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We consider a general polling model with N stations. The stations are served exhaus-
tively and in cyclic order. Once a station queue falls empty, the server does not
immediately switch to the next station. Rather, it waits at the station for the possible
arrival of new work (“wait-and-see”) and, in the case of this happening, it restarts
service in an exhaustive fashion. The total time the server waits idly is set to be a
fixed, deterministic parameter for each station. Switchover times and service times
are allowed to follow some general distribution, respectively. In some cases, which
can be characterized, this strategy yields a strictly lower average queuing delay than
for the exhaustive strategy, which corresponds to setting the “wait-and-see credit”
equal to zero for all stations. This extends the results of Peköz [12] and of Boxma
et al. [4]. Furthermore, we give a lower bound for the delay for all strategies that
allow the server to wait at the stations even though no work is present.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction

In this work, we consider a polling model in the sense of [13]. In a polling model, one
server serves several queues, called stations. The classical service procedures are the
(1) exhaustive, (2) gated, and (3) limited strategies, in which the server serves each
station (1) until no more work is waiting at the respective station, (2) until all the work
is served that was awaiting the server upon its arrival at the station, or (3) until the
server has finished at most a predescribed number of jobs. The server then turns its
attention to the next station. A possible (deterministic or random) idle time between
the different stations, called switchover time, accounts for things like reloading or
refueling.
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18 F. Aurzada, S. Beck, and M. Scheutzow

Recently, a few articles (most importantly [4] and [12]; also see [3] and [16])
consider strategies in which the server does not immediately switch from one station
to the next if the queue there is empty. Rather, it possibly waits at the station for a
while for the potential arrival of new messages. This is particularly useful if (1) the
switchover times are random with sufficiently large variances and (2) if the server is
not likely to find much work at the other stations, i.e., if the traffic intensity of the
current station is much larger than those of the other stations.

The strategy proposed and analysed in this article is also of this type: Each station
i is given a fixed wait-and-see credit Ti ≥ 0. Once the server arrives at station i, it will
work there whenever messages are waiting, but it will also wait (and see) at the station
for a total time of Ti. Once the credit is used up and no more messages are waiting, it
will switch to the next station. This strategy was considered by Peköz [12] for the case
of a completely symmetric system, for which arrival rates, service times, switchover
times, and the Ti are identical for all stations.

The main contributions of this article are as follows:

• To extend Peköz’results to the general (i.e., not necessarily symmetric) polling
model and to show, in particular, that the asymmetry induces some new effects
previously not observed;

• To show that our strategy can be adjusted to provide lower delay than with the
exhaustive strategy in several cases (which can be characterized and which
also appear for deterministic switchover times);

• To analyze the case of a polling model with two stations in detail and compare
our strategy to the one proposed by Boxma et al. [4];

• To prove a lower bound for the delay for all strategies that allow the server to
wait at a station even though no work may be present.

As mentioned earlier, introducing a wait-and-see credit is particularly useful if the
server is not likely to find much traffic at the other stations. This is because changing
the station means to stay idle for a switchover time rather than resuming work at the
current station within a short time. Surprisingly, we will see that this effect is largely
independent of the length of the switchover times.

So far, the advantage of additional idle times—as we apply them here—was
ascribed to the random switchover times. The new observation is that using nonzero
idle times is also particularly useful if the system is asymmetric, that is, one of the
stations experiences much more traffic than the others, even though the switchover
times may be deterministic. This is an aspect that could not be observed in [12], and
even though being intuitive, we can quantify this effect precisely.

In our polling model, the stations are served in cyclic order. We mention that
the performance of all strategies can yet be improved by altering the order in which
the server serves the different stations. For example, star polling can be applied if
one of the stations experiences significantly more traffic than all other stations (see,
e.g., [2,11]).
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WAIT-AND-SEE STRATEGIES IN POLLING MODELS 19

This article is structured as follows. In Section 1.2, we describe the model in
detail and introduce the relevant parameters. Section 1.3 contains a summary of our
main results. We review related work in Section 1.4. The proofs for the main results
are given in Section 2 for the general case and in Section 3 for the refined results for
polling models with only two stations. In Section 4, we prove a lower bound for the
delay for all strategies that allow the server to wait at a station even though no work
may be present. We highlight some possible further improvements and lines of future
reseach in Section 5.

The motivation for this work comes from a real-world application. In so-called
Ethernet Passive Optical Networks (EPONs; see [8,9]), a service provider is connected
to various end users via an optical fiber cable. Different optical wavelength channels
may be available on the cable for the communication, but each wavelength channel
can be operated only either upstream (messages are sent from end users to the service
provider) or downstream at a given time. Switching from upstream to downstream
operation or vice versa incurs an idle time (switchover time). Therefore, each channel
of an EPON can be regarded as a polling model.

1.2. The Model

We consider a polling model with N ≥ 1 stations and one server that serves the stations
in cyclic order. The stations are numbered i = 1, . . . , N ; because of the cyclic order,
when we talk of the stations, we set N + 1 � 1.

Each station i has its own queue that is fed by a Poisson arrival process whose
arrival rate is denoted by λi. Each arriving message has a random length (also called
service time). The mean and second moment of the message length distribution are
denoted by bi and b(2)

i , respectively, and are assumed to be finite.
The behavior of the server can be described as follows. The server arrives at

station i and starts serving first come–first server [FCFS] all waiting messages and
newly arriving messages until the queue is empty. This is typically called exhaustive
service in the context of polling models. However, once the station is empty or if the
server finds an empty station upon its arrival, the server does not immediately switch
to the next station; rather it turns idle for some time in order to wait for potentially
newly arriving messages (“wait-and-see”). As soon as new messages arrive, it starts
serving them immediately and in an exhaustive fashion. Once finished, it again turns
idle and waits for new messages to arrive, and so on.

The main feature of our model is that the server is set to wait idly for new messages
for a total time Ti, where Ti ≥ 0 is a fixed parameter of the system, called wait-and-see
credit. This total time can be spent altogether in one single period (e.g., if there are
no messages waiting at the station upon the server’s arrival and no messages arrive
even until time Ti after the server’s arrival at the station) or it can be spent in different
periods—interleaved by different busy periods. Note that since Ti is fixed, the server
might not use any information about the current queue status at other stations or about
the future of the arrival process at any station.
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20 F. Aurzada, S. Beck, and M. Scheutzow

FIGURE 1. Operation of our polling model.

After the server has spent a total waiting time of Ti at station i, it starts the
switchover to station i + 1. Hereby, it first spends a possibly random idle time, called
switchover time, where it does not serve any messages neither at station i or at sta-
tion i + 1. The random switchover time from station i to station i + 1 is assumed
to have finite mean ri ≥ 0 and finite second moment r(2)

i . We will consider both
nondeterministic and deterministic switchover times (in the latter case, r(2)

i = r2
i ).

The message generation process, the lengths of the messages, and the switchover
times are assumed to be independent—both among each other and with respect to the
other processes and stations. An illustration of the operation of the server is given in
Figure 1.

The goal of this article is to derive an explicit formula for the mean average delay
of a job for this model in steady state—that is, the expected time a message experiences
from the point in time when it arrives in one of the queues until its service starts (i.e.,
excluding the processing time). The expected delay of a message generated at station
i is denoted by EDi; the mean average queuing delay is then defined by

D̄ =
N∑

i=1

ρi

ρ0
EDi,

whereρi := λibi is the traffic load offered to station i andρ0 := ∑N
i=1 ρi is the total load

offered to the system. We stress that the delays of the different stations are weighted by
the traffic intensity ρi, which implicitly includes weighting with the average message
lengths, whereas the delays EDi do not include weighting the delay of the individual
messages with their lengths. This seems to be common in the literature; for example
Takagi [13, p. 92] calls this quantity intensity weighted mean waiting time.

Note that under weighting by the intensities ρi that we apply here, it is clear that
finishing work at the present station (exhaustively) is necessarily better than leaving
work undone at the station. This observation is not necessarily correct if one uses
weighting e.g. by the arrival rates λi, since then it might be more efficient to abandon
work at a station and to switch to another station where presumably many small
messages are waiting (i.e., where λi is large, even though ρi might be small).

The mean delay will be expressed explicitly in terms of the parameters λi, bi, b(2)
i ,

Ti, ri, and r(2)
i , i = 1, . . . , N , defined earlier.
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WAIT-AND-SEE STRATEGIES IN POLLING MODELS 21

Furthermore, it will be convenient to use the following abbreviations. We abbrevi-
ate by r0 := ∑N

i=1 ri the sum of the mean switchover times and by r(2)
0 := ∑N

i=1 r(2)
i +∑N

i,j=1,i �=j rirj the second moment of the sum of all switchover times. Finally, we let

T0 := ∑N
i=1 Ti denote the total “wait-and-see” time per cycle.

1.3. Main Results

In this subsection, we give our main results. Theorem 1 gives a formula for the
mean average delay in terms of the parameters of the system λi, bi, b(2)

i , ri, and
r(2)

i , i = 1, . . . , N , as well as the times Ti, i = 1, . . . , N . This is simplified for the case
of two stations, N = 2, in Corollary 2.

The formula for the delay allows one to investigate the following question: Given
the system parameters λi, bi, b(2)

i , ri, and r(2)
i , how does one have to adjust the param-

eters Ti, i = 1, . . . , N , such that the mean average delay is minimized. We will see
that in many cases it is favorable—in the sense of lower average queueing delay – to
choose positive Ti. This is either due to (1) the random switchover times or (2) the
asymmetry of the system. This is described in detail for the case of two stations in
Theorems 3 and 4, in which effects (1) and (2) are treated somehow in a decoupled
way.

Finally, in Theorem 8 we consider all strategies that allow the server to wait at a
station even though no work might be present. We give a lower bound for the delay
for any such strategy.

Before we come to the main results, let us mention the stability condition for the
system. Due to the exhaustive nature of our polling model, it is clear that the system
is stable if and only if

ρ0 < 1.

We assume this condition from now on.
Furthermore, we recall the result for the so called exhaustive strategy from [13].

In our model, this corresponds to the special case T1 = T2 = · · · = TN = 0. In this
case, one can find that

D̄ =
∑N

i=1 λib
(2)
i

2(1 − ρ0)
+ r0(ρ

2
0 − ∑N

i=1 ρ2
i )

2ρ0(1 − ρ0)
+ r(2)

0

2r0
.

In terms of queuing delay, it was shown in [10] that the exhaustive strategy provides
the lowest delay in the class of all nonidle strategies, in particular, as compared to the
gated and limited strategy. Therefore, it will serve as a benchmark for our strategy,
which is a strategy allowing the server to be idle even though work might be present
in the system (at other stations).

The main theorem for our polling model is as follows.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964811000210
Downloaded from https://www.cambridge.org/core. Schweitzer Fachinformationen, on 03 Sep 2018 at 10:08:08, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964811000210
https://www.cambridge.org/core


22 F. Aurzada, S. Beck, and M. Scheutzow

Theorem 1: The mean average delay of the polling model introduced above is given by

D̄ =
∑N

i=1 λib
(2)
i

2(1 − ρ0)
+ (r0 + T0)(ρ

2
0 − ∑N

i=1 ρ2
i )

2ρ0(1 − ρ0)
+

1
2ρ0r(2)

0 + r0
∑N

i=1 Ti(ρ0 − ρi)

ρ0(r0 + T0)

+ 1

(r0 + T0)ρ0

⎡
⎣ N∑

i=1

T 2
i

(1 − 2ρi)(ρ0 − ρi)

2(1 − ρi)
+

∑
1≤i<j≤N

TiTj(ρ0 − ρi − ρj)

⎤
⎦ .

(1)

The proof of this theorem is given in Section 2. Certainly, one can ask which
values of T1, . . . , TN lead to a minimal queueing delay. In other words, given the
system parameters, we would like to know how we have to set T1, . . . , TN in order
to minimize D̄. Note that this is a nontrivial question, because the Ti appear in the
numerator and denominator. In fact, this is a minimization problem in the variables
T1, . . . , TN , subject to the nonnegativity restriction Ti ≥ 0, for all i = 1, . . . , N , which
can be carried out—in principle—explicitly. We discuss the respective minimizers
below for N = 2. Certainly, for large N , one would solve the problem numerically.

For two stations N = 2, the main result reduces to the following simpler formula.

Corollary 2: The mean average delay of the polling model introduced above with
N = 2 is given by

D̄ =
∑2

i=1 λib
(2)
i

2(1 − ρ0)
+ 1

ρ0(r0 + T0)

[
r(2)

0 ρ0

2
+ ρ1ρ2

1 − ρ0
(r0 + T0)

2

+ ρ2T1

(
r0 + T1

1 − 2ρ1

2(1 − ρ1)

)
+ ρ1T2

(
r0 + T2

1 − 2ρ2

2(1 − ρ2)

)]
. (2)

In particular, one can minimize (2) with respect to T1 and T2 subject to the
restrictions T1 ≥ 0 and T2 ≥ 0 in order to obtain the minimal possible delay. Let us
denote by T∗

1 and T∗
2 the minimizers. We say that there is no gain from waiting at

station i if T∗
i = 0; if T∗

i > 0, we say that it is worth waiting at station i.
From the above, explicit expression one can observe the following consequences.

First, we consider a partially symmetric polling model, by which we only mean that
both stations have the same intensities ρ1 = ρ2 but not necessarily the same switchover
time distribution, message length distribution, or arrival rate (cf. [12]).

Theorem 3: Consider a polling model as introduced above with two stations. In the
case of a symmetric polling model, ρ1 = ρ2, the following holds:

• With deterministic switchover times (i.e., r2
1 = r(2)

1 and r2
2 = r(2)

2 ), we get T∗
1 =

T∗
2 = 0; that is, in this case, there is no gain from waiting at either station.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964811000210
Downloaded from https://www.cambridge.org/core. Schweitzer Fachinformationen, on 03 Sep 2018 at 10:08:08, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964811000210
https://www.cambridge.org/core


WAIT-AND-SEE STRATEGIES IN POLLING MODELS 23

• With nondeterministic switchover times (i.e., r2
1 < r(2)

1 or r2
2 < r(2)

2 ), it is worth
waiting (at both stations) if and only if

2ρ1 < 1 − r2
0

r(2)
0 + r2

0ρ1/(1 − 2ρ1)
. (3)

In this case, the optimal waiting time T∗
1 = T∗

2 > 0 can be calculated explic-
itly, see (27). The minimal delay is then given by inserting (27) into (2); this
delay is strictly lower than the mean average delay induced by the exhaustive
strategy.

Now, we consider an asymmetric polling model (i.e., ρ1 > ρ2).

Theorem 4: Consider a polling model as introduced above with two stations. In
the case of an asymmetric polling model with deterministic switchover times (i.e.,
assuming ρ1 > ρ2 and r2

1 = r(2)
1 , r2

2 = r(2)
2 ), the following holds:

• There is no gain from waiting at station 2 (i.e., in all cases T∗
2 = 0).

• Further, it is worth waiting at station 1 if and only if

ρ1 − ρ2
1 + ρ2

2 − ρ2 − 2ρ1ρ2 > 0. (4)

In this case, one can calculate the minimizer T∗
1 > 0 explicitly as in (30). The

minimal delay is then given by inserting (30) and T∗
2 = 0 into (2); this delay is

strictly lower than the mean average delay induced by the exhaustive strategy.

Remark 5: A similar discussion is possible for the case of an asymmetric polling
model with nondeterministic switchover times. There, both of the following effects
will be combined; namely note that Theorem 3 shows that large variances of the
switchover times lead to the situation in which it is worth waiting (at both stations):
Indeed, the fraction on the right-hand side of (3) equals

(E[R1 + R2])2

var[R1 + R2] + (E[R1 + R2])2(1 − ρ1)/(1 − 2ρ1)
, (5)

where Ri are independent switchover times for switching from station i to station i + 1,
respectively. Thus, increasing the variances of the switchover times in condition (3)
makes the condition less strict; thus, it becomes worth waiting.

On the other hand, Theorem 4 shows that a strong asymmetry (reducing ρ2 in
condition (4)) makes it useful to wait at the station with significantly higher traffic
intensity.

These effects will both be present in the case of a not necessarily symmetric
system with nondeterministic switchover times.

Remark 6: We remark the following rather surprising fact: Note that (4) does not
depend on the switchover times. So, the question of whether it makes sense to wait
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24 F. Aurzada, S. Beck, and M. Scheutzow

at station 1 only depends on the relation of the intensities ρi, not on the length of the
possible idle period due to the switching. Similarly, the expression in (3) does not
depend on the absolute lengths of the two switchover times (one can multiply both Ri

by the same constant without changing (3), cf. (5)) or on the order of the switchover
times (but only on the sum). However, even though the decision whether to wait or
not does not depend on the absolute length of the switchover time, the resulting credit
(i.e., the optimal waiting time) does (cf. (27)).

Remark 7: If N > 2, the mean average queueing delay D̄ has the form

D̄ = c + �TA�T t + �T�bt + a

r0 + T0

with some N × N matrix A, constants c, a, and �b, and �T := (T1, . . . , TN ). One can
again discuss for which values of �T the delay is minimized and find the mini-
mizers. Note that from the point of view of applications, the above form allows
for an easy numerical determination of the minimal delay and the respecitive
minimizer �T∗.

Finally, we discuss a lower bound for the delay for strategies that allow wait-
ing times of any type. We recall at this point that [10] shows that the exhaustive
strategy provides the lowest delay in the class of all nonidle strategies—that is, all
strategies in which the server is not allowed to wait at a station if no work is present
there.

In the following, we consider strategies that are not allowed to use future infor-
mation of the system, that serve FCFS, and where the server is not idle if at its present
station messages are waiting to be served. Further, we have to assume that with this
strategy the system has a steady-state distribution.

The next theorem gives a lower bound for the delay for all of these strategies for
which the server is allowed to wait at stations due to reasons that depend only on the
current station in the current cycle (i.e., since the server arrived at the present station).
This restriction considers those strategies that look at the evolution of the traffic at
the present station since the server arrived there. It does not allow strategies that take
their decisions according to, for example, the queue status at different stations or the
recent switchover times.

This provides a lower bound, in particular, for the model treated so far, the strategy
proposed in [4], as well as the strategy proposed in Section 5.

Theorem 8: Consider a polling model for which the stations are served in cyclic
order. Then for any strategy that allows the server to wait at a station even though no
work is present there but the decision on whether and how long to wait only depends
on the evolution of queue of the current station since the server arrived at the station,
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WAIT-AND-SEE STRATEGIES IN POLLING MODELS 25

we have

D̄ ≥
∑N

i=1 λib
(2)
i

2(1 − ρ0)
+ r0(ρ

2
0 − ∑N

i=1 ρ2
i )

2ρ0(1 − ρ0)

+ min
f1,...,fN ≥0

1

ρ0(r0 + f0)

⎡
⎣ρ0r(2)

0

2
+

N∑
i=1

(
r0fi + f 2

i

2

)
(ρ0 − ρi)

+
N∑

i=1

fi

⎛
⎝ i−1∑

j=1

αj

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+

N∑
j=i+1

αj

j−1∑
l=i+1

ρl

⎞
⎠

⎤
⎦ , (6)

where αj := ρj(r0 + f0)/(1 − ρ0) + fj and f0 = ∑N
i=1 fi.

The idea behind this theorem is that fi is the expected time the server spends
waiting at station i in a cycle. The time as such is random for a general strategy, of
course. Since the fi are unknown in general, the minimum appears. In the case of the
concrete model treated so far, we had fi = Ti, because by definition the total time the
server spends at station i is deterministic and equals Ti.

The minimum in (6) can be calculated explicitly as well as numerically without
any problem. We note that the term in (6) that is to be minimized actually has the
same format as the term in (1), with the fi instead of Ti. The general format of this
term is displayed in Remark 7; for N = 2, the discussions to obtain the minimum are
completely analogous to those that lead to Theorems 3 and 4. The proof of Theorem 8
is given in Section 4.

1.4. Related Work

Basic references on polling models are [10,13–15].
References that refer to polling models in which the server might be waiting at

a station are apparently rare. The main references for us are Peköz [12] and Boxma
et al. [4].

Peköz [12] introduced the strategy we use in this article for the completely sym-
metric model (i.e., all of the arrival rates, service times, switchover times, and the Ti

are identical). In particular, his Theorem 2.2 is a special case of our Theorem 1. In
the present article, we consider the general polling model. Furthermore, a new obser-
vation is that also a sufficiently asymmetric system can make it useful to wait at a
station, independently of whether the switchover times are random.

The second main reference is Boxma et al. [4], in which a polling model with
N = 2 stations is analyzed. In that work, the following situation is investigated. If
the server encounters an empty queue at station 1 once it arrives there, a “wait-and-
see” timer is activated in order to wait for the possible arrival of new messages.
However—contrary to the present setup—once the server has cleared the station of
waiting messages (exhaustively) or the timer has run out, it will immediately switch
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26 F. Aurzada, S. Beck, and M. Scheutzow

FIGURE 2. Comparison to Boxma et al. [4], delay versus credit (resp. timer) at sta-
tion 1. Note that in the first plot, the strategy from [4] provides lower delay; in
the second plot, only the arrival rate of the second station is changed and then our
wait-and-see strategy has lower delay; in the third plot, the same happens due to longer
switchover times.
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WAIT-AND-SEE STRATEGIES IN POLLING MODELS 27

to the next station. We compare the resulting delay obtained from this strategy to ours
in Figure 2. We have found cases in which our strategy leads to lower delay than the
strategy proposed by Boxma et al. and also cases in which it performs worse. The
latter is usually the case if the intensities ρ1 and ρ2 are close to each other, whereas in
the case that we deal with a highly asymmetric system, our strategy seems to be better.
Additional, for large switchover times, our strategy seems to perform better than [4],
since in this case the timer from [4] is rarely activated. Unfortunately, it does not seem
to be possible to compare the strategies directly due to the nonexplicit nature of the
delay formulas in [4].

Further references on polling models in which the server might be waiting,
consider only single-station systems with vacations ( [3,16]).

The strategy employed in [4] and in the present article is somehow related to
a so-called forced idle time. We refer, for example, to [5,6] for some work on this.
However, in the present setup, the server is not forced to be idle; whenever it is set to
“wait-and-see,” it resumes service as soon as new messages arrive. This is the reason
we prefer the term “wait-and-see” rather than “forced idle time.”

2. THE FUNDAMENTAL RELATIONS FORTHE GENERAL
POLLING MODEL

In this section, we derive the fundamental relations for the general polling model that
allow us to obtain the formula for the mean average queueing delay. In particular, we
give a proof of Theorem 1. We proceed in several steps.

CycleTime

The cycle time is defined to be the time that the server takes from one arrival at station
1 to its next arrival at the same station. We obtain the average cycle time EC.

First, let us define more precisely the notion of the server being idle, switching,
and waiting. The server is waiting when it is at some station waiting for messages
to arrive. Note that, by the definition of our strategy, the total time the server spends
waiting in each cycle equals

∑N
i=1 Ti. The server is said to be in the state of switching

from the time it leaves one station until it starts working at the next station. Finally,
we say that the server is idle if it is either waiting or switching.

Now, note that a cycle contains periods when the server works and periods when
it is idle. In our polling model, the server is idle exactly for the time it waits and for
the switchover time. Thus, the expected time the server is idle in a cycle equals

(1 − ρ0)EC =
N∑

i=1

ri +
N∑

i=1

Ti. (7)

This allows one to deduce the expected cycle time in our polling model in steady state:

EC = r0 + T0

1 − ρ0
. (8)
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28 F. Aurzada, S. Beck, and M. Scheutzow

The Decomposition Principle

We will use a decomposition principle to deduce our results. One can find a proof of
this principle in other contexts (e.g., in [1,4]). We omit the proof for our system since
it is completely analogous.

In order to formulate the decomposition principle, we need the notion of the
workload V , which we define to be the sum of all message lengths that are present in
the system (including the remaining length of the currently processed message) at a
random point in time in steady state.

Then the decomposition principle says that V has the same distribution as

V
d= V M/G/1 + V idle,

where V M/G/1 is the workload in the same polling model with no switching or waiting
times, (i.e., an M/G/1 queue). On the other hand, V idle is the workload at a random
point in time given that the server is idle at that point, and V M/G/1 and V idle are
independent.

Let

q := P (server switching | server idle) = P (server switching)

P (server switching) + P (server waiting)
.

Therefore,

EV = EV M/G/1 + qEV switching + (1 − q)EV waiting, (9)

where V switching and V waiting are the workloads at a random point in time given that the
server is switching and waiting, respectively, at that point.

Expected Workload

We now calculate EV in two different ways. On the one hand, note that

EV =
N∑

i=1

biE[# messages in queue at station i] +
N∑

i=1

ρi
b(2)

i

2bi
. (10)

Indeed, the first term accounts for the fact that there are messages that are not yet in
service and that are waiting at the different stations. The second term corresponds to
the fact that with probability ρi we are looking at station i and a message is being
processed there. The workload of that message is exactly its expected residual lifetime,
i.e., b(2)

i /(2bi).
By Little’s law, (10) becomes

EV =
N∑

i=1

biλiEDi +
N∑

i=1

ρi
b(2)

i

2bi
=

N∑
i=1

ρiEDi +
N∑

i=1

ρi
b(2)

i

2bi
= ρ0D̄ +

N∑
i=1

ρi
b(2)

i

2bi
.

(11)
This equation shows that in order to obtain the mean average queuing delay of our
system, D̄, we have to calculate the expected workload EV .
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On the other hand, we use the decomposition principle (9). Clearly, EV M/G/1 is
known:

EV M/G/1 =
∑N

i=1 λib
(2)
i

2(1 − ρ0)
;

see, for example, [7, p. 201]. Therefore, we obtain with (9) and (11) that

ρ0D̄ =
∑N

i=1 λib
(2)
i

2(1 − ρ0)
+ qEV switching + (1 − q)EV waiting −

N∑
i=1

ρi
b(2)

i

2bi
. (12)

We are left with calculating the expected workload given that we find the system
in the state of switching and, respectively, the expected workload given that we find
the system in the state of waiting, as well as some relation between time periods of
switching and waiting. Concerning the latter, in fact, it is sufficient that we clearly
know that

q

P (server switching)
= 1

P (server switching) + P (server waiting)
= 1

1 − ρ0
(13)

and

1 − q

P (server waiting)
= 1

P (server switching) + P (server waiting)
= 1

1 − ρ0
. (14)

Workload Present While Switching

Observe that

EV switching = 1

P (server switching)

N∑
i=1

piEV switching
i , (15)

where pi is the probability of encountering the server in the state of switching from
station i to station i + 1 when entering the system at a random point in time and
EV switching

i is the expected workload at such a point in time.
Clearly, pi = ri/EC, since this is the fraction of time in a cycle that the server

spends switching from station i to station i + 1.
Now, we have to find EV switching

i , the expected total amount of work that is present
given that we look at the system at a point when the server is switching from station i to
station i + 1. Let us assume that we are at such a point in time; then there are different
times when the currently present workload was generated. We distingish these times
and determine the respective workload:

• At all stations j, workload was generated during the current switching period.
It is given by the expected residual lifetime of the current switching period:
r(2)

i /(2ri)
∑N

j=1 ρj. Here, r(2)
i /(2ri) is the expected residual lifetime (in fact,

the expected backward recurrence time) of the current (ith) switching period;
this becomes weighted by

∑N
j=1 ρj, the sum of the intensities at all stations.
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30 F. Aurzada, S. Beck, and M. Scheutzow

• At all stations j, except for the ith station, workload was generated while
the server was at station i (working and waiting). The time spent working
has mean ρiEC and the time spent waiting equals Ti, so that the generated
workload becomes (ρiEC + Ti)

∑N
j=1, j �=i ρj.

• Similarly, while the server was at station k (working and waiting), k �= i, at
all stations j (except for those that later in the cycle became emptied; i.e. only
those stations that are situated “between station i and station k” in the cycle
have to be considered) workload was generated and is still present. The time
spent working has mean ρkEC and the time spent waiting equals Tk , so that
the generated workload becomes

(ρkEC + Tk)
∑

j∈{i+1,...,k−1}
ρj, (16)

where {i + 1, . . . , k − 1} is defined as {i + 1, . . . , N} ∪ {1, . . . , k − 1} if
i + 1 > k − 1.

• During the switchover time from station k to station k + 1 (k �= i), which
takes on average rk , workload was generated at all stations (except for those
that later in the cycle became emptied):

rk

∑
j∈{i+1,...,k}

ρj. (17)

Summing up all this workload, we get

EV switching
i =

∑
j<i

rj

(
N∑

l=i+1

ρl +
j∑

l=1

ρl

)
+

∑
j>i

rj

j∑
l=i+1

ρl

+
∑
j<i

ρjEC

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+

∑
j>i

ρjEC
j−1∑

l=i+1

ρl

+
∑
j<i

Tj

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+

∑
j>i

Tj

j−1∑
l=i+1

ρl

+ ρiEC(ρ0 − ρi) + (ρ0 − ρi) Ti + ρ0
r(2)

i

2ri
. (18)

Workload Present While Waiting

Analogous to the workload while switching, we observe that

EV waiting = 1

P (server waiting)

N∑
i=1

qiEV waiting
i , (19)
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where qi is the probability of finding the server waiting (in a wait-and-see state) for
messages at station i and EV waiting

i is the workload one would find at such a point in
time.

Clearly, qi = Ti/EC, since this is the fraction of time in a cycle that the server
spends waiting at station i, by the definition of our polling model.

Similarly to the workload while switching, we obtain the expected workload
generated while station i is in the state of waiting. Let us assume we are at such a
point in time; then there are different times when the currently present workload was
generated. We distinguish these times and determine the respective workload:

• When the server started working at station i, there was work waiting there.
We denote the length of the “busy period” generated by this waiting traffic
by Zi. The workload generated at the other stations j, j �= i, during this busy
period is

EZi

∑
j �=i

ρj = EZi(ρ0 − ρi). (20)

In order to determine EZi note that the average time the server spends working
at station i is, on the one hand, ρiEC. On the other hand, the time the server
spends working at station i consists of the length of the first busy period, EZi,
and all other busy periods generated, which is the number of busy periods in
an M/G/1 queue with total idle time Ti. However, the expected number of
busy periods in an M/G/1 queue with total idle time Ti is λiTi (just disregard
the time of the busy periods, then because of the memoryless property, the
number of busy periods is Poisson with rate λiTi).

Thus,

ρiEC = EZi + λiTi
bi

1 − ρi

since bi/(1 − ρi) is the average length of one busy period at station i. This
equation allows one to calculate EZi and to insert it into (20).

• Workload was generated at all other stations except for the ith, during the busy
periods that have already taken place at station i, not considering the first busy
period when the server started to work at station i (this was considered in the
above point). Per busy period, a workload at the other stations j, j �= i, of in
total

bi

1 − ρi

∑
j �=i

ρj = bi

1 − ρi
(ρ0 − ρi)

was generated, since bi/(1 − ρi) is the average length of one busy period
at station i. In order to obtain the number of busy periods that have already
taken place, note that these are, on average, λiTi/2, because the waiting time
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is deterministic. Thus, we obtain

λiTi

2

bi

1 − ρi

∑
j �=i

ρj = λiTi

2

bi

1 − ρi
(ρ0 − ρi) (21)

for the total workload that was generated at all other stations during the busy
periods (except for the very first one) at station i.

• The total workload that was generated at all other stations during the waiting
time spent so far at station i (recall that this is, on average, Ti/2, since it is
deterministic) is

Ti

2

∑
j �=i

ρj = Ti

2
(ρ0 − ρi). (22)

• While the server was at station k (working and waiting), k �= i, at all stations
j (except for those that later in the cycle became emptied; i.e. only those
stations that are situated “between station i and station k” in the cycle have
to be considered) workload was generated and is still present. Thus the term
in (16) has to be considered in the same way.

• During the switchover time from station k to station k + 1 (k �= i), the work-
load was generated at all stations (except for those that later in the cycle
became emptied). Thus, the term in (17) has to be considered in the same
way.

Summing up all of this workload, we get

EV waiting
i =

∑
j<i

rj

(
N∑

l=i+1

ρl +
j∑

l=1

ρl

)
+

∑
j>i

rj

j∑
l=i+1

ρl

+
∑
j<i

ρjEC

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+

∑
j>i

ρjEC
j−1∑

l=i+1

ρl

+
∑
j<i

Tj

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+

∑
j>i

Tj

j−1∑
l=i+1

ρl

+ (ρ0 − ρi)

(
ρiEC + Ti

2

(
1 − ρi

1 − ρi

))
. (23)

Proof of Theorem 1: In order to see the formula in Theorem 1, one just has to
combine (12), (8), and (13), (15), (18), and (14), (19), (23). �

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964811000210
Downloaded from https://www.cambridge.org/core. Schweitzer Fachinformationen, on 03 Sep 2018 at 10:08:08, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964811000210
https://www.cambridge.org/core


WAIT-AND-SEE STRATEGIES IN POLLING MODELS 33

3. THE CASE OFTWO STATIONS

In this section, we prove Theorems 3 and 4. First, we prove that the optimal parameters
in the two-station case satisfy a linear relation. Then we prove Theorem 3 (sym-
metric case, deterministic and nondeterministic) and Theorem 4 (asymmetric and
deterministic).

For simplicity, we introduce the following abbreviations:

c1 :=
∑2

i=1 λib
(2)
i

2(1 − ρ0)
,

c2 := ρ1ρ2r2
0

1 − ρ0
+ ρ0r(2)

0

2
,

c3 := r0ρ2 + 2ρ2ρ1r0

1 − ρ0
,

c4 := r0ρ1 + 2ρ1ρ2r0

1 − ρ0
,

c5 := 2ρ2ρ1

1 − ρ0
,

c6 := c5

2
+ ρ2

2

(
1 − ρ1

1 − ρ1

)
,

c7 := c5

2
+ ρ1

2

(
1 − ρ2

1 − ρ2

)
.

An easy calculation shows that these are nonnegative constants. With these
abbreviations, (2) becomes

D̄ = c1 + c2 + c3T1 + c4T2 + c5T1T2 + c6T 2
1 + c7T 2

2

ρ0(r0 + T1 + T2)
. (24)

Lemma 9: On the set r0 + T0 > 0, the minimizers of the quantity in (24) satisfy the
following linear relation:

(c5 − 2c6)T
∗
1 = c3 − c4 + (c5 − 2c7)T

∗
2 . (25)

In particular, in the symmetric polling model (ρ1 = ρ2), we must have

T∗
1 = T∗

2 . (26)

We remark that the above minimizers can be negative. Recall that we are interested
in the optimal parameter, which are the minimizers of (24) subject to the restriction
T∗

1 , T∗
2 ≥ 0. This is why we distinguish in the following between the minimizers of

(24) and the optimal parameters.
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Proof of Lemma 9: Clearly, (24) shows that D̄ can be written as

D̄ = D̄(T1, T2) = c1 + f (T1, T2)

ρ0(r0 + T1 + T2)

with some function f . If D̄ has a minimum at T∗
1 and T∗

2 (with r0 + T∗
1 + T∗

2 > 0), it
must satisfy

∂D̄

∂T1
(T∗

1 , T∗
2 ) = 0 and

∂D̄

∂T2
(T∗

1 , T∗
2 ) = 0.

Due to the fact that the denominator is a linear function in T1 + T2, an easy calculation
shows that we must actually have

∂f

∂T1
(T∗

1 , T∗
2 ) = ∂f

∂T2
(T∗

1 , T∗
2 ).

This is

c3 + c5T∗
2 + 2c6T∗

1 = c4 + c5T∗
1 + 2c7T∗

2 ,

exactly as asserted in (25).
In the symmetric case, we have ρ1 = ρ2 < 1/2 and c3 = c4 and c7 = c6, which

implies that (25) becomes (26). �

3.1. Symmetric Polling Model

We now consider a symmetric polling model (i.e., ρ1 = ρ2 =: ρ).

Proof of Theorem 3: Assume that T∗
1 > 0 and T∗

2 > 0 are the optimal parameters.
Then we know from (26) that T∗

1 = T∗
2 =: T . Therefore, we obtain

D̄ = c1 +
(r(2)

0 + ρr2
0/(1 − 2ρ)) + 2(r0 + 2ρr0/(1 − 2ρ))T

+(4ρ/(1 − 2ρ) + 1 − ρ/(1 − ρ))T 2

2(r0 + 2T)
.

The minimum of this expression is attained at

T∗ = −1

2
r0 + 1

2

√
4r2

0ρ − 3r2
0 +

(
r(2)

0 + r2
0

ρ

1 − 2ρ

) (
4 − 12ρ + 8ρ2

)
. (27)

Let a := r(2)
0 + r2

0ρ/(1 − 2ρ). The condition for T∗ to be well defined and positive is

4r2
0ρ − 3r2

0 + a4(1 − ρ)(1 − 2ρ) > r2
0 .

This is true if and only if

a(1 − 2ρ) > r2
0 ,

which is easily seen to be equivalent to what we stated in (3).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964811000210
Downloaded from https://www.cambridge.org/core. Schweitzer Fachinformationen, on 03 Sep 2018 at 10:08:08, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964811000210
https://www.cambridge.org/core


WAIT-AND-SEE STRATEGIES IN POLLING MODELS 35

In the deterministic case, a = r2
0 + r2

0ρ/(1 − 2ρ), the condition becomes

2ρ < 1 − r2
0

r2
0 + r2

0ρ/(1 − 2ρ)
= 1 − 1

1 + ρ/(1 − 2ρ)
,

which can easily be seen to lead to the contradiction ρ < 0. �

3.2. Asymmetric Polling Model with Deterministic SwitchoverTimes

We now consider an a asymmetric polling model (i.e., ρ1 > ρ2) with deterministic
switchover times (i.e., r(2)

1 = r2
1 and r(2)

1 = r2
1 ).

Proof of Theorem 4, first part: Recall that we would like to show that there is
no gain from waiting at the station with less traffic (i.e., station 2 in our case). We
distinguish two cases: ρ1 > 1/2 and ρ1 < 1/2.

First Case: ρ1 > ρ2 and ρ1 > 1/2.
Note that trivially ρ2 < 1/2. Recall that the linear relation (25) holds for the

minimizers of (24) (which is the same as (2)). Since ρ1 > 1/2, and ρ2 < 1/2, we get
(c3 − c4)/(c5 − 2c6) < 0 and (c5 − 2c7)/(c5 − 2c6) < 0. Therefore, due to (25), one
of the minimizers T∗

1 or T∗
2 must be negative. Therefore, the minimizers subject to

the restriction T∗
1 , T∗

2 ≥ 0 must satisfy either T∗
2 = 0 or T∗

1 = 0. However, the second
case can be excluded easily: If we set T1 = 0 in (24) and optimize in T2, we would get

T∗
2 = −r0 +

√
r2

0 + c2 − c4r0

c7
.

This can be seen to be negative, because

c2 − c4r0 < 0

follows from

−r2
0ρ1 − ρ1ρ2r2

0

1 − ρ0
+ 1

2
ρ0r(2)

0 = r2
0

1

2
(ρ2 − ρ1) − ρ1ρ2r2

0

1 − ρ0
< 0,

which holds since ρ2 < ρ1.
Therefore, the case T∗

1 = 0, T∗
2 > 0 can be excluded, and we must have T∗

1 ≥ 0
and T∗

2 = 0 for the minimizers of (24) subject to T∗
1 , T∗

2 ≥ 0.
Second Case: ρ1 > ρ2 and ρ1 < 1/2.
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First, let us rewrite the delay formula (2). We exclude the trivial case r0 = 0 and
set S1 := T1/r0 and S2 := T2/r0. Then (2) becomes

D̄ = c1 + r0

ρ0

(
ρ1ρ2

1 − ρ0
(1 + S1 + S2) +

(
1

2
ρ0 + S1ρ2 + S2ρ1 + S2

1
ρ2

2

1 − 2ρ1

1 − ρ1

+S2
2
ρ1

2

1 − 2ρ2

1 − ρ2

)/
(1 + S1 + S2)

)
. (28)

With the notation S1 and S2, the linear relation (25) becomes

S1 = c3 − c4

c5 − 2c6

1

r0
+ c5 − 2c7

c5 − 2c6
S2 = (ρ1 − ρ2)

/ (
ρ2

1 − 2ρ1

1 − ρ1

)

+
(

ρ1
1 − 2ρ2

1 − ρ2

)/ (
ρ2

1 − 2ρ1

1 − ρ1

)−1

S2.

Setting

c := (ρ1 − ρ2)

/ (
ρ2

1 − 2ρ1

1 − ρ1

)

and

b :=
(

ρ1
1 − 2ρ2

1 − ρ2

) / (
ρ2

1 − 2ρ1

1 − ρ1

)
,

this is

S1 = c + bS2. (29)

Consider D̄ = D̄(S1, S2) (given in (28)) as a function of S1 and S2. It suffices
to consider the function D̄(S1, S2) only at those points that satisfy the linear relation
(29)—that is, D̄(c + bS2, S2), S2 ∈ [0, ∞). We are finished if we can show that the
derivative of this function wrt S2 at 0 is nonnegative, since then the optimum must
be attained for negative S2, and thus negative T2, which is impossible. Let g(S2) :=
D̄(c + bS2, S2).

The function g can be written as

g(S2) = c1 + r0

ρ0

(
ρ1ρ2

1 − ρ0
(1 + c + bS2 + S2)

+
(

1

2
ρ0 + (c + bS2)ρ2 + S2ρ1 + (c + bS2)

2 ρ2

2

1 − 2ρ1

1 − ρ1

+S2
2
ρ1

2

1 − 2ρ2

1 − ρ2

) /
(1 + c + bS2 + S2)

)
.
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Clearly,

g′(0) = r0

ρ0

(
ρ1ρ2

1 − ρ0
(1 + b) + (1 + c)

(
ρ2b + ρ1 + cρ2

1 − 2ρ1

1 − ρ1
b

)

−(1 + b)

(
1

2
ρ0 + ρ2c + c2 ρ2

2

1 − 2ρ1

1 − ρ1

) /
(1 + c)2

)
.

We would like to show that g′(0) > 0, which is true if and only if

ρ1ρ2(1 + b)(1 + c)2

1 − ρ0
+

(
ρ2b + ρ1 + cρ2

1 − 2ρ1

1 − ρ1
b

)
(1 + c)

−
(

ρ0

2
+ ρ2c + c2ρ2

2

1 − 2ρ1

1 − ρ1

)
(1 + b) > 0.

After some calculations, it can be seen that this is equivalent to

−2ρ1ρ2 − ρ1 + ρ2
1 + ρ2 − ρ2

2 + 2ρ1ρ
2
2 + 2ρ2

1ρ2 < 0,

which is easily seen to be always satisfied in the case ρ1, ρ2 < 1/2. �

We have seen that in the symmetric polling model with deterministic switchover
times there is no gain from waiting at the station with less traffic (station 2). Now, we
determine when it is useful to wait at the station with more traffic (station 1) and what
is the optimal waiting time T∗

1 in this case. It turns out that the condition is (4), the
optimal parameter is given by

T∗
1 = −r0 +

√
r2

0 + c2 − c3r0

c6
, (30)

and the corresponding delay is then obtained by plugging in (30) and T∗
2 = 0 into (24).

Proof of Theorem 4, Second Part: We get the optimal parameter if we set T2 = 0
in (24) and differentiate wrt T1. Then the minimizer is seen to be given by (30).
Condition (4) corresponds to T∗

1 > 0. In order for (30) to be positive, we must have

c2 − c3r0 > 0,

which translates into
ρ0

2
> ρ2 + ρ2ρ1

1 − ρ0
;

thus, (4) appears. �
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4. LOWER BOUND

The goal of this section is to give a proof of Theorem 8. For this purpose, let us define
the following random variables. We denote by Fi the time in steady state that the server
spends at station i waiting in a cycle—that is, being idle because there is no work at
that station. Furthermore, let fi := EFi, f (2)

i := EF2
i , and f0 := ∑N

i=1 fi.
For a general strategy basically nothing can be said about the distribution of the

Fi even about their means fi. The idea behind the proof of Theorem 8 is to estimate the
mean average delay by an expression in terms of fi and f (2)

i , to estimate by Jensen’s
inequality,

f (2)
i ≥ f 2

i , (31)

and, thus, to obtain an expression that only depends on the fi. Then minimizing over
fi ≥ 0, we obtain the lower bound (6). The details are as follows.

4.1. Decomposition

Let V be the workload as defined above. Analogously to the decomposition principle
in (9), one can show that

EV = EV M/G/1 + EV idle.

We note that in the derivation of (10) and (11), the strategy was not used at all. So,
one obtains a lower bound for D̄ from a lower bound of EV and thus from a lower
bound for

EV idle = qEV switching + (1 − q)EV waiting, (32)

where q = P(server switching|server idle).
Furthermore, we note that the cycle time satisfies

(1 − ρ0)EC = r0 + f0.

4.2. Workload While Switching

Now, we express EV switching in terms of the (unknown) fi. This is completely analogous
to the derivation for our concrete strategy with the arguments following (15) replacing
Ti by fi. The result is

EV switching = r0(ρ
2
0 − ∑N

i=1 ρ2
i )

2P (switching)
+ 1

EC · P (switching)

×
⎧⎨
⎩ρ0

r(2)
0

2
+

N∑
i=1

ri

⎡
⎣(ρ0 − ρi)fi +

i−1∑
j=1

fj

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)

+
N∑

j=i+1

fj

j−1∑
l=i+1

ρl

⎤
⎦

⎫⎬
⎭ . (33)
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4.3. Workload While Waiting

Since we do not know the distribution of the waiting time, we cannot say much about
the workload generated while the server is waiting. So, we will have to estimate at
this point. First, note that

EV waiting = 1

P (waiting)

N∑
i=1

piEV waiting
i , (34)

where EV waiting
i is the expected workload that is present in the system at a point in

time when the server is waiting at station i and pi = fi/EC.
We cannot calculate the workload present at a point in time when we encounter

the server waiting, EV waiting
i , for an arbitrary strategy, but we can give a lower bound;

namely we can say that EV waiting
i must be at least, on the one hand, the traffic that was

accumulated at the other stations during the time that the server has already passed
waiting at station i (i.e., the expected backwards recurrence time). Additionally, since
the decision of the strategy does not depend on the recent times the server has worked
at the other stations or the switchover times, we can also count the terms (16) and
(17)—that is the traffic that was accumulated (and is still present) while the server
was switching and working at other stations, respectively. This gives

EV waiting
i ≥ f (2)

i

2fi
(ρ0 − ρi) +

∑
k �=i

⎛
⎝(ρkEC + fk)

∑
j∈{i+1,...,k−1}

ρj + rk

∑
j∈{i+1,...,k}

ρj

⎞
⎠ .

This is the crucial observation in the derivation of the lower bound.
Now, by Jensen’s inequality (31), the last term can be yet bounded below by

f 2
i

2fi
(ρ0 − ρi) +

∑
k �=i

⎛
⎝(ρkEC + fk)

∑
j∈{i+1,...,k−1}

ρj + rk

∑
j∈{i+1,...,k}

ρj

⎞
⎠ . (35)

Furthermore, we need that

q

P (switching)
= 1 − q

P (waiting)
= 1

P (idle)
= 1

1 − ρ0
.

Then putting (35) back into (34) and this and (33) back into (32) gives a lower
bound for EV (and thus for D̄) only in terms of the fi. Minimizing over the fi leads
to (6).

Note that we cannot count the terms (20) and (21), since, for example, Zi and Fi

are not independent.

5. DIFFERENT STRATEGIES AND OUTLOOK

There is another strategy, which we would like to propose here (we will refer to it as
Strategy II), that is likely to be better than the one proposed so far (called Strategy I in
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this section) in terms of the mean average delay. However, we are not able to analyze
the mean average delay of Strategy II with the present methods.

Strategy II is defined as follows. We consider a polling model as above, the only
difference being that the credit Ti now refers to the total time the server spends at
station i. More precisely, a server arrives at station i. It then works or waits at station
i depending whether messages are present. At time Ti after its arrival at the station, it
only finishes all the work that is present at that time (exhaustively). It does not turn
idle again at that station in the current cycle (i.e., into “wait-and-see”); whenever the
station is empty, it starts switching to the next station. We refer to Figure 3 for an
illustration.

It is likely that Strategy II adjusted to its optimal waiting parameters gives
a lower average delay than Strategy I adjusted to its optimal waiting parameters
T∗

1 , . . . , T∗
N . Heuristically, Strategy II uses more information about the system, because

it also counts the busy periods at the current station. However, we remark that even
the determination of the cycle time, as in (7), does not seem to be possible in a
straightforward way.

We conjecture that for N = 2 and deterministic switchover times, Strategy II
provides the lowest mean average delay in the class of all strategies that are not
allowed to use information of the queue status at the other station or to look into
the future of the system. In this connection, we recall that under the weighting by
the traffic intensities ρi (rather than the rates λi), it is clear that finishing work at the
present station (exhaustively) is necessarily better than switching (cf. [10]).

Figure 4 gives a comparison of Strategy I and Strategy II, for which the curve
for Strategy II is obtained from simulations. We observed that the optimal credit for
Strategy II is approximated by T∗

1 + ρ1EC, where T∗
1 is the optimal parameter of

Strategy I and EC is the cycle time of Strategy I for this optimal parameter.
Certainly, one can define different strategies, where, for example, the server addi-

tionally has more information on the current queue status at the other stations. This
might give an average delay that is even below the lower bound given in Theorem 8.
However, note that even if the server is aware of the queue status at all stations, it
is not completely clear what is the best decision at each moment in terms of lower
average delay: switch or wait-and-see.

Further, one can imagine a situation in which the server may look into the close
future of the incoming traffic at the present station, and it might thus decide to abandon

FIGURE 3. Operation of the polling model with Strategy II.
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FIGURE 4. Comparison of the optimal credits with Strategy I and Strategy II.

the station before the end of its wait-and-see period, when it is clear that no traffic
will arrive during that time.
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