary, because on each site

only incomplete information about the dependency is available. The MPI Send

site just knows the from (sender) task ID, but doesn’t have any information where

the dependency is going to, or the event’s destination. The MPI Recv site only

has the information about the to (receiver) task ID, but doesn’t know where the

dependency is coming from. Both have incomplete information about the depen-

dency between those two tasks. Therefore, partial information is sent as payload

towards Ayudame, where a matcher module generates the dependency out of the

payload. The matcher module is simular to the MPI runtime error detection tool

MUST [25].

There is also another case where the payload is used by INRIA (Chapter 3.3) to

transfer additional information to Temanejo. They use the payload structure to

transfer data needed for sequence diagrams generation in Temanejo. Therefore,

Temanejo is extended with additional functionality.

Chapter 4. Design: Events & Requests in Ayudame 33

4.2.3 Interfaces for C and C++

Two interfaces are provided, one interface for C and one for C++. For both

interfaces Ayudame takes care of making the client ID unique among all instru-

mentation instances. The client ID identifies a single programming model inside a

distributed environment. Therefore, Ayudame adds additional information (Sec-

tion 5.6.2) to the client ID.

1

2 /**
3 g e t c l i e n t i d cou ld be d e l e t e d
4 */
5 a y u c l i e n t i d t m y c l i e n t i d = g e t c l i e n t i d (AYU CLIENT RESERVED) ;
6

7 a y u e v e n t d a t a t data ;
8

9 data . common . c l i e n t i d = my c l i e n t i d ;
10 data . add ta sk . t a s k i d = 1 ;
11 data . add ta sk . s c o p e i d = 0 ;
12 data . add ta sk . t a s k l a b e l = ” I ’m ta sk number one” ;
13 ayu even t (AYU ADDTASK, data) ;
14 ayu w ipe da t a (&data) ;
15

16 data . common . c l i e n t i d = my c l i e n t i d ;
17 data . add dependency . dependency i d= 101 ;
18 data . add dependency . f r om i d =1;
19 data . add dependency . t o i d =2;
20 data . add dependency . d e p e nd en c y l a b e l=”dependency from 1 to 2” ;
21 ayu even t (AYU ADDDEPENDENCY, data) ;
22 ayu w ipe da t a (&data) ;
23

24 char w d d e s c r i p t i o n b u f f e r [1 0 2 4] ;
25 s p r i n t f (w d d e s c r i p t i o n b u f f e r , ”%s ” , wd d e s c r i p t i o n) ;
26 data . common . c l i e n t i d = my c l i e n t i d ;
27 data . s e t p r o p e r t y . p r o p e r t y own e r i d= 1 ;
28 data . s e t p r o p e r t y . key=” func t i on name ” ;
29 data . s e t p r o p e r t y . v a l u e=wd d e s c r i p t i o n b u f f e r ;
30 ayu even t (AYU SETPROPERTY, data) ;
31 ayu w ipe da t a (&data) ;

Figure 4.3: C interface of Ayudame

The C interface consists of the ayu event(event type, data) call containing the event

type (AYU ADDTASK, AYU ADDDEPENDENCY, AYU SETPROPERTY,

AYU USERDATA), and the event argument. The listing in Figure 4.3 shows a us-

age example of the Ayudame C interface. All events are passed by the ayu event

function call, which is defined as an extern C function inside Ayudame. The

get client id function returns a client ID representing an Ayudame Client Han-

dler. With this ID all events sent by the runtime, can later on be identified. With

Chapter 4. Design: Events & Requests in Ayudame 34

the ayu event data t structure, the different event types are generated and passed

into Ayudame calling the ayu event function. The ayu event data t structure

has to be wiped after an event is dispatched. The ayu event data t is designed as

a union of different structures; this means the structure is capable of containing

different event data sets (add task, add dependency, etc.).

1 auto ayu = get ayudame pt r (AYU CLIENT RESERVED) ;
2

3 //ayu−>add ta sk (t a s k i d , s c op e i d , t a s k l a b e l) ;
4 ayu−>add ta sk (1 , 0 , ” I ’m ta sk number one”) ;
5

6 //ayu−> s e t p r o p e r t y (p r op e r t y owne r i d , key , v a l u e) ;
7 ayu−> s e t p r o p e r t y (1 , ” func t i on name ” , ” foo ”) ;
8

9 //ayu−>add dependency (dependency id , f r om id , t o i d , d e p l a b e l) ;
10 ayu−>add dependency (101 , 1 , 2 , ” dependency from ta sk 1 to t a s k 2”) ;

Figure 4.4: C++ interface of Ayudame

1 a y u c l i e n t i d t m y c l i e n t i d = g e t c l i e n t i d (AYU CLIENT RESERVED) ;
2

3 a y u e v e n t d a t a t data ;
4 data . common . c l i e n t i d = my c l i e n t i d ;
5 char s t r [5 0] ;
6

7 s p r i n t f (s t r , ”MPI#%d#%d#%d#%d#%d#%d” , m enve lope [0] , m enve lope [1] ,
8 m enve lope [2] , m enve lope [3] ,
9 m enve lope [4] , m enve lope [5]) ;

10 data . u s e r d a t a . data = s t r ;
11 ayu even t (AYU USERDATA, data) ;
12 ayu w ipe da t a (&data) ;

Figure 4.5: C interface of the Ayudame userdata event.

The C++ interface, consists of separate function calls for every event type: a)

add task, b) add dependency, c) set property, d) add userdata. The listing in Fig-

ure 4.4 shows the Ayudame C++ interface. A Client Handler object pointer is

returned by the get ayudame ptr function. As functions parameter the type of the

runtime is passed. All member functions of the object can then be directly used.

The client ID has not to be passed explicitly, because the returned Client Handler

object contains this information.

a) The function add task has three parameters. The first one adds the task ID.

This task ID (”1”), line 4 in the example, has to be unique among all tasks and

dependencies in the instrumentation instance. The second one is the scope ID

(”0”) of the task and the third is the task label (”I’m task number one”).

Chapter 4. Design: Events & Requests in Ayudame 35

b) The function add dependency has 4 parameters. The first one adds the depen-

dency ID. This dependency ID (”101”), line 10 in the example, has to be unique

among all tasks and dependencies in the current instrumentation instance. The

second one is the from task ID (”1”) and the third is the to task ID (”2”). The last

one is the dependency label (”dependency from task 1 to task 2”). Only dependen-

cies can be added between two task in your local instrumentation, where all needed

information is available. If there is the need for a dependency between two tasks

in different instrumentation instances, this can be done by using a matcher 5.7

and a add userdata event.

c) The function set property, line 7 in the example, has 3 parameters. First one

is the property owner ID (”1”), this links the property either to a task or to a

dependency, the second one is the key (”function name”) and the third is the

value (”foo”).

d) There is one additional event, adding support for tool developers. The function

add userdata, shown in the listing of Figure 4.5, has just one parameter. This

parameter has to contain an leading identifier followed by ’#’. The following junk

of data can be set by the tool developer and can provide any information the tool

developer needs inside Ayudame or Temanejo. If the information can’t be used

inside Ayudame the userdata is forwarded towards Temanejo.

4.3 Requests in Ayudame

Request Controlling

� Parameters: request ID, key , value

– set/delete a breakpoints

– step specific task

– set progress break/continue/step

– break/unbreak a task

– break/unbreak a thread

– add/remove dependencies between tasks

Figure 4.6: Temanejo controls the runtime/application via Ayudame by
sending request. Requests are forwarded to the runtime.

Chapter 4. Design: Events & Requests in Ayudame 36

Requests in Ayudame and Temanejo are messages, transferred from Temanejo

to a specific Event Handler inside an Ayudame instance. The different request

types are encoded as key value pair. The box in Figure 4.6 shows some of the most

common requests, which are also supported by the Tasking Control API (TCA,

Chapter 6.3.1). The request contains an unique ID (Section 5.6.2) to identify the

destination of the request and a key value pair. The key is the action of the request

and could be for example:

1) block, 2) add dependency, 3) break task, 4) step, 5) unblock thread, etc.

The value is, for instance 1) a task ID the action has to be executed on, 2) the

two tasks a dependency has to be added or 3) an action that can be relevant for

the programming model itself, like step, break or continue.

Chapter 5

Design: Communication

Back-end Ayudame

5.1 Introduction

This chapter shows the internal concepts necessary for the communication back-

end. For the goal of the thesis, the communication back-end is represented through

Ayudame and the front-end is represented through Temanejo. Every program-

ming model is directly connected to a module, handling the specific needs of

the given programming model. These modules and their model specific imple-

mentation are called handlers. Through this handler, Ayudame communicates

events for monitoring purposes, and also process requests for controlling purposes.

The instrumentation framework has to be implemented for different programming

models and is explained in chapter 6. The instrumentation is used for translating

events and requests into runtime specific behaviour. Events & requests are the

internal data representation of the Temanejo & Ayudame toolchain.

Figure 5.1 shows the interaction of the different models inside Ayudame. The cen-

tral point inside the Ayudame library are two storage units, called buffers. They

buffer objects of the type Intern Event (Section5.4.4); these objects can either

be events or requests. On the left side, a Client Manager stores the Event Han-

dlers (Section 5.4.1) for the connected programming models. The MPI Handler in

this scenario has two additional modules included, the MPI Matcher (Section 5.7)

module and the Ayu Socket (Section 5.4.3) module. In case of the MPI Handler,

37

Chapter 5. Design: Communication Back-end Ayudame 38

Figure 5.1: Modules and their functionality used in Ayudame. The data
exchange inside an Ayudameis accomplished by the internal “Buffers”. The

inter process data exchange is done by socket communication.

the Ayu Socket module is configured in server mode, allowing other Ayudame

instances to connect. On the right side, a Connect Manager stores the Connect

Handlers (Section 5.4.2). They can be seen as different outputs of Ayudame.

This output can also be remote and therefore the Ayu Socket module is used. In

case of such a remote communication, the Ayu Socket module inside the Connect

Handlers is configured in client mode. The Ayu Socket is capable of connecting an

Ayudame instance either to Temanejo or another Ayudame instance. Also, this

module can route events & requests depending on their Unique ID (Section 5.6.2)

to its destination. Every internal communication between the right and left side

is done through the central buffers.

As a conclusion, the communication library attaches to the programming model

through an instrumentation framework, translating the information into Ayu-

dame conform data. Furthermore, this information is extended with necessary

additional information and then transferred towards Temanejo. In case of mul-

tiple processes, Ayudame has to build up a communication structure between the

different Ayudame instances. These instances can run in different processes or

different nodes. In addition, the communication towards Temanejo is done with

socket communication and outlined in section 5.5.1. All necessary programming

model depending implementations are done inside the Event Handler.

Chapter 5. Design: Communication Back-end Ayudame 39

5.2 Motivation

Why is a communication back-end necessary? In the simplest case, the Ayudame

library is directly sitting between the visualisation front-end and the runtime of a

given programming model inside the application. As long as the goal is to monitor

and control an application, running in different processes, a middleware commu-

nication library, fetching and distributing the needed information, is necessary. If

it is only necessary to do post analysis of the application or to do performance

analysis, such a library like Ayudame is not required, because the information

can be written to disk and the analysis can be done on the stored data. For

all interactive activities, communication between the applications developer, the

visualisation, and the application is essential. During the design and implemen-

tation of the back-end library, Ayudame, three major aspects where focused and

problem specific solutions were developed:

Generic & Adaptable Interface Chapter 5.4

Having multiple different programming models based on different concepts derives

into different Ayudame implementations supporting these programming models.

For some applications, the library has to support multiple runtimes at the same

time. Therefore, the library needs to identify from which runtime the API call

is coming from and has to behave in a programming model specific way. Also,

Temanejo supports a generic and adaptable way for displaying the information.

Scalability Chapter 5.5

Zooming out of a very basic workflow like: programming model, instrumenta-

tion, Ayudame, Temanejo; to a more complex one, there is something like a

distributed memory application, with multiple nodes and processes connected.

There, the application will have several instances of a used programming model

and its runtime; all these instances have to be connected to the visualisation

front-end. Scaling the debugging workflow large enough, there is no possibility to

connect all Ayudame instances to one visualisation front-end at the same time.

Therefore, the solution is to connect communication libraries to each other, span-

ning up a communication tree. Looking at this concept in detail we will find the

communication library acting in different ways. As before, each of the commu-

nication libraries is linked to one process. The leaf nodes are connected through

sockets to other communication libraries, called master or super Ayudame. Only

Chapter 5. Design: Communication Back-end Ayudame 40

the super communication library has a socket communication opened towards the

visualisation front-end.

Unique Identification & Information routing Chapter 5.6

In a distributed memory environment, there has to be a mechanism to identify

every single event & request. Therefore, Ayudame generates Unique IDs for every

single event or request in the shared or distributed memory environment. In most

cases, events have only to be transferred towards Temanejo. For the requests

the concept is more complex. There, the library uses the Unique ID to route the

request to its destination. In a simple example, one runtime is sending the event

about a task creation to Temanejo, through the Ayudame communication tree

and Temanejo displays the information. The user of the debugger now wants to

block this specific task from being executed. Through the Unique ID this block

task request is sent back to the runtime, which generated the task and is now able

to block this specific task.

5.3 Runtime Monitoring and Controlling

This section is about the monitoring and control flow inside the communication

library. Monitoring means the information is going from the runtime to the vi-

sualisation front-end, this information is called events (Section 4.2). Controlling

means the information is going from Temanejo to the runtime, this information

is called requests (Section 4.3). There are several different concepts necessary to

handle the different communication library layers. Starting from a single process

application debugging process and the overall control and request flow, shown in

Figure 5.2, the debugging process can be split into three parts: 1) the executable,

2) an aggregation layer and 3) a visualisation layer.

1) The execution layer contains the user code; the application has some architec-

tural relevant behaviours, is maybe using a communication library like MPI or

another programming model and can be written in different languages (or is also

mixing different languages). The juncture between the aggregation layer and the

execution layer is designed inside the programming model, because the necessary

information for Model-Centric Debugging is available inside this code part.

2) Ayudame, in our case, represents the aggregation layer/communication library.

This library has a defined interface to interact with different information extraction

Chapter 5. Design: Communication Back-end Ayudame 41

Figure 5.2: shows the overall control and request flow inside an Ayudame
instance.

points of the programming model and can also pass instructions back into the

programming model.

3) The visualisation layer (Temanejo) is the user end-point and is responsible

for structuring and filtering the extracted information. Temanejo also allows

the user to interact with the application. For visualisation of the data a directed

acyclic graph (DAG) is used. Events & requests are used for passing information

between the different layers.

Figure 5.3: shows an example of attaching Ayudame to a programming
model.

Chapter 5. Design: Communication Back-end Ayudame 42

The concept introduced in the section above is shown in Figure 5.3 for the debug-

ging process between an OmpSs & MPI application and Ayudame & Temanejo.

The application uses the #PRAGMA OMP TASK for parallelizing a given code

block. For communication between processes MPI Send & MPI Recv is used.

With a preloaded Ayudame library, which includes the necessary instrumenta-

tion for the two given programming models, the tool can extract information about

the task states, the dependencies between the tasks, etc. and also the MPI com-

munication between the MPI Send & MPI Recv. All the extracted information

is transferred and represented in Temanejo. Additionally, the figure shows the

previously discussed case of multiple programming models inside one process. It

is also indicated, that Ayudame is used for data aggregation, but can be used for

visualisation or text based output (stdout or dot), as well.

5.4 Ayudame internals

This section explains the internal modules used in Ayudame. The internal mod-

ules are split up into Event Handlers for different programming models. Connect

Handlers for the user interaction or interaction with other Ayudame instances.

The Ayu Socket is able to connect to remote instances (including a router for

events & requests) and the Intern Event, the internal representation of events &

requests. As stated previously, it is necessary to have different implementations

for each programming model. In Figure 5.4, there are three parts of the debugging

process illustrated. On the left side, there is the executable part , containing the

programming model with its specific instrumentation. In the middle, there is the

aggregation layer, Ayudame and on the right side, there is the visualisation layer.

The runtime instrumentation talks directly to one specific instance of the Event

Handler, illustrated in Figure 5.4 as grey boxes MPI or OmpSs. The Connect

Handler, Temanejo and stdout, are shown as yellow boxes. All Event Handler

and Connect Handler are derived from a base class, which contains basic func-

tionality. This could for example send messages towards Temanejo or receive

messages from Temanejo. Both handlers are defined in a generic way, but can

be adapted and extended with programming model specific behaviour.

A Client Manager controls these Event Handlers, sitting between the different

Event Handlers and a central event buffer inside Ayudame. All messages coming

Chapter 5. Design: Communication Back-end Ayudame 43

Figure 5.4: shows multiple runtimes (in one process) attached to Ayudame.
In addition, the possible outputs of Ayudameare also illustrated.

from an Event Handler are passing this buffer. From the event buffer an Ayudame

thread is reading the messages and sending it out either to the front-end or another

Ayudame instance. In case of a multi-process environment, a Socket Connect

Handler is used. It is also possible to activate multiple of these Connect Handlers

at the same time. The thread reading the information out of the event buffer

is also responsible for receiving the requests from another Ayudame instance or

Temanejo. These requests are stored inside the request buffer. A second thread

inside Ayudame is checking the request buffer for requests, and either passing the

message into the according runtime through the runtime specific Event Handler

or, if the Unique ID does not belong to this Ayudame instance, the message is

forwarded through the MPI Event Handler to another process. The logic about the

path the message has to travel is encoded in the Unique ID and can be calculated.

This concept is outlined in Section 5.6

The Event Manager and Connect Manager, are responsible for the shutdown pro-

cess. The Event Manager is tracking the shutdown of every runtime connected

to Ayudame. If all runtimes have sent their shutdown event, the Event Man-

ager initialises the overall shutdown process. The Connect Manager takes care

of the buffers and the messages on the wire. As long as there are messages, not

Chapter 5. Design: Communication Back-end Ayudame 44

transferred to their destination, the Connect Manager postpones the shutdown

process.

5.4.1 Event Handler for specific programming models

Different programming models have the need for different Event Handlers. These

handlers have to to take care of programming model related behaviours. The

StarPU programming model is using a very basic Event Handler implementation,

without any extensions. For MPI, OmpSs and OMPT, specialised Event Handler

are needed:

OmpSs Event Handler
The OmpSs Handler is connected through an instrumentation to the OmpSs run-

time. This Event Handler is also capable of providing the necessary information

of task nesting level to the matcher. This information can then be used by any

other Event Handler to nest a task into a task of this runtime. In case of an MPI

operation inside and OmpSs task, Ayudame is capable of providing this informa-

tion to Temanejo. Also, the Ompss Event Handler uses TCA (Chapter 6.3.1)

for forwarding the requests into the runtime.

OMPT Event Handler
In case of the OMPT (Chapter 6.2.2) the OMPT API is implemented inside the

OMPT Event Handler. This handler is capable of any programming model using

the OMPT instrumentation framework.

MPI Event Handler
For distributed memory applications, using MPI (Chapter 2.5), the MPI Handler

provides three programming model related features: 1) Capability of building

up the underlying connection tree (Section 5.5.1), and the routing of events and

requests to their destination. 2) Implementation of a module matching the MPI

operation (Chapter 5.7). This is necessary because only distributed information

about the dependency is available and Temanejo has to combine the information.

3) For nesting MPI tasks inside other tasks, the MPI Event Handler can request

this information through the Client Manager. In addition to the regular shutdown

process in case of MPI, the Event Handler takes care of a top down shutdown.

That means the connection tree is shut down from its leaves to the root.

Chapter 5. Design: Communication Back-end Ayudame 45

5.4.2 Connect Handler

For the Connect Handler side there are following implementations available:

Temanejo Connect Handler
The connect handler Temanejo is used to connect Ayudame with Temanejo.

The module uses an Ayu Socket instance for communication.

Socket Connect Handler
The Socket Connect Handler is used for inter-process communications and sends

or receives messages from other Ayudame instances. Below the Connect Handler

is using an instance of Ayu Socket.

XML Connect Handler
The Connect Handler XML is writing out the events to disc in an XML-based

(Extensible Markup Language) format.

Dot Connect Handler
The Connect Handler DOT (text based graph description format) is writing out

the events to disc in a DOT based format.

Stdout Connect Handler
The Connect Handler std is writing out the events directly to the terminal.

In case of a multi-process environment, only the root Ayudame instance is con-

figured to write to XML, Dot and Std out. All other instances are configured to

use the Socket Connect Handler to pass the information to the root instance.

5.4.3 Ayu Socket

Ayu Socket is a module based on libevent [26] and is used inside Ayudame&

Temanejo for inter process communication. The module is configurable and can

act either as 1) Server Socket or as 2) Client Socket. 1) Acting as Server Socket, the

module allows a defined number of incoming connections on a specified port. The

amount is configured during the initialising process of the module. In addition,

the module is bookkeeping the hostname and process ID for every opened file

descriptor. Every connection has its own separate file descriptor. Using the Unique

ID of the events & requests and the inside encoded information about hostname

and process ID, the Ayu Socket module is capable of calculating the destination

Chapter 5. Design: Communication Back-end Ayudame 46

for every package. With the stored correlation between host name, process ID and

file descriptor, it is possible to calculate the correct path for every package. 2) In

the Client Socket configuration the module has to be initialised with hostname and

port and sends the information about the process ID to the Ayudame instance

it is connected to. This is necessary to distinguish the file descriptor within the

same host name. For both configurations the Ayu Socket module processes Intern

Event (Section 5.4.4) objects.

5.4.4 Intern Event

Intern Event represents the internal data structure of Ayudame. Every event

coming from an instrumented runtime system is transformed into an object of the

type Intern Event. In most cases, the events sent by the instrumented runtime

system are Ayudame events, and can be directly transformed into Intern Events.

For an OMPT instrumented runtime system Ayudame has to translate the ex-

tracted information. The same happens for requests; they are transformed from

Intern Events into runtime requests, which are for example defined in the TCA.

The following objects inherit from the Intern Event object: Intern Event De-

pendency, Intern Event Property, Intern Event Task, Intern Event Userdata and

Intern Request. Intern Event also inherits from Intern Printable. All Intern Event

can convert their data into XML, DOT or stdout. Also, all of the objects have

the abillity to transform their information into a byte stream and to regenerate

themselves out of a byte stream. This marshalling / unmarshalling process is used

during the transmission between different processes.

5.5 Multi process node environment

This chapter illustrates the complexity of multi-process debugging, with several

Ayudame instances. Figure 5.5 shows the behaviour of a single node single process

debugging process. The Node 0 is directly connected to the front-end. Inside this

node, one process is running the executable including the application (user code),

the runtime and a preloaded Ayudame library. The runtime is representing one

or multiple programming models and their instrumentations. The API calls or

callback functions are marked with yellow arrows. The black arrows are socket

communication which represent messages sent between two processes. Figure 5.6

Chapter 5. Design: Communication Back-end Ayudame 47

Figure 5.5: One Process at a node is connected to Temanejo.

shows the concept of multiple processes at one node and the connection between

the different Ayudame instances and Temanejo. All processes on the node are

directly connected to Temanejo. Scaling it up on multiple nodes is shown in

Figure 5.7 and will cause a bottleneck in Temanejo.

To get rid of this bottleneck, I introduced a multi-level communication tree, ex-

plained in detail in the section 5.5.1.

5.5.1 Connection tree

For inter-node and inter-process communication, sockets are used for the informa-

tion exchange. Figure 5.8 shows the design of the communication tree and the

connections between the different instances of Ayudame. On every node, one

process, allows all other processes on the same nodes to connect via socket com-

munication to themselves, this process is called master Ayudame (marked red in

the Figure). The master also allows incoming connection from other nodes. Ev-

ery master is then calculating the process on another node he has to connect to.

The root node in the connection tree, is called super Ayudame (marked orange

Chapter 5. Design: Communication Back-end Ayudame 48

Figure 5.6: Multiple Process at a node are connected to Temanejo

in the Figure). The super Ayudame also connects to any tool interacting with

Ayudame, in this case Temanejo.

Building up the communication tree requires several steps. The design I did for

Ayudame relays on the usage of MPI for the job submission in a distributed

environment. But as long as it is possible to extract the information about the

hostnames, the application runs on, the design can easily be adapted to other

environments. During the MPI Handler initialisation, Ayudame exchanges infor-

mation about ranks and hostnames using MPI Alltoall. After this step, every MPI

rank holds the MPI hostfile (a list of all MPI ranks, hostnames) belonging to the

application execution. For the MPI-specific implementation Ayudame reduces

this MPI hostfile to a single hostname list. This means, if multiple processes run

on the same node, only one entry will be kept in the reduced list. Every MPI rank

not listed in the reduced list will connect to the remaining hostname (localhost)

in the reduced list. The port is specified during the configuration process of the

module.

The remaining MPI ranks (reduced list) now built up a connection tree across

the different nodes. Ayudame uses the the algorithm shown in the listing of

Chapter 5. Design: Communication Back-end Ayudame 49

Figure 5.7: Multiple Process at multiple nodes are connected to Temanejo.
The communication is spanned up in a “All to one” fashion.

Figure 5.9 to generate a tree out of the reduced list. According to this algorithm

the remaining MPI ranks connect to the calculated destination.

Figure 5.10 shows the generated tree. All local connections, (intra node) are

marked black. The inter node tree is marked with red lines between the nodes.

The nodes spanning up this tree are called master Ayudame nodes. At the

bottom, the visualisation front-end is connected to rank 0; this node is also known

as super Ayudame. In this example, every node in the red tree has at most

two incoming remote connections. This variable is adjustable and by increasing

the allowed connections per node the tree’s height is reduced, and the width is

increased.

Chapter 5. Design: Communication Back-end Ayudame 50

Figure 5.8: Multiple Process at multiple nodes are connected to Temanejo.
The communication is spanned up as a “Communication Tree”, e.g. the mes-

sages are routed through Ayudame instances.

5.6 Identification and Information routing

5.6.1 Routing events and requests

In a shared memory environment, Ayudame has to handle multi-process appli-

cations. Therefore, the library has to take care of the event and request routing.

In case of events the routing, the message flow, is clearly defined. The direction

is always from the child node towards the parent node. In cases of requests, the

routing is more challenging. Ayudame needs to be calculated, the destination for

every message. This is done through recursively calling the calculate destination

function. The function used the algorithm explained in section 5.5.1, spanning up

the connection tree and is therefore, capable of calculating the parent of a given

Chapter 5. Design: Communication Back-end Ayudame 51

1 #de f i n e MAX CORES PER NODE 48
2 #de f i n e MAX CHANNELS PER NODE 64
3 #de f i n e MAX REMOTE CHANNELS PER NODE (MAX CHANNELS PER NODE
4 − MAX CORES PER NODE)
5

6 // s e a r c h f o r my hostname i n the r e d u c e d l i s t
7 i t = s td : : f i n d (r e d u c e d l i s t . b eg in () , r e d u c e d l i s t . end () , my hostname) ;
8

9 // get the p o s i t i o n o f my hostname
10 i n d e x = s td : : d i s t a n c e (r e d u c e d l i s t . b eg in () , i t) ;
11

12 // c a l c u l a t e the i ndex o f the d e s t i n a t i o n c o n s i d e r i n g the
13 // c o n f i g u r a t i o n v a r i a b l e MAX REMOTE CHANNELS PER NODE
14 i n d e x = index − MAX REMOTE CHANNELS PER NODE + 1 ;
15 d e s t i n a t i o n i n d e x = (MAX REMOTE CHANNELS PER NODE + index − 2)
16 / MAX REMOTE CHANNELS PER NODE;
17

18 // get the d e s t i n a t i o n ho s t n ame
19 s t d : : s t r i n g d e s t i n a t i o n ho s t n ame = r e d u c e d l i s t [d e s t i n a t i o n i n d e x] ;

Figure 5.9: shows the algorithm spanning up the“Communication Tree”.

Figure 5.10: shows the “Communication Tree” used for multi-process debug-
ging.

node. Outgoing from the request’s message destination, stored in the Unique ID

(Section 5.6.2), Ayudame calculates recursively the parent of the node. The re-

cursive calculation is interrupted as soon as the calculated parent is the actual

instance of Ayudame. At this point Ayudame knows to which child the message

has to be forwarded to. Every further instance of Ayudame will do the mes-

sage forwarding until the message reaches its destination. In the current design

all communications are either generated from an Ayudame instance and will be

consumed by Temanejo or they are generated by Temanejo and consumed by

Ayudame.

In case of inter-child communication, the algorithm can be adapted for supporting

such a data flow. At the moment all messages without a destination in the current

Chapter 5. Design: Communication Back-end Ayudame 52

subtree are dropped. One possible adaptation could be forwarding the message

to the parent node until the destination can be calculated. For the currently

supported features of Ayudame there is no need for such an design, but future

features like local storage of events or graph analysis across Ayudame instances

may require inter-child communication.

5.6.2 Unique ID

Every instrumentation instance of Ayudame is getting an Unique ID. Therefore,

internally Ayudame generates the m id, also known as Unique ID, by shifting

the master id, proc id and client id into the m id. To do so, three functions are

used for moving the information in and three for getting the information back out.

The master id represents the MPI rank in a distributed environment. The proc id

represents the process identifier on a node. The client id identifies the different

programming models in a process.

The first function pair, shown in the listing of Figure 5.11, will set the first three

bytes of m id and gets the stored information back out. These three bytes are

called master id and hold the information about node/hostname the Ayudame

instance is running on. This information is needed to distinguish between the

different communication back-ends in a distributed memory environment. The

current implementation uses the MPI rank as master id.

The second function pair, shown in the listing of Figure 5.12, sets the forth to the

sixth byte of m id and gets the stored information back out. These bytes are called

proc id and they hold the information about the process the Ayudame instance

is running in. This information is needed to distinguish between the different

communication back-ends in a shared memory environment running on the same

node.

The third function pair, shown in the listing of Figure 5.13, sets the seventh to

the eighth byte of m id and gets the stored information back out. These bytes

are called client id and they contain the information about the Event Handler.

This is necessary to distinguish the different handlers in a hybrid environment.

Every programming model in such a hybrid environment has its handler, with its

associated implementation.

Chapter 5. Design: Communication Back-end Ayudame 53

1 /**
2 * Se t s the f i r s t t h r e e by t e s o f m id
3 * @param m id
4 * @param ma s t e r i d
5 */
6 s t a t i c vo i d s e t m a s t e r i d (u i n t 6 4 t *m id , u i n t 6 4 t ma s t e r i d) {
7 *m id |= mas t e r i d << 0 ;
8 }
9

10 /**
11 * Retu rns the f i r s t t h r e e by t e s o f m id
12 * 00111111111111111111111111
13 * @param m id
14 * @re tu rn
15 */
16 s t a t i c u i n t 6 4 t g e t ma s t e r i d (u i n t 6 4 t m id) {
17 r e t u r n (m id & 0xFFFFFF) >> 0 ;
18 }

Figure 5.11: The function set master id shifts the master id into the m id,
the second function returns the master id out of the m id

1 /**
2 * Se t s the 4 . to the 6 . by te o f m id
3 * @param m id
4 * @param p r o c i d
5 */
6 s t a t i c vo i d s e t p r o c i d (u i n t 6 4 t *m id , u i n t 6 4 t p r o c i d) {
7 *m id |= p r o c i d << 24 ;
8 }
9

10 /**
11 * Retu rns the 4 . to the 6 . by te o f m id
12 * 0000000000000000111111111111111111111111000000000000000000000000
13 * @param m id
14 * @re tu rn
15 */
16 s t a t i c u i n t 6 4 t g e t p r o c i d (u i n t 6 4 t m id) {
17 r e t u r n (m id & 0xFFFFFF000000) >> 24 ;
18 }

Figure 5.12: The function set proc id shifts the procc id into the m id, the
second function returns the procc id out of the m id

5.7 MPI Matcher

The MPI Matcher is a module located inside the super Ayudame. It generates

the communication dependencies between the MPI tasks. The necessary informa-

tion (generated by the programming model) for generating such dependencies is

transferred as payload (Section 4.2.2) into the module. The MPI payload contains

Chapter 5. Design: Communication Back-end Ayudame 54

1 /**
2 * Se t s the 7 . to the 8 . by te o f m id
3 * @param m id
4 * @param c l i e n t i d
5 */
6 s t a t i c vo i d s e t c l i e n t i d (u i n t 6 4 t *m id , u i n t 6 4 t c l i e n t i d) {
7 *m id |= c l i e n t i d << 48 ;
8 }
9

10 /**
11 * Retu rns the 7 . to the 8 . by te o f m id
12 * 111111111111111100
13 * @param m id
14 * @re tu rn
15 */
16 s t a t i c u i n t 6 4 t g e t c l i e n t i d (u i n t 6 4 t m id) {
17 r e t u r n (m id & 0xFFFF000000000000) >> 48 ;
18 }

Figure 5.13: The function set client id shifts the client id into the m id, the
second function returns the client id out of the m id

the information about the MPI type, MPI rank, MPI partner, MPI tag, MPI comm

and the task ID. For every payload the module tries to find the matching payload

(stored in a list) inside, if the there is no, the payload will be added to the list;

e.g. for a MPI Send, the module tries to find the corresponding MPI Recv. For a

MPI Recv, the matcher searchers for the MPI Send, where the MPI tag and the

MPI Recv rank is the same as the MPI Send partner. By using the task ID and

client ID, which is also stored in the payload (because of the inheritance), Ayu-

dame is now capable of producing the data dependency between the MPI Send

and MPI Recv running on different nodes or processes. The same design is used

for MPI Isend and MPI Irecv considering the MPI Wait.

Chapter 6

Instrumentation of Runtime

Systems

6.1 Introduction

This chapter briefly describes the usage of the instrumentation framework of Ayu-

dame. An instrumentation is able to monitor and control an application. This is

in the case of my thesis done by instrumenting the source code. There are also

other tools which use binary instrumentation. In general an instrumentation is

necessary for generating addition information out of an application execution; e.g.

debugging, code tracing, profiling, measuring the performance counters, etc..

The instrumentation is the part of Ayudame, which is connected closest to the

programming model and its runtime is the instrumentation. The instrumentation

translates runtime information into Ayudame events for monitoring (Section 6.2).

Additionally, the instrumentation converts Ayudame requests into runtime be-

haviour for controlling (Section 6.3). Figure 6.1 illustrates the four different ways

(Event+InCode, Event+API, Request+InCode and Request+API) of instrumen-

tation. Some programming models implement a defined API to have a general

programming model independent interface for monitoring and controlling the run-

time. The API based implementation is represented by OMPT (Section 6.2.2)

and TCA (Section 6.3.1) in the Figure 6.1. Other programming models have to

be directly instrumented with the Ayudame API (InCode Instrumentation). In-

Code means that the monitoring events and the controlling request are directly

implemented in the runtime.

55

Chapter 6. Instrumentation of Runtime Systems 56

Figure 6.1: shows the different possible Ayudame instrumentations. Some
programming models need an InCode instrumentation, others can be accessed

through an API.

6.2 Monitoring

For the monitoring purpose the C or C++ events API, explained in section 4.2,

is used inside the runtime. Section 6.2.1 shows, as an example, the usage of the

Ayudame C interface in OmpSs. In addition, Ayudame alternatively interact

with the OMPT Interface, which is also offered by OmpSs (the InCode instrumen-

tation supports more functionality than the OMPT OmpSs instrumentation) and

OpenMP. Therefore, Ayudame has the OMPT Event Handler.

6.2.1 OmpSs instrumentation

This section gives a brief introduction to the InCode OmpSs monitoring (event)

instrumentation. The instrumentation is done inside the OmpSs runtime and can

be loaded by setting an environment variable. If this variable is set, the OmpSs

runtime (nanox) opens the correct Ayudame instrumentation library. Now, ev-

ery event generated by the nanox runtime reaches the library. This library has

to implement, amongst others, the following functions: 1) addEventList, 2) ad-

dResumeTask, 3) addSuspendTask, 4) initialize and 5) the constructor Instrumen-

tationAyudame. The runtime now calls for every nanox event (generated by the

runtime), one of the above listed functions. Inside these functions the nanox events

are filtered, analysed and transformed/ translated into Ayudame events. To do

Chapter 6. Instrumentation of Runtime Systems 57

1 vo i d addEven tL i s t (uns i gned i n t count , Event * e v en t s) {
2 f o r (un s i gned i n t i = 0 ; i < count ; i++) {
3 sw i t c h (e v en t s [i] . getType ()) {
4 ca se NANOS POINT :
5 i f (e v en t s [i] . getKey () == ‘ ‘ c r e a t e wd p t r ’ ’) {
6 /* I t i s a c r e a t e t a s k even t */
7

8 WorkDesc r ip to r = ev en t s [i] . g e tVa lue () ;
9 addTask (wd) ;

10 }
11 i f (e v en t s [i] . getKey () == ‘ ‘ dependence ’ ’) {
12 /* I t i s a dependence even t */
13

14 dependence va l u e = ev en t s [i] . g e tVa lue () ;
15 i n t s e n d e r i d = (dependence va l u e >> 32) ;
16 i n t r e c e i v e r i d = (dependence va l u e & 0xFFFFFFFFFF) ;
17 d e p d i r e c t i o n v a l u e = ev en t s [i +1] . ge tVa lue () ;
18 d e p a d d r e s s v a l u e = ev en t s [i +2] . ge tVa lue () ;
19 addDependency (s e n d e r i d , r e c e i v e r i d , d e p d i r e c t i o n v a l u e ,
20 d e p a d d r e s s v a l u e) ;
21 }
22 break ;
23

24 ca se NANOS BURST START:
25 i f (e v en t s [i] . getKey () == ‘ ‘ wd i d e v en t ’ ’) {
26 /* I t i s a e n t e r i n g WorkDesc r ip to r even t */
27

28 enteringWD (ev en t s [i] . g e tVa lue ()) ;
29 }
30 i f (e v en t s [i] . getKey () == ‘ ‘ u s e r c od e ’ ’) {
31 /* I t i s a e n t e r i n g User code even t */
32

33 en t e r i ngUse rCode (e v en t s [i] . g e tVa lue ()) ;
34 }
35 break ;
36 } // sw i t ch end
37 } // f o r end
38 }

Figure 6.2: shows the “addEventList” code part, used for instrumenting
OmpSs. The function splits the different runtime events into “addTask”, “ad-

dDependency”, etc.

so the library has to store and process information. The events reach the instru-

mentation library either as an event chain (addEventList) or as a direct function

call. The following sections show code snippets of the above listed function and

the most relevant functions for generating the dependency graph, are explained.

1) The function addEventList (listing in Figure 6.2) processes the event chains.

The function parameters are the number of events and a pointer to the first event.

Inside the addEventList functions, the instrumentation checks the event chain for

Chapter 6. Instrumentation of Runtime Systems 58

1 vo i d addResumeTask (WorkDesc r ip to r &w){
2

3 WorkDesc r ip to r * pa r en t = w. ge tPa r en t () ;
4

5 i f (pa r en t == NULL) {
6 /* Task i s a th r ead */
7

8 // add the th r ead ID to a v e c t o r
9 t h r e a d i d v e c . push back (t h r e ad ID) ;

10

11 } e l s e {
12 /* Task i s a an a c t u a l t a s k */
13

14 // Thread ID i s added as t a s k p r o p e r t y
15 ayu even t (AYU SETPROPERTY, th r e ad ID) ;
16

17 // check i f the t a s k can be execu t ed
18 s t e p p e r : : s t e p p e r r e q u e s t p r o g r e s s (ta sk ID , t h r e ad ID) ;
19

20 // Task s t a t e runn ing i s added as t a s k p r o p e r t y
21 ayu even t (AYU SETPROPERTY, ‘ ‘ r unn ing ’ ’) ;
22 }
23 }

Figure 6.3: shows the “addResumeTask” code part, used for instrumenting
OmpSs. The function detects the tasks states and generates an Ayudame event.

specific events. The most important events are of the event type NANOS POINT.

Important are also the events of the event type NANOS BURST START and the

corresponding type NANOS BURST END.

The event type NANOS POINT detects the events for task creation and depen-

dency creation. For task creation, the addTask (line 9 listing in Figure 6.2) function

is called with the according WorkDescriptor, which is returned by getValue. The

addTask helper function (listing in Figure 6.4) collects all required information for

the AYU ADDTASK event, line 27, and sends the event to Ayudame. Therefore,

it is, necessary to calculate the the scope ID, by checking if the task has a par-

ent task. Additionally, the addTask function also sends AYU SETPROPERTY

events to Ayudamewhich contains information like the function names or prior-

ities. Most of the information can get extracted out of a WorkDescriptor object

provided by the runtime.

If a dependency generation is detected the addDependency helper function is called.

Therefore, the sender ID (from ID) and receiver ID (to ID) have to be shifted

Chapter 6. Instrumentation of Runtime Systems 59

1 vo i d addTask (WorkDesc r ip to r *wd) {
2

3 // Task ID
4 i n t 6 4 t wd id= wd−>g e t I d () ;
5

6 // Func t i on ID
7 i n t 6 4 t f u n c t i d = wd−>g e tAc t i v eDev i c e () . getWorkFct () ;
8

9 // Func t i on name
10 char * wd d e s c r i p t i o n = wd−>g e tD e s c r i p t i o n () ;
11

12 // Parent t a s k
13 WorkDesc r ip to r * pa r en t = wd−>ge tPa r en t () ;
14

15 // P r i o r i t y
16 i n t 6 4 t p r i o r i t y = wd−>g e t P r i o r i t y () ;
17

18 i f (parent −>ge tPa r en t () == NULL) {
19 /* not ne s t ed scope ID 0 */
20 s c o p e i d = 0 ;
21 } e l s e {
22 /* ne s t ed scope ID = pa r en t t a s k ID*/
23 s c o p e i d = parent −>g e t I d () ;
24 }
25

26 // Task wi th t a s k ID = wd id , scope ID= s c o p e i d g e t s added
27 ayu even t (AYU ADDTASK, data) ;
28

29 // Func t i on name i s added as t a s k p r o p e r t y
30 ayu even t (AYU SETPROPERTY, wd d e s c r i p t i o n) ;
31

32 // P r i o r i t y i s added as t a s k p r o p e r t y
33 ayu even t (AYU SETPROPERTY, p r i o r i t y) ;
34 }

Figure 6.4: shows the “addTask” code part, used for instrumenting OmpSs.
The function generates an Ayudame task creation event.

out of the dependence value, which is returned by getValue. The function addDe-

pendency (listing in Figure 6.5) collects all required information for the

AYU ADDDEPENDENCY event, line 21, and sends the event to Ayudame. This

function is also the most complex one; which is related to the different possible de-

pendency types (dep direction value). This chapter will only handle the creation

of a regular dependency (true dependency) type. Besides; dependencies coming

from a thread ID are filtered out. The dependencies from a thread are synchro-

nisation dependencies (#pragma OMP TASK WAITON). There are some other

dependency types known as Output dependence wd → concurrent, wd → commu-

tative or common → wd, these types are relevant for concurrent or commutative

dependencies. For a usual case, a dependency can be created and added to the task

Chapter 6. Instrumentation of Runtime Systems 60

1 vo i d addDependency (i n t s e n d e r i d , i n t r e c e i v e r i d ,
2 n a n o s e v e n t v a l u e t d e p d i r e c t i o n v a l u e ,
3 n a n o s e v e n t v a l u e t d e p a d d r e s s v a l u e) {
4

5 sw i t c h (d e p d i r e c t i o n v a l u e) {
6

7 ca se 1 :
8 /* True dependence */
9

10 // Dependency memory add r e s s
11 i n t 6 4 t a d d r e s s i d = d e p a d d r e s s v a l u e ;
12

13 // Dependency ID g en e r a t i o n
14 u i n t 6 4 t d ep i d = 0 ;
15 s e t s e n d e r i d (&dep id , (u i n t 6 4 t) s e n d e r i d) ;
16 s e t r e c e i v e r i d (&dep id , (u i n t 6 4 t) r e c e i v e r i d) ;
17 s e t d e p a d r r e s s i d (&dep id , d e p a d d r e s s v a l u e) ;
18

19 // Dependency wi th dependency ID = dep id , f r om i d= s e n d e r i d
20 // and t o i d=r e c e i v e r i d g e t s added
21 ayu even t (AYU ADDDEPENDENCY, data) ;
22 ayu even t (AYU SETPROPERTY, ‘ ‘ a dd r e s s e ’ ’) ;
23

24 break ;
25 }
26 }

Figure 6.5: shows the “addDependency” code part, used for instrumenting
OmpSs. The function generates an Ayudame dependency creation event.

graph by just using the sender ID and receiver ID. The unique dependency ID is

generated out of the sender ID, receiver ID and the underlying memory address of

the dependency. All additional dependency information is added as a dependency

property.

The NANOS BURST START event type calls the function enteringWD for enter-

ing a WorkDescriptor or enteringUserCode for an User Code area. The event type

NANOS BURST END calls the corresponding functions for leaving a WorkDe-

scriptor or User Code area. The function leavingUserCode is important for Ayu-

dame. Inside this function the instrumentation can detect if the runtime leaves

the main function of the application. If this is true, the instrumentation will in-

form Ayudame about the upcoming shutdown process.

2) The function addResumeTask (listing in Figure 6.3) first checks if the WorkDe-

scriptor (task) is an actual task or if the WorkDescriptor is, in reality, a thread.

Chapter 6. Instrumentation of Runtime Systems 61

Figure 6.6: Stage one of the OMPT initialization

This is done by calling the getParent method, if the value returned is NULL, the

WorkDescriptor is, in reality, a thread, and is added to a vector. This information

is, later on, necessary for dependency creation. If the return value of getParent

is not NULL, an Ayudame event will be emitted, with the information, that a

task with a given task ID is now running on a specific thread. At this point, the

instrumentation library can also extract the information about the executing core,

NUMA domain, etc..

3) Corresponding to the function addResumeTask, the addSuspendTask emits an

event about the finalisation of a specific task.

4) The function initialize adds meta information about the application to the

dependency graph. This information is for example necessary to start a DDT

debugging session and contains the hostname, the process ID, the name of the

executable and the path to the executable.

5) The constructor InstrumentationAyudame initialises the storage and locking

units inside Ayudame.

6.2.2 OpenMP Tools Application Programming Interfaces

for Performance Analysis and Debugging - OMPT

OMPT([27]) is an interface for performance analysis and debugging for the OpenMP

programming model. For OmpSs, which also supports OMPT and Ayudame, the

OMPT runtime-side implementation is done inside the Ayudame OMPT Event

Handler and is based on the technical report (tr2). This Event Handler imple-

ments the tool side of OMPT (Section 6.3.1). The initialisation of OMPT can

Chapter 6. Instrumentation of Runtime Systems 62

Figure 6.7: Stage two of the OMPT initialization

be split into two stages. In the first stage, the runtime calls an extern public

initialisation function, implemented inside the tool. The lookup function pointer

is passed as parameter to the initialisation function. Now the tool can ask for

the different control request callbacks through the lookup function. As parameter

for the lookup function a char pointer is passed. Depending on this string the

lookup functions return the requested inquiry function. This concept is illustrated

in Figure 6.6. Figure 6.7 shows the workflow of the second stage. There the tool

instantiates callbacks for the different events in the runtime. This is done through

the formerly requested inquiry function (ompt set callback). The tool can now

repeat this procedure to register all the events it wants to track.

6.3 Controlling

For controlling, the programming model has to implement the Ayudame request

callbacks, explained in section 6.2. Such a callback function has a defined signa-

ture and can handle a given Ayudame request, e.g. block a particular task. For

controlling, Ayudame also includes an implementation of TCA. The TCA inter-

face is developed in addition to the OMPT interface and shown as an example for

controlling runtimes in section 6.3.1.

6.3.1 Tasking Control API - TCA

The specification of Tasking Control API (TCA) is published in [28]. TCA is a

generic interface to interact with the runtime system of task-based programming

models. The interface defines a small set of control requests, which need to be

implemented by a conforming runtime system. These requests allow a tool, for

Chapter 6. Instrumentation of Runtime Systems 63

instance a debugger, to instruct the runtime system to suspend or resume task

execution and to manipulate task dependencies. TCA has been designed to inter-

operate OMPT and is currently used by the back-end of the debugger Temanejo

to interact with the OmpSs runtime system. The interface, however, is sufficiently

generic and can be supported by other similar task-based programming models.

As TCA is designed as an extension of OMPT and is, at the moment, imple-

mented and used inside Ayudame. But the idea is to let TCA become a part of

the OMPT instrumentation.

Figure 6.8: Interaction of Temanejo with a runtime system through TCA

TCA is used as described to connect Temanejo, or more specifically its back-

end Ayudame, with the runtime of the task-based parallel programming model

OmpSs. Figure 6.8 shows the general structure of information flow. In the current

prototype, the OmpSs runtime has been instrumented to emit plain (InCode)

Ayudame events (Section 4.1). In future it is planned to use the OMPT interface

(API) of OmpSs to generate Ayudame events. Ayudame events are processed

and ultimately forwarded to the front-end to visualise the task dependency graph.

Part of the information transmitted with the events is identifiers for dependency

and task instances. These identifiers are later on used in TCA.

In the other direction, user interaction in Temanejo results in Ayudame control

request (Section 4.6). So far, these control requests have been used to drive a

Simple Stepper (Section 6.4) inside Ayudame, which either suspends or resumes

worker threads of the OmpSs runtime. Instead, the Ayudame library will now

generate TCA control requests from Ayudame. I have developed a plugin mod-

ule for OmpSs, which initialises TCA. The module also provides all mandatory

Chapter 6. Instrumentation of Runtime Systems 64

and optional TCA control request functions and delegates all possible Ayudame

control actions to the OmpSs runtime system.

The services inside the OmpSs runtime do not allow to implement all TCA re-

quests. For instance, there is no interface to prevent the scheduler from executing

a specific task as required by tca_request_block_task. As a work around until

the functionally is added to the OmpSs runtime, the Simple Stepper was moved

out of the Ayudame library and into the OmpSs plugin. This prototypical im-

plementation is able to fully control the execution of an OmpSs application.

Functionality

The purpose of TCA is to allow a tool to request certain actions from a conforming

runtime system including:

� suspend and resume execution of a specific, labelled tasks

� insert and delete a dependency between two specific, labelled tasks

Some requests are mandatory, thus providing a minimal functionality to the tool,

while others are optional.

Examples for TCA requests

The below listed examples show two mandatory requests (tca request continue,

tca request break) and one optional request (tca request insert dependency). These

requests are defined in TCA.

� Continue control request mandatory

1 t c a s u c c e s s t t c a r e q u e s t c o n t i n u e () ;

Instructs the runtime to continue normal execution of tasks until a break-

point is reached or until a break control request is issued. This request has

no arguments.

� Break control request mandatory

1 t c a s u c c e s s t t c a r e q u e s t b r e a k () ;

Instructs the runtime system to stop executing any task until a continue or

step control request is issued. This request has no arguments.

Chapter 6. Instrumentation of Runtime Systems 65

� Insert dependency control request optional

1 t c a s u c c e s s t t c a r e q u e s t i n s e r t d e p e n d e n c y (

2 t c a t a s k i d t f r om t a s k i d ,

3 t c a t a s k i d t t o t a s k i d) ;

Instruct the runtime system to insert a dependency from task with identi-

fier from_task_id to task with identifier to_task_id. The runtime system

should not execute task with identifier to_task_id before task with identifier

from_task_id has finished.

Usage

The foremost design objective is providing sufficient functionality to allow the

debugger Temanejo to step through an application task-wise. A second major

design objective is interoperability with OMPT. In particular, the design should

meet two requirements:

� the procedure to initialise TCA should be the same as for OMPT

� do not introduce any concepts beyond those already present in OMPT, i.e.

tool callbacks, runtime inquiry functions, tool data structures, etc.

Any runtime supporting OMPT should be able to support TCA, as long as it

can provide the minimal set of TCA request. The design of TCA, however, is

sufficiently generic to be applied with any runtime system for asynchronous task

parallelisation.

It is assumed, that the programming model meaningfully defines the concept of

task and the concept of dependency. A program is composed of task instances

and dependency instances between them, thus forming a task-dependency graph.

A unique identifier can label task and dependency instances. Note, that the same

dependency instance, and thus identifier, may appear more than once at different

positions in the task-dependency-graph.1 This might be the case when depen-

dencies arise through data-dependencies; e.g. the same datum can be an input

dependency for several tasks. In addition, it is assumed that the runtime system

executes tasks on the same kind of uniquely labelled execution resource. TCA

1The rest of this section will use task and dependency instead of task instance and dependency
instance, respectively. Similarly, a task-graph or graph is referred to task-dependency graph.

Chapter 6. Instrumentation of Runtime Systems 66

uses the name thread for this concept; however, this does not imply that actual

OS threads need to be used by the concrete runtime system. As with tasks and

dependencies, threads have a unique identifier that can be used to identify it. The

purpose of TCA is to send control requests from a tool to a runtime system, only.

It does not provide means to monitor the runtime system or inquire its state. This

needs to be done through a separate channel – for instance through event callbacks

in OMPT, or any other monitoring interface. In particular, the monitoring system

needs to report task, dependency and thread identifiers, respectively.

Figure 6.9: Interaction between the runtime and the tool, through TCA

Some aspects of the TCA are mandatory for conforming runtime systems or tools

and thus form a minimal set allowing basic control. In addition, TCA defines a

range of optional features that allow more fine-grained and complex control. The

specification of TCA is composed of:

� Control requests

Control request functions are implemented by the runtime and called by the

tools. These functions are not publicly visible. Instead, tools can acquire

pointers to control request functions through the lookup mechanism during

tool initialisation. Each control request function returns an error code as

defined in the previous section. Some control requests are mandatory to

ensure minimal tool functionality, others are optional.

� Initialisation

Any tool using TCA needs to follow a specific initialisation procedure as de-

scribed in this section. The general principle (as illustrated in Figure 6.9) is

simple: the runtime calls a initialisation function implemented by the tool.

Within this function, the tool repeatedly calls a lookup function, which is

provided by the runtime system, to inquire pointers to any control request

function it wishes to use. If initialisation fails, for instance because the

Chapter 6. Instrumentation of Runtime Systems 67

runtime does not support a control request which is critical for the tool’s

operation, the tool returns with an error code from the initialisation func-

tion. The public interface of TCA is very slim; the only visible symbol is

the initialisation function tca_initialize, which has three parameters. A

pointer to the lookup, the runtime_version and the tca_version. All

other symbols, i.e. control request functions, are publicised during TCA

initialisation through the lookup mechanism described below. The second

argument, runtime_version, is a version string that unambiguously identi-

fies a runtime system’s implementation. The third argument, tca_version,

indicates the version of the tasking control API, supported by the runtime.

The version of TCA described by this document is known as version 1. The

first argument, lookup, is a pointer to the lookup function. This lookup

function is provided by the runtime system. The tool repeatedly calls lookup

for every entry_point, i.e. control request function. If the named entry

point is available, the lookup function returns a pointer to it. Otherwise,

the NULL pointer is returned. In general, the runtime system should start the

initialisation procedure as soon as possible during its on startup procedure

and before any user code is executed. If the tool initialisation is unsuccessful,

i.e. if the tool does not return with TCA_SUCCESS, the runtime system does

not need to maintain any information or state to support tools.

All additional information like the tool data structure can be found in ”Tools for

High Performance Computing 2015”[28].

Implementation

In this section I sketch out some aspects of the TCA implementation on the tool

side as well as on the runtime system side. For illustration I will use the OmpSs

task-based programming model and the tool Ayudame. For readability, some

of the necessary explicit cast operations are ignored, in particular on function

pointers. The initialisation function implemented by the tool could look like then

listing in Figure 6.10. First, the tool checks if the TCA version used by the

runtime system and the tool, respectively, match. If it does not, the initialisation

is immediately aborted, returning TCA_FAIL. The next step is to retrieve pointers

to several control request functions and store them in variables that are visible

to the rest of the tool. Some request functions are critical for tool operation; in

this example it is just the mandatory set. If any of the critical control requests

Chapter 6. Instrumentation of Runtime Systems 68

1 #i n c l u d e ” tca . h”
2

3 t c a s u c c e s s t t c a i n i t i a l i z e (t c a f u n c t i o n l o o k u p t lookup ,
4 con s t cha r * r t v e r s i o n , un s i gned i n t t c a v e r s i o n) {
5

6 i f (TCA VERSION != t c a v e r s i o n) {
7 d p r i n t (” I n c ompa t i b l e TCA v e r s i o n \n”) ;
8 r e t u r n TCA FAIL ;
9 }

10 a y u r e q c o n t i n u e = lookup (” t c a r e q u e s t c o n t i n u e ”) ;
11 a yu r e q b r e a k = lookup (” t c a r e q u e s t b r e a k ”) ;
12 a y u r e q s t e p = lookup (” t c a r e q u e s t s t e p ”) ;
13 a yu r e q r un = lookup (” t c a r e q u e s t r u n t a s k ”) ;
14

15 i f ((NULL == ayu r e q c o n t i n u e) | | (NULL == ayu r e q b r e a k) \
16 | | (NULL == ayu r e q s t e p)) {
17 d p r i n t (”Minimal r e qu i r emen t s a r e not met\n”) ;
18 r e t u r n TCA FAIL ;
19

20 i f (NULL == ayu r e q r un) {
21 d p r i n t (”Doing s p e c i a l t r ea tment f o r r u n t a s k r e q u e s t \n”) ;
22 s p e c i a l t r ea tment () ;
23 }
24 // a l l good
25 r e t u r n TCA SUCCESS ;
26 }

Figure 6.10: shows the tca initialize implementation inside the tool.

are not implemented by the runtime system, the tool again aborts with a failure.

Other control requests are not critical to tool operation, but require special action

if not present. In the example it is tca_request_run_task that requires a special

treatment.

1 vo i d * l ookup (con s t cha r * e n t r y p o i n t) {
2

3 i f (0 == strncmp (e n t r y p o i n t , ” t c a r e q u e s t s t e p ”)) {
4 i n s t r umen t s t e p () ;
5 r e t u r n &omp s s r e qu e s t s t e p ;
6 }
7

8 // more c o n t r o l r e q u e s t s
9 i f (. . .) { . . . }

10

11 // at t h i s p o i n t the c o n t r o l r e q u e s t i s unknown
12 r e t u r n NULL ;
13 }

Figure 6.11: shows the lookup implementation inside the runtime.

The runtime system needs to implement a lookup function similar to the listing

in Figure 6.11 The lookup function compares the content of entry_point to the

Chapter 6. Instrumentation of Runtime Systems 69

list of available request functions. If it finds a match, the runtime might need to

record, that the tool will use this control request, and then returns a pointer to

the request function. If no match is found, the particular request function is not

implemented and the lookup returns a NULL pointer.

1 #i n c l u d e ” tca . h”
2

3 Ins t rumentat ionAyudame () {
4 // many o th e r t h i n g s to do
5

6 // TCA i n i t
7 i f (t c a i n i t i a l i z e) {
8 t c a i n i t = t c a i n i t i a l i z e (lookup , omps s ve r s i on , TCA VERSION) ;
9 i f (TCA SUCCESS != t c a i n i t) {

10 d p r i n t (” F a i l e d to i n i t i a l i z e TCA. Not i n s t r umen t i n g .\ n”) ;
11 i n s t r umen t none () ;
12 }
13 }
14

15 // o th e r t h i n g s
16 }

Figure 6.12: shows tca initialize process inside the runtime.

The runtime system also has to ensure that the TCA initialisation function is

called during startup, shown in listing of Figure 6.12. If initialisation of the

tool fails, the runtime system memorises the failure in order to avoid unnec-

essary instrumentation, which might interfere with normal operation and may

cause performance issues. Finally, the runtime needs to make sure that schedul-

ing of tasks, etc., honours the control requests issued by the tool. This could,

for instance, be accomplished by implementing a finite state machine as part of

the scheduler. For controlling OmpSs the constructor InstrumentationAyudame

(described in Section 6.2.1) additionally initialises TCA, by calling tca initialize

(lookup,”NANOS++”, TCA VERSION).

It is also necessary to hook up the Simple Stepper (Section 6.4) inside the OmpSs

runtime. Therefore, the function addResumeTask (listing in Figure 6.3) has to ad-

ditionally execute the stepper::stepper request progress (task ID, thread ID) func-

tion (line 18). This function verify if the task ID or thread ID is allowed to be

executed. The Simple Stepper is driven by TCA.

Chapter 6. Instrumentation of Runtime Systems 70

6.4 Simple Stepper

The Simple Stepper is a module inside Ayudame. This module determines if a

thread is allowed to return immediately from an Ayudame event (and continue

processing user tasks), or otherwise forced to busy loop inside Ayudame (and

thus break at certain tasks). The drawback of this approach is the assumption

that threads issuing Ayudame events are those, which execute user tasks. This

assumption is only valid for OmpSs, but not in general. The Simple Stepper is

capable of handling the state of individual tasks and threads; block or unblock a

particular task or thread. The overall execution progress can be set to 1) continue,

2) break or 3) step.

1) The continue progress will only stop the execution, if tasks are blocked by an

arbitrary dependency or an explicit blocked task or thread. 2) The break progress

stops any task execution. 3) In addition, then Simple Stepper has the step progress,

which can be triggered by a step request. The module is also able to process an

add dependency or remove dependency request. The add dependency request is

implemented by blocking the successor tasks of a given task. Only these arbitrary

dependencies can be removed with the remove dependency request. The Simple

Stepper internally keeps the sequential order of the incoming threads and releases

them for stepping purpose in the same way; First In – First Out (FIFO). The

FIFO method ensures the regular task order while debugging.

Chapter 7

Case Study: Performance

Debugging

7.1 Introduction

This chapter shows the improvement of developing and optimising an application

with the usage of a Model-Centric debugging tool (Temanejo). Temanejo was

heavily used during the application optimisation process, for checking the depen-

dency correctness and detecting performance relevant issues. Before beginning

to analyse the different optimisation steps, I will give a brief introduction to the

Lattice-Boltzmann Code (LBC), used for this case study. LBC is a solver for the

Boltzmann Equation using the Lattice-Boltzmann Method (LBM) and is written

in Fortran. This discretisation describes the time-evolution of the phase-space

density (fluid or an ensemble of particles) through advection and collisions. The

concept of the numerical model is very simple: basic stencil operations solve a

single equation without relying on complex matrix operations or an iterative pro-

cess. The LBM method can be implemented in a highly efficient manner using

vector operations. This makes it very suitable for both, vector architectures like

the NEC SX-ACE or today’s SIMD units as Intel’s SSE, AVX, AVX-2 or AVX-512

and ARM’s NEON 128-bit architecture extension.

As explained in chapter 2.6 the hybrid programming model approach improves the

scalability of applications. For the implementation of LBC, the hybrid program-

ming model approach is followed. The domain decomposition is similar to the

71

Chapter 7. Case Study: Performance Debugging 72

decomposition of the example in chapter 1.6. The first level domain decompo-

sition divides the simulation domain into subdomains for every MPI rank. The

second level domain decomposition splits the subdomain into tiles. Each tile can

be executed independently from the other tiles and can be seen as an independent

task. The task execution is only restricted by the finished execution of the task

(tile) itself and all his neighbouring tasks (tiles) of the previous iteration (iteration

n-1).

1 do t ime s t ep =1, t ime s t e p s
2

3 c a l l MPI exchange () ! p o s s i b l e communicat ion t a s k
4

5 do i T i l e =1, nOu t e rT i l e s
6 c a l l compute (i T i l e) ! p o s s i b l e ou t e r t i l e t a s k
7 end do
8

9 do i T i l e =1, n I n n e rT i l e
10 c a l l compute (i T i l e) ! p o s s i b l e i n n e r t i l e t a s k
11 end do
12

13 c a l l boundery () ! p o s s i b l e t a s k
14

15 end do

Figure 7.1: default code structure

The listing in Figure 7.1 shows the LBC pseudo code. The outermost loop is

iteration over the time steps. Every time step, one task (MPI exchange) is created,

handling the communication with his neighbouring subdomains. A second loop

inside the iteration loop generates the tasks for all outer tiles. These outer tile tasks

depend on the MPI exchange task from the previous iteration. The third loop is

also located inside the iteration loop and generates the task for all inner tiles. The

boundary exchange task, is the last necessary task needed for parallelising the

LBC application and, is dependent on all outer tile tasks.

The standard paradigm for hybrid parallel programming in HPC is MPI+OpenMP,

but as a good alternative with some additional features and a strong tasking

concept OmpSs is used for the parallelisation of the LBC. This chapter gives a

detailed overview of the necessary steps needed to implement an efficient parallel

application using MPI+OmpSs. As mentioned earlier the first and second level

domain decomposition is already implemented in LBC.

In the following sections the below-listed terms will be used, therefore I will briefly

describe them:

Chapter 7. Case Study: Performance Debugging 73

� Communication Hiding :

The hiding computation and communication technique can improve the ap-

plication performance, especially on architectures with a slow network or

in a communication intensive application. The feature can only be used

in a hybrid application (e.g. MPI+OpenMP), decomposing its tasks into

tasks relevant for communication and tasks without a communication de-

pendency. The communication tasks can now be hidden inside the tasks

without a communication dependency. Therefore, normally task priorities

have to be introduced. These priorities help the runtime to execute tasks on

the critical path.

� Communication Overlap:

Using a programming model specific feature of rescheduling tasks gives the

possibility of executing a computation task while the communication tasks

are waiting for messages. Hiding the communication latencies requires the

communication hiding technique.

Example: The communication task is sending its messages to all relevant

neighbouring ranks, but has to wait until the communication is done inside

the MPI library. The time between the actual send and the message reaches

the receiver is called communication latency in the optimisation chapter.

Interrupting the communication task and running computation tasks mean-

while, increases the performance.

� Iteration Overlap:

This technique can be used in a task-based programming model, where ev-

ery compute task only is dependent on its neighbouring tasks. As soon as

these neighbouring task finished their computation for the current iteration

(iteration n), the task can start executing its computation for the next itera-

tion (iteration n+1). Although there are compute tasks and communication

tasks left from the current iteration (iteration n). This allows to expand the

time available communication.

7.2 Optimization

LBC follows the pattern of a regular stencil-code with communication only via

ghost cells across next-neighbours of the domain decomposition. At the highest

Chapter 7. Case Study: Performance Debugging 74

i inner cell task

o outer cell task

bnd boundary task

mpi mpi exchange task

d do di

dummy tasks (needed for
adding additional depen-
dencies)

Figure 7.2: Task colouring and their meaning.

level, the parallelisation strategy was to implement a second-level domain decom-

position at finer granularity than MPI domains and distribute the computation

of this sub-domains, called tiles in the following, as tasks. Further tasks arise

from the encapsulation of MPI communication, other book-keeping, etc. Various

versions of the code arise from different approaches of expressing dependencies be-

tween these tasks. The expressed goal was to modify the original code as little as

possible and do most of the parallelisation with OmpSs pragmas. The porting and

evaluation started with three different distinct hybrid MPI+OmpSs versions on

the Cray XC40 system. For additional evaluation, the three versions of LBC were

also ported to the Mont-Blanc platforms. In particular, I ported and evaluated the

versions designated as Fork/Join and Comm hiding (Communication Hiding). A

third version Iteration overlap (Iteration Overlap) got also explored, which aimed

at overlapping computation and communication of two consecutive time-steps.

Recently, I implemented a further version named Comm overlap (Communication

Overlap), which however runs well only on the Cray XC40 due to problems with

the MPI library on the Mont-Blanc prototype regarding the MPI progress engine.

All the different version improve the application performance and were done with

the usage of Temanejo. The implementation could hardly be done without any

supporting tool.

This chapter explains the optimisation steps, needed to gain the optimal perfor-

mance in case of parallel optimisation. Kernel optimisation or vectorisation is not

part of the following explanation. All optimisation steps are implemented with

minimal changes to the program code. Most of them are done by just changing

pragmas. For some optimisation steps, switching function calls were necessary.

The verification of the different implementations was done with Temanejo. All

Chapter 7. Case Study: Performance Debugging 75

improvements were evaluated on different architectures. For visualising the opti-

misation steps, I used two different chart types.

Figure 7.2 states the colouring of different the tasks in the following charts. All

figures in this chapter are mock-ups. Initially, the dependency graphs were vi-

sualised with Temanejo, but for better understanding, they are replaced with

simplified graph mock-ups. The first chart is a DAG (directed acyclic graph) and

visualises the dependencies graph between the tasks. Nodes in this graph are

tasks/functions/execution units. The edges are dependencies between these tasks.

The second chart is a timeline. In y-direction the cores are plotted; the threads on

the same or different hardware nodes. The first number represents the node, the

second the thread and are separated by a dot. In x-direction, the execution time

of each task executed on its thread is plotted. Blue parts in the timeline represent

waiting time (no useful work). There are two possibilities for having blue areas in

the chart, either there are no available tasks at the moment, or there are no tasks

with unsolved dependencies.

As announced before, there are several parts of the code with their characteristic

behaviour (computation, communication, etc.). These parts can be packed into

functions and, therefore, these code parts are easily taskifyable. The different

charts types uses the same task colouring. There are some more tasks, which are

not shown, because they are not essential for the dependency structure.

The possibility of the tiled simulation environment allows separating the compu-

tation task into an outer and an inner region. This separation is only done by

using different call site pragmas for the tasks. For synchronisation, there are some

additional tasks needed, these tasks are represented through dummy tasks. These

dummy tasks are plotted in the graphs, but they are not shown in the timeline

because the execution of these tasks does not consume a measurable amount of

time.

7.2.1 Fork Join

The simplest version, Fork/Join, first executes compute tasks on all tiles and

then proceeds to the MPI communication in a single task, which blocks all the

other following tasks. This is implemented with OmpSs dependencies, rather than

OpenMP-style explicit barriers or synchronisation. The resulting code has been

Chapter 7. Case Study: Performance Debugging 76

benchmarked across various problem sizes and on different platforms. For problem

sizes which are typical for production runs, the time spent in MPI communication

is between 5%-10% of the execution time, and thus non-negligible.

1 do t ime s t ep =1, t ime s t e p s
2 !$OMP TASK INOUT(Oute rT i l e s , I n n e r T i l e s)
3 c a l l MPI exchange ()
4 !$OMP END TASK
5

6 do i T i l e =1, nOu t e rT i l e s
7 !$OMP TASK INOUT(Out e rT i l e)
8 c a l l compute (i T i l e) ! ou t e r t i l e
9 !$OMP END TASK

10 end do
11

12 do i T i l e =1, n I n n e r T i l e s
13 !$OMP TASK INOUT(I n n e r T i l e)
14 c a l l compute (i T i l e) ! i n n e r t i l e
15 !$OMP END TASK
16 end do
17

18 !$OMP TASK INOUT(Oute rT i l e s , I n n e r T i l e s)
19 c a l l boundery ()
20 !$OMP END TASK
21 end do
22 !$OMP TASK WAIT

Figure 7.3: Fork/Join code structure.

mpi

o
o
o
o
i
i

bnd mpi

o
o
o
o
i
i

bnd

Figure 7.4: Fork/Join dependency graph

Running the Fork/Join implementation, annotated with dependency pragmas

(listing in Figure 7.3) in a task-based programming model, the runtime will gen-

erate a dependency graph similar to the one in Figure 7.4. In the Fork/Join

annotated code version, all compute tasks (inner tasks and outer tasks) generate

a dependency on their tile. The MPI exchange task and the boundary (bnd) task

take as input and output dependency all compute tiles.

Looking at the same code in a performance analysis tool the timeline would look

similar to the illustration shown in Figure 7.5. The different iterations can easily

be recognised. The iterations are separated through the MPI exchange task. In

Chapter 7. Case Study: Performance Debugging 77

1 4 16 19 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.5: Fork/Join timeline without compute task differentiation

1 4 12 15 18 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.6: Fork/Join timeline with compute task differentiation

this implementation, there is no differentiation between inner tasks and outer

tasks. For the timeline, the bnd task is not shown, because its execution duration

is very short. Also assuming that the execution of one computation task (inner

task or outer task) takes one time step (one segment in the timeline).

Additional to the Fork/Join design, shown in Figure 7.5, Figure 7.6 differentiates

the compute task in inner tasks and outer tasks. Task priorities can influence the

task execution order. In case of LBC, all communication relevant operations are

on the critical path, and they depend only on the outer tasks. Therefore, it is

important to execute outer tasks before inner tasks, by adding higher priorities

to the outer tasks. This differentiation will be used in the following optimisation

steps.

7.2.2 Communication hiding

A performance analysis of the version Fork/Join (Chapter 7.2.1) showed, that

there is very little room for performance improvement inside the communication

Chapter 7. Case Study: Performance Debugging 78

task using MPI primitives exclusively. This was done by designing various versions

using non-blocking communication routines. Instead, I investigated to overlap the

communication task as a whole with computation tasks if possible.

1 do t ime s t ep =1, t ime s t e p s
2 !$OMP TASK INOUT(Ou t e rT i l e s) %PRIORITY(HIGH)
3 c a l l MPI exchange ()
4 !$OMP END TASK
5

6 !$OMP TASK INOUT(Oute rT i l e s , I n n e r T i l e s)
7 c a l l dummy()
8 !$OMP END TASK
9

10 do i T i l e =1, nOu t e rT i l e s
11 !$OMP TASK INOUT(i T i l e O u t e r T i l e) %PRIORITY(HIGH)
12 c a l l compute (i T i l e) ! ou t e r t i l e s
13 !$OMP END TASK
14 end do
15

16 do i T i l e =1, n I n n e r T i l e s
17 !$OMP TASK INOUT(i T i l e I n n e r T i l e) % PRIORITY(LOW)
18 c a l l compute (i T i l e) ! i n n e r t i l e s
19 !$OMP END TASK
20 end do
21

22 !$OMP TASK INOUT(Ou t e rT i l e s)
23 c a l l boundery ()
24 !$OMP END TASK
25

26

27 end do
28 !$OMP TASK WAIT

Figure 7.7: Comm hiding code structure.

mpi d

o
o
o
o
i
i

bnd mpi d

o
o
o
o
i
i

bnd mpi d

Figure 7.8: Comm hiding dependency graph with differentiation in inner and
outer tasks.

Following that approach, a first optimisation, called Comm hiding (listing in Fig-

ure 7.7), aims to execute those compute tasks, which are necessary inputs for the

MPI exchange task first. Specifically, only those tiles which lie on the surface

of a given MPI domain are needed for the exchange of ghost cells via MPI. The

remaining compute tasks on the inner tiles are done concurrently with the MPI

Chapter 7. Case Study: Performance Debugging 79

1 4 13 18 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.9: Comm hiding timeline with normal behaviour.

1 4 13 19 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.10: Comm hiding timeline with delay in the MPI communication.

communication task. For typical problem sizes, this version is capable of hiding

most, if not all, of the MPI communication.

Figure 7.8 shows the Comm hiding concept as a dependency graph. The dummy

task is introduced ad placed between the MPI exchange task of the last iteration

(iteration n-1), and the compute task of the current iteration (iteration n). With

the placement of the dummy task, it is possible to hide the MPI communication

inside the inner tasks. This is possible because the inner tasks are not relevant for

the communication. To do so, higher priorities for the outer tasks, the bnd tasks

and the MPI exchange task were introduced. These priorities force the runtime to

execute these tasks as soon as possible.

Figure 7.9 shows the normal communication hiding behaviour. The efficiency of

hiding the communication depends on the ratio between inner tasks and outer

tasks. The quantity of inner and outer tasks depends on the problem size and the

size of the tiles. A domain with a problem size of 256 in each dimension (x, y, z)

and a tile size of 64, will be decomposed in 27 tasks and 37 outer tasks. With a tile

size of 32, there are 343 inner tasks and 169 outer tasks. The ratio between inner

Chapter 7. Case Study: Performance Debugging 80

and outer tasks affects the communication hiding possibility. Without enough

inner tasks, it is not possible to overlap computation and communication. The

number of inner tiles can be computed by:

tilestot = dx
ts
∗ dy

ts
∗ dz

ts

tilesin = (dxts − 2) ∗ (dyts − 2) ∗ (dzts − 2)
tilesratio = tilestot

tilesin

under the assumption, that the domain size (dx, dy, dz) is dividable by the tile size

(ts). As long as the computation of inner tasks takes longer than the MPI exchange

tasks, the communication is fully overlapped and even a slight communication

delay does not affect the overall application performance on today’s HPC systems.

Only one core is occupied handling the MPI exchange task. Systems with fewer

cores are more affected by a communication delay because such a system loses

more compute power. The ratio between tasks per core is also playing a crucial

role. The more cores an application can use, the less inner tasks per core will

be executed. This affects the possibility of hiding communication inside inner

tasks, but the overall performance is not affected by a communication delay. In

contrast an application using fewer cores has more inner tasks per core and a

better possibility of hiding communication, but the overall performance is more

affected by a communication delay.

In LBC, the communication uses MPI Sendrecv inside the MPI exchange task. It

could happen, that the application is waiting for messages from another rank and

is, therefore, not performing actual work: computation. Figure 7.10 illustrates

this behaviour by increasing the MPI duration on a specific node. In reality, this

delay could easily be longer than one time step or compute task execution.

7.2.3 Communication Overlap

In the version Comm hiding (Chapter 7.2.2), MPI communication is done in an

OmpSs task which runs concurrently with computation tasks. Modern MPI im-

plementations, however, can do most of the actual communication with minimal

assistance of the CPU, by using resources from the network interface directly.

OmpSs worker threads could execute actual work while the CPU idles waiting for

the MPI communication to complete. Thus, the version Comm overlap aims to

yield the core during MPI communication. This allows executing other pending

tasks during a long MPI communication. The technique is being prototyped on

Chapter 7. Case Study: Performance Debugging 81

1 3 12 16 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.11: Comm overlap timeline with runtime aware MPI task behaviour.

application level by introducing a special MPI library. To solve the problem, shown

in Figure 7.10, a special MPI library splits the MPI Sendrecv into a MPI Send

and MPI Recv part. By using the possibility of yielding tasks (this is a feature of

the OmpSs runtime), the application is now able to execute the MPI Send and set

a flag, allowing to detect if the MPI Send was completed. After the application

has finished to sent data and the application couldn’t start receiving, computa-

tion tasks get executed. The communication task execution is interrupted, and

the runtime is capable of rescheduling the task. A very basic implementation of

the rescheduling process just restarts the tasks until the necessary MPI message is

available. With this concept, the runtime could hide the communication latency,

but it also generates some overhead in the runtime by yielding and rescheduling

tasks. At this point, I stopped following this concept and accepted the overhead

in the runtime.

Figure 7.11 shows the improvement of the simple concept (just rescheduling tasks).

The next iteration can now start one time step earlier, and there are fewer gaps

(blue time steps) between the iterations.

An improvement to this basic implementation could be a design rescheduling tasks

only if a specific operation is valid. This could be the validation of MPI Test, and

only if the MPI Test is valid for the task’s necessary parameters, the task gets

rescheduled. A concept along these lines is also described in the paper [29] and

the thesis of Vladimir Marjanović [30].

Chapter 7. Case Study: Performance Debugging 82

7.2.4 Iteration Overlap

This last optimisation step is named Iteration overlap. The goal is to overlap cal-

culation of multiple interactions if possible. This step adds a lot more complexity

to the application, but allows better hiding of communication; the communication

can be hidden inside multiple iterations.

mpi

o
o
o
o

do bnd mpi

o
o
o
o

do bnd mpi

o
o
o
o

do

i
i

di
i
i

di
i
i

di

Figure 7.12: Iteration overlap dependency graph. The necessary dependencies
are getting complex.

First of all, two dummy tasks have to be introduced; one for the inner tasks and

one for the outer tasks. This has little effects on the original code structure, e.g.

both dummy tasks have to be placed behind the compute execution calls. After

adding these two tasks, the dependency pragmas has to be adapted. As in the

steps before this optimisation step would not be possible without a graphical tool

visualising the dependencies graph generated by the runtime. For this step double

buffering of the main data structure is also needed. This means, two time-steps

are stored in memory (iteration n-1 and iteration n). Due to problems expressing

these complex dependencies through a pragma-based programming model, this

work is only conceptional and is not completely implemented. Without a pragma-

based concept, a correct implementation would require an additional buffering and

management of data, complicating the original code, significantly.

Figure 7.12 illustrates the dependencies between the iterations. The inner dummy

task of iteration n-1 has a dependency on the outer dummy task iteration n . The

bnd task of iteration n-1 has a dependency on the inner dummy task iteration n.

Figure 7.13 shows the expected result from overlapping and getting rid of the

light blue idling time steps. In practice, there will be some idling parts in the

performance analysis. This happens because at some point the application will

run into the problem of a delayed MPI exchange task. This problem can be solved

with the concept shown in Figure 7.11 and in Figure 7.14. Always execution inner

Chapter 7. Case Study: Performance Debugging 83

1 3 13 17 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.13: Iteration overlap timeline.

1 3 12 15 22 24
Thread 0.1
Thread 0.2
Thread 0.3
Thread 0.4

Thread 1.1
Thread 1.2
Thread 1.3
Thread 1.4

Figure 7.14: timeline of combied Iteration overlap and Comm hiding

tasks during communication could lead to a lack of inner tasks, this could, at some

point, decrease the application performance.

The last Figure 7.14 includes all previous optimisation steps and also the opti-

misation step of this chapter. The overlap optimisation is combined with the

task yielding concept. The light red MPI exchange task is interrupted, because

of a communication delay, and a inner tasks (computation task) gets executed.

Besides, the communication is hidden inside two different iterations.

7.3 Performance Evaluation

This sections presents systematic performance reports and, in addition, briefly dis-

cusses the the need for tuning the number of OmpSs worker threads per MPI pro-

cess on the Mont-Blanc ThunderX prototype. Note, that the application specific

metric MLUP/s (mega-lattice updates per second) is proportional to GFLOPs,

with a constant translation factor of 255 FLOP/LUP. The results are reported as

performance per node.

Chapter 7. Case Study: Performance Debugging 84

7.3.1 Evaluation Platform

For evaluating the LBC, application three conceptually different systems have

been chosen. This allows a good overview of the overall performance on different

architectures. The different versions show not only implementation specific bot-

tlenecks depending on a given hardware, but also allow to evaluate the underlying

hardware with a real world application, running on current HPC systems.

� Mont-Blanc prototype

This is a system placed in BSC and consists of 930 compute nodes (Samsung

Exynos 5 Dual). Each node has two cores (Cortex-A15 @ 1.7GHz), and is

based on the ARM 32-bit architecture. Every node also includes 4GB of

LPDDR3 memory and an ARM Mali T604 GPU. The network uses 10GbE

Ethernet over USB.

� Hazel Hen

The Cray XC40 Hazel Hen is located at the HLRS and consists of 7712

compute nodes. Each node has two NUMA domains with 12 cores (Intel

Xeon CPU E5-2680 v3 (30M Cache, 2.50 GHz)) each (in total 185088 cores).

The memory capacity of each node is 128GB, the systems peak performance

is around 7420 TFlops and consumes 3̃200 kW of power. The node to node

interconnect is developed by Cray and named Aries. Hazel Hen is a typical

system used in HPC.

� Cavium ThunderX

This system is also ARM based and is located at BSC. It consists of 4

compute nodes, each node has two NUMA domains with 48 cores (ARMv8-

A @ 1.8 GHz), in total 384 cores. The memory capacity in each node is

128GB and the interconnect is based on 10Gb Ethernet. The system is

one of the first ARM-based 64-bit server architectures, and therefore an

interesting evaluation platform.

7.3.2 Tuning of number of OmpSs workers and process

placement

One of the motivations for hybrid OmpSs/MPI programming (or for hybrid Open-

MP/MPI for that matter) is to reduce the number of MPI processes, both, in order

Chapter 7. Case Study: Performance Debugging 85

50
70
90
110
130
150

2MPI	x	
12Threads

4MPI	x						
6Threads

8MPI	x						
3Threads

M
LU

Ps
	/
	N
od
e

Hazel	Hen	

Hazel	Hen		1	node Hazel	Hen		4	nodes

50
70
90

110
130
150

2MPI	x	
48Threads

4MPI	x	
24Threads

8MPI	x	
12Threads

16MPI	x	
6Threads

M
LU

Ps
	/
	N
od
e

Cavium

Cavium	1	node Cavium	4	nodes

Figure 7.15: shows the performance as a function of MPI processes and OmpSs
worker threads per node.

to aggregate communication, but also to circumvent potential MPI scalability is-

sues. It is, therefore, expected to run such hybrid applications with only one MPI

process per node and set the number of OmpSs worker threads equal to the number

of cores per node. In practice, however, to avoid performance loss due to NUMA

issues, it is often favourable to use one MPI process per NUMA domain and to

pin the threads to cores in the respective domain. The previous experience with

hybrid OmpSs/MPI applications suggested, that the performance did not change

much if the number of MPI processes per NUMA domain was increased further

beyond one. However, on the Mont-Blanc Cavium ThunderX system the perfor-

mance changes considerably by increasing further the number of MPI processes

per node. This is illustrated in Figure 7.15. The Performance is reported as a

function of MPI processes and OmpSs worker threads per node for the Cavium

ThunderX and the Cray XC4 system, respectively. For the Cray XC40 (left), the

performance does not depend much on the distribution of cores to MPI processes

and OmpSs worker threads. For the Cavium (right) the performance can be im-

proved significantly by using more MPI processes and less OmpSs worker threads

per process. Clearly, the number of MPI processes per node on the Cray XC40

does not affect the performance significantly. However, on the Cavium ThunderX

performance improves with an increasing number of MPI processes and decreasing

number of OmpSs worker threads per MPI process. Concluding this evaluation,

the Cavium ThunderX is strongly affected by the amount of processes per NUMA

domain, however, the Hazel Hen system is only slightly affected and can easily get

along with one process per NUMA domain. For the following evaluation 2 MPI

with 12 Threads each are used for Hazel Hen system and 4 MPI with 24 Threads

each for the Cavium system.

Chapter 7. Case Study: Performance Debugging 86

7.3.3 Benchmark on Hazel Hen

10
.2
3

20
.0
0 36
.2
4 65

.0
3

10
4.
66 12
6.
75

10
.2
5

20
.0
5 36
.9
5 67

.4
9

11
3.
14 13

9.
84

10
.2
5

20
.0
5 36
.9
7 67

.6
0

11
2.
97 13

9.
48

10
.0
3

19
.5
6 35
.7
2 55
.8
2 82

.6
8

12
1.
61

0

20

40

60

80

100

120

140

160

180

1	Core 2	Cores	 4	Cores 8	Cores 16	Cores 24	Cores

M
LU

Ps
	/	
N
od

e

Fork/Join Comm	hiding Comm	overlap MPI

Figure 7.16: show the performance comparison of the different LBC versions
(strong scaling experiment). These results were generated on the Hazel Hen.

This first section compares the three hybrid parallelisation concepts, Fork/Join,

Comm hiding and Comm overlap with a pure MPI parallelisation. For benchmark-

ing purpose four nodes of the Cray XC40 are used, and the results are reported

in MLUP’s per node. The three versions run fine on the Cray XC40 as shown in

Figure 7.16. The Comm overlap version is able to reuse some of the time spent in

MPI communication to execute pending compute tasks, and is thus slightly faster

on the Hazel Hen architecture, than the Comm hiding version. For this particular

setup, the potential for performance improvement of Comm overlap over Comm

hiding is small, since communication time on the XC40’s network is already very

low. With increasing numbers of cores per node, the hybrid LBC implementations

outperform the pure MPI implementation. These hybrid runs use 4 nodes with

one MPI process per NUMA domain (8 MPI ranks in total). An evaluation of the

ratio between threads and processes can be found in Chapter 7.3.2.

7.3.4 Benchmark on the Mont-Blanc prototype

Figure 7.17 compares the Fork/Join and Comm hiding versions with the pure-

MPI version. It shows the results of a weak scaling experiment on the Mont-Blanc

prototype. However, I encountered an issue with the MPI version which is installed

on the MontBlanc prototype. This version does not allow to yield the CPU in an

efficient way. Therefore, I have not benchmarked the Comm overlap version on

the Mont-Blanc prototype. The parallel efficiency (scaling efficiency; EN = TN

T1
)

of all versions remains higher than 90% for all versions up to 448 nodes. Closer

inspection shows that Comm hiding effectively hides communication and thus

Chapter 7. Case Study: Performance Debugging 87

2.
01

1.
90

1.
83

1.
80

1.
80

1.
79

1.
38

2.
01

1.
91

1.
85

1.
83

1.
82

1.
81

1.
45

2.
05

1.
92

1.
85

1.
81

1.
81

1.
79

1.
23

0.00

0.50

1.00

1.50

2.00

1	node 4	nodes 16	nodes 64	nodes 256	nodes 448	nodes 512	nodes

M
LU

Ps
	/	
N
od

e

Fork/Join Comm	hiding MPI

Figure 7.17: shows the comparison of two OmpSs versions with the pure-
MPI implementation of LBC(weak scaling experiment). These results were

generated on the Mont-Blanc prototype

outperforms the pure-MPI version, as well as the simpler OmpSs/MPI version

Fork/Join. At 512 nodes the parallel efficiency of all version drops significantly to

approximately 57-75%. Again, the Comm hiding version is the fastest, followed

by Fork/Join, and with a larger distance by the pure-MPI version. The reason for

the performance drop in the first place is not clear. There are indications that this

is temporary problem due to the prototypes interconnect, but more recent trial

runs seem to indicate that the problem no longer exists.

7.3.5 Comparing the Cavium ThunderX with the Cray

XC40

For comparing two different hardware architectures, the Comm hiding version

running a weak scaling experiment, was taken. On the Cavium, the best perfor-

mance results were obtained by splitting the domain into 16 MPI ranks with 6

OmpSs threads, per node. On the Cray XC40, the domain is divided into 8 MPI

ranks with 3 OmpSs threads, per node. The different configurations are evaluated

in chapter 7.3.2, and the selected configuration achieves the best overall perfor-

mance. With this configuration, the benchmark was executed and four figures,

representing the output in different views, were generated.

1) “MLUPs / node” (Figure 7.18) shows a weak scaling experiment running on

the target systems. In this benchmark, the Cray XC40 outperformed the Cav-

ium ThunderX when comparing node by node. On both systems, the hybrid

OmpSs/MPI version of LBC performs better than the pure MPI version.

2) “MLUPs / GFLOs (peak)” (Figure 7.19) sets the MLUPs in relation to the

peak performance of the system. For the Cavium system, the peak performance

Chapter 7. Case Study: Performance Debugging 88

69.86
78.48

61.52
73.73

110.20

80.62
92.43

79.50

140.00
129.79 128.24 123.14

157.54 156.06 156.21 151.13

-5

15

35

55

75

95

115

135

155

175

1	node 2	nodes 3	nodes 4	nodes

M
LU

Ps
	/	
N
od

e

Cavium	MPI Cavium	OmpSs Hazel	Hen	MPI Hazel	Hen	OmpSs

Figure 7.18: shows a weak scaling experiment running on the target systems.

0.20
0.23

0.18

0.21

0.32

0.23
0.27

0.23

0.15 0.14 0.13 0.13

0.16 0.16 0.16 0.16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1	node 2	nodes 3	nodes 4	nodes

M
LU

Ps
	/	
GF

LO
Ps
		

Cavium	MPI Cavium	OmpSs Hazel	Hen	MPI Hazel	Hen	OmpSs

Figure 7.19: sets the MLUPs in relation to the peak performance of the system
(Cavium: 345 GFLOPs, XC40: 960 GFLOPs).

1.00
1.12

0.88

1.05

1.57

1.15

1.32

1.14
1.24

1.15 1.13 1.09

1.39 1.38 1.38 1.34

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1	node 2	nodes 3	nodes 4	nodes

M
LU

Ps
	/	
GB

s

Cavium	MPI Cavium	OmpSs Hazel	Hen	MPI Hazel	Hen	OmpSs

Figure 7.20: sets the MLUPs in relation to the measurable memory bandwidth
(Cavium: 70 GBs, XC40: 113 GBs).

is around 345 GFLOPs. The XC40 has a peak performance of 920 GLOPs.

3) “MLUPs / GBs (stream)” (Figure 7.20) sets the MLUPs in relation to the

measurable memory bandwidth (measured with the stream benchmark). For the

Cavium system the bandwidth is around 70 GBs. The XC40 maximum bandwidth

is around 113 GBs.

4) “Fraction of Peak Performance” (Figure 7.21) shows the percentage of peak

performance the application reaches on the target platform. As theoretical peak

Chapter 7. Case Study: Performance Debugging 89

5.
16

%

5.
80

%

4.
55

%

5.
45

%

8.
15

%

5.
96

%

6.
83

%

5.
88

%

3.
72

%

3.
45

%

3.
41

%

3.
27

%

4.
18

%

4.
15

%

4.
15

%

4.
01

%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

1	node 2	nodes 3	nodes 4	nodes

Fr
ac
tio

n	
of
	P
ea
k	
Pe

rf
or
m
an

ce

Cavium	MPI Cavium	OmpSs Hazel	Hen	MPI Hazel	Hen	OmpSs

Figure 7.21: shows the fraction of peak performance the application reaches
on the target platform.

performance for the Cavium ThunderX system 345 GFLOPs are used, and 960

GFLOPS for the Cray XC40. The GFLOPs for LBC can be calculated according

to the relation 255 FLOP/LUP. Normalising the result to the theoretical peak

performance shows a big benefit for the Cavium ThunderX system and especially

the hybrid OmpSs/MPI version gains a lot from the architecture.

7.4 Use Case Conclusion

In general, the application efficiency in case of parallel performance, results in a

complex dependency graph. Verifying such dependency implementations is diffi-

cult without tools like Temanejo, supporting the developer in his actions. Also

Temanejo was used for tuning the performance by monitoring the data locality

of the tasks. Nevertheless, these results could only be achieved by tuning the ap-

plication a lot and splitting the domain into several sub-domains. In particular,

on both systems, we had to fine-tune the number of MPI processes and OmpSs

threads. Running naively with one MPI process per node (or per NUMA domain)

did not achieve high performance for the hybrid OmpSs/MPI version. This indi-

cates, that data-locality on NUMA architectures, which is the main performance

issue of LBC, are still not well handled by the OmpSs runtime, at least not with

the combination of data-layout and dependencies as present in LBC. In case of

system utilisation, the LBC code is running more efficient on the Cavium Thun-

derX system than on the Cray XC40, but in case of MLUPs or time to solution,

the Cray XC40 is around a factor of 2, for one node, faster than the Cavium

ThunderX. For four nodes the factor for pure MPI is around 1.6. Comparing the

Chapter 7. Case Study: Performance Debugging 90

OmpSs implementation for one node, the factor is around 1.4, and for four nodes

the Cray XC40 is by the factor of 1.9 faster than the Cavium ThunderX.

Chapter 8

Conclusions & Open research

topics

In this chapter I try to formulate some conclusions and give an overview about

open research topics in the future. The chapter is split up into two section. First,

I will give a conclusion about Ayudame, the tool’s back-end, and second, I will

briefly present some ideas continuing the presented work. The future work or open

research topics are mostly related to Temanejo, the tool’s front-end.

8.1 Discussion

Today’s HPC ecosystem is an evolving field and requires future debugging tech-

niques. The presented work shows a new approach, called Model-Centric debugging

for task-based programming models. The idea and design of such an approach is

pointed out in the Temanejo toolchain. The different programming models and

their characteristics were briefly introduced. These characteristics are relevant for

connecting Temanejo to the programming models. As mentioned, Temanejo

consists of an back-end, called Ayudame, and a front-end, which gives the tool its

name. In the context of the presented work I only payed attention to the design

of the back-end library, including a clear and generic interface for an easy adop-

tion. The connection between a programming model and Temanejo is based on

an generic designed event & request system. For the most common programming

models OpenMP, MPI and OmpSs the work shortly describes the characteristics

and the way how the instrumentation is done.

91

Chapter 8. Conclusions & Open research topics 92

Temanejo has to fulfil demands essential for HPC. Therefore, the following design

requirements have to be met:

� The possibility of scaling across multiple nodes. In the chapter 5.5 the issues

for a scalable back-end library are described. A solution for solving these

issues is explained in chapter 5.5.1. Basically, Temanejo uses multi-level

communication tree connecting the different Ayudame instances. In this

communication tree some Ayudame instances get additional functionally

and only one instance is directly connected to the front-end.

� The handling of multiple programming models at the same time based on a

flexible design is also necessary. For every programming model an specialised

Event Handlers can be created. This Event Handlers takes care of the

special needs for a given runtime. In chapter 5.4.1 different designed Event

Handlers and their specialities are described. The OMPT Event Handlers,

for example, provides the necessary function for OMPT. The OMPT Event

Handlers takes care about the communication tree initialisation. The OmpSs

Event Handlers implements TCA for controlling the runtime.

� The unique identification of events and requests in a distributed application

is also an requirement. The solution therefor was to combine several identi-

fiers. To make the identifier unique Temanejo uses three distinct IDs, the

MPI rank, the process ID and an ID for every programming model inside a

process. This concept is briefly described in the chapter 5.6.2.

8.1.1 Evaluation of the design

The design of Temanejo is evaluated in a performance improvement case study.

The case study shows the productive usage of Model-Centric debugging, in par-

ticular performance debugging, and the benefits an application developer could

gain. In this case study several sub-steps with their optimisations are described

in detail. Getting the best performance out of a given application needs a funda-

mental knowledge about the application and the used programming models. Even

with the usage of a Model-Centric debugging tool developing such an application

is a complex undertaking. As a use case I took the LBC application. The first

implemented version of LBC follows the fork/join paradigm, this version blocks

Chapter 8. Conclusions & Open research topics 93

the communication until the computation is done. With Temanejo the depen-

dency graph, of the Fork/Join version was analysed and the bottleneck identified.

The second version solves the identified issue and is named Comm hiding. The

goal of this version was to overlap communication and computation by rearranging

dependencies between tasks. Again Temanejo was used to check the correctness

of the dependency graph. A third version Iteration overlap got also explored,

which aimed at overlapping computation and communication of two consecutive

time-steps.

8.2 Open research topics

The main part of this thesis was the design of the back-end library, most of the

future work has to be done inside the graphical debugger’s front-end. Ayudame

can handle most necessary cases (hybrid programming models, distributed envi-

ronment, nested models or tasks, etc.). Temanejo was prototyped besides this

thesis, but is only supporting basic functionality. Meaningfully visualising all

these things in a graphical tool isn’t a straight forward implementation. The ac-

tual performance for rendering and analysing the dependency graph is sluggish.

In addition there are some features necessary in the future:

� Known limitation in Ayudame.

The generic interface showed a big advantage for transferring the events

& requests between Temanejo & Ayudame. In case of performance it

would be better to create the Intern Event objects only if it is necessary,

otherwise they could be kept as bytes. For routing the events & requests to

their destination, it is sufficient to know the unique ID and maybe the event

type. The transferred data are only relevant at their destination. Changing

the internal design would lead to a performance improvement inside the

backend-library.

� On demand forwarding of events.

At the moment, every message is transferred directly to Temanejo, but

in a scaling environment the amount of transferred data will dramatically

increase. Therefore, a future work package has to care about remote data

storage, where only necessary information (Chapter 4.2.1) has to be pro-

cessed in the front-end. All additional information (Chapter 4.2.2) can then

Chapter 8. Conclusions & Open research topics 94

be requested by Temanejo. But even then information can be filtered, if

the dependency graph is nested inside another graph and is not needed in

the current visualisation view. This will decrease the memory needed at the

node Temanejo is running on.

� Reducing the complexity of the visual representation.

In a hybrid environment the visualisation can get overcrowded. Therefore,

collapsing graphs, containing identical information, is a necessary technique

and will help solving this issue. For example such a collapsible graph could

be a nested sub-graph, which looks the same on ever MPI rank. For an

application developer it is only interesting to see abnormal behaviour, which

could lead to a different looking graph.

� Performance of the front-end.

As for now, the performance of the actual implementation of Temanejo

is sluggish. This is mostly related to the treatment of threads and locks

inside Python (global interpreter lock). Therefore, I propose a Temanejo

implementation based on QT and C++. Especially the layout routine has

to be re-implemented and simplified. With this reimplementation the layout

routine has to be adapted to support the layout of nested graphs, which is,

at the moment, implemented as proof of concept without a clear design.

Appendix A

Appendix

A.1 Hardware Technology

A.1.1 Non-uniform memory access

Processor 1 Processor 2

Processor 3 Processor 4

Figure A.1: Ring

Processor 1 Processor 2

Processor 3 Processor 4

Figure A.2: Cross link

Non-uniform memory access, or short NUMA, is a memory design for multicore

systems. In a NUMA system, every processor has his local memory, but can access

the memory of every other processor in the system through a global address space.

95

Chapter A. Appendix 96

0 2 4 6 8 10 12 14 16

270

280

290

Cores

B
an

d
w

id
th

Figure A.3: Memory bandwidth 4 socket system with 4 cores per socket. In
this system no cross link available and therefore a second stage performance

drop is measurable

0 5 10 15 20 25 30 35

360

380

Cores

B
an

d
w

id
th

Figure A.4: Memory bandwidth 4 socket system with 6 cores per socket. In
this system a cross link available and therefore no second stage performance

drop is measurable

Data locality, therefore, impacts the memory latency and bandwidth. Accessing

an address region placed in another NUMA domain increases the latency and de-

creases the bandwidth. In Figure A.1, every memory access to a non directly

connected processor causes an additional increase of latency and bandwidth. This

issue is solved by an extra link between the two sockets (processors) in Figure A.2.

Figures A.3 and A.4 show the benchmark results for two different NUMA systems.

The architecture illustrated in Figure A.3 has no cross-link attached. In contrast,

Figure A.4 shows the attached cross-link and therefore, no second performance

drop is measurable. In addition, a basic system configuration is shown in Fig-

ure A.6, there are two sockets connected with each other through an interconnect.

But each of them has its own memory. The table in Figure A.5 shows some of the

NUMA systems placed at HLRS. For two of those non-uniform memory systems,

Chapter A. Appendix 97

Generation CPU Sockets Threads
per
Socket

NUMA Memory Systems @
HLRS

Interlagos
November
2011

AMD
Opteron
6238
@2.60GHz

4 12 8 DDR3 @
1600MHz

Laki
Interlagos
Figure A.7

Nehalem EP
March
2009

Intel Xeon
X5560
@2.80GHz

2 8 2 DDR3 @
1333MHz

Laki
Nehalem

Nehalem EX
March
2010

Intel Xeon
x7542
@2.67GHz

8 6 8 DDR3 @
1066MHz

Laki
smp
Figure A.8

Sandy Bridge
EP
March
2012

Intel Xeon
E5-2670
@2.60GHz

2 16 2 DDR3 @
1600MHz

Laki
Sandy
Bridge

Haswell EP
September
2014

Intel Xeon
E5-2660v3
@2.60GHz

2 20 2 DDR4 @
2133MHz

Laki
Haswell

Ivy Bridge
EP
September
2013

Intel Xeon
E5-2580v2
@2.80GHz

2 20 2 DDR3 @
1866MHz

TheoSIM

Haswell EP
September
2014

Intel Xeon
E5-2680v3
@2.60GHz

2 24 2 DDR4 @
2133MHz

Hazel Hen

Figure A.5: Non-Uniform Memory Systems @ HLRS

Figure A.6: Two socket architecture. Each socket has its own Memory

a detailed view of the node’s architecture is attached. Figure A.7 shows the laki

Interlagos architecture, and Figure A.8 shows the laki smp architecture. In reality,

the NUMA diversity and variety is too complex to be handled by an application

developer. In modern CPUs, we can find two or even more rings, inside a socket,

each of them connected to its memory controllers. This introduces an additional

Chapter A. Appendix 98

Figure A.7: Interlagos architecture.

Figure A.8: Nehalem EX architecture.

level of complexity to the non-uniform memory access.

A.1.2 Memory layers

2)The hardware in high-performance computing systems is getting more and more

complex, this increasing complexity is also visible in other computer systems.

Also, the complexity of the different memory layers inside a node has increased in

today’s hardware. In the area of memory layers, there are different cache levels:

Chapter A. Appendix 99

level 1 cache, level 2 cache, level 3 cache and maybe level 4 cache. Behind these

cache levels the DRAM, High Bandwidth Memory (HBM), Hybrid Memory Cube

(HMC) and Non-volatile Memory (NVM) like NVRAM is placed. NVRAM, for

example, needs a special function call, nv alloc() instead of a alloc(), to allocate

memory. Finally, there are discs (I/O) which can be separated into several levels

(Buffer, SSD, HDD, tape storage).

A.1.3 Distributed memory

Particularly in the high-performance computing field, where applications run across

several nodes, the application developer has to think about shared and distributed

memory systems. In addition to the circumstances associated with the intra-node

hardware architecture, the complexity can be increased by adding the internode

communication to the overall system design. This increases the levels of com-

plexity by one or multiple layers, depending on the network infrastructure and

topology (3D Torus, dragonfly, etc.).

A.1.4 Heterogeneous systems

Another aspect of the increasing hardware complexity is the heterogeneity of to-

day’s and future hardware. One future trend is the usage of big and little cores or

specialised cores for specific operations. This could be, for example cores, running

the operation system (OS) or cores handling network communication, e.g. big and

little cores, CPGPU, FPGA and SPARK 2.

A.1.5 Knights Landing

Looking at the actual hardware technology from Intel, the Knights Landing there

are three different memory mode’s: Cached Mode, Flat Mode, and Hybrid Mode.

These three memory modes can be combined with the four different clustering

modes: All-to-All, Quadrant, Hemisphere, SNC (sub-NUMA cluster modes)-4 and

SNC-2. The application developer cannot change these mode’s, but depending on

the application the configuration will impact the performance.

Bibliography

[1] TOP500 Authors. Top500 the list june 2016. URL https://www.top500.

org/lists/2016/06/.

[2] DAVID B. SKILLICORN. Models and languages for parallel computation.

1998. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.28.1801&rep=rep1&type=pdf.

[3] Ingo Molnar. The native posix thread library for linux. Technical report,

Tech. Rep., RedHat, Inc, 2003.

[4] Kevin Pouget, Patricia López Cueva, Miguel Santana, and Jean-François

Méhaut. Interactive Debugging of Dynamic Dataflow Embedded Applica-

tions. In Proceedings of the 18th International Workshop on High-Level Paral-

lel Programming Models and Supportive Environments (HIPS), Boston, Mas-

sachusetts, USA, may 2013. Held in conjunction of IPDPS.

[5] The OpenMP Architecture Review Board. The openmp® api specification

for parallel programming. URL http://http://openmp.org/.

[6] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for

shared-memory programming. Computational Science & Engineering, IEEE,

5(1):46–55, 1998.

[7] Barcelona Supercomputing Center. Programming models @ bsc boosting

parallel computing research since 1989. URL https://pm.bsc.es/ompss.

[8] J.M. Perez, R.M. Badia, and J. Labarta. A dependency-aware task-based

programming environment for multi-core architectures. In Cluster Computing,

2008 IEEE International Conference on, pages 142–151, Sept 2008. doi: 10.

1109/CLUSTR.2008.4663765.

101

https://www.top500.org/lists/2016/06/
https://www.top500.org/lists/2016/06/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.1801&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.1801&rep=rep1&type=pdf
http://http://openmp.org/
https://pm.bsc.es/ompss

Bibliography 102

[9] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis

Martinell, Xavier Martorell, and Judit Planas. Ompss: A proposal for pro-

gramming heterogeneous multi-core architectures. Parallel Processing Let-

ters, 21(02):173–193, 2011. doi: 10.1142/S0129626411000151. URL http:

//www.worldscientific.com/doi/abs/10.1142/S0129626411000151.

[10] Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran, Marc Gonza-

lez, Xavier Martorell, Rosa M. Badia, Eduard Ayguade, and Jesus Labarta.

Optimizing the exploitation of multicore processors and gpus with openmp

and opencl. In Proceedings of the 23rd International Conference on Lan-

guages and Compilers for Parallel Computing, LCPC’10, pages 215–229,

Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-19594-5. URL

http://dl.acm.org/citation.cfm?id=1964536.1964551.

[11] Inventeurs du monde numérique. Starpu is a task programming library for

hybrid architectures. URL http://starpu.gforge.inria.fr.

[12] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André;

Wacrenier. Starpu: A unified platform for task scheduling on heterogeneous

multicore architectures. Concurr. Comput. : Pract. Exper., 23(2):187–198,

feb 2011. ISSN 1532-0626. doi: 10.1002/cpe.1631. URL http://dx.doi.

org/10.1002/cpe.1631.

[13] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André

Wacrenier. Starpu: A unified platform for task scheduling on hetero-

geneous multicore architectures. In Proceedings of the 15th International

Euro-Par Conference on Parallel Processing, Euro-Par ’09, pages 863–

874, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03868-6.

doi: 10.1007/978-3-642-03869-3 80. URL http://dx.doi.org/10.1007/

978-3-642-03869-3_80.

[14] Kamran Idrees, Mathias Nachtmann, and Colin W Glass. Evaluation of fast-

flow technology for real-world application. In Sustained Simulation Perfor-

mance 2013, pages 77–88. Springer, 2013.

[15] StarPU consortium. Starpu handbook. URL http://starpu.gforge.inria.

fr/doc/starpu.pdf.

[16] Swig. Swig. URL http://www.swig.org/.

http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
http://dl.acm.org/citation.cfm?id=1964536.1964551
http://starpu.gforge.inria.fr
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://starpu.gforge.inria.fr/doc/starpu.pdf
http://starpu.gforge.inria.fr/doc/starpu.pdf
http://www.swig.org/

Bibliography 103

[17] Rainer Keller, Steffen Brinkmann, José Gracia, and Christoph Nietham-

mer. Temanejo: Debugging of thread-based task-parallel programs in

starss. In Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and

Michael M. Resch, editors, Tools for High Performance Computing 2011,

pages 131–137. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31475-

9. doi: 10.1007/978-3-642-31476-6 11. URL http://dx.doi.org/10.1007/

978-3-642-31476-6_11.

[18] Steffen Brinkmann, José Gracia, and Christoph Niethammer. Task debug-

ging with temanejo. In Alexey Cheptsov, Steffen Brinkmann, José Gracia,

Michael M. Resch, and Wolfgang E. Nagel, editors, Tools for High Per-

formance Computing 2012, pages 13–21. Springer Berlin Heidelberg, 2013.

ISBN 978-3-642-37348-0. doi: 10.1007/978-3-642-37349-7 2. URL http:

//dx.doi.org/10.1007/978-3-642-37349-7_2.

[19] Christoph Niethammer Steffen Brinkmann, José Gracia and Rainer Keller.

TEMANEJO - a debugger for task based parallel programming models.

CoRR, abs/1112.4604, 2011. URL http://arxiv.org/abs/1112.4604.

[20] Allinea. Allinea ddt: The debugger for c, c++ and f90 threaded and parallel

code. URL http://www.allinea.com/.

[21] Gnu Project. Gdb, the gnu debugger. URL http://www.gnu.org/

software/.

[22] UPC. Unified parallel c (upc). URL http://www.allinea.com/.

[23] RogueWave. Faster fault isolation, improved memory optimization, and

dynamic visualization for your high performance computing apps. URL

http://www.roguewave.com/.

[24] Kevin Pouget. Programming-model centric debugging for multicore embedded

systems. 2014. URL https://tel.archives-ouvertes.fr/tel-01010061/

file/these.pdf.

[25] J. Protze, T. Hilbrich, M. Schulz, B. R. d. Supinski, W. E. Nagel, and M. S.

Mueller. Mpi runtime error detection with must: A scalable and crash-safe ap-

proach. In 2014 43rd International Conference on Parallel Processing Work-

shops, pages 206–215, Sept 2014. doi: 10.1109/ICPPW.2014.37.

http://dx.doi.org/10.1007/978-3-642-31476-6_11
http://dx.doi.org/10.1007/978-3-642-31476-6_11
http://dx.doi.org/10.1007/978-3-642-37349-7_2
http://dx.doi.org/10.1007/978-3-642-37349-7_2
http://arxiv.org/abs/1112.4604
http://www.allinea.com/
http://www.gnu.org/software/
http://www.gnu.org/software/
http://www.allinea.com/
http://www.roguewave.com/
https://tel.archives-ouvertes.fr/tel-01010061/file/these.pdf
https://tel.archives-ouvertes.fr/tel-01010061/file/these.pdf

Bibliography 104

[26] Libevent is maintained by Nick Mathewson and Niels Provos. libevent – an

event notification library. URL http://libevent.org/.

[27] Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Nawal Copty,

Jim Cownie, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz.

Openmp technical report 2 on the ompt interface. URL http://openmp.

org/mp-documents/ompt-tr2.pdf.

[28] Mathias Nachtmann and José Gracia. Enabling model-centric debugging for

task-based programming models – a tasking control interface. In Andreas

Knüpfer, Tobias Hilbrich, Christoph Niethammer, José Gracia, Wolfgang E.

Nagel, and Michael M. Resch, editors, Tools for High Performance Computing

2015, Proceedings of the 9th International Workshop on Parallel Tools for

High Performance Computing, September 2015, Dresden, Germany, pages

147–160. Springer, 2016.

[29] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, and Mateo Valero.

Overlapping communication and computation by using a hybrid mpi/smpss

approach. In Proceedings of the 24th acm International Conference on Super-

computing, pages 5–16. ACM, 2010.

[30] Marjanović. The mpi/ompss parallel programming model. 2015. URL https:

//upcommons.upc.edu/bitstream/handle/2117/98109/TVM1de1.pdf.

http://libevent.org/
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
https://upcommons.upc.edu/bitstream/handle/2117/98109/TVM1de1.pdf
https://upcommons.upc.edu/bitstream/handle/2117/98109/TVM1de1.pdf

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation and Goal
	1.2 Programming Model
	1.3 Traditional versus Model-Centric Debugging
	1.4 Model-Centric Debugging for Task-Based Programming Models
	1.5 Performance Relevance for Model-Centric Debugging
	1.6 Performance Debugging as Case Study
	1.7 Outline of the Thesis

	2 Technical Background: Parallel Programming Models & Tools
	2.1 Programming Model Overview
	2.2 OpenMP: Open Multi-Processing
	2.3 OmpSs: OpenMP SuperScalar
	2.4 StarPU
	2.5 MPI: Message Passing Interface
	2.6 Hybrid Programming Models
	2.7 Temanejo

	3 Related Work
	3.1 Ayudame
	3.2 Traditional Debugging tools
	3.2.1 DDT
	3.2.2 Totalview

	3.3 Programming-Model-Centric Debugging for multicore embedded systems

	4 Design: Events & Requests in Ayudame
	4.1 Introduction
	4.2 Events in Ayudame
	4.2.1 Mandatory Information
	4.2.2 Additional Information
	4.2.3 Interfaces for C and C++

	4.3 Requests in Ayudame

	5 Design: Communication Back-end Ayudame
	5.1 Introduction
	5.2 Motivation
	5.3 Runtime Monitoring and Controlling
	5.4 Ayudame internals
	5.4.1 Event Handler for specific programming models
	5.4.2 Connect Handler
	5.4.3 Ayu Socket
	5.4.4 Intern Event

	5.5 Multi process node environment
	5.5.1 Connection tree

	5.6 Identification and Information routing
	5.6.1 Routing events and requests
	5.6.2 Unique ID

	5.7 MPI Matcher

	6 Instrumentation of Runtime Systems
	6.1 Introduction
	6.2 Monitoring
	6.2.1 OmpSs instrumentation
	6.2.2 OpenMP Tools Application Programming Interfaces for Performance Analysis and Debugging - OMPT

	6.3 Controlling
	6.3.1 Tasking Control API - TCA

	6.4 Simple Stepper

	7 Case Study: Performance Debugging
	7.1 Introduction
	7.2 Optimization
	7.2.1 Fork Join
	7.2.2 Communication hiding
	7.2.3 Communication Overlap
	7.2.4 Iteration Overlap

	7.3 Performance Evaluation
	7.3.1 Evaluation Platform
	7.3.2 Tuning of number of OmpSs workers and process placement
	7.3.3 Benchmark on Hazel Hen
	7.3.4 Benchmark on the Mont-Blanc prototype
	7.3.5 Comparing the Cavium ThunderX with the Cray XC40

	7.4 Use Case Conclusion

	8 Conclusions & Open research topics
	8.1 Discussion
	8.1.1 Evaluation of the design

	8.2 Open research topics

	A Appendix
	A.1 Hardware Technology
	A.1.1 Non-uniform memory access
	A.1.2 Memory layers
	A.1.3 Distributed memory
	A.1.4 Heterogeneous systems
	A.1.5 Knights Landing

	Bibliography

