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Abstract  

HfZrO ferroelectrics with a thickness of 6 nm were grown directly on Si using atomic layer 

deposition, top and bottom metallic electrodes being subsequently deposited by electron-beam 

metallization techniques. Depending on the polarity of the 10 V poling voltages, the current-

voltage dependence of these tunneling diodes shows a rectifying behavior for different 

polarizations, the ON-OFF ratio being about 104. Because the currents are at mA level, the 

HfZrO tunneling diodes coupled to an antenna array can harvest electromagnetic energy at 26 

GHz (a bandwidth designated for Internet of Things-IoT), with a responsivity of 63 V/W and a 

NEP of 4 nW/Hz0.5.  

 

_______________________________________________________________________ 

*Corresponding author. Email: mircea.dragoman@imt.ro 
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 2 

1. Introduction  

Ferroelectric HfZrO (HfO2 doped with Zr, or HfxZr1-xO2) was discovered a few years ago, when 

doping HfO2 with a range of dopants, including Zr. There is extensive experimental evidence 

regarding the occurrence of the orthorhombic crystalline structure in HfZrO, which supports 

ferroelectric behavior [1,2]. Because HfZrO is the first ferroelectric material that is CMOS-

compatible at the large wafer scale, many applications have been envisaged in recent years. For 

instance, in the context of negative capacitance induced by ferroelectrics, HfZrO field-effect 

transistors (FETs) in a back-gated configuration were shown to reduce the subthreshold swing 

below 60 mV/decade at room temperature [3] for a device with a channel consisting of flakes of 

MoS2 monolayers, or Si in the case of FinFETs [4]. The negative capacitance is also promising 

for differential amplification without an external energy source due to polarization switching of 

the ferroelectric and energy transfer to the dielectric capacitor [5]. On the other hand, microwave 

applications of HfZrO have emerged, relying on the extraordinary tunability of microwave 

devices at few volts [6], such as wafer-scale phase shifters based on a 6 nm thick HfZrO 

ferroelectric grown directly on a high-resistivity silicon substrate, which shows 60o phase shift at 

1 GHz when the DC voltage is swept in the range 3 V [7]. Furthermore, an integrated phase 

antenna array on HfZrO working at 2.55 GHz was developed, formed from two patched 

antennas, which steer the radiation beam with 25° when the DC voltage is swept within 1 V [8]. 

Ferroelectric tunneling junctions (FTJ) [9] are in fact metal-insulator-metal (MIM) diodes 

where the ferroelectric is a few nanometers thick. However, in contrast to MIM diodes (for a 

review see [10]), the current of FTJs at a certain bias can be switched ON and OFF by the poling 

voltages, which switch the orientation of ferroelectric domains. On the other hand, these 

nanodevices are based on very thin ferroelectric layers, in the range of 1-3 nm, and the metallic 

contact is a problem for tunneling in terms of roughness, so that very often conductive AFM tips 

replace metallic electrodes. In addition, the ferroelectric materials for FTJs and the substrates on 

which they are grown, such as: BaTiO3/La0.67Sr0.33MnO3 (BTO/LSMO) [11], Sm0.1Bi0.9FeO3/ 
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Nb:SrTiO3 (SBFO/NSTO) [12], or Pt/BTO/NSTO [13], are not easily integrable in CMOS 

technology. This is a major disadvantage, since CMOS technology is the only one able to 

integrate billions of devices on a single chip. In this context, the interest in HfZrO ferroelectric is 

very high, not only because it is compatible with CMOS technology, but also thanks to its 

physical properties, such as the dependence of permittivity on the applied voltage, hysteretic 

current-voltage and/or capacitance-voltage characteristics, and negative capacitance, which are 

not currently encountered in integrated CMOS devices.  

There are many tunneling devices that can be integrated in CMOS technology, but the 

MIM configuration is the simplest, MIM devices being the only electronic devices able to work 

up to infrared [14]. The ferroelectric MIM (FTJ) allows, in addition, the control of the tunneling 

transport, i.e. ON and OFF switching, via DC poling signals. The aim of this paper is thus to 

show that even in thicker HfZrO ferroelectric layers (6 nm), which are part of a metal-

ferroelectric-semiconductor (MFS) configuration, the charge transport mechanism is still based 

on tunneling, and can be controlled by electric poling signals. This finding can be used for 

harvesting the electromagnetic energy at 26 GHz when HfZrO tunneling diodes are coupled to 

an antenna array, in order to feed, for instance, connected devices in an IoT network. 

 

2. Fabrication and characterization of tunneling HfZrO devices  

We have grown 6-nm-thick HfxZr1-xO2 layers by atomic layer deposition (ALD), using a 

Cambridge NanoTech F200 reactor at 250 oC, on a p-doped Si(100) substrate. The following 

precursors were involved: Tetrakis(ethylmethyl-amido) hafnium (TEMAHf), Tetrakis(ethyl-

methyl-amido) zirconium (TEMAZr), and water. Both metal precursors have the same nominal 

growth rate, of 0.1 nm per cycle, 30 super-cycles of [TEMAHf /H2O/TEMAZr/H2O] being 

employed to generate a well-mixed near 50:50 Hf:Zr composition. Nucleation delays and metal 

segregation are assumed to be absent. We have to point out that ALD growth of Hf0.45Zr0.55O1.76 

on Si is a very effective method to passivate the Si surface without producing additional defects, 
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thus avoiding the formation of large space-charge regions and surface channels, because of the 

formation of a SiOx interlayer between HfZrO and Si during growth [15,16]. 

The film thickness, measured by spectroscopic ellipsometry (Woollam M2000), was 

found to be 5.8±0.2 nm with the help of a four layer optical model: air/HfxZr1-xO2/SiO2/Si [17]. 

The chemical composition of the HfZrO films, namely Hf0.45Zr0.55O1.76, was determined by X-ray 

photoelectron spectroscopy (XPS) using a Kratos AXIS ULTRA spectrometer with a source of 

monochromatic Al Kα, of 1486.58 eV. Further details about XPS characterization and grazing 

incidence X-ray diffraction patterns, which reveal the ferroelectric, orthorhombic phase with 

Pbc21 symmetry of our samples can be found in Ref. 18. 

To better evidence the ferroelectric behavior of HfZrO thin films, Piezoelectric Force 

Microscopy (PFM) experimental data were obtained using the NT-MDT Solver Pro P-47 AFM. 

Measurements were performed in piezoresponse force mode by using a low-stiffness conductive 

probe (Pt-coated tip with a spring constant of 0.003-0.13 N/m (Tips Nano, CSG01/Pt)). Height 

and phase images were acquired by using 256×256 (x,y) positions (pixels). The ferroelectric 

property of the Hf0.45Zr0.55O1.76 thin film has been assessed by piezoresponse force mode by 

applying a bias between the conductive tip and the sample. The images reported in Figs. 1(a) and 

1(b) show the surface morphology and the phase, respectively, while a bias was alternated 

between +2/-2 V. As already observed by other authors [19,20], the PFM phase image shows a 

stripe domains structure induced by an electrically biased scanning tip, while the corresponding 

topography, before applying bias, is characterized by a flat structure.  

In PFM measurements, the ferroelectric behavior is highlighted by the distinct dark and 

bright contrast areas that appear as a function of the applied bias. Indeed, during the acquisition 

of the images the probe operates by oscillating at a frequency that is close to the characteristic 

frequency of the system cantilever-probe-sample, such that the oscillations of the cantilever in 

contact with the sample are resonant. Accordingly, the oscillation phase will be different for 
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those domains of the Hf0.45Zr0.55O1.76 film with different orientation of the polarization vector. 

For further information on the PFM studies, see [18].  

After the Hf0.45Zr0.55O1.76 oxide was grown and characterized, top and bottom electrodes 

were deposited using the e-beam evaporation system Temescal FC200. The top electrodes are Cr 

(5 nm)/Au (100 nm), with dimensions 150 m150 m, while the bottom Al electrode has a 

thickness of 100 nm. Tens of Hf0.45Zr0.55O1.76 capacitors were fabricated in this manner, Figs. 

1(c) and 1(d) presenting an optical image of several of these capacitors (top electrodes) and, 

respectively, the schematic cross-section of these devices.  

 The electrical characterization of MFS devices was performed between the top and the 

bottom electrode, which plays the role of ground electrode. All measurements were carried out 

using a Keithley SCS 4200 station with all channels connected to low noise amplifiers. The 

station is connected to a probe station, on which the chip containing all devices is placed. The 

entire probe station is enclosed in a Faraday cage. All experiments are performed inside the 

Faraday cage, which is closed during measurements. In order to check for hysteretic behavior of 

MFS devices, electrical characterizations were performed at various voltage sweeps. No fitting 

algorithms were applied during or after measurements. The yield was very good: 95% of the 

MFS capacitors showed similar capacitance-voltage (C-V) characteristics, within 5% 

dispersion, while 5% of all devices had problems due to their metallic contacts, which were 

exfoliated during the positioning of the sharp metallic probe tips.  

The typical C-V dependences, displayed in Fig. 2, demonstrate a hysteretic behavior, 

which have a counterclockwise trace, caused mainly by the interfacial layer formed during ALD 

deposition and located between the ferroelectric and the Si substrate [21,22]. This layer at the 

ferroelectric/semiconductor interface consists of residual impurities acting as slow states and 

related to hydroxyl groups formed during ALD growth from water. The hysteretic C-V 

dependences in Fig. 2 were recorded at 100 kHz, for different sweeping ranges indicated in the 

legend. As can be seen from the inset of this figure, the window (the width of the hysteresis 
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 6 

loop) increases initially with the sweeping range and then decreases, due to an increased number 

of charge carriers that tunnel through the very thin ferroelectric layer at larger applied voltages. 

A typical DC current-voltage dependence of the MFS devices, for poling signals of 

opposite polarity, is shown in Fig. 3(a) and reveals the existence of two distinct conduction states 

of HfZrO devices, termed ON and OFF. The corresponding band diagrams of the MFS structures 

in the absence of an applied bias are represented in Fig. 3(b). As can be seen from this figure, the 

opposite poling signals, which define the ON and OFF states, cause an opposite orientation of 

the dipole in the ferroelectric layer, equivalent to a built-in field, which modifies the band 

diagram of the devices. Thus, the currents/resistances in the ON and OFF states are different, 

inducing the rectifying behavior. In order to obtain the current-voltage characteristic depicted in 

Fig. 3(a), we applied the following procedure: before measurement, a poling signal consisting of 

a ramp of +10 V was applied to the device for 20 s, and the I-V dependence was measured in the 

ON state (black line). Then, the same poling signal, with the same duration but reversed polarity 

(-10 V) was applied on the device, which was measured in the OFF state (red line). The 

procedure was applied several times for each device to see if the ON and OFF states are 

preserved, but no significant changes were detected. In order to identify the conduction 

mechanism in the MFS device, we fitted the experimental data with different formulas, 

corresponding to different mechanisms, the best fit being obtained for the Fowler-Nordheim 

tunneling, for which [23]: 

 








 
 2/32

3
24exp bE

emEI 


                                                                                                      (1) 

 

where E is the electric field, m the effective mass of electrons and b  the barrier height at the 

ferroelectric/Si interface. The fit is presented in the top inset of Fig. 3(a), the value of b  

calculated from the slope of the fit (red line), for an electron effective mass in HfZrO of 047.0 m  
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 7 

[24], with 0m  the free electron mass, being about 0.3 V. The identified tunneling mechanism 

explains also the shape of the C-V curve corresponding to largest sweeping voltage employed, 

i.e of +/-5 V. More precisely, the decrease of the capacitance at large biases is caused by 

tunneling, more probable at high voltages, which decreases the charges contributing to the 

capacitive response.  

 The ratio of the ON and OFF currents (corresponding to poling signals of opposite 

polarities) is about 104, as can be seen from the bottom inset of Fig. 3(a), which represents the 

log(I)-V characteristics. The two dependences are drawn with the same line type as that used for 

the corresponding I-V characteristics.  

 

3. Fabrication and characterization of an antenna array at 26 GHz and of an 

Hf0.45Zr0.55O1.76 -based energy harvester 

Because the currents of the rectifying HfZrO tunneling diodes are at mA level, the diodes can be 

coupled to an antenna array in order to harvest electromagnetic energy at 26 GHz (a bandwidth 

designated for Internet of Things-IoT). Therefore, we have also fabricated an antenna array at 26 

GHz using optical lithography, measured it, and used its electromagnetic parameters to estimate 

the performance of the harvester when interconnected with the Hf0.45Zr0.55O1.76 MFS device (see 

Fig. 4). The antenna array was fabricated on a SiO2 substrate (300 nm thick) thermally deposited 

on 525-μm-thick high-resistivity silicon (HR Si). The metallization is a 500 nm thick gold layer. 

The width and length of an antenna patch are W = 2.22 mm and L = 1.46 mm, respectively, while 

the spacing between antennas is about λ0/2 in the (x,y) directions, with λ0 the free-space 

wavelength. In our case, λ0 ≈ 11.54 mm at 26 GHz. The reference antenna input impedance is 50 

Ω. 

We have measured the antenna return loss (|S11|) and the imaginary part of its input 

impedance, the results being shown in Figs. 5(a) and 5(b), respectively. From the first figure it 

follows that the best matching to 50 Ω occurs at 25.9 GHz from simulations, while it is found at 
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 8 

27.8 GHz from measurements. The difference between simulated and measured |S11| values is 

explained by the large difference between the thickness of the antenna array (of 500 m) and the 

free space wavelength (about 20 times larger, i.e. 1.15 cm at 26 GHz). Due to this fact, the 

antenna array does not radiate only above the radiation plane, represented by the antenna 

patches, but also below it, and the radiation efficiency is reduced. Therefore, during 

measurements the antenna array was mounted on a metallic support (not considered in 

simulations due to the very large computational time needed), to reduce the unwanted reflections 

and to increase its radiation efficiency. Nevertheless, the simulated and measured resonances (for 

which the imaginary part of the antenna input impedance is equal to zero) are very closely 

spaced, i.e. at 25.66 GHz from simulations and 25.14 GHz from measurements. 

To demonstrate the possibility of using MFS devices coupled to antenna arrays as 

electromagnetic energy harvesters, we integrated the MFS device in a coplanar (CPW) 

waveguide connected to the antenna array via a CPW taper. The output of the CPW MFS is 

further connected, by another CPW taper, to an optimized load R = 280 Ω in parallel with C = 5 

pF (see Fig. 6). Using the AWR simulator, in which we introduced the experimental I-V data, we 

further estimated the time domain response of the harvester (see Fig. 7) at various microwave 

voltages. The responsivity and NEP at various microwave voltages is displayed in Fig. 8. For an 

incident power between -20 dBm and 10 dBm, the responsivity is in the 63.34-0.47 V/W range, 

whereas the NEP spans the range 3.84-514.46 nW/Hz0.5. A comparison of our rectenna (i.e. the 

antenna array integrated with the HfZrO diode) with other existing rectennas in terms of the 

performance for harvesting millimeter waves working in the same bandwidth is difficult since 

the conversion efficiency defined as [%]/ RFDC PP  is generally calculated at various 

frequencies and various load resistances. Here DCP  is the DC power, while RFP  is the input RF 

power at a given frequency. However, considering the RF power as 0 dBm (10 mW) we obtain 

an efficiency of 6% at 26 GHz, while 10% efficiency is obtained at the same RF power at 24 

GHz with a rectifier consisting of a commercial Schottky diode [25]. 
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 9 

 

4. Conclusions 

In this paper, HfZrO ferroelectrics with a thickness of 6 nm were grown directly on Si using 

atomic layer deposition, top and bottom metallic electrodes being subsequently deposited by 

electron-beam metallization techniques. Depending on the polarity of the ±10 V poling voltages, 

the current-voltage dependence of these HfZrO tunneling diodes shows a rectifying behavior for 

different polarizations, the ON-OFF ratio being about 104 and the currents having large values, 

of mA level. We have demonstrated that, by using a metal-ferroelectric-semiconductor device 

coupled to an antenna array, we can collect electromagnetic energy at 26 GHz, with a 

responsivity of 63 V/W and a NEP of 4 nW/Hz0.5, high enough to feed things with a very low 

power consumption connected in an IoT network. For example, processors for sensing 

applications as in IoT consume only 35 pW in the standby mode, and 290 nW in the active mode 

[26]. Such types of extremely complex low-power circuits can be fed wirelessly by the harvester 

proposed in this work. In fact, many other things in an IoT besides sensors could be fed in the 

same way, since the required active power levels are fractions of W [27]. 
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Figure captions 

Fig. 1 (a) Surface morphology and phase image (b) of the Hf0.45Zr0.55O1.76 thin film obtained by 

applying sequentially a bias of +2/-2 V during the scan. The bright stripes in (b) were obtained 

with +2 V and the dark stripes with -2 V; (c) Optical image of top electrodes of Hf0.45Zr0.55O1.76 

capacitors, and (d) schematic of the cross-section of the MFS device. 

Fig. 2 C-V dependence of the MFS device at 100 kHz, for different sweeping ranges. Inset: 

Dependence of the windows of C-V curves on the sweeping range. 

Fig. 3 (a) DC I-V dependence of the MFS device. Top inset: Fitting of I-V data with Fowler-

Nordheim tunneling mechanism. Bottom inset: I-V dependence in a semi-log representation, 

with the same line style. (b) Band diagrams for the ON and OFF states in the absence of an 

applied bias 

Fig. 4 Optical image of the antenna array at 26 GHz. 

Fig. 5 (a) Return loss |S11| of the antenna array, and (b) imaginary part of its input impedance. 

Fig. 6 Circuit layout of the harvester. 

Fig. 7 Time domain response of the harvester. 

Fig. 8 Predicted responsivity and NEP of the harvester at 26 GHz for different input powers. 
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