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Abstract
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat
transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study,
experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger
(PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different
Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration,
the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have
attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the
volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well
as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the
volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.

Nomenclature
C Heat capacity rate kJ/K.s.
cp Specific heat, kJ/kg.K.
D Diameter of the port, m.
G Mass velocity, kg/s.
h Heat transfer coefficient, W/m2K.

k Plate thermal conductivity, W/m K.
L Port to port length, m.
ṁ Mass flow rate, kg/s.
N Number of channel.
NTU Number of heat transfer units.
Q Heat transfer rate.
q Actual heat transfer rate.
T Temperature, K.
t Thickness of the plate, m.
U Overall heat transfer

coefficient, W/m2 K.
w Effective width of plate, m.
ΔP Pressure drop, Pa.

Greek symbols
ε Heat exchanger effectiveness.
ρ Density, kg/m3.
Ø Volume fraction.

Subscripts
b Base fluid.
c Cold.
eff Effective.
h Hot.
nf Nanofluid.
o Outlet.
p Nanoparticle.
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Dimensionless numbers
Nu Nusselt number.
Pr Prandtl number.
Re Reynolds number.

1 Introduction

The rapid improvements in the past five decades in engineering
technology related to fossil and nuclear energy, electric power
generation and electronic chips cooling have resulted in accel-
eration in various subjects associated with heat transfer. Among
such subjects is how the numerous engineering systems can
cope with problems related to heat transfer improvement in
corrugated plate heat exchangers (PHEs). Usually PHEs are
broadly used in several engineering applications for their com-
pactness, high thermal efficiency and suitability in variable load
aswell as ease and flexibility of sanitation. A PHE has attractive
features consisting higher surface area due to corrugated chan-
nel and mixes the flow field well resulting in an increase in heat
transfer. Likewise, PHEs have the flexibility for increasing or
decreasing the thermal size (i.e., number of plates) according to
heat load requirements. Furthermore, it can be easily
disassembled for cleaning, which is important for some cases
with strict hygienic constraints, such as pharmaceutical and
food processing industries. The PHE performance during the
flow degradation is one of the significant subjects that have
been incorporated recently [1]. The heat transfer is required to
meet the rising demand for higher energy density. This can be
accomplished by using fluids with better thermos-physical
properties. Nanofluids are relatively fluids with nanometre
sized solid particles suspended in a base fluid like water, oil
or ethylene glycol. Nanofluids were first invented by Choi
[2]. The enhancement of heat transfer using nanofluids is pos-
sibly affected by different mechanisms, such as Brownian mo-
tion, dispersion of the suspended particles, thermophoresis,
diffuseo-phoresis, forming a common boundary at the liquid/
solid and ballistic phonon transport [3]. Consequently, the size
of the equipment reduction might lead to reduction in expenses
and enhancement of the efficiency of heat transfer systems [3].

Extensive research has been carried out previously on the
heat transfer characteristics of PHEs experimentally with dif-
ferent chevron angles, herringbone types, etc. [4–7]. However,
most of the research has been done on PHEs using conven-
tional fluids, such as water, ethylene glycol as a heat transfer
fluid. Unfortunately, conventional fluids have low heat trans-
fer performance. Thus in order to get the required heat transfer
performance, enhancement of thermal capability of working
fluid is essential. In addition, high compactness and effective-
ness of heat transfer systems is also important. Pantzali et al.
[8] experimentally studied the efficacy of water based CuO
nanofluid with 4 vol.% of nanoparticles as coolants in a

commercial PHE. They have reported that the nature of cool-
ant flow inside the heat exchanger equipment plays a signifi-
cant role in the effectiveness of nanofluid. On the other hand,
Kwon et al. [9] analysed the heat transfer performance and
pressure drop of Al2O3 and ZnO nanofluids in a PHE. Their
investigation concluded that the performance of the PHE at a
given flow rate did not increase much when using these
nanofluids. Eastman et al. [10] found that the effective thermal
conductivity for EG (ethylene glycol) based CuO nanofluid
with 0.3% volume concentration is about 40% higher in com-
parison with base fluid. This indicates that there is room for
improvement on heat transfer for commercial purposes. Vajjha
and Das [11] used aluminium oxide nanofluids in their study
and found that the thermal conductivity increases as the square
of the temperature. For example, at 6% particle volume con-
centration, a raise of 21% thermal conductivity was achieved
with the increase in temperature from 298K to 363 K. Yu et al.
[12] studied EG based water nanofluid and concluded that the
thermal conductivity mainly depends on the temperature of
the fluid because of the higher degree of Brownian motion.
Another study was carried out by Godson et al. [13] for the
effect of particle material and it was found that the enhance-
ment of thermal conductivity was superior for metal particles
nanofluid than metal oxide nanofluids. For instance, at 5%
volume concentration, the metal oxide nanofluid had thermal
conductivity up to 30%. However, for a volume concentration
less than 1.5% of the metal particle nanofluid, improvement in
thermal conductivity up to 40% was reported. Lee et al. [14]
investigated oxide nanoparticle, such as Al2O3-water, Al2O3-
EG, CuO-water and CuO-EG. The thermal conductivity of the
nanofluids was measured by a transient hot wire method and it
was found that the EG based nanofluid indicated a higher
thermal conductivity than the water based nanofluid.
Analytical investigation showed that the heat transfer en-
hancement was found for various heat exchangers using
nanofluids with the minimum penalty of pressure drop [13,
15, 16, 17].

The experimental results of the heat transfer and the pres-
sure drop for PHE has very limited literature on it because
most of the research has been done through tubes with con-
stant heat flux or temperature. Tiwari et al. [18] experimental-
ly investigated the water based CeO2 nanofluid in a PHE and
found 39% higher heat transfer coefficient compared to water.
Most of the research was done by numerically simulating
water as a transfer fluid. Huang et al. [19] considered only
single corrugation angle (i.e. 65°) in their study. However,
our main focus is to investigate the heat transfer and pressure
drop characteristics of a corrugated PHE for 30° and 60° chev-
ron angles using water based Al2O3 nanofluid. In this study,
water based Al2O3 nanofluid was chosen due to it’s reasonable
cost and excellent thermos-physical properties. To the best of
the authors’ knowledge, no experimental work on the heat
transfer performance and pressure drop characteristics of a
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corrugated PHE for 30° and 60° chevron angles using water
based Al2O3 nanofluid was found in literature. Therefore, it is
expected that this paper can be a new contribution for the
aforementioned issues. It was also observed that there are
discrepancies exist among different experimental data avail-
able in the literature. Therefore, more studies are needed on
this to draw a conclusion on the findings with the usage of
nanofluids in heat exchangers.

2 Experimental procedure and facility

An experimental set up to investigate the heat transfer and pres-
sure drop characteristics of the corrugated PHE under different
nanoparticle volume concentrations is described in this section.
The actual plate of the heat exchanger is shown in Fig. 1.

The schematic diagram and the experimental set up of the
PHE is illustrated in Fig. 2 and a photograph of the actual
system is shown in Fig. 3.

The experiments were carried out using a commercial chev-
ron type (30° and 60°) PHE made from AISI 316 steel. The
surface enlargement factor for all the plates were 1.117. Six
plates were installed providing five fluid streams (3 cold, 2
hot) in a counter flow arrangement. The experimental set up
comprises cold and hot loops. The experimental setup was con-
trolled by A PLC system. A hot water tank with a very high
precision heater was used to control the inlet temperature of the
hot fluid with an accuracy of ±0.1 °C. The flow rate was adjusted
for each run in the PHE to keep the same Reynolds number in
both sides. The hot and cold fluids were circulated by a centrif-
ugal 3-stage pump (220/50 Hz, flow range 0.5 to 28 m3/h and
maximum pressure 10 bar) through the PHE. Sufficient amount
of time was given to achieve steady state conditions before

taking the experimental data. The pressure transducer and ther-
mocouple were placed between the inlet and outlet of the PHE
for hot and cold fluids, respectively. The hot fluid flow rate was
maintained at 3 L/min. The values for the pressure, the temper-
ature and the flow rate of the PHE were taken from the PLC to
determine the convection heat transfer coefficient, the heat trans-
fer rate and the overall heat transfer coefficient. The PHE was
arranged in a single pass arrangement and can be changed with-
out disturbing the external piping. The inlet and outlet ports were
on opposite sides allowing a counter flow mechanism between
two fluid streams. Tables 1 and 2 shows the instruments used for
the experimental set up and some geometrical characteristics of
the chevron plates, respectively.

2.1 Preparation of nanofluid

In this experiment, the Al2O3 nanoparticles were suspended
with a base fluid to form the water based Al2O3 nanofluid. The
average size of the aluminium oxide (Al2O3) spherical nano-
particles used in the experiments was 30 nm. The nanofluids
were prepared by a two-step method without adding any sur-
factant. Nanoparticles were added into the base fluid and then
sonicated by an ultrasonic machine for 60 min to prepare the
nanofluid. Three volume fractions of the nanofluid, ranging
from 0.1% to 0.5% of nanoparticles were prepared during the
experimental investigation. In order to obtain a good quality
of data, the nanofluids were freshly prepared before the exper-
iment for each test to prevent any sedimentation. It is known
that both the thermos-physical properties and stability of the
suspension mainly depend on the volume fraction, shape, size
as well as the thermos-physical properties of the nanoparticles
and the base fluid [20]. The volume fraction of the nanofluid
was calculated using the following Equation:

φ ¼
mp

ρp
mp

ρp
þ mb

ρb

ð1Þ

2.2 Measurement of thermos-physical properties
of nanofluid

2.2.1 Thermal conductivity

The thermal conductivity of nanofluid for different concentra-
tion were determined using KD2-Pro (made by Decagon,
USA) thermal properties analyser with an accuracy of ±0.1.
The sample with a container was put into the temperature
controlled bath and temperature of the sample was measured
by a thermocouple. The thermal conductivity was measured
for different temperature ranging from 25 °C to 55 °C with
5 °C interval.Fig. 1 Heat exchanger plate (a) 60° and (b) 30°
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2.2.2 Density

A portable density meter (KEM-DA 130 N, made by Japan)
was used to measure the density of nanofluid. This device can
measure the density within the range of 0 to 2000 kg/m3 with
the precision of ±0.001 kg/m3. The density was measured
within the temperature range of 25 °C to 55 °C.

2.2.3 Viscosity

A Brookfield programmable viscometer (model: LVDV-III
ultra) was used to measure the viscosity of the nanofluids
within the temperature range of 25 °C to 55 °Cwith an interval
of 5 °C. The viscosity in the range of 1 to 6,000,000 MPa.s
was measured using this instrument with the aid of an Ultra
low adapter (ULA). In this experiment, the spindle (model
ULA-49EAY, spindle code 01) is connected with the viscom-
eter and submerged into the nanofluids.

2.2.4 Specific heat

Specific heat was measured using a differential scanning cal-
orimeter (model: DSC 4000, made by Perkin Elmer, USA) for
the different concentrations of nanoparticles. The measure-
ment of specific heat for different temperatures begins from
25 °C, and gradually increased to 55 °C with an interval of
5 °C.

2.3 Thermal performance of the heat exchanger

The heat transfer rate, the convective heat transfer coefficient,
and the overall heat transfer coefficient were estimated using
the following equations:

The mass flow rate was determined using Eq. (2).

m˙ ¼ ∀˙ � ρ ð2Þ

Fig. 2 Schematic diagram of the
experimental set up

Fig. 3 Photograph of the actual
experimental set up
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The heat removed by the hot fluid and the heat gained by the
cold fluid was determined using Eqs. (3) and (4), respectively.

Qh ¼ m˙ hcp;h Th;i−Th;o
� � ð3Þ

Qc ¼ Qnf ¼ m˙ nf cp;nf Tnf ;o−Tnf ;i
� � ð4Þ

The fluid properties for the cold and hot fluids were deter-
mined using Eqs. (5) and (6), respectively.

Tc ¼ Tnf ;i þ Tnf ;o

2
ð5Þ

Th ¼ Th;i þ Th;o

2
ð6Þ

The Reynolds number was determined using Eq. (7).

Re ¼ ṁDe

NAcμ
ð7Þ

The Nusselt number was obtained from Eq. (8).

Nuh ¼ 0:348Re0:663Pr0:33 ð8Þ

Gh ¼ ṁh

NbLw
ð9Þ

The channel mass velocity was determined using Eq. (9).
The convective heat transfer coefficient was calculated by

Eq. (10) .

h ¼ Nuk
De

ð10Þ

Where, the hydraulic diameter can be expressed by the Eq.
(11).

De ¼ 2b
ϕ

ð11Þ

The overall heat transfer coefficient of the nanofluid was
calculated using Eq. (12)

U ¼ 1
1

hc
þ 1

hh
þ δplate

kplate

ð12Þ

The heat capacity rates for the hot and cold fluids were
determined using Eqs. (13) and (14), respectively.

Ch ¼ cp;hm˙ h ð13Þ
Cc ¼ cp;nf m˙ nf ð14Þ

The effectiveness of the PHE was found from Eq. (15).

ε ¼
1−exp

h
−NTU 1−C*

� �
1−C*exp

h
−NTU 1−C*

� � ð15Þ

The maximum heat transfer rate was measured using Eq.
(16)

qmax ¼ Cmin Th;i−Tc;i
� � ð16Þ

q ¼ εqmax ð17Þ

The actual heat transfer rate of the PHEwas computed from
Eq. (17).

Table 2 Geometrical characteristics of the chevron plates tested in the
present study

Parameter Value

Plate width, Lw (mm) 178.66

Vertical distance between centre of ports, Lv(mm) 394

Port diameter, Dp (mm) 50

Horizontal distance between centre of ports, Lh (mm) 125.98

Corrugation depth or mean channel spacing, b (mm) 2.55 mm

Difference between plate pitch, p 2.90 mm

Plate thickness, t (mm) 0.5 mm

Corrugation pitch, Pc (mm) 14 mm (30°) and
13.5 mm (60°)

Surface enlargement factor, ϕ 1.117

Plate thermal conductivity 0.66 W/m.K

Corrugation angles 30° and 60°

Table 1 Instruments
used in the experimental
set up

No. Instrument name

1 Plate heat exchanger

2 Pressure transducer

3 Thermocouple

4 Flow meter

5 Water bath

6 Temperature controller

7 Heater

8 Hot tank

9 Cold tank

10 PLC and touch screen

Table 3 Uncertainties associated with the measured values

Parameter Uncertainties (%)

Hot fluid inlet and outlet temperature, Th, i ±0.2

Cold fluid inlet and outlet temperature, Tc, i ±0.2

Ambient temperature, Ta ±0.15

Hydraulic diameter, Dh ±2.0

Thermal conductivity measurements of nanofluid, Knf ±3.0

Density measurements of nanofluid, ρnf ±3.5

Viscosity measurements of nanofluid, μnf ±4.0

Specific heat measurements of nanofluid, Cp, nf ±4.5
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2.4 Experimental uncertainties

WR ¼ δR
δX 1

ω1

� �2

þ δR
δX 2

ω2

� �2

þ⋯⋯⋯þ δR
δX n

� �2
 !1=2

ð18Þ

The uncertainties associated with the measured values dur-
ing the experiment are presented in Table 3. The experimental
uncertainties were determined using Eq. 18 associated with
the related independent variables.

Where, R is the function of independent variables of X1,
X2…..Xn andω1,ω2……ωn. WR represents the uncertainty
of dependent variable.

3 Results and discussions

The thermos-physical properties of the nanofluids and the
base fluids are essential for the heat transfer analysis of the
PHE. For this reason, thermos-physical properties were
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measured experimentally and presented in Figure 4. It has
been found from Figure 4(a) that the thermal conductivity of
the nanofluid increased with the increase in the volume con-
centration and the temperature because of the movement of
particles during the temperature rise. For instance, the thermal
conductivity of the nanofluid at 0.5 vol.% concentration is
found 15.64% higher than that of the base fluid at 27 °C
whereas it is found 25.25% higher for 55 °C compared to
27 °C. In Fig. 4(b), the density of the base fluid decreased
by 1.8% with the increase in the temperature from 25 °C to
55 °C. However, the density increased with volume concen-
tration because of the dispersed nanoparticles in the fluid. It
can be seen in Fig. 4(c) that the viscosity of the water based
Al2O3 nanofluid is decreased by 27.05% when the tempera-
ture is increased from 25 °C to 55 °C at 0.5 vol.% concentra-
tion. When the temperature of any substance is increased,
there will be vigorous movement among the molecules. For
the higher movement of the molecules, the resistance to flow
of a material is decreased. In Fig. 4(d), the specific heat is
increased with increase in temperature. The trend of increase
deems constant and almost linear. However, the specific heat
is decreased with the increase in the volume concentration,

which is caused due to the lower specific heat of the nanopar-
ticles. In the following subsection, the heat transfer rate, the
overall heat transfer coefficient, the heat transfer coefficient
and the pressure drop were analysed for the PHE.

3.1 Overall heat transfer coefficient

The overall heat transfer coefficient of the PHE for different
chevron angles is portrayed in Fig. 5. In Fig. 5(a), an enhance-
ment of the overall heat transfer coefficient for 0.5 vol.% con-
centration was found 2%, 3.2% and 7.8% higher than
0.3 vol.%, 0.1 vol.% and water, respectively. In Fig. 5(b), an
increment of the overall heat transfer coefficient for 0.5 vol.%
concentration was achieved, whereby 1.5%, 2.3% and 6.64%
greater than 0.3 vol.%, 0.1 vol.% and water, respectively. Both
the cases, 60° chevron angle implements better overall heat
transfer coefficient than 30° chevron angle.

3.2 Heat transfer coefficient

The convective heat transfer coefficients in the PHE for
60° and 30° chevron plates is presented in Figure 6. Due
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to improved thermos-physical properties of the nanofluid,
the heat transfer coefficient was found to be increased
compared to the base fluid. By improving the heat transfer
coefficient, it is beneficial to the heat exchanger for better
thermal performance and energy efficiency. It can be ob-
served from Eq. (10) that the thermal conductivity plays a
vital role in enhancing the convective heat transfer coeffi-
cient. The heat transfer coefficient is also dependent on
the Reynolds number, which is increased with the increase
in the nanoparticle vol.% concentration. In Figure 6(a), an
enhancement of the heat transfer coefficient for 0.5 vol.%
concentration was found to be 3.3%, 5.8% and 15.4%
higher than 0.3 vol.%, 0.1 vol.% and water, respectively.
In Fig. 6(b), an augmentation of the heat transfer coeffi-
cient for 0.5 vol.% concentration was attained 15.3%
greater than water. It was observed that PHE with 60°
chevron angle performed better than 30° chevron angle
for every volume concentration along with the base fluid.
The present analysis was done using the heat transfer
coefficient with the Reynolds number. The similar trend
was found in a study of microchannel heat sink by
Chein and Chuang [21].

3.3 Heat transfer rate

Generally, the heat removed from the hot fluid and the heat
gained by the cold fluid should be equal. However, practically
it is not possible due to the heat loss in the heat transfer pro-
cess. As shown in Fig. 7 the heat transfer rate is increased with
the increase of Reynolds number. It can be determined that the
heat transfer rate is higher in nanofluids for different concen-
trations compared to water for different Reynolds number. In
Fig. 7(a), an enhancement of the heat transfer rate for
0.5 vol.% concentration was found 2.5%, 7.8% and 15.14%
higher than 0.3 vol.%, 0.1 vol.% and water respectively. In
Fig. 7(b), an increase of the heat transfer rate for 0.5 vol.%
concentration was achieved 2.3%, 7% and 14.5% higher than
0.3 vol.%, 0.1 vol.% and water respectively. In short, 60°
chevron angle performed better than 30° chevron angle for
every volume concentration. Various method has been used
to compare the nanofluids with base fluids in previous re-
search. Chein & Chuang [21] compared the base fluid with
the nanofluid on the velocity basis whereas Pak and Cho [22]
compared on the Reynolds number basis. In the present study,
the comparison of the heat transfer rate for the water and the
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nanofluid were compared by the Reynolds number for differ-
ent volume flow rates with different volume concentrations.

3.4 Effectiveness

Figure 8 represents the effect of nanoparticle on the effective-
ness as a function of Reynolds number. As seen in Fig. 8, the
increase of nanoparticle results in enhancement of effective-
ness of nanofluid with the Reynolds number. However, the
effectiveness of nanofluid is insignificant for the chevron an-
gle of 60° and (b) 30° which can be observed from Fig. 8 as
the difference of absolute value of effectiveness for both the
chevron angle is so minimal.

3.5 Pressure drop

The major drawback of using nanofluid in the PHE is the
increased pressure drop. The pressure drop was measured
for different Reynolds number under different coolant volume
flow rates as presented in Fig. 9. It is the function of the
Reynolds number, the density and the viscosity of the PHE.
A higher viscosity is pronounced for higher volume concen-
tration whereas the density increases slightly with the increase
of the volume concentration. Chevron angles of 30° and 60°
also influences the friction factor. A maximum increase in the
pressure drop has been found for higher volume concentration
in comparison with the base fluid. In Fig. 9(a), the pressure
drop of the PHE for 0.5 vol.% concentration was found 2.3%,
4.2% and 17.3% higher than 0.3 vol.%, 0.1 vol.% and water,
respectively. In Fig. 9(b), the pressure drop of the PHE for
0.5 vol.% concentration was attained 1.5%, 5.3% and 19%
higher than 0.3 vol.%, 0.1 vol.% and the base fluid water,
respectively. Therefore, it is important to carefully select the
nanofluid to allow balancing the pressure drop penalty and the
heat transfer enhancement.

4 Conclusions

In the present study, we have experimentally investigated
thermos-physical properties, the convective heat transfer per-
formance and the pressure drop of water based Al2O3

nanofluids in a PHE with chevron angles of 60° and 30°.
We have performed experiments for five different Reynolds
numbers and three different nanoparticle concentrations. The
main conclusions drawn from the results of the present study
are listed as follows:

(a) Thermal conductivity of the nanofluid found to be in-
creased with the increase in the volume concentration
and the temperature because of particle movement by
Brownian theory during the temperature rise. About

25.25% higher thermal conductivity was found for
nanofluids at 55 °C compared to base fluid.

(b) The maximum overall heat transfer coefficient increase
is found to be 7.8% for 0.5% vol.% concentration com-
pared to the base fluid. For 30° chevron angle, the heat
transfer coefficient is 6.64% higher than the base fluid.

(c) Adding the nanoparticle into the base fluid enhances the
heat transfer rate of the nanofluid as well as thermal con-
ductivity and convection coefficient and conduction is
increased. For 60° chevron plate, a maximum heat trans-
fer rate is found 15.14% higher in comparison with water
for 0.5 vol.% concentration whereas it shows14.5%
higher for 30° chevron plate. This means that the plate
with 60° chevron angle performs better than 30° chevron
angle plate for both nanofluid and water. Moreover, the
addition of nanoparticle into the base fluid results in en-
hancement of effectiveness of nanofluid with the increase
of Reynolds number.

(d) The pressure drop increases with the increasing of vol-
ume concentrations. It was found that pressure drop for
each run was found higher for the 60° chevron PHE than
the 30° chevron PHE.

Acknowledgements The authors would like to acknowledge the
BMinistry of Higher Education Malaysia^ (MoHE) for the financial sup-
port under UM MoHE High Impact Research Grant (HIRG) scheme
(Project no: UM.C/HIR/MoHE/ENG/40) to carry out this research. The
support of KFUPM to finalize the paper is also acknowledged.

References

1. Abou-El-Maaty T, Abd-El-Hady A (2009) Plate heat exchanger-
inertia flywheel performance in loss of flow transient.
Kerntechnik 74(1–2):35–41

2. Choi S (1995) Enhancing thermal conductivity of fluids with nano-
particles. In: Siginer HPWDA (ed) Developments applications of
non-newtonian flows (Vol. FED-vol 231/MD-vol). ASME, New
York, pp 99–105

3. Wen D, Ding Y (2004) Experimental investigation into convective
heat transfer of nanofluids at the entrance region under laminar flow
conditions. Int J Heat Mass Transf 47(24):5181–5188

4. Ahmed M, Shuaib N, Yusoff M, Al-Falahi A (2011) Numerical
investigations of flow and heat transfer enhancement in a corrugat-
ed channel using nanofluid. Int Commun Heat Mass Transfer
38(10):1368–1375

5. Lotfi R, Rashidi AM, Amrollahi A (2012) Experimental study on
the heat transfer enhancement of MWNT-water nanofluid in a shell
and tube heat exchanger. Int Commun Heat Mass Transfer 39(1):
108–111

6. Mohammed H, Bhaskaran G, Shuaib N, Abu-Mulaweh HI (2011)
Influence of nanofluids on parallel flow square microchannel heat
exchanger performance. International Communications in Heat and
Mass Transfer 38(1):1–9

7. Raja M, Arunachalam RM, Suresh S (2012) Experimental studies
on heat transfer of alumina/water nanofluid in a shell and tube heat
exchanger with wire coil insert. International Journal ofMechanical
and Mater Eng 7(1):16–23

Heat Mass Transfer



8. Pantzali M, Kanaris A, Antoniadis K, Mouza A, Paras S (2009)
Effect of nanofluids on the performance of a miniature plate heat
exchanger with modulated surface. Int J Heat Fluid Flow 30(4):
691–699

9. Kwon Y, Kim D, Li C (2011) Heat transfer and pressure drop
characteristics of nanofluids in a plate heat exchanger. J Nanosci
Nanotechnol 11(7):5769–5774

10. Eastman J, Choi S, Li S, Yu W, Thompson L (2001) Anomalously
increased effective thermal conductivities of ethylene glycol-based
nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):
718–720

11. Vajjha RS, Das DK (2009) Experimental determination of thermal
conductivity of three nanofluids and development of new correla-
tions. Int J Heat Mass Transf 52(21):4675–4682

12. Yu W, Xie H, Chen L, Li Y (2010) Investigation on the thermal
transport properties of ethylene glycol-based nanofluids containing
copper nanoparticles. Powder Technol 197(3):218–221

13. Godson L, Raja B, Mohan Lal D, Wongwises S (2010)
Enhancement of heat transfer using nanofluids—an overview.
Renew Sust Energ Rev 14(2):629–641

14. Lee S, Choi SU, Li S, Eastman J (1999) Measuring thermal con-
ductivity of fluids containing oxide nanoparticles. J Heat Transf
121(2):280–289

15. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat
transfer enhancement with nanofluids. Int J Heat Mass Transf
52(13):3187–3196

16. Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of
nanofluids: a review. Int J Therm Sci 46(1):1–19

17. Huminic G, Huminic A (2012) Application of nanofluids in heat
exchangers: a review. Renew Sust Energ Rev 16(8):5625–5638

18. Tiwari AK, Ghosh P, Sarkar J (2013) Heat transfer and pressure
drop characteristics of CeO2/water nanofluid in plate heat exchang-
er. Appl Therm Eng 57(1–2):24–32

19. Huang D, Wu Z, Sunden B (2016) Effects of hybrid nanofluid
mixture in plate heat exchangers. Exp Thermal Fluid Sci 72:190–
196

20. Trisaksri V, Wongwises S (2007) Critical review of heat transfer
characteristics of nanofluids. Renew Sust Energ Rev 11(3):512–523

21. Chein R, Chuang J (2007) Experimental microchannel heat sink
performance studies using nanofluids. Int J Therm Sci 46(1):57–66

22. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of
dispersed fluids with submicron metallic oxide particles. Exp Heat
Transfer 11(2):151–170

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Heat Mass Transfer


	Heat...
	Abstract
	Introduction
	Experimental procedure and facility
	Preparation of nanofluid
	Measurement of thermos-physical properties of nanofluid
	Thermal conductivity
	Density
	Viscosity
	Specific heat

	Thermal performance of the heat exchanger
	Experimental uncertainties

	Results and discussions
	Overall heat transfer coefficient
	Heat transfer coefficient
	Heat transfer rate
	Effectiveness
	Pressure drop

	Conclusions
	References


