
An Exact Algorithm for the Steiner Forest
Problem
Daniel R. Schmidt1

Institut für Informatik, Universität zu Köln, Germany
schmidt@informatik.uni-koeln.de

https://orcid.org/0000-0001-7381-912X

Bernd Zey
Fakultät für Informatik, TU Dortmund, Germany
bernd.zey@tu-dortmund.de

François Margot
Carnegie-Mellon-University, Pittsburgh PA, USA

Abstract
The Steiner forest problem asks for a minimum weight forest that spans a given number of ter-
minal sets. The problem has famous linear programming based 2-approximations [1, 15, 20]
whose bottleneck is the fact that the most natural formulation of the problem as an integer lin-
ear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for
the problem along with exact branch-and-bound based algorithms. While our new formulations
cannot improve the integrality gap, we can prove that one of them yields stronger linear program-
ming bounds than the two previous strongest formulations: The directed cut formulation [2, 7]
and the advanced flow-based formulation by Magnanti and Raghavan [25]. In an experimental
evaluation, we show that the linear programming bounds of the new formulations are indeed
strong on practical instances and that our new branch-and-bound algorithms outperform branch-
and-bound algorithms based on the previous formulations. Our formulations can be seen as a
cut-based analogon to [25], whose existence was an open problem.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases branch-and-bound algorithms, Steiner network problems

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.70

Related Version A preliminary version is available at https://arxiv.org/abs/1709.01124.

1 Introduction

The Steiner forest problem (SFP) is one of the fundamental network design problems. Given
an edge-weighted undirected graph G = (V,E) and terminal sets T 1, . . . , TK ⊆ V , it asks
for a minimum weight forest in G such that the nodes inside each terminal set are connected.
Steiner forest is a particularly important problem in the design of real-world communication
networks where unwieldy additional constraints make it hard to obtain hard guarantees
and clean approximation algorithms. Instead, linear programming based branch-and-bound
(B&B) algorithms are a popular choice here: They find an optimum solution in (worst-case)
exponential time, but can also be run in a heuristic mode where the algorithm stops with
a sub-optimum solution after a given time limit. In the latter case, B&B algorithms still

1 Supported by a fellowship in the Postdoc-Program of the German Academic Exchange Service (DAAD).

© Daniel R. Schmidt, Bernd Zey, and François Margot;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/160826809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:schmidt@informatik.uni-koeln.de
https://orcid.org/0000-0001-7381-912X
mailto:bernd.zey@tu-dortmund.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.70
https://arxiv.org/abs/1709.01124
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 An Exact Algorithm for the Steiner Forest Problem

formulation

A B C

undirected flow/cut (Luc), lifted cut (Lklsvz) [23] 2 2 4

layered directed, Ldc [2, 7] 3 2 4
Magnanti-Raghavan [25], Lmr 3 3 6

our extended cut-based, Ledc 3 2.5 5.14
our strengthened extended cut-based, Lsedc 3 3 6

integer optimum 3 3 7

Figure 1 A comparison of lower bounds from LP relaxations. The terminal sets of the three
Steiner forest instances are depicted in different shapes (, , , and). All edges have unit cost.

provide a per-instance quality guarantee by linear programming. This per-instance guarantee
is appealing to practitioners: While often only a few selected instances need to be solved, it
is common that they defy theoretical analysis. Hence, B&B algorithms complement the fixed
parameter tractable (FPT) algorithms which exploit special structures of practical instances.
In contrast, however, B&B algorithms allow us to include the real-world constraints without
additional analyses and make no structural assumptions. In this way, they provide another
important tool for problem solving in practice.

A linear programming based B&B algorithm systematically finds an optimum solution to
an integer linear program (ILP). Assume that we are minimizing. The algorithm first removes
the integrality requirement, turning the NP-hard ILP into a polynomial time solvable linear
programming (LP) relaxation. Any solution to the ILP is a solution to the LP relaxation
and thus, the value of any LP solution x∗ is a lower bound on the optimum value of the ILP.
If x∗ is integral, we found an optimum solution to the ILP. Otherwise, there is at least one
fractional variable, say x∗i 6∈ Z. In any optimum integral solution, we have either xi ≤ bx∗i c
or xi ≥ dx∗i e. We create a subproblem for each of the two cases and recurse the algorithm. If
at any point in the recursion (the branch-and-bound tree) we obtain an integral solution or if
a subproblem turns out to be infeasible, we solved the subproblem and we can prune the
corresponding branch from the tree. We keep track of the best integral solution we find (the
incumbent), as it provides an upper bound on the value of an optimum ILP solution. Since
the LP value of each subproblem provides a lower bound for its optimum integral value, we
can equally prune the tree once the LP value rises above the value of the incumbent. This
highlights why strong LP relaxations are paramount for B&B algorithms: The better the LP
bounds, and the sooner the LP relaxation becomes integral, the sooner the recursion can be
pruned. As different ILP formulations for the same problem yield different LP bounds and
finding a strong ILP formulation is an interesting challenge.

While B&B algorithms for the Steiner forest problem all follow the same basic algorithm,
they differ on the LP relaxation they employ to generate lower bounds. From a theoretical
perspective, almost all LP relaxations for the Steiner forest problem have a worst-case
integrality gap of 2, with the only known exception being the lifted cut relaxation by
Könemann, Leonardi, Schäfer, and van Zwam [23] that achieves a gap of 2 − ε. Still, the
different LP relaxations do not all yield equally good bounds: The bound from the directed
cut relaxation will never be worse (and often much better) than the bound from the undirected
cut relaxation, since the former is a specialization of the latter. Likewise, Magnanti and
Raghavan [25] show that their improved flow relaxation is always as least as good as the

D. Schmidt, B. Zey, and F. Margot 70:3

undirected cut relaxation. In that sense, some relaxations are stronger than others, while
others are incomparable (see Figure 1): The lifted cut relaxation is at least as strong as the
undirected cut formulation, but it may yield stronger or weaker bounds than the directed
variant. Experiments support this notion of relaxation strength. For instance, it has been
observed that the directed cut formulation is better suited for B&B algorithms than the
undirected cut formulation [6], at least for the Steiner tree problem (the special case where
K = 1). Magnanti and Raghavan obtain particularly strong bounds from the improved
flow formulations in their experiments where their B&B algorithm can solve many instances
without having to branch. The bounds from the lifted cut relaxation are identical to the
ones from the undirected cut relaxation in our experiments.

Our contribution. The above observations seem to turn the improved flow formulation and
the directed cut formulation into the canonical choices for a B&B algorithm. Unfortunately,
the improved flow relaxation is exponentially large and it is unknown if it can be solved
efficiently. The directed cut relaxation is easy to solve, but its bounds are considerably
weaker if used for the Steiner forest problem (an analysis is given in Section 2).

We propose a branch-and-bound algorithm that is based on a new, cut-based ILP
formulation for the Steiner forest problem. Its LP relaxation is stronger than the improved
flow relaxation and as the directed cut relaxation, and therefore, as the undirected cut
relaxation as well. In contrast to the improved flow formulation it can be solved in polynomial
time. This answers an open problem in [25] which asks for a cut-based ILP formulation that
is at least as strong as the improved flow formulation. In our experiments the LP bounds
are stronger than what can be achieved from any of the previous relaxations. They can also
be computed quickly and reliably. Using known techniques and a computational analysis,
we engineer our branch-and-bound algorithm to solve all medium sized and almost all large
instances from the benchmark set. The algorithm outperforms B&B algorithms based on
the previous formulations. Figure 1 shows a comparison of the formulations on widely-used
small example instances.

While we focus on B&B algorithms here, new integer linear programming formulations
are interesting beyond exact algorithms: Current approximation algorithms for the Steiner
forest problem with a guarantee of 2 are based on iterative rounding [20] and the primal-dual
analysis technique [1, 15]; two techniques that rely on strong LP relaxations. Even though
our new formulation has an integrality gap of 2 as well and thus cannot directly improve the
known LP-based approximation algorithms, we believe that it can inspire new research in
this direction.

Related work. The directed cut relaxation for the Steiner tree problem [2, 6, 22] can be
trivially extended to the Steiner forest case. It cuts off fractional solutions by imposing a
direction on each edge, looking for a rooted directed tree that connects all terminals. In the
Steiner tree case where only one terminal set exists, this process is straight-forward. When
multiple sets are present, however, one directed tree per set is needed and these, in general,
can impose conflicting orientations to the edges. This is a major additional difficulty in
solving the Steiner forest problem. Magnanti and Raghavan [25] show how to consolidate
the conflicts with the improved flow formulation.

The issues with conflicting orientations can be avoided altogether by using strong undi-
rected formulations. Goemans [13], Lucena [24], as well as Margot, Prodon and Liebling [26]
independently propose an ILP formulation for the Steiner tree problem that builds on Ed-
mond’s complete description of the tree polytope [11]. This tree-based formulation has a
straight-forward extension to the Steiner forest problem, but its LP bounds are identical to
the ones from the directed formulations.

ESA 2018

70:4 An Exact Algorithm for the Steiner Forest Problem

The literature for the Steiner tree problem is more extensive: Several surveys compare
ILP formulations and their polyhedral properties [7, 8, 14, 27, 28]. They are the basis for
B&B algorithms [6, 22]. Exact FPT algorithms identify parameters that make the problem
difficult to solve [4, 9, 12, 19]. Similarly, preprocessing techniques reduce the size of Steiner
tree instances by removing trivial parts [10, 27, 28]. While the Steiner tree B&B algorithms
imply B&B algorithms for the general Steiner forest case, the Steiner forest problem was
mostly studied in the context of approximation algorithms [1, 15, 17, 18, 20]. A PTAS on
planar and bounded treewidth graphs exists [3].

Notation. Throughout, let G = (V,E) be an undirected, simple graph and let A =
{(i, j), (j, i) | {i, j} ∈ E} be the arcs of the bidirection of G. A cut-set in G is a subset S ⊆ V .
Any cut-set S ⊆ V induces a cut δ(S) := {{i, j} ∈ E | |{i, j} ∩ S| = 1}. We abbreviate
δ(i) := δ({i}) if S = {i}. If D = (V,A) is a directed graph, we distinguish the outgoing
cut δ+(S) = {(i, j) ∈ A | i ∈ S and j 6∈ S} and the incoming cut δ−(S) = {(i, j) ∈ A | i 6∈
S and j ∈ S}. Given a vector x ∈ Xd, d ∈ Z≥0, and an index set I ⊆ {1, . . . , d} we write
x(I) to abbreviate

∑
i∈I xi. Finally, for k ∈ Z≥1, let [k] := {1, . . . , k}.

The Steiner forest problem. Consider an undirected graph G = (V,E) together with
K ∈ N terminal sets T 1, . . . , TK ⊆ V . A feasible Steiner forest is a forest (VF ⊆ V,EF ⊆ E)
in G that, for all k ∈ [K], contains an s-t-path for all s, t ∈ T k. A feasible forest (VF , EF)
is optimum with respect to edge weights c ∈ R|E|≥0 if it minimizes the total cost

∑
e∈EF

ce.
Assume without loss of generality that the terminal sets are pairwise disjoint: If T k and
T ` share at least one node, then any forest is feasible for T 1, . . . , TK if and only if it is
feasible for the instance where T k and T ` are replaced by T k ∪ T `. We denote the set of
all terminal nodes by T := T 1 ∪ · · · ∪ TK and write τ(t) := k if t ∈ T k. For each terminal
set T k, k ∈ [K], we select an arbitrary node rk ∈ T k as a fixed root node and define
R := {r1, . . . , rK}. A cut-set S ⊆ V is relevant for the terminal set T k if it separates
rk from some terminal t ∈ T k, i.e., if rk ∈ S but t 6∈ S for some t ∈ T k. We write Sk

for the set of all cut-sets that are relevant for T k and S := S1 ∪ · · · ∪ SK for the set
of all relevant cut-sets. If P := {(x, y) ∈ Rn1+n2 | Ax + By = d} is a polyhedron let
Projx(P) := {x ∈ Rn1 | ∃ y ∈ Rn2 : (x, y) ∈ P} be the projection of P onto the x variables.

2 Eliminating cycles from the linear programming relaxation

Let us briefly review the existing branch-and-bound algorithms and how they model the
Steiner forest problem as an ILP. A forest F in G = (V,E) is feasible if and only if any
relevant cut-set S ⊂ V contains at least one edge of F , i.e. if |δF (S)| ≥ 1 for all S ∈ S.
Thus, since c ≥ 0, the undirected cut formulation

min
{
cTx

∣∣ x ∈ Luc and integer
}
where (IPuc)

Luc := {x ∈ [0, 1]E | x(δ(S)) ≥ 1 ∀S ∈ S} (1)

is a valid ILP formulation. While it can be solved efficiently, it yields weak bounds even on
trivial instances (see Figure 1). The reason for the weak bounds becomes apparent when we
see formulation (IPuc) as a set cover problem: We look for a choice of edges such that each
cut δ(S) in G is covered by at least one edge. Consider any cycle C of length s in G. Any
set cover needs s− 1 edges to cover C. On the other hand, we obtain a fractional solution of
value s

2 by setting xe = 0.5 for all edges e ∈ C. Figure 2a shows an example.

D. Schmidt, B. Zey, and F. Margot 70:5

d

a b

c

0.
5

0.5

0.5

0.
5

(a) A feasible solution for (1).
The edges {c, d} and {b, c}
cover the cuts δ({a, b, c}) and
δ({a, b, d}).

d

a b

c

0.5

0.5

0.5

0.50 0 0

0

(b) An infeasible solution for
(2a)–(2d). The arcs (d, c) and
(b, c) cover the cut δ({a, b, d}),
but not the cut δ({a, b, c}).

d

a b

c

0.5

0.5

0.5

0.50 0.5 0

0.5

(c) A feasible solution for (2a)–
(2d). Additional capacity is
needed on (c, d) and (b, a) to
cover all relevant cuts.

Figure 2 An unit cost example where Ldc yields a stronger LP bound than Luc. The instance has
a single terminal set that contains all four nodes of the graph. Node a has been chosen as the root.

The formulation can be improved with a standard construction [7, 2]. Recall that we
choose rk ∈ T k as an arbitrary root node of set T k and consider the bi-directed graph
underlying G. For all k ∈ [K], we now look for an arborescence (a directed tree) rooted at
rk. If any cut-set S is relevant for T k, then at least one arc must leave S:

min{cTx | (x, y) ∈ Ldc and integer} where (IPdc)

Ldc :=
{

(x, y)
∣∣∣ yk(δ+(S)) ≥ 1 ∀ k ∈ [K],∀S ∈ Sk (2a)

ykij + ykji ≤ xij ∀ {i, j} ∈ E,∀k ∈ [K] (2b)
ykij , y

k
ji ∈ [0, 1] ∀ {i, j} ∈ E,∀k ∈ [K] (2c)

xij ∈ [0, 1] ∀ {i, j} ∈ E
}
. (2d)

Since any solution (x, y) of (IPdc) can be turned into a feasible Steiner forest F := {{i, j} ∈
E | ∃ k : ykij + ykji ≥ 1} and any feasible Steiner forest can be turned into a solution to (IPdc),
this strengthened formulation indeed captures the Steiner forest problem. The formulation
eliminates directed cycles from the basic optima of its LP relaxation and indeed the bound of
the relaxation coincides with the integer optimum on instance A from Figure 1. However, a
slightly modified instance makes the problem reappear, see instance B in Figure 1 or Figure 3:
While the support of any yk is free of directed cycles, the union of the supports is not. This
is the reason why the formulation works exceptionally well for the Steiner tree problem
where K = 1. If K > 1, however, the LP relaxation of (IPdc) is again weak. Still, for
practical purposes no better formulation was known prior to this work. The offending cycles
potentially appear whenever two terminal sets T k and T ` – and thus their roots rk and r` –
end up in the same connected component of the solution, i.e. of the support of x. If we knew
beforehand that T k and T ` lie in the same connected component of an optimum solution, we
could simplify the instance, replacing T k and T ` by their union T k ∪ T `. Iterating this idea
would yield a solution where all the arborescences are disjoint and the offending cycles are
eliminated.

Unfortunately, we cannot know the connected components of a Steiner forest a priori.
Instead, Magnanti and Raghavan [25] – we denote their model by (IPmr) and the LP
relaxation by Lmr – propose to compute the connected components of a solution on-the-fly
in the ILP formulation. Then, whenever T k and T `, k ≤ `, lie in the same connected
component, they look for a common arborescence that is rooted at rk and connects all
terminals in T k ∪ T `. Unfortunately, their formulation has a size of Ω(

∏K
k=1

∑K
`=k |T `|), i.e.

it is exponential in the number of terminal sets K. We shall see in the next section how we
achieve the same effect with a much smaller ILP formulation.

ESA 2018

70:6 An Exact Algorithm for the Steiner Forest Problem

d

a b

c

0.5

0.5

0.5

0.50.
5

0.5

0.
5

0.5

0.
5

0.5

0.5

0.5
d

a b

c

1

1

11

1

1
Figure 3 Detailed picture of instance (B) from Figure 1. On the left: The red and blue arcs form

a solution for relaxation (2a)–(2d) for the red () and blue () terminal set. The gray edges show
the values of the x variables. Looking for a Steiner arborescence for each terminal set does not cut
off a fractional optimum of cost 2. On the right. A solution that roots different terminal sets at the
root node of the red () terminal set. The fractional optimum is cut off.

3 An new ILP formulation for the Steiner forest problem

Our extended formulation makes use of three kinds of variables. As before, we use a
variable xij for all edges {i, j} ∈ E to determine if {i, j} is included in the forest F and
two corresponding directed variables yij , yji. Likewise, the variables ykij and ykji for each
k ∈ [K] and each {i, j} ∈ E determine if the arcs (i, j) and (j, i), respectively, are included
in the arborescence rooted at rk. Finally, we introduce an additional variable zk` for each
k ∈ [K] and each ` ≥ k, with the interpretation that zk` = 1 iff T k and T ` both lie in the
arborescence spanned by yk. In the latter case, we say that rk is responsible for the terminals
in T `. To make it easier to state the formulation, we define Ti...j as T i ∪ · · · ∪ T j and let
Ti...jr := Ti...j \ {ri} be the same set without the ith root node (all other root nodes are still
included). In particular, the set T`...Kr contains all the terminal nodes that can potentially
be connected to r`. We extend our previous notion and say that a cut-set S ⊆ V is relevant
for rk and T ` if rk ∈ S and some terminal t ∈ T ` is not in S. The set of all cut-sets that are
relevant for rk and T ` is written by Sk

` in the sequel. Then, our formulation reads:

min
{
cTx

∣∣∣ (x, y, z) ∈ Lsedc and integer
}
where (IPsedc)

Lsedc :=
{

(x, y, z)
∣∣∣ yk(δ+(S)) ≥ zk` ∀ k ∈ [K], ` ≥ k, ∀S ∈ Sk

` (3a)
k∑
`=1

z`k = 1 ∀ k ∈ [K] (3b)

yij ≥
∑
k∈[K]

ykij , yji ≥
∑
k∈[K]

ykji ∀ {i, j} ∈ E (3c)

zkk ≥ zk` ∀ k ∈ [K] \ {1,K},∀` ≥ k + 1 (3d)
yij + yji ≤ xij ∀ {i, j} ∈ E (3e)
y(δ−(v)) ≤ 1 ∀ v ∈ V (3f)
yk(δ−(t)) = 0 ∀ k ∈ [K] \ {1},∀ t ∈ T1...k−1 (3g)

ykij , y
k
ji ∈ [0, 1] ∀ {i, j} ∈ E,∀k ∈ [K] (3h)

xij , yij , yji ∈ [0, 1] ∀ {i, j} ∈ E (3i)

zk` ∈ [0, 1] ∀ k ∈ [K],∀` ≥ k
}
. (3j)

D. Schmidt, B. Zey, and F. Margot 70:7

For any k, `, the left hand side of the directed cut-set constraint (3a) is non-negative and
the constraint is trivially satisfied if zk` = 0. If otherwise zk` = 1, we need to connect all
terminals from T ` to the k-th root rk. Then, any cut-set S separating rk from some terminal
in T ` must have at least one outgoing edge. This is exactly the condition modeled by (3a).
For each k ∈ [K], the constraints (3b) ensure that exactly one root r` is responsible for T k
(and r1 is always responsible for T 1, i.e., z11 = 1). We use constraints (3c) to enforce that
each edge {i, j} is part of at most one arborescence. We also want to make sure that no
“transitive” responsibilities exist: If rk is responsible for T `, then r` cannot be responsible for
some Tm, m 6= `. This is modeled by the symmetry breaking constraints (3d). They make
sure that if root rk is responsible for some terminal set T `, then rk must be responsible for T k
as well. The capacity constraints (3e) say that if an edge {i, j} is used in any arborescence,
then it must be included in the tree. Moreover, no node in any arborescence should have more
than one incoming arc, as modeled by the indegree constraints (3f). Finally, the terminals in
T 1...k−1 cannot be attached to root rk and thus, no arc of the corresponding arborescence
should enter such a terminal, see constraint (3g).

To solve Lsedc efficiently, we only add a subset of the cut-set constraints (3a) at the
beginning. Then, given a solution (x∗, y∗, z∗) to a partially generated Lsedc, we can find a
relevant S, a k and an ` such that yk(δ+(S)) < zk` (or decide that none exist) efficiently:
For each k ∈ [K], each ` ≥ k and each t ∈ T `, we compute a minimum rk-t-cut. If for any
k, ` such a cut δ(S) has a value of strictly less than zkl, then (x∗, y∗, z∗) does not satisfy the
cut-set constraint corresponding to S and we add it to our LP and iterate. Otherwise, all
cuts S ∈ Sk

` must have a value of at least zk` and (x∗, y∗, z∗) ∈ Lsedc.
I Lemma 1. Formulation (IPsedc) models the Steiner forest problem correctly. Its LP
relaxation Lsedc can be solved in time polynomial in the size of G and K.

Strength of the new formulation. How can we compare two LP relaxations LA and LB?
We cannot expect that the bound from LA is stronger than the bound from LB on all
instances: Generally, the optima of both LPs will be integral on some instances and must
coincide then. We can, however, ask that the bound obtained from LA is never worse than
the bound obtained from LB . This is the case if any solution to LA is feasible for LB as well,
i.e. if LA ⊆ LB. We say that LA is strictly stronger than LB if additionally at least one
solution of LB is infeasible for LA, i.e. if LA (LB . In general, some truncation or extension
of the solution might be necessary if LA and LB live in different variable spaces, but we can
project the solutions suitably.

Instead of comparing the models directly, we compare their equivalent flow-based models;
replacing the cut-condition by a flow-balance constraint. We also introduce additional flow
variables f . Any feasible solution to Lsedf defines a flow fk,t from rk to any terminal
t ∈ Tk...K and ensures that the flow value of fk,t is exactly zk`.

Lsedf :=
{

(x, y, f, z)
∣∣∣ fktij ≤ ykij , fktji ≤ ykji ∀k ∈ [K],∀{i, j} ∈ E

∀t ∈ Tk...Kr

(4a)

fkt(δ+(i))− fkt(δ−(i)) = σkt(i)zkτ(t)
∀ i ∈ V,∀k ∈ [K]
∀t ∈ Tk...Kr

(4b)

fkt(δ+(t)) = 0 ∀k ∈ [K],∀t ∈ Tk...Kr (4c)
(3b)–(3j) (4d)

fktij , f
kt
ji ∈ [0, 1]

∀k ∈ [K],∀t ∈ Tk...Kr

∀{i, j} ∈ E
}
. (4e)

ESA 2018

70:8 An Exact Algorithm for the Steiner Forest Problem

(a) Instance with three terminal
sets (1, 2, 3) and unitary
edge costs 1.

0.5
0.5

0.5 0.5

0.5

1.0

1.0

(b) Optimum solution of Lmr

with overall cost 4.5. This solu-
tion is infeasible for Lsedc since
here we would have z22 = 0.5
and z23 = 1.0, conflicting (3d).

1.0

1.0

1.0

1.0

1.0

(c) Optimum solution of Lsedc

which is integer and has cost 5.
Here, non-0 z variables are
z11 = z22 = z23 = 1.0.

Figure 4 Example instance where Lsedc gives a stronger bound than Lmr.

The constant σkt(i) is set to 1 if i = rk, to −1 if i = t, and to 0 otherwise. The constraints
(4c) prohibit fkt from leaving t and facilitate the comparison to Lmr. Analogously, the
relaxation Ldc has an arc-flow-based equivalent Ldf that forces a choice of arcs such that
each root rk is able to send one unit of flow to each terminal in T k \ {rk}.

I Theorem 2. Projx(Lsedc) (Projx(Ldc)

Proof sketch. We prove the claim by showing that Lsedf is strictly stronger than Ldf . Let
thus (x, y, f, z) ∈ Lsedf . We want to show that there exists some y′ and some flow f ′ such
that (x, y′, f ′) ∈ Ldf . Here, the challenge is that there might be a non-zero flow fk,t from
rk to t ∈ T ` whereas in Ldf , all the flow to t must originate from r`. Still, we can morally
obtain a feasible flow f ′ in the following way: Since r` ∈ T `, there must be a flow of value
exactly zk` from rk to r`. But rk also sends a flow with value zk` to t. Thus, if we reverse
fk,r

` we can concatenate it with fk,t and maintain flow conservation. We remove all cycles
and we obtain the desired flow f ′. However, this construction might force us to change the
orientation of some of the arcs, which poses an additional technical difficulty. Finally, we can
iterate this argument and combine all flows fm,t from any root rm to t. By constraint (3b),
these flows must add up to one. Strictness follows from instance (B) in Figure 1. J

Our second theoretical result is that the new relaxation Lsedc is strictly stronger than the
relaxation of [25]. Due to space restrictions we refer the reader to [25] for the description of
Lmr with constraints (14b)–(14j).

I Theorem 3. Projx(Lsedc) (Projx(Lmr)

Proof sketch. As before, we compare Lsedf instead of Lsedc. The major difference be-
tween Lsedf and Lmr is this: While in Lsedf , any two flows fkt and fkt′ for t, t′ ∈ T ` must
have the same flow value zk`, the same flows can have different values in Lmr. In that sense,
Lsedf is more restricted and it makes sense that any flow that is feasible in Lsedf is feasible
in Lmr, too, whereas the converse is not necessarily true (see Figure 4). More formally,
let (x̄, ȳ, z̄, f̄) ∈ Lsedf . We argue that (x̄, ȳ, f̄) ∈ Lmr. It follows from (4b) that (x̄, ȳ, f̄)
satisfies (14b) from [25]. Constraint (14c) follows from (4b), (4c), and (3b). For (14d),
apply (4b), (4b) with t = ¯̀, and (4c). Constraint (14e) follows from (4a), (3c), and (3e).
Likewise, constraint (14f) follows from (4a), (3c), and applying (3f). Finally, the constraint
(14g) is implied by (3g). (14h) is equivalent to (4c). J

D. Schmidt, B. Zey, and F. Margot 70:9

3.1 A smaller cut-based formulation
We remark that (IPsedc) can be written in the slightly different form below. While the
reformulation is smaller and less involved, it turns out that its linear programming bounds
are potentially weaker than the ones from (IPsedc). We need two variables yij , yji, and a
variable xij for each edge {i, j} ∈ E. As before, for all k ∈ [K] and all ` ≥ k, we have a
decision variable zk` that tells us whether the terminals in T ` should be connected to the
root rk.

min
{
cTx

∣∣∣ (x, y, z) ∈ Ledc and integer
}

where (IPedc)

Ledc :=
{

(x, y, z)
∣∣∣ y(δ+(S)) ≥

∑
k≤`:
rk∈S

zk` ∀` ∈ [K],∀S ⊆ V : T ` ∩ S 6= T ` (5a)

k∑
`=1

z`k = 1 ∀k ∈ [K] (5b)

zkk ≥ zk` ∀k ∈ [K] \ {1,K},∀` ≥ k + 1 (5c)
yij + yji ≤ xij ∀{i, j} ∈ E (5d)

yij , yji, xij ∈ [0, 1] ∀{i, j} ∈ E (5e)

zk` ∈ [0, 1] ∀k ∈ [K],∀` ≥ k
}
. (5f)

To see why the formulation is correct, consider a cut-set S ⊆ V with t 6∈ S for some terminal
t ∈ T `. If S contains a root node rk with zk` = 1, then S must have at least one outgoing arc
and the right-hand side of (5a) evaluates to 1 (observe that because of (5b) the right-hand
side can never exceed 1). Otherwise, the right-hand side of (5a) evaluates to 0 and the
constraint is trivially satisfied. The LP relaxation of (IPedc) can be solved in polynomial
time using a similar algorithm as for Lsedc.

I Lemma 4. Projx(Lsedc) (Projx(Ledc).

Proof. Let (x̃, ỹ, z̃) ∈ Lsedc. We argue that (x̃, ỹ, z̃) ∈ Ledc. The constraints (5b)–(5d) are
trivially satisfied. Now, consider a directed cut S ⊆ V : S ∩ T ` 6= ∅, for some set ` ∈ [K].
Any cut S is relevant to the sum in the right-hand side of constraint (5a) if and only if it is
a valid cut for constraint (3a), hence

ỹ(δ+(S))
(3c)
≥

K∑
k=1

ỹk(δ+(S)) ≥
∑̀
k=1

ỹk(δ+(S))
(3a)
≥
∑
k≤`

z̃k` ≥
∑
k≤`:
rk∈S

z̃k`

and thus (5a) is satisfied. Again, strictness follows from instance (B) in Figure 1. J

On the other hand, the model is stronger than the directed model without z variables.

I Lemma 5. Projx(Ledc) (Projx(Ldc).

We summarize the results of the discussion in Figure 5 and remark that the relationship
of Lmr to the models Ldc and Ledc is an open problem. Our conjecture is that it holds
Projx(Lmr) (Projx(Ledc) (Projx(Ldc).

ESA 2018

70:10 An Exact Algorithm for the Steiner Forest Problem

Luf/Luc

Lmr

Lklsvz [23]

Ldf/Ldc

Ledc

Lsedf/Lsedc

[25] [23]

trivial
Lemma 5

Theorem 2

Lemma 4Theorem 3

Figure 5 Relationship of the LP relaxations. The arrows point to the stronger relaxation.

cpu [s]0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
0

50
100
150
200
250
300
350
400
450
500
550
600

Lmr Ldc Ledc Lsedc

Figure 6 Number of JMP instances (out of 580) solved by B&B after x seconds.

4 Experimental results

Settings. All experiments were performed on a Debian 9.4 machine with an Intel(R)
Xeon(R) CPU E5-2643 running at 3.30GHz. Our code is written in C++ using the ILOG
CPLEX 12.6.3 framework. We compiled with gcc-6.3 and -O2 flags. Automatic symmetry
breaking and presolving was disabled in CPLEX, as well as all general integer cuts.

Instances. For the JMP instance set, we generated 580 random graphs with a frequently
used method by Johnson, Minkoff, and Philipps [21]: First, distribute n nodes uniformly at
random in a unit square. Then, insert an edge {i, j} if the Euclidean distance between i and
j is less than α/

√
n, where α is a parameter for the random generator. The cost of the edge

{i, j} is proportional to the Euclidean distance. Finally, connect all nodes with a minimum
Euclidean spanning tree to ensure that the instance is connected.

To determine K random terminal sets, we first select t · |V | nodes uniformly at random
(the number K ∈ [n/2] of terminal sets and the terminal percentage t ∈ [0, 1] are again
parameters). We then bring the selected nodes into a random order and draw K − 1 distinct
split points from {2, . . . , t · |V | − 1}, thus splitting the random node order into K distinct
terminal sets. For each n ∈ {25, 50, 150, 200, 500}, we choose a small, a medium, and
a large number of terminal sets K. The percentage t of terminal nodes is picked from
{0.25, 0.5, 0.75, 1.0} unless a combination of n,K, and t results in a terminal set size of less
than two. For each choice of n, K, and t, we generate five instances with α = 1.6 and five
instances with α = 2.0; leading to 580 JMP instances. The MR instance set is generated based
on [25] and contains 85 instances.

D. Schmidt, B. Zey, and F. Margot 70:11

|V |

bo
un

d
re

la
tiv

e
to

L
u

c

10 15 20
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

MR instances
Lmr Ldc Ledc Lsedc

|V |

bo
un

d
re

la
tiv

e
to

L
u

c

25 50 100 200 500
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

JMP instances
Ldc Ledc Lsedc

Figure 7 Improvement of the linear programming bound over the bound obtained from Luc: The
plot shows the ratio of the best bound after 1200 seconds over the optimum bound from Luc. The
theoretical maximum improvement is at most 2. On the right: For |V | ∈ {25, 50} all bounds are
optimum; for |V | ∈ {100, 200} only the Ledc and Lsedc bounds are optimum. For |V | = 500, about
50% of the Ledc and Lsedc and none of the Ldc bounds are optimum.

The branch-and-bound algorithm. We solve formulation (IPsedc) by an B&B algorithm.
As the algorithm requires solving the LP relaxation Lsedc in each B&B node, we generate
the LP relaxation dynamically with the separation procedure from Section 3. This allows
us to efficiently solve each B&B node. We follow the same approach for the ILP from [25],
for (IPedc), and for (IPdc) and compare the results. Similar separation procedures using
minimum cuts exist for Ldc and Ledc, so that we can generate the relaxations efficiently as
well. In more detail, we compute a minimum s-t-cut by computing a maximum s-t-flow
f and then deriving a cut-set S, where a node v ∈ V is included in S if and only if there
is a directed path from v to t in the residual network of f . We can then derive a cut-set
inequality based on S. Some algorithmic techniques have the potential to improve this
on-the-fly generation [22]:
Back cuts. Additionally add the cut-set inequality corresponding to S̄ where v ∈ V is

included in S̄ if and only if there is a directed s-v-path in the residual network of f .
Nested cuts. Assign an infinite capacity to all saturated edges in the residual network of f

and iterate. Nested cuts can be combined with back cuts: We first compute S and S̄ and
then compute nested cuts on both sets.

Creep flows. Add a small ε = 10−8 to all capacities. This lets us find a minimum weight
cut that cuts few edges. The creep flow variant works together with both nested cuts and
back cuts.

Cut purging. Finally, it can be beneficial to remove cut-set inequalities from the relaxation
if they have not been binding for a number of iterations.

It is not clear a priori which combination of these variants leads to the best performance
of the algorithm. In a preliminary experiment, we evaluated all 16 combinations for all the
formulations under consideration. To avoid overfitting, we tested on a random subset of the
instances only. Back cuts were beneficial in all cases. The Lsedc relaxation benefited from
additional creep flows, while Ldc worked best with additional nested cuts and purging. In all
cases, we compute the maximum s-t-flows with a custom implementation of the push-relabel
algorithm with the highest-label strategy and the gap heuristic [16, 5]. Since the Lsedc

constraints (3f) and (3g) would be valid for Ldc and Ledc as well, we compare against Lsedc
without (3f) and (3g). This results in a fairer comparison.

ESA 2018

70:12 An Exact Algorithm for the Steiner Forest Problem

Comparison of the algorithms. We compare B&B algorithms based on the previous best
formulations with our new ones in Figure 6 using the JMP instance set. All algorithms are
run in the tuned configuration from the preliminary experiment. The figure shows that
our new Lsedc based algorithm solves almost twice as many instances to optimality as the
previous ones. A more detailed picture would show that all unsolved instances are large
ones with |V | = 500. The Ledc based algorithm solves significantly less instances, but still
performs better than the algorithm based on Ldc. The algorithm based on Lmr mostly solved
the small instances. The Lsedc, the Ledc, the Ldc, and the Lmr based algorithm solved 480,
385, 185, and 97 instances without branching, respectively. In the following, we analyze why
our algorithms perform well.

The new bounds can be computed quickly. We compare our new approach against the
two previous best: The relaxation Ldc of the directed cut formulation and the relaxation Lmr

of [25]. Ideally, we would like to have relaxations that solve quickly and yield a strong bound.
Indeed, the LP relaxations in our new algorithm can be solved to optimality quickly and
reliably: We find the LP optimum of at least 500 out of 580 instances within 1200 seconds.
Moreover, the bulk of the LP relaxations is solved within 100 seconds for Ledc and within 400
seconds for Lsedc. At the same time, the existing B&B algorithms struggle to solve their LP
relaxations: The relaxation Lmr could only be solved to optimality within 1200 seconds in
100 out of 580 times. In the same time frame, the relaxation Ldc could be solved 280 times.

The new bounds are strong. The results from the previous section show that the optimum
bound from the LP relaxations of the advanced formulations will never be worse than the
bound from Luc. We would like to quantify the ratio of the bounds; however, the theoretical
worst-case ratio of the bounds is 1. What ratio can we hope for on non-artificial instances?
To answer this question, we solve the LP relaxations of the advanced formulations. Since
any feasible solution to an LP relaxation yields a valid bound, we stop the computation
after 1200 seconds and take the best bound obtained up to that point. We then compare
this bound with the optimum of Luc in Figure 7. The bounds obtained from the relaxation
of [23] were exactly the same as of Luc and are not shown here. Lmr only solved a significant
number of the small instances from the JMP set. To nonetheless obtain a fair comparison
for Lmr, we instead look at the MR instance set that is based on the original publication
of [25]. The comparison can also be seen in Figure 7. We see that if Lmr can be solved, it
yields a bound that is comparable to the one from the new relaxations.

5 Conclusion

Overall, our new branch-and-bound algorithm works very well and its performance seems
to be due to the strong bounds obtained from the new ILP formulation (IPsedc). While
its relaxation Lsedc is solved less quickly than the simplified relaxation Ledc, its stronger
bounds seem to pay off overall. At the same time, it answers Magnanti’s and Raghavan’s
open problem: There is indeed an equally strong cut-based model to [25]. On the theoretical
side, we would like to obtain an LP relaxation with an integrality gap of much less than 2.
This problem is not solved by Lsedc: We observe that it coincides with Ldc if K = 1. On
the other hand, Könemann et al. [23] propose an LP relaxation that has a better worst-case
integrality gap. In our experiments, however, the relaxation always yields the same bounds
as the weak undirected cut relaxation Luc, making it less suitable for practical purposes.

D. Schmidt, B. Zey, and F. Margot 70:13

References
1 A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for

the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456,
1995.

2 A. Balakrishnan, T. L. Magnanti, and R. T. Wong. A dual-ascent procedure for large-scale
uncapacitated network design. Operations Research, 37(5):716–740, 1989.

3 M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on
planar graphs and graphs of bounded treewidth. Journal of the ACM, 58(5):21:1–21:37,
2011.

4 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset
convolution. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, STOC ’07, pages 67–74. ACM, 2007.

5 B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390–410, 1997.

6 S. Chopra, E. R. Gorres, and M. R. Rao. Solving the Steiner tree problem on a graph using
branch and cut. ORSA Journal on Computing, 4(3):320–335, 1992.

7 S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and
extension of facets. Mathematical Programming, 64(1):209–229, 1994.

8 S. Chopra and M. R. Rao. The Steiner tree problem II: Properties and classes of facets.
Mathematical Programming, 64(1-3):231–246, 1994.

9 S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971.

10 C. W. Duin and A. Volgenant. Reduction tests for the steiner problem in grapsh. Networks,
19(5):549–567, 2006.

11 J. Edmonds. Submodular functions, matroids, and certain polyhedra. In M. Jünger,
G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization — Eureka, You Shrink!,
number 2570 in LNCS, pages 11–26. Springer Berlin Heidelberg, 2003.

12 R. E. Erickson, C. L. Monma, and A. F. Veinott. Send-and-split method for minimum-
concave-cost network flows. Mathematics of Operations Research, 12(4):634–664, 1987.

13 M. X. Goemans. The Steiner tree polytope and related polyhedra. Mathematical Program-
ming, 63(1–3):157–182, 1994.

14 M. X. Goemans and Y.-S. Myung. A catalog of Steiner tree formulations. Networks,
23(1):19–28, 1993.

15 M. X. Goemans and D. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

16 A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35(4):921–940, 1988.

17 M. Groß, A. Gupta, A. Kumar, J. Matuschke, D. R. Schmidt, M. Schmidt, and J. Verschae.
A local-search algorithm for Steiner forest. In A. R. Karlin, editor, 9th Innovations in
Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 31:1–31:17. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018.

18 A. Gupta and A. Kumar. Greedy Algorithms for Steiner Forest. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pages
871–878. ACM, 2015.

19 S. Hougardy, J. Silvanus, and J. Vygen. Dijkstra meets Steiner: A fast exact goal-oriented
Steiner tree algorithm. Mathematical Programming Computation, 9(2):135–202, 2017.

20 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

ESA 2018

70:14 An Exact Algorithm for the Steiner Forest Problem

21 D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem:
Theory and practice. In Proceedings of the Symposium on Discrete Algorithms, SODA ’00,
pages 760–769. SIAM, 2000.

22 T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

23 J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. A group-strategyproof cost
sharing mechanism for the Steiner forest game. SIAM Journal on Computing, 37(5):1319–
1341, 2008.

24 A. Lucena. Tight bounds for the Steiner problem in graphs. Technical report, RC for
Process Systems Engineering, Imperial College, London, 1993.

25 T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with
connectivity requirements. Networks, 45:61–79, 2005.

26 F. Margot, A. Prodon, and T. M. Liebling. Tree polytope on 2-trees. Mathematical Pro-
gramming, 63(1–3):183–191, 1994.

27 T. Polzin. Algorithms for the Steiner Problem in networks. PhD thesis, Universität des
Saarlandes, 2004. URL: http://scidok.sulb.uni-saarland.de/volltexte/2004/218/
index.html.

28 T. Polzin and V. S. Daneshmand. A comparison of Steiner tree relaxations. Discrete
Applied Mathematics, 112(1):241–261, 2001.

http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html

	Introduction
	Eliminating cycles from the linear programming relaxation
	An new ILP formulation for the Steiner forest problem
	A smaller cut-based formulation

	Experimental results
	Conclusion

