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Abstract
We develop a fast method to compute an optimal robust shortest path in large networks like road
networks, a fundamental problem in traffic and logistics under uncertainty.

In the robust shortest path problem we are given an s-t-graph D(V,A) and for each arc a
nominal length c(a) and a maximal increase d(a) of its length. We consider all scenarios in which
for the increased lengths c(a) + d̄(a) we have d̄(a) ≤ d(a) and

∑
a∈A

d̄(a)
d(a) ≤ Γ. Each path is

measured by the length in its worst-case scenario. A classic result [6] minimizes this path length
by solving (|A|+1)-many shortest path problems. Easily, (|A|+1) can be replaced by |Θ|, where
Θ is the set of all different values d(a) and 0. Still, the approach remains impractical for large
graphs.

Using the monotonicity of a part of the objective we devise a Divide and Conquer method
to evaluate significantly fewer values of Θ. This methods generalizes to binary linear robust
problems. Specifically for shortest paths we derive a lower bound to speed-up the Divide and
Conquer of Θ. The bound is based on carefully using previous shortest path computations. We
combine the approach with non-preprocessing based acceleration techniques for Dijkstra adapted
to the robust case.

In a computational study we document the value of different accelerations tried in the algo-
rithm engineering process. We also give an approximation scheme for the robust shortest path
problem which computes a (1+ε)-approximate solution requiring O(log(d̂/(1+ε))) computations
of the nominal problem where d̂ := max d(A)/min(d(A) \ {0}).
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1 Introduction

We develop an algorithm for the cost-robust shortest path problem that significantly reduces
the time needed to compute such paths on road networks in practice.

Finding a shortest path from a source s to a sink t in a graph with arc lengths c(a) is a
basic algorithmic problem with numerous applications, prominently involving navigation in
road networks. Dijkstra’s algorithm is the backbone of most navigation applications, but
it requires modern acceleration techniques to find within fractions of seconds a route in
a network with several hundred thousands or millions of arcs, e.g., in the European road
network.
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5:2 Fast Robust Shortest Path Computations

Unfortunately, input data in real-world applications is usually subject to changes, uncer-
tainty or error. For travel times on roads, i.e., arc lengths in shortest path calculations, the
change of data is often caused by varying traffic. Several approaches have been proposed
to address this problem, including prediction of traffic, leading to time dependent travel
times, as well as stochastic models. In this paper we study the classical cost-robust shortest
path problem introduced by Bertsimas and Sim. Cost-robust optimization is an alternative
approach to handle varying and uncertain data. It minimizes the cost a solution attains in
its specific worst-case scenario out of a given set of scenarios. The advantage of the robust
approach is that – within the limits of the scenario set – the objective is a deterministic,
guaranteed upper bound on the actual travel time.

The scenario set for cost-robustness introduced by Bertsimas and Sim allows each cost
coefficient c(a) of a linear cost function to deviate up to a – individual for each variable xa –
maximal deviation d(a). In addition, the number of deviations in a scenario is limited by an
input parameter Γ. This is equivalent to limiting by Γ the sum of the fractions of maximal
deviations occurring in a scenario. Formally, for a given set of binary variables {xa, a ∈ A}
and vectors c and d in N|A| the scenario set for the cost-functions is:{

c+ d̄ : 0 ≤ d̄(a) ≤ d(a),∀a ∈ A ∧
∑
a∈A

d̄(a)
d(a) ≤ Γ

}
. (1)

For this scenario set the cost-robust counterpart of any binary linear program can be solved
by solving at most (|A|+ 1)–many identical binary linear programs with different linear cost
functions. More precisely, let Θ contain 0 and all d(a). Then one has to solve the problem
for each θ ∈ Θ and the cost function Γθ +

∑
A xa(c(a) + max(d(a)− θ, 0)). Intuitively, the

θ enumerates over the smallest deviation d(a) occurring in the scenario. This highly cited
result by Bertsimas and Sim applies to cost-robust shortest path, which can thus be found
by solving one standard shortest path problem for each arc in the graph.

For a road network with several hundred thousand or millions of arcs this is impractical
even when using fast shortest path algorithms. Therefore, we devise a method to significantly
reduce the computational effort.

Starting from the Bertsimas and Sim result we use three ways towards practically useful
cost-robust shortest path methods. First we reduce the number of θ-values to be examined.
Second, we use fast shortest path methods. Third, we reuse previous computations for
bounds and goal-directed search, further accelerating the shortest path computations.

It has been proposed [21] that a cost-robust binary problem can be solved by Γ-many
copies of the nominal problem. Unfortunately, this result contains a subtle error. We give
a counter-example in the appendix which hints to our conviction that essentially |Θ|-many
shortest path computations are needed in general.

Accelerated shortest path methods differ on whether they use preprocessing of the graph
or not. In this paper, we restrict ourselves to not preprocess the graph. We instead use
goal-directed and bidirectional search and adapt both to the cost-robust setting. The high
deviations in the arc length in the robust case inhibit the use of traditional preprocessing
techniques used for deterministic shortest paths.

1.1 Our contribution
We give an approximation scheme for general robust combinatorial optimization problems
which can be used to compute a (1 + ε)-approximate solution using O(log(d̂/(1 + ε)))
computations of the original problem.
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We introduce a Divide and Conquer approach together with lower bounds for general
robust combinatorial optimization problems which can be used to reduce the number
of computations of the original problem. The reduction of computations is achieved by
carefully reducing the number of θ-values to be considered.
When applying this to the robust shortest path problem we additionally accelerate
the computations of individual shortest paths using pruning and a goal-directed search
tailored to the robust shortest path problem.
We give an efficient method to obtain lower bounds for the length of shortest paths with
respect to cθ. We use these bounds to speed up the Divide and Conquer approach.
We conduct a computational study showing the effectiveness of our techniques.

1.2 Organization of this paper
We begin by formally introducing the robust shortest path problem in Section 2. We restate
the main theorem by Bertsimas and Sim and devise an approximation scheme for the robust
shortest path problem. In Section 3 we propose a general framework designed to reduce the
number of computations of shortest path computations required to solve a robust shortest
path problem. The framework relies on Theorem 3 which is based on the fact that the costs
of arcs are non-increasing with respect to θ. We augment this framework by applying shortest
path acceleration techniques to the robust shortest path problem. These techniques are
search pruning (see Section 4) and goal-direction (see Section 5). The Divide and Conquer
framework relies on lower bounds in order to remove dominated values. In Section 6 we devise
a method to derive lower bounds of high quality based on information obtained from previous
shortest path computations. We include these lower bounds into our Divide and Conquer
approach. In order to show the effectiveness of our approach we conduct a computational
experiment in Section 7.

1.3 Related work
Robust optimization evolved as a vivid research field during the past decade and shows a
broad range of applications, for recent surveys we refer to [5] and [13]. The popularity of
robust optimization is in part due to a large area of applications such as network design and
routing problems. Network design problem in particular suffer from uncertainty with respect
to demands and construction costs. These uncertainties can be treated by adding robustness
to the underlying model [3, 20]. Robustness against demand uncertainty is also an important
topic in problems such as vehicle routing [11] and lot sizing [22].

An important question with respect to robust optimization is whether or not tractability
is preserved for the robust counterparts of polynomially solvable problems. Whether or not
this is the case depends on properties of the nominal problem as well as on the employed
robust model. For some choices of models, such as minmax regret models, nominally
tractable problems become NP-hard (see for example [12]). In contrast, in [6] Bertsimas and
Sim introduced a very general robust model which can be applied to many combinatorial
optimization problems while preserving tractability.

The model of Bertsimas and Sim has gained wide acceptance and formed a basis for the
study of robust combinatorial optimization problems, in particular regarding problems related
to the robustness of shortest paths. Büsing considered the problem of robustness and robust
recoverability in [8, 7]. In this setting, after a robust scenario has been realized it is still
possible to perform some modifications of the previously chosen path in order to recover from
the incurring robust costs. The authors of [19] considered the robust shortest path problem
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5:4 Fast Robust Shortest Path Computations

with respect to robust costs corresponding to a product of two factors attained according
to the model of Bertsimas and Sim. In [21], Poss considered combinatorial problems which
can be solved with a dynamic programming approach. The author claimed that the robust
counterparts of such problems can be solved with a dynamic program with a size increased
by at most Γ. Unfortunately the proof contains a subtle error and the result does not hold.
We give a counter-example in the appendix.

Since the ordinary shortest path problem has many real-world applications, considerable
effort was put into an accelerated computation. Over the years, different preprocessing
techniques such as arc flags [18] and contraction hierarchies [14] were introduced (see [4]
for a summary). Preprocessing techniques require an initial offline phase which is used to
augment the underlying problem in order to speed up queries in a subsequent online phase.
The techniques perform very well in practice, decreasing query times by several orders of
magnitude. It was shown in [1] that the query time with respect to preprocessing techniques
decreases asymptotically for graphs with low highway dimension, a requirement generally
satisfied for road networks. A related area of research considers large-scale networks which
occur for example in social graphs. Such networks can comprise more than a billion vertices
some of which having extremely large degrees. Conventional preprocessing techniques can’t
be applied in this case. The authors of [9, 16] introduced an inexact preprocessing based on
landmarks which is comparable to the approach in [15] for road networks. In contrast the
authors of [2] considered a preprocessing technique which either answers the query correctly
(in more than 99 % of the queries conducted in their experiments) and fails otherwise.

2 The robust shortest path problem

The robust shortest path problem is defined on a directed graph D = (V,A) with n vertices
and m arcs. Each arc a ∈ A has costs c(a) ∈ N and deviations d(a) ∈ N. A parameter Γ ∈ N
governs the conservatism in accordance with the model of Bertsimas and Sim. Specifically,
consider a path P given as a sequence of arcs. A worst-case scenario in the scenario set
defined by (1) can be assumed to increase the costs on Γ of the arcs belonging to P to the
upper bound d, yielding a total cost of∑

a∈P
c(a) + max

S⊆P
|S|≤Γ

∑
a∈S

d(a). (2)

The following theorem shows that the robust shortest path problem can be solved in
polynomial time. This theorem and its proof will form the basis of this paper.

I Theorem 1 (Bertsimas and Sim in [6]). The robust shortest path problem can be solved
using at most m+ 1 computations of nominal shortest paths.

Proof. We are attempting to find a path minimizing the cost given by (2). We first consider
a fixed path P and rewrite the inner optimization problem in terms of variables denoting
membership in the set S:

max
∑
a∈P

x(a) · d(a)

s.t.
∑
a∈P

x(a) ≤ Γ

0 ≤ x(a) ≤ 1 ∀a ∈ P

(3)
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This program has the following dual:

min Γθ +
∑
a∈P

y(a)

s.t. y(a) + θ ≥ d(a) ∀a ∈ P
θ, y(a) ≥ 0 ∀a ∈ P

(4)

It is easy to see that y(a) can be fixed to max(d(a)− θ, 0). As a result, minimizing (2) is
equivalent to finding a path P minimizing

min
θ∈R≥0

Γθ +
∑
a∈P

c(a) + max(d(a)− θ, 0) (5)

The function θ 7→ max(d(a)− θ, 0) is piecewise linear with a break point at d(a). Therefore
the function

θ 7→ min
P∈P

Γθ +
∑
a∈P

c(a) + max(d(a)− θ, 0) (6)

has break points at d(a) for each a ∈ A. It will therefore attain its minimum either at 0 or at
some d(a). Thus, a robust shortest path can be found with at most m+ 1 nominal shortest
path computations according to the costs defined by the corresponding values of θ. J

Even though the shortest path problem is easily solvable in practice, the overhead of solving
m + 1 variants renders the robust counterpart intractable in practice. Observe that the
number of shortest path computations required in total does not actually depend on the
number of arcs but rather on the cardinality of the set

Θ := {0} ∪ {d(a) | a ∈ A}. (7)

This suggests an approximation scheme based on solving an instance with a lower number of
deviations:

I Theorem 2. Let d̂ := max d(A)/min(d(A) \ {0}), ε > 0. A (1 + ε)-approximate solution
of the robust shortest path problem can be computed with O(log(d̂/(1 + ε))) computations of
the nominal shortest path problem.

Proof. Let d̄ : M 7→ R≥0 be the values of d rounded up to the next power of (1 + ε):

d̄(a) := (1 + ε)dlog1+ε(d(a))e ∀ a ∈ A. (8)

There are only O(log(d̂/(1 + ε))) different values for θ with respect to d̄, which implies that
we have to solve only that many instances of the original problem in order to obtain a robust
optimum with respect to d̄. Let P be a solution of the robust problem with respect to the
deviations d. Let S ⊆ P be the set of at most Γ entries causing the robust cost contribution
to P with respect to d. In the worst case, every d(a) increases by a factor of less than (1 + ε)
from d to d. Thus, the robust cost contribution with respect to d is again caused by the
entries in S, increasing the cost of P by less than (1 + ε). J

I Remark.
1. The approximation guarantee is tight: Consider an instance of the robust shortest path

problem given by a digraph consisting of two parallel arcs with pairs of costs and deviations
of (ε/2, (1 + ε)k + ε/2) and (0, (1 + ε)k+1), a parameter of k ∈ N>0 and Γ = 1. The robust
shortest path has a cost of ε+ (1 + ε)k, whereas a robust shortest path for the rounded
instance costs (1 + ε)k+1 in the original instance. As k →∞ a ratio of 1 + ε is achieved.
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5:6 Fast Robust Shortest Path Computations

s

u

v t

(0, 4) (0, 4)

(2, 5)

(0, 2)

Figure 1 An example for robust shortest paths not forming a tree. Pairs of numbers on arcs
represent costs and deviations.

2. Bertsimas and Sim show that robust minimum cost network flow problems can be
approximated to a factor of (1 + ε) in O(log(mθ̄/ε)), where θ̄ := maxa∈A uada for
capacities u. However, robust network flows are not generally integral for integral
capacities. Specifically, a robust network flow of one unit no longer corresponds to a path.

3. Recall that the shortest paths problem exhibits an optimal substructure: All shortest
paths leaving a common source vertex s can be chosen to form a tree in the underlying
graph. This does no longer hold for robust shortest paths, as shown in Figure 1: For
Γ = 2 the unique robust shortest path from s to t leads past vertex u, causing a cost of 8.
The robust shortest (s, v) path consists solely of the lower arc.

3 Divide and Conquer

In this section we will describe the main idea used to reduce the number of θ-values which
have to be considered to compute a robust shortest path based on Theorem 1. We define
cθ(a) := c(a) + max(d(a)− θ, 0) and observe that this term is non-increasing in θ. The same
holds for the cost of a path P defined as cθ(P ) :=

∑
a∈P cθ(a). For a fixed θ we let

copt(θ) := min
P∈P(s,t)

cθ(P ). (9)

Since copt(θ) is the minimum of non-increasing functions, it is non-increasing as well. In
order to find a robust shortest path we will minimize the function

CΓ(θ) := Γθ + copt(θ). (10)

If CΓ(θ) were a convex function in θ, we could use binary search or similar techniques in
order to reduce the number of required shortest path computations. Unfortunately CΓ(θ)
is not generally convex. We can however derive the following theorem from the fact that
copt(θ) is non-increasing:

I Theorem 3. Let θmin < θmax be in Θ and θ ∈ Θ ∩ (θmin, θmax).
1. If copt(θmin) = copt(θmax), then it holds that CΓ(θ) ≥ CΓ(θmax).
2. Let θ∗ be in Θ. If Γθ + copt(θmax) ≥ CΓ

θ∗ , then the minimum over CΓ is not attained in
[θ, θmax).

Proof. For the first part note that since copt is non-increasing we have that copt(θ) =
copt(θmin) = copt(θmax). The result then follows from the definition of CΓ. Turning to the
second part, we let θ′ ∈ [θ, θmax). We know that CΓ(θ′) ≥ Γθ + copt(θmax) ≥ CΓ(θ∗) and
therefore CΓ(θ) is at least CΓ(θ∗). J

Both cases of Theorem 3 enable us to discard an interval of possible values for θ. We
therefore use a Divide and Conquer approach as a general framework to speed up computations.
The approach works as follows: We maintain a set of intervals of values in Θ together with
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Algorithm 1: A Divide and Conquer algorithm for the robust shortest path problem.
Algorithm DivideAndConquer

Input: Digraph D, costs c, deviations d, parameter Γ, vertices s, t
Output: A robust shortest (s, t)-path
S ← {Θ}
θ∗ ← The value of min(Θ), max(Θ) with lower CΓ

while S 6= ∅ do
Imin ← The interval I from S with the lowest min(CΓ(min(I)), CΓ(max(I)))
if Imin can be discarded then

continue
Imin ← Remove dominated values from Imin
(Ilow, Ihigh)← Intervals such that Ilow ∪ Ihigh = Imin, |Ilow ∩ Ihigh| = 1, and
||Ilow| − |Ihigh|| ≤ 1
θmedian ← The median value, single element in Ilow ∩ Ihigh
θ∗ ← The value of θ∗, θmedian with lower CΓ

S ← S ∪ {Ilow, Ihigh}
return The path corresponding to θ∗

the currently best (w.r.t. CΓ) known value θ∗. We also ensure that the shortest paths with
respect to the minimum / maximum of each interval are computed before the interval is
considered. At each step of the algorithm we select the interval which has the lowest value of
CΓ at an endpoint. We first use Theorem 3 to try to discard the interval. If the interval can’t
be discarded we proceed to remove any dominated values. We split the resulting interval
into two halves which share exactly one value in Θ, compute the shortest path with respect
to that value and decide whether or not to replace θ∗. We then add the two intervals to the
set and continue. The details are outlined in Algorithm 1.

Note also that Theorems 3 and 2 (and therefore also Algorithm 1) work for arbitrary
robust combinatorial optimization problems.

4 Search pruning

Dijkstra’s algorithm explores a graph by labeling and settling vertices. A vertex is labeled
when it is first explored. As soon as a shortest path connecting the vertex is known, the
vertex is declared to be settled. Since we compute shortest (s, t)-paths for multiple cost
functions cθ, we reuse information we have gathered from previous computations in order to
decrease the number of vertices which have to be labeled / settled in subsequent iterations of
Dijkstra’s algorithm. The following theorem gives a sufficient condition for excluding vertices
during searches:

I Theorem 4. Let v be a vertex and θ < θ′ where θ, θ′ ∈ Θ. Let Pθ, Pθ′ be (s, v)-paths that
are optimal with respect to cθ respectively cθ′ . Let

Γθ + cθ(Pθ) > Γθ′ + cθ′(Pθ′). (11)

Then a robust shortest (s, t)-path is either attained for a value 6= θ or it does not contain v.

Proof. The proof may be found in Appendix A. J
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5:8 Fast Robust Shortest Path Computations

We can make the most of this theorem when we evaluate the values of θ in a decreasing
fashion. During these computations we maintain a map C̄ : V → R≥0. Think of C̄(v) as a
known upper bound on the cost of a robust (s, v)-path which we initialize to C̄ ≡ ∞. When
we settle a vertex u 6= t during the search for a shortest path with respect to cθ we investigate
each outgoing arc (u, v) ∈ A. The path leading to u together with (u, v) forms a path P
leading to v yielding a value Γθ + cθ(P ). If Γθ + cθ(P ) > C̄(v) we do not have to label v.
Otherwise we label v and decrease C̄(v) to Γθ + cθ(P ).

5 Goal-direction

A common extension of Dijkstra’s algorithm is known as goal-directed search, introduced
in [17]. It is based on a potential π : V → R≥0 such that the corresponding reduced costs
cπ(u, v) := c(u, v)− π(u) + π(v) are non-negative for each (u, v) ∈ A. It is possible to derive
a potential while searching for a shortest path. Consider a search from t in the direction of s.
The resulting (partial) shortest-path tree T = (V (T ), A(T )) is rooted at t and contains all
settled vertices. For each v ∈ V (T ) we obtain a path P (v, t) leading from v to the t. Let
cmax(T ) be the maximum value of c(P (v, t)) for v ∈ V (T ). It is then easy to see that the
following function is a potential:

π(v) :=
{
c(P (v, t)) for v ∈ V (T )
cmax(T ) otherwise.

(12)

In the robust setting, a potential with respect to cθ is also a potential for cθ′ with θ′ < θ

(since cθ′ ≥ cθ). We use this observation in the following way: We first compute the potential
(12) with respect to θmax while finding the corresponding path using a backward search. In
subsequent forward searches with respect to smaller values in Θ we use this potential. If
the costs with respect to θ and θmax coincide, the arcs in the backward tree will have zero
reduced cost. If all other arcs have nonzero reduced cost, then only the arcs in the shortest
paths will have to be settled, greatly decreasing computation time. Intuitively, if θ and θmax
are close, then the potential computed from θmax is an excellent choice for the search with
respect to θ.

6 Divide and Conquer for robust shortest paths

We refine Algorithm 1 by exploiting structural properties of the robust shortest path problem.
We present our results for a unidirectional search here. In the appendix we show an extension
to goal-directed and bidirectional searches in a more general setting.

Consider some interval I := [θmin, θmax] which appears in the course of Algorithm 1. As
an invariant we have completed the Dijkstra search for θmin. We want to reuse labeling
information of this search to derive lower bounds on CΓ

θ0
for some θ0 ∈ I. If such a lower

bound exceeds the best known upper bound for C∗, we disregard θ0. In order to accelerate
the computation of a robust shortest path, the computation of the lower bound for CΓ

θ0
must

be significantly faster than a computation of the path for cθ0 .
We argue about a hypothetical (s, t)-path P and its cost cθ(P ). The cost is non-increasing

and piecewise linear as a function in θ. It has breakpoints whenever θ increases beyond d(a)
for some a ∈ P . From this point on the cost ca(θ) stays constant at c(a). We know the
values copt(θmin) and copt(θ′) for some values θ′ ≥ θmax. Whatever the value of cθ0(P ), the
cost of P cannot decrease below these amounts when evaluated at the respective values (see
Figure 2).
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cθ(P )

θθmaxθmin θ0

copt(θmax)

copt(θmin)

Figure 2 The cost cθ(P ) of some P . The cost at θ0 has to be consistent with copt(θmin), copt(θmax).

We go on to formulate a mixed integer program (shown in (13)) to choose an arc set
minimizing cθ0 . To make the formulation as strong as possible we choose the smallest possible
set of arcs to include into this program: Let M ⊂ A be the set of scanned arcs, i.e. arcs
having a tail which has been settled throughout the search for the shortest (s, t)-path for θmin.
Furthermore, let Mθmin ⊆M be the restriction of M to active arcs i.e. arcs with d(a) > θmin.
It turns out to be sufficient to consider the arcs in Mθmin to obtain a lower bound on cθ0 .

We introduce a binary variable xa for each a ∈ A denoting whether or not a is contained
in P . The variable y models a lower bound on the cost cθmin(P ) of P yielding (13b). The
negative slope of cθ(P ) at the point θmin corresponds to the number of active arcs in P .
In the worst case we have cθ(P ) = y −

∑
a∈Mθmin

xa(min(d(a), θ) − θmin) by subtracting
from y the contribution of the active arcs. In this case the objective (13a) equals cθ′(P ).
However, not all active arcs from Mθmin can occur in P because for such a path P the value
of cθ′(P ) might violate our observations of shortest path lengths for copt(θ′). Thus we must
raise the variable y to have cθ′(P ) ≥ copt(θ′). Using the expression for cθ(P ) from above we
obtain (13c) and altogether the following theorem:

I Theorem 5. Given an arc set M of scanned arcs during a completed unidirectional search
for cθmin , then a lower bound Oθ0 ≤ copt(θ0) is given by

Oθ0 = min y −
∑

a∈Mθmin

xa · (min(d(a), θ0)− θmin) (13a)

s.t. y ≥ copt(θmin) (13b)

y −
∑

a∈Mθmin

xa · (min(d(a), θ′)− θmin) ≥ copt(θ′)

∀ θ′ > θ0 with known copt(θ′)
(13c)

y ≥ 0, x ∈ {0, 1}Mθmin (13d)

The theorem can in fact be further generalized to the bidirectional, goal-directed case. The
generalized Theorem 9 and its proof may be found in Appendix A.

The following theorem states that bounds Oθ obtained for multiple θ by Theorem 5 are
nonincreasing in θ. This observation can reduce the number of necessary bound computations
throughout our algorithm. A proof follows from the more general Theorem 10 in Appendix A.

I Theorem 6. For each θmin < θ0 < θ1 we have copt(θmin) ≥ Oθ0 ≥ Oθ1 ≥ copt(θ′) for all
θ′ that were considered in (13c) for both Oθ0 and Oθ1 .

It is too time-consuming to solve (13) in order to compute a single bound. We therefore
consider a relaxation of the program which can be solved a lot faster while still providing
sufficient bounds. Observe that the program has the structure of a multi-dimensional
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5:10 Fast Robust Shortest Path Computations

knapsack problem once we fix some value of y. We first relax the integrality of x towards
x ∈ [0, 1]Mθmin and consider a single value θ′ = θmax for (13c). What remains is a fractional
one-dimensional knapsack problem where arcs correspond to knapsack items:

max
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)− y

s.t. copt(θmin) ≤ y∑
a∈Mθmin

xa(min(d(a), θmax)− θmin) ≤ y − copt(θmax)

x ∈ [0, 1]Mθmin

(14)

Suppose we fix y = copt(θmin). The optimum of the relaxation can be obtained by selecting
items greedily w.r.t. their gain, i.e. gain(a) := (min(d(a), θ0)−θmin)/(min(d(a), θmax)−θmin).
This leaves exactly one split item a with fractional value for xa. We argue that increasing y
further is not beneficial: An increase of y by ε will increase the capacity of the knapsack by
ε and thereby lead to increased xa in a greedy optimum. The objective function changes
by ε(gain(a)− 1) which is nonpositive because gain(a) ≤ 1 for all arcs. It is therefore never
advisable to increase y and we only have to sort the arcs in Mθmin w.r.t. their gain in order
solve problem (14) and obtain a bound Oθ0 . Observe that

gain(a) =


(θ0 − θmin)/(θmax − θmin) if d(a) ≥ θmax

(θ0 − θmin)/(d(a)− θmin) if d(a) < θmax and d(a) ≥ θ0

(d(a)− θmin)/(d(a)− θmin) = 1 if d(a) < θmax and d(a) < θ0

(15)

Thus the value gain(a) decreases as d(a) increases and it is sufficient to sort the arcs in
Mθmin once according to d(a) in order to compute Oθ0 for each θ0 ∈ Θ ∩ (θmin, θmax). We
incorporate this relaxed knapsack bound (RKB) into the Divide and Conquer approach and
apply the generalization of Theorem 5 to goal-directed and bidirectional search.
I Remark (Preprocessing). As mentioned above, preprocessing techniques for the ordinary
shortest path problem have been extensively studied in the past. Specifically, successful
attempts have been made [10] to adapt preprocessing techniques to problems with time-
dependent cost functions. Therefore it seems obvious to investigate these techniques with
respect to applicability to the robust shortest path problem.

Existing preprocessing techniques operating on problems with changing cost functions
generally rely on the ability to provide reasonable bounds on the values attained by the cost
functions in order to prune the search space efficiently. Unfortunately, the costs of arcs vary
widely between c and c + d in the robust shortest path problem, making it impossible to
derive meaningful bounds. As a result we were not able to find preprocessing techniques
leading to a significant decrease in query time.

7 Computational experiments

7.1 Experimental network
Due to the long history of experimental evaluations of shortest path algorithms, instances of
road networks are ready at hand. However, these networks generally lack data necessary to
determine deviation values. Furthermore, shortest path experimentation is conducted on
continent-sized networks which are as of yet too large to allow for the computation of robust
shortest paths.
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We therefore chose to construct a road network ourselves. To this end, we considered a
subnetwork of the German road network given by the region of Lower Saxony1. We performed
the following preprocessing steps in order to obtain a network suitable for routing purposes:
1. We filtered the file to only include ways with highway tags, excluding certain highway

types such as tracks / service road etc. This process yielded 1.93M nodes and 0.36M
ways.

2. We constructed a graph by replacing ways with sequences of arcs, adjusting for one-way
restrictions. The resulting graph has 1.93M vertices and 2.17M arcs.

3. We removed directed and undirected chains from the graph. Chains occur frequently as
they are used to model the curvature of roads. Therefore the resulting graph shrinks to
0.37M vertices and 0.50M arcs.

4. Since queries for robust paths in an insufficiently connected graph skew computational
results we extracted the largest (in terms of the number of vertices) strongly connected
component which has 0.15M vertices and 0.23M arcs.

We defined the values of c and d on the network as follows: The nominal length c is
defined as the time needed to traverse a segment in accordance with the legal speed limit.
To define d we assumed that a certain number of segments is affected by situations such as
traffic accidents or road works. If a segment a is affected, the traveling speed drops from
the legal speed limit to a value of at most 10 km/h. The value d is chosen such that c+ d

corresponds to the travel time according to a speed of at most 10 km/h (where d(a) = 0 if
the speed limit of a is already at most 10 km/h). To avoid numerical problems we rounded
both c and d to the nearest second, resulting in |Θ| = 1, 043 different deviation values2. We
further assumed that at most Γ = 5 road segments suffer from additional congestion.

7.2 Experimental methodology
In order to judge the performance of a shortest path algorithm, the query time of the
algorithm is compared to that of Dijkstra’s algorithm without any preprocessing applied.
This approach raises the following issue: The time to answer a query for a shortest (s, t)-path
using Dijkstra’s algorithm is highly dependent on the choice of the vertices s and t: If the
distance of s and t w.r.t. c is small compared to the diameter of D, then the search explores
only a small part of D and finishes quickly. If on the other hand s and t are far apart, then
almost the entire graph is explored before a path is found.

This issue can be addressed with the notion of a Dijkstra rank: A search from a fixed
source s using Dijkstra’s algorithm will settle the vertices in D in the order3 s = v1, v2, . . . , vk.
We define the Dijkstra rank of vj with respect to s as the value j. Note that the distance
from s to vj is non-decreasing and the query time using Dijkstra’s algorithm is increasing in
the Dijkstra rank. For a pair (s, t) of vertices we define the Dijkstra rank of (s, t) by the
Dijkstra rank of t with respect to s.

In order to evaluate the performance of different robust shortest path algorithms we
recorded the query time for randomly chosen pairs of vertices with similar Dijkstra ranks.
More specifically, we selected pairs of vertices with ranks in [l · n, u · n) where l and u form
intervals of size of 10 % of |V |.

1 The initial data was obtained from the OpenStreetMap project,
see https://www.openstreetmap.org.

2 The accompanying data may be found at 10.6084/m9.figshare.c.4193588.
3 We assume that ties are broken consistently.
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For each interval we measured the average query time for a sample of 500 random pairs
of vertices in order to reduce measurement errors. All query times were obtained using an
implementation in the C++ programming language compiled using the GNU C++ compiler
with the optimizing option “-O2”. All measurements were taken on an Intel Core i7-965
processor clocked at 3.2 GHz. We implemented Dijkstra’s algorithm using binary heaps.
Depending on the Dijkstra rank of a pair of vertices, the running time of a shortest path
query ranges up to ≈ 35 ms.

7.3 Results regarding search accelerations

As a first step we evaluated the previously introduced approaches to accelerate individual
searches without using the Divide and Conquer approach. The results are depicted in
Figure 3a. We remark the following:

1. In order to achieve the best results regarding the goal-directed search we occasionally
recompute the potential from scratch. Specifically, we keep track of how many vertices
are settled during the recomputation of the potential as well as how many vertices are
settled during each subsequent goal-directed search. If the latter amount is within a
fraction of α of the former, we reuse the potential in the search to be carried out in the
next iteration. Otherwise, we mark the potential to be recomputed during the next query.
We found experimentally that a factor of α = 0.15 yields the best results.

2. Regarding the bidirectional goal-directed search: We found that the best choice for the
combined potential is the average of the two potentials computed during the forward
and backward search respectively. Additionally, we found that in order to obtain more
accurate potentials it is worth the effort to compute the entire search tree from s to t in
the forward search and vice versa in the backward search.

3. Both improvements over Dijkstra’s algorithm, the pruning and the goal-directed search,
can be combined to speed up the computation even more.

Our findings show that while all approaches lead to reduced computation time, the goal-
directed approaches works best, beating a plain evaluation using Dijkstra’s algorithm by
almost an order of magnitude.

7.4 Results regarding the Divide and Conquer approach

We proceed to consider the impact of the Divide and Conquer approach on the query time
(results are shown in Figure 3b). Combining Dijkstra’s algorithm with the generic Divide
and Conquer approach (Algorithm 1) seems to have little effect on its own. Using the relaxed
knapsack bound introduced in Subsection 6 however shows significant improvements. The
combination of relaxed knapsack bounds and goal-direction yields the best results with a
speedup factor ranging from 34 to 45 with an average of 38. A major contribution to this
speed up is due to the fact that the Divide and Conquer approach cuts down on the required
number of shortest path computations (see Figure 4): Dijkstra’s algorithm alone requires
|Θ|-many shortest path computations regardless of the distance between source and target.
The value is more than halved using the Divide and Conquer approach, it is cut down to less
than ten percent if the relaxed knapsack bound is incorporated.
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(a) Average query time for different search acceler-
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Figure 3 Average query time for different robust shortest path algorithms.
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Figure 4 Average number of shortest path computations for different variants of the Divide and
Conquer approach. The naive algorithm consistently requires |Θ| = 1, 043 evaluations.
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8 Conclusion

We have presented an approximation scheme and a Divide and Conquer approach for general
robust combinatorial optimization problems. The approximation scheme can be used to
trade solution quality and running time. We introduced multiple techniques to accelerate
the computation of robust shortest paths without abandoning solution quality ranging from
the acceleration of individual queries to augmenting the Divide and Conquer approach by
adding efficiently computable lower bounds of high quality. We evaluated our approaches by
performing computational experiments on a digraph corresponding to a reasonable large road
network. We found that a combination of the acceleration techniques decreased computation
time by a factor of up to 45.

As the result for only Γ many shortest path computations does not hold and similar
results seem unattainable in light of the counter-example, we give a currently best possible
practical approach to solve the fundamental problem of shortest path in the classic Bertsimas
Sim model for robustness.
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A Proofs

We begin by giving the proof of Theorem 4, which was stated as follows:

I Theorem 4. Let v be a vertex and θ < θ′ where θ, θ′ ∈ Θ. Let Pθ, Pθ′ be (s, v)-paths that
are optimal with respect to cθ respectively cθ′ . Let

Γθ + cθ(Pθ) > Γθ′ + cθ′(Pθ′). (11)

Then a robust shortest (s, t)-path is either attained for a value 6= θ or it does not contain v.
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Proof. Assume for a contradiction a shortest robust (s, t)-path P is attained for θ and P
contains v. P consists of two subpaths, i.e. Pθ and a path Pv leading from v to t. We let P ′
be the (s, t)-path which consists of Pθ′ and Pv. We have:

CΓ(θ) = Γθ + cθ(Pθ) + cθ(Pv)
> Γθ′ + cθ′(Pθ′) + cθ(Pv)
≥ Γθ′ + cθ′(Pθ′) + cθ′(Pv)
≥ Γθ′ + cθ′(P ′)

(16)

We have used here that cθ ≥ cθ′ which follows from θ < θ′. This inequality implies that P ′
is a robust (s, t)-path which is shorter than P which is clearly a contradiction. J

We go on to present a more general variant of Theorem 5: We assume that we used a
version of Dijkstra’s algorithm with respect to reduced costs cπθmin

obtained from a potential
π computed while conducting a search for copt(θmin). During the execution of the search we
settled vertices and obtained information regarding the shortest paths for the part of the
graph we have explored: In a most general situation, this information is accessible via a fixed
arc set M ⊆ A and various subsets B ⊆M together with bounds λ(B) fulfilling

λ(B) ≤ cπθmin
(P ∩M) ∀ P ∈ P(s, t) with B ⊆ P . (17)

We give some examples for this abstract setting, but first observe that M should contain
the arc set corresponding to some s − t cut to yield a bound λ(∅) > 0. Otherwise the
right hand side of the inequality (17) is equal to 0 for some path P with P ∩M = ∅. In
case that a shortest path search completes, it determines coptπ (t) as the length of a shortest
(s, t)-path for cπθmin

, which leads to copt(θmin) = coptπ (t) + π(s)− π(t). This allows us to infer
λ(∅) = copt(θmin)− π(s) + π(t) for the set M containing all scanned arcs. As before we let
Mθmin ⊆M be the restriction to arcs a with d(a) > θmin.

I Example 7. If we stop unidirectional search prematurely we can use for M the set of
arcs, that have a head with settled label and λ(∅) can be chosen as the last settled distance
label from the search. This situation applies to Theorem 5. Additionally, for some arc
a = (u, v) ∈Mθmin we can infer λ({a}) as the label that v received from u via a because it is
a lower bound on cπθmin

(P ∩M) for any (s, t)-path P that contains a.

I Example 8. If some bidirectional Dijkstra search has been stopped prematurely, then let
Ms be the set of arcs that have their head settled by the search from s, and let M t contain
the arcs with their tail settled by the search from t. We can use M = Ms ∪M t and for
λ(∅) the sum of both lastly settled distance labels in the searches from s and t. For some
B = {es, et} es ∈Ms, et ∈M t, es 6= et we get for λ(B) the sum of the head label from es,
the tail label from et, and both arc costs cπθmin

(es) + cπθmin
(et). Similar bounds for singleton

B can be derived as well.

The idea of Theorem 9 is to compute a bound for copt(θ0) using the abstract bound information.
In a suitable program we optimize over the arcs in Mθmin that an imaginary path P could
contain to minimize cθ0(P ). The program also makes use of values copt(θ′) known from
previous computations if θ′ > θ.

I Theorem 9. Given a potential π, an arc set M , and a collection B ⊂ 2Mθmin , such that
bounds λ(B) fulfilling (17) can be obtained for each B in B, then for each θ0 > θmin, such
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that π is also feasible for cθ0 , we obtain a bound Oθ0 ≤ copt(θ0) where Oθ0 is an optimum of

min y −
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin) (18a)

s.t. (λ(B) + π(s)− π(t))
∏
b∈B

xb ≤ y ∀B ∈ B (18b)

y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin) ≥ copt(θ′)

∀θ′ : θ0 < θ′ with copt(θ′) known (18c)
variables: y ≥ 0, x ∈ {0, 1}Mθmin (18d)

Proof. Let P be any (s, t)-path. We show that cθ0(P ) ≥ Oθ0 holds: Let us consider the arc
sets P ′, P̄ ⊆ P given by P ′ := P ∩M and P̄ := P \ P ′.

We claim that setting xa := 1 if and only if a ∈ P ′ ∩Mθmin together with y := cθmin(P ′) +
cθ0(P̄ ) constitutes a feasible solution to (18) and the cost of this solution is then a lower
bound on cθ0(P ). To get the lower bound we can first write cθ0(P ′) in terms of cθmin(P ′):

cθ0(P ′) = c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θ0, 0}+ cθmin(P ′)− cθmin(P ′)

= c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θ0, 0}+ cθmin(P ′)

−

c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θmin, 0}


= cθmin(P ′) +

∑
a∈P ′:d(a)>θmin

(max{d(a)− θ0, 0} −max{d(a)− θmin, 0})

= cθmin(P ′)−
∑

a∈P ′:d(a)>θmin

(min(d(a), θ0)− θmin)

= cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

(19)

Here, the last equality holds, because by its definition P ′ is fully contained in M and all of
its arcs with d(a) > θmin are contained in Mθmin . With this expression we obtain

cθ0(P ) = cθ0(P̄ ) + cθ0(P ′)

= cθ0(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

= y −
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

≥ Oθ0

(20)

where the last inequality only holds if x, y is a feasible solution of (18). To prove this
feasibility, we first consider (18b) and let B ∈ B. If B * P ∩Mθmin then the corresponding
Inequality (18b) has its left hand side equal to zero by the definition of x and is feasible. So
let B ⊆ P ∩Mθmin which means that

∏
b∈B xb = 1. Feasibility of (18b) in this case then
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follows from the feasibility of π for cθ0 , we first have:

y = cθmin(P ′) + cθ0(P̄ )

=
∑

a=(u,v)∈P ′
(cπθmin

(a) + π(u)− π(v)) +
∑

a=(u,v)∈P̄

(cπθ0
(a) + π(u)− π(v))

≥
∑

a=(u,v)∈P ′
(cπθmin

(a) + π(u)− π(v)) +
∑

a=(u,v)∈P̄

(π(u)− π(v))

= cπθmin
(P ′) + π(s)− π(t)

(21)

Here the last equality follows from resolving the telescope sum for the (s, t)-path P = P ′ ∪ P̄ .
Since B ⊆ P ∩M we can use the bound cπθmin

(P ′) = cπθmin
(P ∩M) ≥ λ(B) which now

implies (18b).
To show that Inequalities (18c) are satisfied, let θ′ ≥ θ0 and copt(θ′) be known. We

know that copt(θ′) ≤ cθ′(P ) because P is an (s, t)-path. So we are interested in bounding
cθ′(P ) = cθ′(P̄ ) + cθ′(P ′) against the left hand side of (18c). Because θ′ > θmin holds, we
can do a similar calculation as before to express cθ′(P ′) in terms of cθmin(P ′):

cθ′(P ′) = cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

This implies

copt(θ′) ≤ cθ′(P )
= cθ′(P̄ ) + cθ′(P ′)

= cθ′(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

≤ cθ0(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

= y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

(22)

where the last inequality holds because θ′ > θ0 implies cθ′(P̄ ) ≤ cθ0(P̄ ). J

I Theorem 10. For each θmin < θ0 < θ1 such that π is also feasible for cθ0 and cθ1 we have
copt(θmin) ≥ Oθ0 ≥ Oθ1 ≥ copt(θ′) for all θ′ that were considered in (18c) for both Oθ0 and
Oθ1 .

Proof. We consider the definitions of (18) for θ0 and θ1 respectively. Observe that the sets
Mθmin , the bounds λ(B) as well as constraints (18b) and (18c) are independent of θ0 and
thus both programs for Oθ0 and Oθ1 optimize over the same set of feasible solutions. The
only difference is the objective function, where for some a ∈Mθmin its coefficient for θ1 is less
or equal than its coefficient for θ0. This implies Oθ0 ≥ Oθ1 but also copt(θmin) ≥ Oθ0 : Note
that Oθmin is well-defined and contains only variable y because Mθmin = ∅. An optimum is
given by y = copt(θmin) and thus copt(θmin) ≥ Oθmin ≥ Oθ0 because θ0 > θmin. Finally, it
holds for some θ′ which was considered in (18b), that

Oθ1 = y −
∑

a∈Mθmin

xa(min(d(a), θ1)− θmin)

≥ y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

≥ copt(θ′). J
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Figure 5 A counter-example to a claim regarding robust combinatorial optimization. Numbers
on arcs represent costs and deviations.

B A counter-example to a claim regarding robust combinatorial
optimization

We consider a claim made in [21] regarding a type of combinatorial optimization problems
solvable by a dynamic programming (DP) algorithm. A combinatorial optimization problem
is solvable by a DP algorithm if it can be expressed using a set of functional equations. More
specifically, it is assumed that there is a set of states denoted by S with a subset O of initial
states and a final state N . The optimal cost of state s ∈ S is given by F (s), the set of
variables set to 1 in state s is denoted by q(s). The state p(s, i) ∈ S is set to be the previous
state of s where s is obtained from p(s, i) by fixing variable i ∈ q(s) to 1. The relationship
between the states is assumed to be governed by the following set of functional equations:{

F (s) = mini∈q(s){F (p(s, i)) + ci}, s ∈ S \ O
F (s) = 0, s ∈ O

(23)

In order to solve this problem the functional equation is applied to determine the optimal
cost of new states until the optimal cost of the final state is determined. The question is
whether the robust counterpart of such a problem can be solved in a similar manner using
functional equations.

I Theorem 11 (Theorem 6 in the original article). Consider an instance of a combinatorial
optimization problem which can be solved in O(τ) for some τ : N→ N by using the functional
equations (23). Then, its robust version can be solved in O(Γτ) using the following functional
equations:

F (s, α) = mini∈q(s){max(F (p(s, i), α) + ci, F (p(s, i), α− 1) + ci + di)},
s ∈ S \ O, 1 ≤ α ≤ Γ

F (s, 0) = mini∈q(s){F (p(s, i), 0) + ci}, s ∈ S \ O
F (s, α) = 0, 0 ≤ α ≤ Γ, s ∈ O

(24)

As an example of such a problem the authors consider the shortest path in a directed graph
with conservative arc costs. It is well known that in this case the Bellman-Ford algorithm
finds a shortest path by solving a dynamic program. As a counter-example to the claim
stated above, we consider the graph in Figure 5 together with a parameter of Γ = 1. It should
be apparent, that the robust shortest path in this case is the lower path with a total cost
of 4.5. In order to compute the shortest path we start evaluating the functional equations
for α = 0. In this the coefficients coincide with those of the original problem. The graph
corresponding to these functional equations is shown in Figure 6. Unfortunately, the path
resulting from applying the functional equations is the upper path which has total costs of 5.
The failure is due to the fact that the equations do not take into account that the first arc
on the upper path has a high value of d.

ATMOS 2018
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Figure 6 A depiction of the functional equations applied to the robust shortest path problem in
Figure 5.

C Figures and tables

The following table contains the average query time plotted in Figures 3a and 3b. Regarding
the distribution of the values: As is usually the case when it comes to the evaluation of
running times, there is a certain variance in the recorded data. Figure 7 shows the distribution
of running times for vertices with large Dijkstra ranks. Note that while the minimum /
maximum query times are spread far apart, many of the individual values fall into much
smaller intervals around the average. This behavior is consistent throughout the data and
justifies the comparison based on the average query time.
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Table 1 Average query time in seconds for various algorithms with respect to different ranks

Dijkstra rank over n

Algorithm 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dijkstra’s algorithm 0.00 12.51 15.08 15.74 20.95 22.94 30.43 35.63 34.85 35.62
Simple pruning 3.87 7.59 10.37 14.69 21.40 24.25 27.93 28.56 27.21 29.27
Bidirectional, pruning 0.00 13.02 18.84 18.96 19.90 19.99 24.29 27.23 29.20 27.95
Goal-directed 0.00 2.80 3.30 3.96 5.17 5.48 6.35 7.29 7.29 7.66
Bidirectional, goal-directed 0.01 8.93 10.50 11.06 15.06 15.61 20.06 23.14 22.55 26.38
Goal-directed, pruning 0.00 5.77 4.26 4.28 6.35 6.87 7.08 6.55 6.49 7.14
Dijkstra’s algorithm, interval 0.00 7.23 11.37 14.98 21.89 25.31 33.38 40.12 44.22 40.64
Goal-directed, interval 0.00 7.21 11.01 13.19 18.92 20.04 22.36 26.31 25.29 24.94
Dijkstra’s algorithm, RKB 0.01 0.98 1.83 2.56 3.45 3.64 3.88 4.53 6.62 5.53
Bidirectional, RKB 0.00 1.54 1.95 1.98 2.07 1.98 1.97 2.17 2.34 2.37
Goal-directed, RKB 0.02 0.37 0.40 0.44 0.58 0.67 0.74 0.80 0.82 0.99

10 20 30 40 50 60 70 80

Goal-directed, RKB

Bidirectional, RKB

Dijkstra’s algorithm, RKB

Goal-directed, interval

Dijkstra’s algorithm, interval

Goal-directed, pruning

Bidirectional, goal-directed

Goal-directed

Bidirectional, pruning

Simple pruning

Dijkstra’s algorithm

Query time (s)

Figure 7 Distribution of the recorded running times. The boxes show minimum, first quartile,
average, third quartile, and maximum for a rank of 0.9 · n.
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