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Abstract
Circular (ie. non-wellfounded but regular) proofs have received increasing interest in recent years
with the simultaneous development of their applications and meta-theory: infinitary proof theory
is now well-established in several proof-theoretical frameworks such as Martin Löf’s inductive
predicates, linear logic with fixed points, etc. In the setting of non-wellfounded proofs, a validity
criterion is necessary to distinguish, among all infinite derivation trees (aka. pre-proofs), those
which are logically valid proofs. A standard approach is to consider a pre-proof to be valid if
every infinite branch is supported by an infinitely progressing thread.

The paper focuses on circular proofs for MALL with fixed points. Among all representations
of valid circular proofs, a new fragment is described, based on a stronger validity criterion. This
new criterion is based on a labelling of formulas and proofs, whose validity is purely local. This
allows this fragment to be easily handled, while being expressive enough to still contain all circular
embeddings of Baelde’s µMALL finite proofs with (co)inductive invariants: in particular deciding
validity and computing a certifying labelling can be done efficiently. Moreover the Brotherston-
Simpson conjecture holds for this fragment: every labelled representation of a circular proof in
the fragment is translated into a standard finitary proof. Finally we explore how to extend these
results to a bigger fragment, by relaxing the labelling discipline while retaining (i) the ability to
locally certify the validity and (ii) to some extent, the ability to finitize circular proofs.
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35:2 Local validity for circular µMALL

` Γ, S ` S⊥, F [S/X]
(νinv)

` Γ, νX.F

Figure 1 Coinduction rule à la Park.

...
(µ)

` µX.X
(µ)

` µX.X

...
(ν)

` νX.X,Γ
(ν)

` νX.X,Γ
(Cut)

` Γ

Figure 2

1 Introduction

Various logical settings have been introduced to reason about inductive and coinductive
statements, both at the level of the logical languages modelling (co)induction (Martin Löf’s
inductive predicates vs. fixed-point logics, that is µ-calculi) and at the level of the proof-
theoretical framework considered (finite proofs with (co)induction à la Park [22] vs. infinite
proofs with fixed-point/inductive predicate unfoldings) [8, 10, 11, 5, 2, 3]. Moreover, such
proof systems have been considered over classical logic [8, 11], intuitionistic logic [12], linear-
time or branching-time temporal logic [20, 19, 26, 27, 14, 15, 16] or linear logic [23, 17, 5, 4, 15].

In all those proof systems, the treatment of inductive and coinductive reasoning brings
some highly complex proof figures. For instance, in proof systems using (co)induction rules à
la Park, the rules allowing to derive a coinductive property (or dually to use an inductive
hypothesis) have a complex inference of the form of fig. 1 (when presented in the setting
of fixed-point logic – here we follow the one-sided sequent tradition of MALL that we will
adopt in the rest of the paper). Not only is it difficult to figure out intuitively what is the
meaning of this inference, but it is also problematic for at least two additional and more
technical reasons: (i) it is hiding a cut rule that cannot be eliminated, which is problematic
for extending the Curry-Howard correspondence to fixed-points logics, and (ii) it breaks the
subformula property, which is problematic for proof search: at each coinduction rule, one
has to guess an invariant (in the same way as one has to guess an appropriate induction
hypothesis in usual mathematical proofs) which is problematic for automation of proof search.

Infinite (non-wellfounded) proofs have been proposed as an alternative in recent years [8,
10, 11]. By replacing the coinduction rule with simple fixed-point unfoldings and allowing
for non-wellfounded branches, those proof systems address the problem of the subformula
property for the cut-free systems. The cut-elimination dynamics for inductive-coinductive
rules is also much simpler. Among those non-wellfounded proofs, circular, or cyclic proofs,
that have infinite but regular derivations trees, have attracted a lot of attention for retaining
the simplicity of the inferences of non-wellfounded proof systems but being amenable to a
simple finite representation making it possible to have an algorithmic treatment of those
proof objects.

However, in those proof systems when considering all possible infinite, non-wellfounded
derivations (a. k. a. pre-proofs), it is straightforward to derive any sequent Γ (see fig. 2). Such
pre-proofs are therefore unsound and one needs to impose a validity criterion to distinguish,
among all pre-proofs, those which are logically valid proofs from the unsound ones. This
condition will actually reflect the inductive and coinductive nature of our two fixed-point
connectives: a standard approach [8, 10, 11, 23, 4] is to consider a pre-proof to be valid if
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`F,G,H, I, J
(ν)(⊕2)

` F,G,H, I, J
(µ)(⊕1)(O)

` F,G,H, I
(µ)(⊕2)(⊥)

` F,G,H, I, J
(O)

` F OG,H, I, J
(ν)(⊕2),(⊥)

` F OG,G,H, I, J

` F,G,H, I, J
(ν),(⊕1)

` F,G,H, I, J
(ν)

` F,G,H,K, J
(µ),(⊕1),(O)

` F,G,H, J
(µ),(⊕2),(⊥)

` F,G,H, I, J
(X)

` F,H,G, I, J
(O)

` F OH,G, I, J
(ν)(⊕1),(⊥)

` F OH,G,H, I, J
(N)

` (F OG) N(F OH), G,H, I, J
(µ)

` F ,G,H, I, J

Figure 3 Proof π∞.

every infinite branch is supported by an infinitely progressing thread. However, doing so,
the logical correctness of circular proofs becomes a non-local property, much in the spirit of
proof nets correctness criteria [18, 13].

Despite the need for a validity condition, circular proofs have recently received increasing
interest with the simultaneous development of their applications and meta-theory: infinitary
proof theory is now well-established in several proof-theoretical frameworks such as Martin
Löf’s inductive predicates, linear logic with fixed-points, etc.

This paper is a contribution to two directions in the field of circular proofs:
1. the relationship between finite and circular proofs (at the level of provability and at the

level of proofs themselves) and
2. the certification of circular proofs, that is the production of fast and/or small pieces of

evidence to support validity of a circular pre-proof.

Comparing finite and infinite proofs is very natural. Informally, it amounts to considering
the relative strength of inductive reasoning versus infinite descent: while infinite descent is a
very old form of mathematical reasoning which appeared already in Euclid’s Elements and
was systematically investigated by Fermat, making precise its relationship with mathematical
induction is still an open question for many proof formalisms. Their equivalence is known
as the Brotherston–Simpson conjecture. While it is fairly straightforward to check that
infinite descent (circular proofs) prove at least as many statements as inductive reasoning,
the converse is complex and remains largely open. Last year, Simpson [24], on the one hand,
and Berardi and Tatsuta [6, 7], on the other hand, made progress on this question but only
in the framework of Martin Löf’s inductive definitions, not in the setting of µ-calculi circular
proofs in which invariant extraction is highly complex and known only for some fragments.

We conclude this introduction by considering a typical example of a circular proof with a
complex validating thread structure: while this infinite proof has a regular derivation tree, its
branches and threads have a complex geometry. The circular (pre-)proof of Figure 3 derives the
sequent ` F,G,H, I, J where F = µX.(X OG) N(X OH), G = νX.X ⊕⊥, H = νX.⊥⊕X,
I = µZ.((Z O J)⊕⊥), J = µX.(K OX)⊕⊥ and K = νY.µZ.((Z OµX.(Y OX)⊕⊥)⊕⊥).

This example of a circular derivation happens to be valid (it is a µMALLω proof) but
the description of its validating threads is quite complex. Indeed, each infinite branch β

is validated by exactly one thread (see next section for detailed definitions) going through
either G, H or K depending on the shape of the branch at the limit (infinite branches of
this derivations can be described as ω-words on A = {l, r} depending on whether the left or
right back-edge is taken):

CSL 2018



35:4 Local validity for circular µMALL

Finitary Circular Infinitary Proofs

µMALL
Fig. 1

µMALL

y

Def. 14
µMALLω

Def. 9
µMALL∞

Def. 9
Standard

µMALL

y

lab
Def. 14

L-proofs
Def. 12

Labelled

Prop. 16 ⊆
Prop. 15

Th. 28

⊆

Def. 14 d•e

Figure 4 Relations between the different systems used in the paper.

(i) if β ultimately follows always the left cycle (A? · lω), the unfolding of H validates β;
(ii) if β ultimately follows always the right cycle (A? · rω), the unfolding of G validates β;
(iii) if β endlessly switches between left and right cycles (A? · (r+ · l+)ω), K validates β.
The description of the thread validating this proof is thus complex. This is reflected in the
difficulty to provide a local way to validate this proof and in the lack of a general method for
finitizing this into a µMALL proof: to our knowledge, the usual finitization methods (working
only for fragments of µMALL circular proofs) do not apply here.

Organization and contributions of the paper. In section 2, we provide the necessary
background on infinitary and circular proof theory of multiplicative additive linear logic with
least and greatest fixed points (respectively µMALL∞ and µMALLω). Section 3 studies an
approach to circular proofs based on labellings of greatest fixed points. We first motivate in
section 3.1 such labellings as an alternative way to express the validating threads. Then, in
section 3.2 we introduce finite representations of pre-proofs and use such labellings in order
to locally certify their validity. Finally, in section 3.3, we turn to alternative characterizations
of those circular proofs which can be labelled. The fragment of labellable proofs, while quite
constrained (for instance, it does not include the example of Figure 3), is already enough to
capture the circular proofs obtained by translation of µMALL proofs. In section 4, we address
the converse: for any labelled derivation tree with back-edges, we provide a corresponding
µMALL proof by generating a (co)inductive invariant based on an inspection of the labelling
structure. Therefore, we answer the Brotherston–Simpson conjecture in a restricted fragment.
In section 5, we introduce a more permissive labelling strategy that allows to label more
proofs (in particular by allowing to loop not only on (ν) rules but on any rule) and that still
ensures validity of the labellable derivations. For this relaxed labelling, we label the example
of Figure 3 and show how to finitize it by adapting the method of section 4. Nevertheless,
there is not yet a general method applicable to the complete extended labelling fragment.
Relations between the various systems considered in the paper are summarized in Figure 4.

2 Background on circular proofs

We recall µMALL∞ and µMALLω, which are non-wellfounded and circular proof systems,
respectively, for an extension of MALL with least and greatest fixed points operators [4, 15].

I Definition 1. Given a set of fixed point operators F = {µ, ν} and an infinite set of
propositional variables V = {X,Y, . . . }, µMALL pre-formulas are inductively defined as:
A,B ::= 0 | > | A⊕B | ANB | ⊥ | 1 | AOB | A⊗B | X | σX.A with X ∈ V and σ ∈ F .
σ ∈ F binds the variable X in A. From there, bound variables, free variables and capture-
avoiding substitution are defined in a standard way. The subformula ordering is denoted ≤
and fv(•) denotes free variables. When a pre-formula is closed, we simply call it a formula.
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(1)
` 1

(Ax)
` F, F⊥

` Γ, F ` F⊥,∆
(Cut)

` Γ,∆
` Γ, F,G,∆

(X)
` Γ, G, F,∆

` Γ
(⊥)

` ⊥,Γ
` Fi,Γ

(⊕i)
` F1 ⊕ F2,Γ

` F,Γ ` G,∆
(⊗)

` F⊗G,Γ,∆
` F [µX.F/X],Γ

(µ)
` µX.F,Γ

(>)
` >,Γ

` F,Γ ` G,Γ
(N)

` F NG,Γ
` F,G,Γ

(O)
` F OG,Γ

` G[νX.G/X],Γ
(ν)

` νX.G,Γ

Figure 5 µMALL∞ inference rules.

Note that negation is not part of the syntax, so that we do not need any positivity
condition on fixed-points expressions. We define negation, (•)⊥, as a meta-operation on
pre-formulas and will use it on formulas.

I Definition 2. Negation, (•)⊥, is the involution on pre-formulas, satisfying: 0⊥ = >,
(A⊕B)⊥ = B⊥NA⊥, 1⊥ = ⊥, (A⊗B)⊥ = B⊥OA⊥, X⊥ = X, (µX.A)⊥ = νX.A⊥.

I Example 3. The previous definition yields, e. g. (µX.X)⊥ = (νX.X) and (µX.1⊕X)⊥ =
(νX.X N⊥), as expected [3]. Note that we also have (A[B/X])⊥ = A⊥[B⊥/X].

The reader may find it surprising to define X⊥ = X, but it is harmless since our proof system
only deals with formulas (i. e. closed pre-formulas) as examplified right above.

Fixed-points logics come with a notion of subformulas slightly different from usual:

I Definition 4. The Fischer-Ladner closure of a formula F , FL(F ), is the least set of
formulas such that F ∈ FL(F ) and, whenever G ∈ FL(F ), (i) G1, G2 ∈ FL(F ) if G = G1 ? G2
for any ? ∈ {⊕,N,O,⊗}; (ii) B[G/X] ∈ FL(F ) if G is µX.B or νX.B. We say that G is a
FL-subformula of F if G ∈ FL(F ).

In this work we choose to present sequents as lists of formulas together with an explicit
exchange rule. Another usual choice is to present sequents as multisets of formulas. Yet,
our approach takes the viewpoint of structural proof theory in which one is willing not to
equate too many proofs. In particular, the sequents as (multi)sets are not relevant from
the Curry-Howard perspective, e. g. it would equate the proofs denoting the two booleans.
Moreover, most proof theoretical observations actually hold when one distinguishes between
several occurrences of a formula in a sequent, giving the ability to trace the provenance of
each occurrence. In [4], formula occurrences are localized formulas and the interested reader
will check that all the following results hold also in this more explicit approach.

I Definition 5. A pre-proof of µMALL∞ is a possibly infinite tree generated from the
inference rules given in fig. 5.

Recall that µMALL [3], on the opposite, is obtained by forming only finite trees and by
taking, instead of the (ν) rule of µMALL∞, the rule with explicit invariant of fig. 1.

When writing sequent proofs, we will often omit exchange rules, using the fact that
every inference of def. 5 admits a derivable variant (preserving every correctness criterion
considered in the paper) allowing the principal formula of the inference as well as the context
(or auxiliary) formulas to be anywhere in the sequent, e. g. for the O introduction, the

derived rule is
` Γ, A,B,∆

(O)
` Γ, AOB,∆

. We will use those derived rules when it is not ambiguous

with respect to the formula occurrence relation. The following notion of threading function
is folklore generally left implicit.

CSL 2018



35:6 Local validity for circular µMALL

Figure 6 Threading function.

I Definition 6. Every rule r of µMALL∞ comes with a threading function t(r) (see
Figure 6) mapping each position of an subformula in a premise to a position of a subformula
in the conclusion, except for cut-formulas, by relating the subformula positions of a premise
formula F with the corresponding (subformula) positions of the conclusion F ′, F being
the FL-subformula associated to F ′ by inference r; note that in the case of the unfolding
of fixed point F ′ = νX.G into F = G[νX.G/X] every position of νX.G in F is associated
to the root position of F ′ and every position of a subformula in (a copy of) G in F is
associated to the corresponding subformula position in G in F ′. More formally, if s1
is the conclusion and s2 a premise of the same occurrence of rule r, then r induces a
partial function t(r) : Pos(s2) ⇀ Pos(s1), where Pos(A0, . . . , An−1) = {(k, p) | 0 6 k <

n and p is a position of a subformula in Ak}.
By composing these partial maps we define t(u) for any path u, mapping positions of

subformulas in the top sequent of u to positions of subformulas in its bottom sequent.

I Definition 7. Let γ = (si)i∈ω be (a suffix of) an infinite branch in a pre-proof of
µMALL∞, that is: the si are occurrences of sequents and for all i there is an occurrence of a
rule in the preproof which has si+1 as a premise and si as conclusion.

A ν-thread is the data comprising a ν-formula νX.A and a sequence ((s′i, pi))i<α, finite
(α < ω) or infinite (α = ω), such that s′i are sequent occurrences, pi is the position in s′i of a
subformula equal to νX.A and for all i, if i+ 1 < α, there is a rule occurrence ri which has
s′i and s′i+1 as, respectively, conclusion and premise, and such that pi corresponds to pi+1
via the threading function, i. e. pi = t(ri)(pi+1). If one of the pi is the main formula of the
conclusion of a ν-rule ri, then the ν-thread is progressing at i. A ν-thread is valid if it is
progressing infinitely many times. A ν-thread is in γ if (s′i) is a suffix of γ.

From now on, we may refer to à ν-thread simply as a thread.

I Definition 8 (T(u)(p)). If u is a finite path in a µMALL∞ preproof and p a position of
subformula in its top sequent then there is a unique thread in u, going from t(u)(p) up to p.
This thread is constructed by following the threading relation and is denoted as T(u)(p).

I Definition 9. A µMALL∞ proof is a pre-proof in which every infinite branch contains a
valid thread. A µMALLω proof is a circular µMALL∞ proof, i. e. a regular one, which has
a finite number of distinct subtrees.

Since circular µMALL∞ proofs are regular, they can actually be presented as finite trees
with back-edges, as exemplified in fig. 3. The main results of the paper rely on such a
representation. µMALL∞ proofs enjoy several nice properties, such as cut-elimination:

I Theorem 10 ([4]). Cut-elimination holds for µMALL∞ proofs.

Thanks to cut-elimination µMALL∞ enjoys the FL-subformula property: indeed in a
cut-free µMALL∞ proof, premises are always included in FL-closure of conclusion sequents.
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3 Labelling as validity

3.1 L-proofs
In this subsection, we briefly mention an alternative approach to ensure validity of µMALL∞

pre-proofs, aiming at motivating the tools used in the remainder of this paper (see details
in the extended version ). The idea is to witness thread progress by adding labels on some
formulas.

I Definition 11 (Labelled formulas). Let L be an infinite countable set of atoms and call
labels any finite list of atoms. Let FL be the set

{
σL | σ ∈ {µ, ν}, L ∈ list(L)

}
. Labelled

formulas, or L-formulas, are defined as µMALL formulas, by replacing F with FL in the
grammar of formulas (def. 1). Negation is lifted to labelled formulas, as (µLX.A)⊥ = νLX.A⊥.
We write σX.A for σ∅X.A and standard, unlabelled formulas can thus be seen as labelled
formulas where every label is empty. We define a label-erasing function d•e that associates
to every L-formula A the µMALL-formula dAe obtained by erasing every label and satisfying⌈
σLX.B

⌉
= σX. dBe.

The standard µMALL∞ proof system is adapted, to handle labels, by updating (Ax) and

(ν) as
A ⊥ B

(Ax′)
` A,B

` A[νL,aX.A],Γ
(νb(a))

` νLX.A,Γ where (i) A,B are said to be orthogonal,
written A ⊥ B, when dAe = dBe⊥ and (ii) in (νb(a)), a must be a fresh label name, i. e. a
does not appear free in the conclusion sequent of (νb(a)) (in particular, a /∈ L). Since we are
in a one-sided framework, only labels on ν operators are relevant. Therefore, from now on,
formulas have non-empty labels only on ν and require, for the cut inference, that all labels
of cut formulas are empty. L-pre-proofs are, as in def. 5, possibly infinite derivations using
L-formulas, and the validity condition is expressed in terms of labels:

I Definition 12 (L-proof). An L-proof is an L-pre-proof such that for every infinite branch
γ = (si)i∈ω, there exists a sequence (νLiX.Gi)i∈ω and a strictly increasing function ε on
natural numbers such that for every i ∈ ω, (i) the formula νLiX.Gi is principal in sε(i) (ii)⌈
νLiX.Gi

⌉
=
⌈
νLi+1X.Gi+1

⌉
and (iii) Li+1 = (Li, ai) for some ai ∈ L.

Note that the label-erasing function d•e is easily lifted to sequents and L-pre-proofs. And if
π is an L-proof, then dπe is a µMALL∞ proof.

3.2 Finite representations of circular L-proofs.
We now turn our attention to finite representations of (circular) L-proofs. Immediately a
difficulty occurs in comparison to non-labelled proofs: whereas an infinite non-labelled proof
may happen to be regular, a valid L-proof cannot be circular, for, along every infinite branch,
the sets of labels will grow endlessly. To form circular proofs with labels, some atoms must
be forgotten when going bottom-up.

We introduce two more rules: (

y

(a)) and (LW). The first one allows to forget one atom,
just before recreating it by means of a back-edge to an already encountered ν-rule. The
other one allows to forget any atom that will not be used to validate the proof. It is used to
synchronise the different labels in a sequent before travelling through a back-edge.

labelled back-edge:
(

y

(a))
` νL,aX.A,Γ with the constraint that it must be the source

of a back-edge to the conclusion of a
` A[νL,aX.A],Γ

(νb(a))
` νLX.A,Γ

below (

y

(a)).

CSL 2018



35:8 Local validity for circular µMALL

labelled weakening:
` Γ, B[νLX.A],∆

(LW)
` Γ, B[νL,aX.A],∆

I Definition 13 (µMALL

y

lab). µMALL

y

lab denotes the finite derivations of L-sequents built
from the rules in fig. 5 by replacing (ν) by (νb(a)), (

y

(a)), (LW), such that (i) the root sequent
has empty labels and (ii) in every two (νb(a)) and (νb(b)) occurring in the proofs, a 6= b.

The label-erasing function d•e lifts to a translation from µMALL
y

lab to the finite repres-

entations of µMALLω pre-proofs. Every rule of the labelled µMALL
y

lab proof is sent by d•e to
a valid rule of unlabelled µMALL∞, except for the (LW) rule, which can safely be removed:

` Γ, B[νLX.A],∆
(LW)

` Γ, B[νL,aX.A],∆
becomes useless

` dΓe , dBe
[
νX. dAe

]
, d∆e

` dΓe , dBe
[
νX. dAe

]
, d∆e

(1)

Since µMALL

y

lab proofs are finite, label-erasing and unfolding give rise to µMALLω pre-proofs:

I Definition 14 (µMALL

y

). We denote as µMALL

y

the set of circular pre-proofs that are
obtained from µMALL

y

lab by label-erasing and total unfolding.

I Proposition 15 (µMALL
y

⊆ µMALLω). Every pre-proof of µMALLω that is the image of
a proof in µMALL

y

lab by label-erasing and total unfolding satisfies thread validity.

Proof sketch (details are in appendix A, p. 19). Consider a pre-proof dπe in µMALL

y

which
is the image of an L-proof π in µMALL

y

lab. We want to prove that every infinite branch b in
dπe is contains a valid thread (see def. 7). Let b0 be the corresponding infinite L-branch in
π. Notice that there is a sequent S0 which is the lowest back-edge target crossed infinitely
often by b0. Besides, S0 is the conclusion of a (νb(a)) rule, which unfolds some νLX.A.

We decompose b0, with root r ; S0 conclusion of (νb(a)) and νLX.A at
position p0 in S0 ; for any i ≥ 1, Si conclusion of a back-edge (

y

(a))

with νL,aX.A at position p0 in Si . Then we notice that T(ui)(p0) is a
thread (S0, p0) ∗−→(Si, p0) which is progressing, as its source is the principal
conclusion of the rule (νb(a)). By gluing the T(ui)(p0) and then erasing
labels, we get a valid thread of b in dπe. J

Si
(

y

(a))

S0
(νb(a))

r

ui

u0

I Proposition 16. µMALL proofs can be translated to µMALL

y

.

Proof. The target of the usual translation [15] µMALL→ µMALLω is included in µMALL

y

.
The key case of this translation is shown in appendix A. J

Observe that a proof in µMALL

y

is not, in general, the translation of a µMALL proof.

3.3 Two alternative characterizations of µMALL

y

In the two following sections, we give two characterizations of µMALL

y

through validating
sets (def. 20) and through a threading criterion over back-edges (def. 24).

I Definition 17. Given a directed graph G = (V,E) and a set S ⊆ V , the set of vertices
from which S is accessible is denoted as S↑:= {v ∈ V s.t.∃s ∈ S, v →∗ s}. Similarly S↓ is the
set of vertices accessible from S.
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I Definition 18 (Gπ). For a finite representation π of a µMALLω pre-proof, the graph Gπ
is s. t. (i) its vertices are all positions of ν-formulas in all occurrences of sequents in π, plus

the vertex ⊥: Vπ :=

(v, i, p) such that
(i) v position of a sequent Γ in π
(ii) i position of a formula A in Γ
(iii) p position of a ν-subformula in A

 ] {⊥};
(ii) its edges go from a position in a formula to the position that comes from it in the sequent
just below, as induced by the threading function of def. 6, or to the extra vertex ⊥ if it is a
cut formula. In case this is a conclusion formula, there is no outgoing edge.

I Definition 19 (Gr, Sr, Tr). Let π be a finite representation of a µMALLω pre-proof and (r)
an occurrence of a (ν)-rule. We define the subgraph Gr = (Vr, Er) of Gπ and Sr, Tr ⊆ Vr st:

vertices Vr are the extra vertex ⊥ plus all positions that are in the conclusion of this
rule and in all above sequents, that is all sequents from which the conclusion of (r) can
be reached, in the sense of def. 17;
edges Er are all edges of Gπ between those vertices minus the edges of Gπ that are
induced by the back-edges of π targetting the conclusion of (r), if there are some.
Sr ⊆ Vr is the set of all positions of the principal formulas of the sources sequents of the
back-edges targetting the conclusion of (r);
Tr ⊆ Vr is the set of all positions of all subformulas of the conclusion of (r) except for
the very position of its principal formula, plus the extra vertex ⊥.

I Definition 20. Let (r) be an occurrence of a (ν)-rule in a pre-proof π of µMALLω. A
validating set for (r) is a set L ⊆ Vπ such that L = L↓ and Sr ⊆ L ⊆ (Vr \ Tr).

I Proposition 21. Let (r) be an occurrence of a (ν)-rule of a pre-proof π of µMALLω. There
exists a validating set for (r) iff Tr is not accessible from Sr in Gr iff Sr↓ ⊆ Vr \ (Tr↑).

In this case, Sr↓ is the smallest validating set of (r) and Vr \ (Tr↑) is the biggest one.

Proof. It is based on the fact that the complement of a downward-closed set is upward-closed.
We then get the inclusions : Sr ⊆ Sr↓ ⊆ L↓ = L ⊆ Vr \ (Tr↑) ⊆ Vr \ Tr. J

The following proposition gives an alternative criterion for µMALL

y

(see app. A, p. 19):

I Proposition 22. A finite representation π of a µMALLω pre-proof is a representation of a
µMALL

y

lab proof iff every occurrence of a ν-rule of π has a validating set.

I Proposition 23. Checking validity of a µMALL

y

lab pre-proof is decidable. Membership in
µMALL

y

can be decided in a time quadratic in the size of the (circular) pre-proof.

Proof. The former is immediate. The latter reduces to checking accessibility in a graph for
each back-edge target, which can be done in quadratic time. J

I Definition 24. A finite representation of a µMALLω pre-proof finite representation is
strongly valid when:
(i) every back-edge targets the conclusion of a (ν) rule and

(ii) if an occurrence (r′) of
` A[νX.A],Γ

(ν)
` νX.A,Γ

is the target of a back-edge, coming from an

occurrence (r) of

y

` νX.A,Γ then every path t starting from the principal formula
νX.A of the conclusion of (r), following the thread function (potentially through several
back-edges, but never on or below the occurrence (r′) of (ν)), ends on the principal
formula νX.A of the conclusion of (r′).
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I Proposition 25. A finite representation π of a µMALLω pre-proof is strongly valid iff every
ν-rule of π has a validating set iff it is the representation of a µMALL

y

lab proof.

Proof. See proof in appendix B, p. 21. J

4 On Brotherston-Simpson’s conjecture: finitizing circular proofs

The aim of this section is to prove a converse of prop. 16: Every provable sequent of µMALL

y

is provable in µMALL.
Let us consider a µMALL

y

proof π. Up to renaming of bound variables, we can assume
that all (νb) rules are labelled by distinct labels. For every two labels a and b occurring in π,
we say that a 6 b whenever (νb(a)) is under (νb(b)). This order is well-founded because finite.

I Definition 26. For every rule
` A[νV,aX.A],Γ

(νb(a))
` νVX.A,Γ

we define Γ(a) to be Γ.

We now define (i) for each atom a a sequent Γa formed of non-labelled formulas; (ii) for
each formula A (with labels) occurring in the proof, a formula JAK without labels:

I Definition 27. We define by mutual induction: (1) Γa := JΓ(a)K.
(2) H∅[F ] := F and HV,a[F ] := ⊗Γ⊥a ⊕HV [F ]. (i. e. HV [F ] is isomorphic to

(⊕
a∈V ⊗Γ⊥a

)
⊕

F .)
(3) By induction on formula A JAK is: (i) JνVX.AK := νX.HV [JAK] (ii) it is homomorphic on
other connectives: JXK := X, J1K := 1, JµX.AK := µX.JAK, JA⊗BK := JAK⊗ JBK, etc.
(3) J·K is lifted from formulas to sequences of formulas, pointwise.

This is well-founded because since any two distinct νb rules wear distinct variables the
only Γb that are needed in the computation of Γa are those with b < a. Note that JAK = A

as soon as A has no label variable. We can now state and prove the finitization theorem:

I Theorem 28. Every provable sequent of µMALL

y

is provable in µMALL.

Proof. Let π be a µMALL

y

lab proof and replace, everywhere, each formula A by JAK. All
rules in this (almost) new derivation are now valid instances of µMALL rules, except for (νb),
(LW) and (

y

) rules. Actually, images of these rules by sequent translation J·K are derivable in
µMALL as shown in fig. 7 (a), (b) and (c) for (

y

), (LW) and (νb), respectively.
Replacing each instance of a (νb), (LW) or (

y

) rule in π by its derived version, we get a fully
valid proof of µMALL. If the conclusion of the original µMALL

y

proof was ` Γ then what
we get is a proof in µMALL of ` JΓK, i. e. the conclusion of the original µMALL

y

proof, if Γ
contains no label variable. J

5 Relaxing the labelling of proofs

In this section, we discuss a possible extension of the labelling defined in section 3, in order
to capture more proofs retaining (i) the ability to locally certify the validity and (ii) to some
extent, the ability to finitize circular proofs. In order to motivate this extension, we shall
consider a simpler example than the one in fig. 3 (π∞).

Let D be an arbitrary formula. Lists of D can be represented as proofs of L0 :=
µX.1⊕ (D ⊗X) and it is possible to encode in µMALLω the function taking two lists and
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(a)

(⊗) (Id)
` ⊗Γ⊥a ,Γa

(⊕1)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(b)

(Id)
` HV

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(⊕2)

` HV,a

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(µ)

` HV,a

[
JA[νVX.A]K

]
, JνVX.AK⊥

(ν0
inv)

` JνV,aX.AK, JνVX.AK⊥
[JBK]

` JB[νV,aX.A]K, JB[νVX.A]K⊥ ` JB[νVX.A]K,Γ
(Cut)

` JB[νV,aX.A]K,Γ

(c)

` JA[νV,aX.A]K,Γa
(⊕2) |V |

` HV

[
JA[νV,aX.A]K

]
,Γa

(O)
` HV

[
JA[νV,aX.A]K

]
,O Γa

(Id)
` HV

[
JA[νV,aX.A]K

]
, HV

[
JA[νV,aX.A]K

]
(N)

` HV

[
JA[νV,aX.A]K

]
, HV,a

[
JA[νV,aX.A]K

]
(µ)

` HV

[
JA[νV,aX.A]K

]
, JνV,aX.AK⊥

(⊗) (Id)
` ⊗Γ⊥a ,Γa

(⊕1)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(νinv)
` JνVX.AK,Γa

Figure 7 Derivability of (a) J(

y

)K rule; (b) J(LW)K rule and (c) J(νb)K rule.

(a)

(Id)
D ` D

(1)
(

y

)
L,L ` T

(O) (⊗)
D ⊗ L,L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(Id)
D ` D

(1)
(

y

)
L,L ` T

(O) (⊗)
L,D ⊗ L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(µ), (N)
L,L ` T (1) (b)

(Id)
D ` D

(1)
(

y

(a))
La+, L ` T

(O) (⊗)
D ⊗ La+, L ` D ⊗ T

(ν(a))
La−, L ` D ⊗ T

(LW(b−))
La−, Lb− ` D ⊗ T

(Id)
D ` D

(2)
(

y

(b))
La−, Lb+ ` T

(O) (⊗)
La−, D ⊗ Lb+ ` D ⊗ T

(ν(b))
La−, Lb− ` D ⊗ T

(µ) (N)
La−, Lb− ` T (2)

(Rec(b))
La−, L ` T (1)

(Rec(a))
L,L ` T

Figure 8 (a) Interleaving example; (b) Interleaving example labelled.
Corresponding sources and targets of back-edges are denoted by parenthesized numbers.

computing the tree of all their possible interleaving, as a proof with conclusion1 L0, L0 ` T0,
where T0 := µX.L0 ⊕ ((D ⊗X) N(D ⊗X)). By replacing L0 and T0 with L := µX.D ⊗X
and T := µX.(D ⊗X) N(D ⊗X), we get a example equally interesting and more readable,
which we present in fig. 8. In this interleaving function, every recursive call leaves one of
the two arguments untouched and makes the other one decrease. This guarantees that the
tree of recursive calls is well-founded. Difficulties, however, arises from the fact that it is not
necessarily always the same argument that will decrease.

More formally: every infinite branch in the preproof above has two interesting threads,
going through the L formulas. In every branch going infinitely often to the left (resp. to
the right), the thread going through the left L (resp. the right L) will be validating. That
preproof is thus a valid µMALLω proof. However, our previous labelling method cannot be
applied here for two reasons:
1. in our previous setting, labelled pre-proof have the property that one can know which

thread will validate a branch, just by knowing the lowest target of back-edge that is visited
infinitely often by the branch. This is not the case here, because the two back-edges,
while inducing different validating threads, have the same target;

2. in our previous setting, back-edges must target (ν) rules, which is not the case here.
Both difficulties have, in fact, the same origin, namely that in our previous setting the (ν)

rule has two roles: being the target of a back-edge and ensuring thread progression. Both
difficulties also have the same solution: dissociating these two roles. We therefore introduce,
in def. 29, a new rule (Rec), whose only effect is to allow its premise to be the target of a
back-edge, and to introduce a new label. Since (Rec) is disentangled from greatest fixed point

1 In the following, we write A( B for A⊥OB, and Γ ` ∆ for ` Γ⊥,∆; exchange rules are left implicit.
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35:12 Local validity for circular µMALL

unfolding, the labelling must account for the progression of a thread. That is why every
atomic label is now given in one of two modes: a passive mode (a−) and an active one (a+).
Only an unfolding by a (ν) can turn a − into a +.

Let us now turn back to our introductory example: π∞. For that example, simply
separating the introduction of back-edges and the coinductive progress is not enough. Indeed,
since targets of back-edges do not require to unfold a ν, there is a priori no reason to
require that the sequents contains some ν-formula. While this is slightly hidden in the merge
example, π∞ gives a clear example of that and suggests that the (Rec) inference should have
the ability to add labels deeply in the sequent, i. e. not only on the topmost ν fixed-points,
but also to greatest fixed points occurring under some other connectives. The same remark
applies to the back-edge rule since its conclusion sequents have the same structure as those
of (Rec).

Driven by these observations, we now define a new labelling of circular preproofs and
prove its correctness with respect to thread-validity.

I Definition 29 (Extended labelling). Labelled formulas are built on the same grammar as
previously, except that labels are lists of signed variables, that is of pairs of a variable and
a symbol in {+,−}. Derivations are built with µMALL inferences plus the following rules:
` νLX.A,Γ

(LW(a−))
` νL,a−X.A,Γ

` νL,a−,L
′
X.A,Γ

(LW(a+))
` νL,a+,L′

X.A,Γ

` A[νa1+,...,an+X.A],Γ
(ν)

` νa1−,...,an−X.A,Γ
` Γ[νL,a−X.A]

(Rec(a))
` Γ[νLX.A]

(

y

(a))
` Γ[νL,a+X.A]

and the constraints that:
a cut-formula cannot contain a non-empty label;
all (Rec) rules must wear distinct variables;
every (Rec(a)) rule must have at least one occurrence of “a−” in its premise;

each
(

y

(a))
` Γ[νL,a+X.A] rule is connected to the premise of a

` Γ[νL,a−X.A]
(Rec(a))

` B[νLX.A],Γ
via a back-edge. This implies in particular that this (

y

(a)) must be above this (Rec(a)) and
that the premise of this (Rec(a)) must be the same sequent as the conclusion of this (

y

(a))

except for the change of sign of a, at every of its occurrences in the sequent.

I Proposition 30 (Soundness of labelling). If π is an extended labelled circular representation
then dπe is a circular representation of a valid µMALLω proof.

Proof. See proof in appendix C, p. 21. J

We now label our two examples with this new system. We will show that, while it is
quite straightforward for the interleaving, it requires to unfold one back-edge of π∞.

π∞ is presented labelled according to the extended labelling of fig. 9a. We make K
apparent as a subformula of I and J respectively by decomposing:

I = I ′[K] J = J ′[K] J ′[Y ] := µX.((Y OX)⊕⊥) I ′[Y ] := µZ.((Z O J ′[Y ])⊕⊥).

Then we first did one step of unfolding on the right back-edge, and we took advantage of
the two new facilites of the extended labelling:
1. we added three (Rec) rules, corresponding to the three ways for a branch of π∞ to be valid,

as summarized in the following array.
Shape of the branch A? · lω A? · rω l? · (r+ · l+)ω

Lowest (Rec) visited ∞ly b a c

Validating ν-formula H G K

2. and so, we labelled the three formulas H, G and K at each corresponding (Rec), using for
K the ability to label several occurrences at a time, and to label deeply ν-subformulas.

This indeed forms a correct labelling of π∞ according to the extended labelling, hence
ensuring their thread-validity.



R. Nollet, A. Saurin, and C. Tasson 35:13

(

y

(b))
` F,G,Hb+, I−, J−

(ν) (⊕2)
` F,G,Hb−, I−, J−

(µ) (⊕1) (O)
` F,G,Hb−, I−

(µ) (⊕2) (⊥)
` F,G,Hb−, I−, J−

(O)
` F OG,Hb−, I−, J−

(ν) (⊕2) (⊥)
` F OG,G,Hb−, I−, J−

(

y

(c))
` F,G,H, I ′[Kc+], J ′[Kc+]

(ν) (⊕2)` F,G,H, I+, J+
(µ) (⊕1) (O)

` F,G,H, I+
(µ) (⊕2) (⊥)

` F,G,H, I+, J−
(O)

` F OG,H, I+, J−
(ν) (⊕2) (⊥)

` F OG,G,H, I+, J−
(LW(a−))

` F OG,Ga−, H, I+, J−

(

y

(a))
` F,Ga+, H, I+, J−

(ν) (⊕1)
` F,Ga−, H, I+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ) (⊕1) (O)
` F,Ga−, H, J−

(µ) (⊕2) (⊥)
` F,Ga−, H, I+, J−

(X)
` F,H,Ga−, I+, J−

(O)
` F OH,Ga−, I+, J−

(ν) (⊕1) (⊥)
` F OH,Ga−, H, I+, J−

(N)
` (F OX) N(F OH), Ga−, H, I+, J−

(µ)
` F ,Ga−, H, I+, J−

(Rec(a))
` F,G,H, I+, J−

(ν) (⊕1)` F,G,H, I+, J−
(ν)

` F,G,H,Kc−, J−
(µ) (⊕1) (O)

` F,G,H, J−
(µ) (⊕2) (⊥)

` F,G,H, I−, J−
(X)

` F,H,G, I−, J−
(O)

` F OH,G, I−, J−
(ν) (⊕1) (⊥)

` F OH,G,H, I−, J−
(LW(b−))

` F OH,G,Hb−, I−, J−
(N)

` (F OX) N(F OH), G,Hb−, I−, J−
(µ)

` F ,G,Hb−, I−, J−
(Rec(b))

` F,G,H, I−, J−
(Rec(c))

` F,G,H, I ′[K], J ′[K]

(a) Labelling of π∞

(

y

(b))
` F,G,Hb+, I−, J−

(ν) (⊕2)
` F,G,Hb−, I−, J−

(µ) (⊕1) (O)
` F,G,Hb−, I−

(µ) (⊕2) (⊥)
` F,G,Hb−, I−, J−

(O)
` F OG,Hb−, I−, J−

(ν) (⊕2) (⊥)
` F OG,G,Hb−, I−, J−

(

y

(c))
` F,G,H,Lc+

(ν) (⊕2)
` F,G,H,Lc+

(µ) (⊕1)
` F,G,H, Ic+

(µ) (⊕2) (⊥)
` F,G,H, Ic+, J−

(O)
` F OG,H, Ic+, J−

(ν) (⊕2) (⊥)
` F OG,G,H, Ic+, J−

(LW(a−))
` F OG,Ga−, H, Ic+, J−

(

y

(a))
` F,Ga+, H, Ic+, J−

(ν) (⊕1)
` F,Ga−, H, Ic+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ) (⊕1) (O)
` F,Ga−, H, J−

(µ) (⊕2) (⊥)
` F,Ga−, H, Ic+, J−

(X)
` F,H,Ga−, Ic+, J−

(O)
` F OH,Ga−, Ic+, J−

(ν) (⊕1) (⊥)
` F OH,Ga−, H, Ic+, J−

(N)
` (F OX) N(F OH), Ga−, H, Ic+, J−

(µ)
` F ,Ga−, H, Ic+, J−

(Rec(a))
` F,G,H, Ic+, J−

(ν) (⊕1)
` F,G,H, Ic+, J−

(ν)
` F,G,H,Kc−, J−

(µ) (⊕1) (O)
` F,G,H, J−

(µ) (⊕2) (⊥)
` F,G,H, I−, J−

(X)
` F,H,G, I−, J−

(O)
` F OH,G, I−, J−

(ν) (⊕1) (⊥)
` F OH,G,H, I−, J−

(LW(b−))
` F OH,G,Hb−, I−, J−

(N)
` (F OX) N(F OH), G,Hb−, I−, J−

(µ)
` F ,G,Hb−, I−, J−

(Rec(b))
` F,G,H, I−, J−

(Rec(c))
` F,G,H, I ′[K], J ′[K]

(b) Finitization of π∞. Brackets J•Ke shoud be put around every formula and rule name. They were
omitted only for the sake of readability.

Figure 9 We use the following abbreviations: I− = I ′[Kc−], I+ = I ′[Kc+], J− = J ′[Kc−] and
J+ = J ′[Kc+].

CSL 2018



35:14 Local validity for circular µMALL

(a)
` νX.JAKe[Γ⊥ ⊕X],∆

(⊕2)
` Γ⊥ ⊕ νX.JAKe[Γ⊥ ⊕X],∆

(b) (⊕1) (⊗)?, (Id)
` JνΓ+X.AKe,Γ (c)

(µ) [JAKe] (⊕2) (Id)
` JAKe[Γ⊥ ⊕ νX.JAKe[X]], µX.JA⊥K[X] νX.JAK[X],∆

(νinv)
` νX.JAKe[Γ⊥ ⊕X],∆

(d)

(µ) (Id)
` JAKe[JνΓ+X.AKe], µX.JA⊥Ke[X NC]

(Id)
` JνΓ−X.AKe, µX.JA⊥Ke[X NC]

` JνΓ−X.AKe,Γ
(O)?

` JνΓ−X.AKe, C
(N)

` JνΓ−X.AKe, (µX.JA⊥Ke[X NC]) NC
(Cut)

` JAKe[JνΓ+X.AKe], (µX.JA⊥Ke[X NC]) NC
(⊕1) (⊗)?, (Id)

` JνΓ+X.AKe,Γ
(νinv)

` νX.JAKe,Γ

Figure 10 Derivability of a. J(LW(Γ+))Ke b. J(

y

(Γ))Ke c. J(LW(Γ−))Ke & d. J(Rec′(Γ))Ke with C = O Γ.

5.1 Extended finitization
As for the case of our previous labelling, we will rely on the labelled presentation of these
proofs in order to finitize them. Observe already that the (Rec) rule, as introduced in def. 29
is never really used in all its power because (i) in both examples above, no ν-formula wears
more than one variable and (ii) except for the labelling of K in π∞, (Rec) is used only in the

particular form
` νa−X.A,Γ

(Rec′(a))
` νX.A,Γ

in which only one occurrence of νX.A is labelled and

this occurrence is a formula of the sequent and not a strict subformula.
We show now how to finitize any labelled representation which verify those two restrictions.

As this is the case of fig. 8, it gives a finitization for fig. 8. We will then show how to extend
this method in an ad hoc way to finitize entirely π∞ (fig. 3) from the labelling of fig. 9a.

As before, it is enough, in order to turn a labelled formula into an unlabelled one, to
translate the ν connectives, leaving all other connectives untouched. For any unlabelled
context Γ, we define the following unlabelled formulas:

JνΓ−X.A[X]Ke := νX.JAKe[⊗Γ⊥ ⊕X] JνΓ+X.A[X]Ke := ⊗Γ⊥ ⊕ JνΓ−X.A[X]Ke

so the following rules are derivable: (See full derivations on fig. 10, p. 14.)

` JνX.AKe,∆ J(LW(Γ−))Ke
` JνΓ−X.AKe,∆

` JνΓ−X.AKe,∆ J(LW(Γ+))Ke
` JνΓ+X.AKe,∆

` JνΓ−X.AKe,Γ J(Rec′(Γ))Ke` JνX.AKe,Γ
J(

y

(Γ))Ke
` JνΓ+X.AKe,Γ

Remark moreover that
` JA[νΓ+X.A[X]]Ke,∆

(ν)
` JνΓ−X.A[X]Ke,∆

is the usual (ν) rule.

These allow to translate any labelled proof verifying the constraints (i) and (ii) stated at
the beginning of sec. 5.1 into a µMALL finitary proof, by choosing, for every label variable,
the context Γ corresponding to its (Rec) rule.

These works almost as well for finitizing π∞ based on the labelling of fig. 9a: it allows to
expand everything concerning the variables a and b. It cannot however be applied as it is to
expand the variable c, for which conditions (ii) is not verified. We can anyway finitize π∞,
but at the cost of a somewhat ad hoc translation:

JCKe := F OGOH JKc−Ke := νY.µ_.((C⊥ ⊕ (I ′[Y ] O J ′[Y ]))⊕⊥)

Ic+ := JI+Ke = JI ′[Kc+]Ke := µ_.((C⊥ ⊕ (I ′[JKc−Ke] O J ′[JKc−Ke]))⊕⊥)

Lc+ := JI ′[Kc+] O J ′[Kc+]Ke := C⊥ ⊕ (I ′[JKc−Ke] O J ′[JKc−Ke])
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The analysis leading to this choice of formulas is detailed in appendix D, p. 22. It allows
to make finitary the derivation of fig. 9b, by expanding every formula as explained above,
and by replacing every rule dealing with labels with an appropriate derivation, while leaving
untouched the structure of rules not dealing with labels.

6 Conclusion

Summary of the contributions. In this paper, we contributed to the theory of circular
proofs for µMALL in two directions: (i) identifying fragments of circular proofs for which
local conditions account for the validity of circular proof objects (in contrast to the global
nature of thread conditions) and (ii) designing methods for translating circular proofs to
finitary proofs (with explicit (co)induction rules). To do so, we introduced and studied
several labelling systems, for circular proofs, or, more precisely, finite representation thereof,
and made the following contributions:
(i) First, we investigated how such labellings ensure validity of a labellable proof, turning

a global and complex problem into a local and simpler one. Indeed, validity-checking is
far from trivial in circular proof-theory for fixed-point logics, the best known bound for
this problem being PSPACE. We provide two labellings, a simple and fairly restricted
labelling discipline which forces back-edges to target (ν)-inferences and a more liberal
one for which we only know that it ensures thread-validity.

(ii) Second, we provided evidence on the usability of such labellings as a helpful guide in
the generation of (co)inductive invariants which are necessary to translate a circular
proof in a finitary proof system with (co)induction rules à la Park. We provided a
full finitization method in a fairly restricted labelling system which contains at least
all the translations of µMALL proofs. However, this fragment is too constrained to
treat standard examples that we discuss in the paper, and which contain most of the
difficulties in finitizing circular proofs, namely: (i) interleaving of fixed-points and (ii)
interleaving of back-edges resulting in various choices of a valid thread to support a
branch.

Related and future works. We discuss related works as well as perspectives for pursuing
this work along the above-mentioned directions:
Labelling and local certification is the basis of our approach. The idea of labelling µ-
formulas to gather information on fixed-points unfoldings is naturally not new, already to be
found in fixed-point approximation methods (see [14] for instance). The closest work in this
direction is Stirling’s annotated proofs [25] and the application Afshari and Leigh [1] made of
such proofs in obtaining completeness for the modal µ-calculus. Our labelling system works
quite differently since only fixed-point operators are labelled while, in Stirling’s annotated
proofs, every formula is labelled and labels are transmitted to immediate subformulas with a
label extension on greatest fixed-points. Despite their difference, the relationships of those
systems should be investigated further (in particular the role of the annotation restriction
rule of Stirling’s system, def. 4 of [25]).

A less immediately connected topic is the connection between size-change termination
(SCT) [21] and thread validity in µ-calculi: connections between those fields are not yet
well understood despite early investigations by Dax et al.[14] for instance. More than a
connection, this looks like an interplay: size-change termination is originally shown decidable
by using Büchi automata and size-change graphs can be used to show validity of circular
proofs [14]. There seems to be connections with our labelling system too.

CSL 2018
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In addition to investigating more closely those connections, we have several directions
for improving our labelled proof system. The first task is to lift the results of section 3 to
the extended labelling system. Indeed, for the more restricted fragment and given a circular
proof presented as a graph with back-edges, we provided a method to effectively check that
one can assign labels. It is therefore natural to expect extending these results to the relaxed
framework. Another point we plan to investigate is whether every circular µMALL proof can
be labelled. Even though this can look paradoxical given the complexity of checking validity
of circular proofs, one should keep in mind that it might well be the case that, in order to
label a circular proof presented as a tree with back-edges, one has to unfold some of the
back-edges, or possibly pick a different finite representation of the proof which may result in
a space blow up. Related to this question is the connection of our labelling methods with
size-change termination methods. Indeed, in designing the extended labelling, one gets closer
to the kind of constructions one finds in SCT-based approaches: this should be investigated
further since it may also be a key for our finitization objective. Note that the previous two
directions would lead to a solution to the Brotherston-Simpson conjecture.
Finitization of circular proofs has been recently a very active topic with much research
effort on solving Brotherston-Simpson’s conjecture. The following recent contributions
were made in the setting of Martin-Löf’s inductive definitions: firstly, Berardi and Tatsuta
proved [6] that, in general, the equivalence is false by providing a counter-example inspired by
the Hydra paradox. Secondly, Simpson [24] on the one hand and Berardi and Tatsuta [7] on
the other hand provided a positive answer in the restricted frameworks when the proof system
contains arithmetics. While Simpson used tools from reverse mathematics and internalized
circular proofs in ACA0, a fragment of second-order arithmetic with a comprehension axiom
on arithmetical statements, Tatsuta and Berardi proved an equivalent result by a direct proof
translation relying on an arithmetical version of the Ramsey and Podelsky-Rybalchenko
theorems. A very natural question for future work is to extend the still ad hoc finitization
method presented in the last section to the whole fragment of relaxed labelled proofs.
Circular proof search triggered interest compared to proof system with explicit inductive
invariants (lacking subformula property). This has actually been turned to practice by
Brotherston and collaborators [9]. We wish to investigate the potential use of labellings in
circular proof-search. Indeed, there are several different labellings for a given finite derivation
with back-edges where the labels are weakened. Prop. 21 characterizes least and greatest
validating sets: those extremal validating sets correspond to different strategies in placing
the labels, which have different properties with respect to the ability to form back-edges or
to validate the proof that one may exploit in proof-search.
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vertex. In particular, when v is accessed in b from another infinitely appearing vertex, it has
to be via a back-edge. J

I Lemma 32 (Follow-up of labels). If u is a path in a labelled circular representation, if
u does not cross the rule (νb(a)), and if p is a position in the target sequent of u (its top
sequent) that is labelled with a, then t(u)(p) is defined and is a position labelled with a in the
source sequent of u (its bottom sequent).

Proof. This is quite straightforward, by induction on the length of u, and by looking at the
first (or the last) rule crossed by u. We use notably the fact that, when the induced thread
T(u)(p) is followed top-down, the label a cannot be erased because we do not cross (Rec(a))
and the thread cannot reach a cut-formula because cut-formulas do not contain labels. J

I Proposition 15. Every pre-proof of µMALLω that is the image of a proof in µMALL

y

lab by
label-erasing and total unfolding satisfies thread validity.

Proof. Suppose π is a labelled circular representation.
Let dπe be its erasure. dπe is thus a circular representation of a µMALLω preproof.
Suppose b an infinite branch of dπe, that is an infinite ascending path in the tree-with-
back-edges dπe, starting from the root.
Let b0 be the corresponding infinite branch in π.
Le S0 be the occurrence of sequent in π which is the lowest back-edge target infinitely often
crossed by b0 (lemma 31). Being the target of some back-edge(s), S0 is the conclusion of
a (νb(a)) rule, which unfolds some νX.A.
This implies that b0 is of the form b0 = r

∗−→
u0

S0
∗−→
u1

S1 →
be
S0

∗−→
u2

S2 →
be
S0 · · · where r

is the root of π and where the uis do not cross S0 except at their sources.
Let p0 = (0, ε) be the position of the principal formula νX.A in S0.
Remark that, because of the existence of back-edges from every Si+1 to S0, all Sis are
identical sequents, except for the fact that a does not appear in S0 whereas it appears at
the only position p0 in Si+1.
Now remark that for i > 1: T(ui)(p0) is a ν-thread in ui, its target is p0 in Si, which is
labelled with a, in the occurrence of sequent just above S0, i. e. in the premise of νb(a),
it goes through a position labelled with a (lemma 32), hence a position of νX.A in the
unfolding A[νX.A], therefore, according to the definition of T, as described on Figure 6,
p. 6, the source of T(ui)(p0) is again the position p0 of the main formula νX.A in S0.
To sum up: T(ui)(p0) is a thread (S0, p0) ∗−→

T(u1)(p1)
(S1, p0), and it is progressing, because

its source is the principal conclusion of the rule (νb(a)).
By glueing the T(ui)(p0) together, we get an infinite thread

(S0, p0) ∗−→
T(u1)(p0)

(S1, p0)→
be

(S0, p0) ∗−→
T(u2)(p0)

(S2, p0)→
be

(S0, p0) · · ·

This thread is valid because every T(ui)(p0) is progressing. And it is indeed a thread
of b0 = r

∗→
u0

S0
∗→
u1

S1 →
be

S0
∗→
u2

S2 →
be

S0 · · · Hence b0 is valid, what was to be
demonstrated. J

I Proposition 16. µMALL proofs can be translated to µMALL

y

.

Proof. The target of the usual translation µMALL→ µMALLω is included in µMALL

y

. See
key case of the translation on figure 11. J
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` A[B], B⊥ ` B,Γ
νinv` νX.A,Γ

≡

y

(a)
` νaX.A,B⊥

[A]
` A[νaX.A], A[B]⊥ ` A[B], B⊥

cut
` A[νaX.A], B⊥

νb(a)
` νX.A,B⊥ ` B,Γ

cut
` νX.A,Γ

Figure 11 translation µMALL→ µMALL

y

lab.

I Proposition 22. A finite representation π of a µMALLω pre-proof is a representation of a
µMALL

y

lab proof iff every occurrence of a ν-rule of π has a validating set.

Proof. Let us assume that every ν rule of π has a validating set. There is a finite number of ν
rules in the representation; we choose a we label them with distinct variables a1, . . . , an, in a
way such that if the ν rule labelled by ai is below the rule labelled by aj in the representation
then i 6 j. We denote by Li a validating set for ν(ai). We then do the following for each i,
going from 1 to n: for each occurrence of ν-formula νVX.A that is at a position belonging
to Li, add the variable ai to V , that is replace this occurrence of νVX.A with νV,aiX.A.
By doing this it may happen that we break the validity of some rules of the representation:
because Li, although downward closed, is in general not upward closed, so we may end with
the following situation:
` A,C[νVX.D] ` A,C[νVX.D]

N
` ANB,C[νVX.D]

becoming
` A,C[νV,aX.D] ` B,C[νVX.D]

N
` ANB,C[νV,aX.D]

which

is not anymore a valid rule. We then patch this by adding as many (LW) rules as needed on
the premises:

` A,C[νV,aX.D]
` B,C[νVX.D]

(LW)
` B,C[νV,aX.D]

N
` ANB,C[νV,aX.D]

Similarly it may happen that the source of a back-edge get a bigger labelling than the
target of this back-edge; we patch this by adding (LW) rules under the source sequent of the
back-edge. When this operation has been done for every i, from 1 to n, we obtain a validly
labelled proof of µMALL

y

lab.

Conversely, let π0 be a µMALL

y

lab representation such that π = |π0|. Up to renaming, we
can assume that all (νb) rules of π0 are labelled with distinct variables. For every (ν) rule
occurrence in π, consider the corresponding (νb(a)) rule in π0 and let La be the set of all
occurrences of ν-formulas in π0 that carry the variable a in their labelling. The constraints
on the labelling of µMALL

y

lab proof precisely get La to be a validating set for the considered
occurrence of (νb) in π. J

B Details and proofs for section 3.3

We illustrate the construction of the edges of the graph defined in definition 18 with the
the following examples in which we have indexed the apparent ν-formulas by numbers
representing vertices of the graph:
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` ν1X.X, ν2X.X ` 1⊕ ν3X.X ⊗
` ν4X.X ⊗ (1⊕ ν5X.X), ν6X.X induces edges 1→ 4, 2→ 6, 3→ 5,
` ν1X.X, (1⊕ ν2X.X), ν3X.X O
` ν4X.X O(1⊕ ν5X.X), ν6X.X induces edges 1→ 4, 2→ 5, 3→ 6 and
` (ν4Y.(ν5X.(ν6Y.X)⊗X))⊗ ν7X.(ν8Y.X)⊗X, ν9X.X

ν
` ν1X.(ν2Y.X)⊗X, ν3X.X induces edges 4 → 2, 6 →

2, 8→ 2, 5→ 1, 7→ 1, 9→ 3. Moreover, if the conclusion of this last rule is the target of a
back-edge whose source is ` ν10X.(ν11Y.X)⊗X, ν12X.X then this back-edge also induces
edges 1→ 10, 2→ 11, 3→ 12.

In the case of a cut formula, the formula has no corresponding formula in the conclusion
sequent and in this case it induces an outgoing edge, pointing to the extra vertex ⊥:
` ν2X.X ` µX.X, ν3X.X cut

` ν1X.X induces edges 2→ ⊥, 3→ 1.

I Proposition 25. A finite representation π of a µMALLω pre-proof is strongly valid iff every
ν-rule of π has a validating set iff it is the representation of a µMALL

y

lab proof.

Proof. The second equivalence is prop. 22, so that we need to check the first one:

Let us assume that π has a validating set. Let us consider one occurrence
` A[νX.A],Γ
` νX.A,Γ

of a ν-rule in π and a path u in the subgraph above this ν-rule, going down, from the source
of a back-edge targetting this ν-rule, to the ν-rule itself, ending by this ν-rule. u has then
premise and conclusion equals to ` νX.A,Γ.

Let us denote by L a validating set of this (ν)-rule occurrence, and let us denote by
t the maximal thread going down in u starting from the main νX.A in its premise. This
occurrence of νX.A is in L, because L is a validating set. Then, because L is downward
closed, all vertices of t are in L. Therefore the lowest vertex of t, which is a position in the
` νX.A,Γ conclusion of the considered ν-rule, or ⊥, is also in L. But in this last sequent
occurrence, the only position that is in L is the one of the main νX.A, which is consequently
the end point of t.

Conversely, let us consider an occurrence of a (ν)-rule in π, whose conclusion has the
form ` νX.A,Γ, and let us assume that it has no validating set. It is, by prop. 21, equivalent
to say that there is a path t such that:

t stays above the considered occurrence of (ν)-rule;
t goes down from the source νX.A,Γ of a back-edge targetting the (ν)-rule we consider,
to the conclusion νX.A,Γ of this (ν)-rule;
t starts from the main νX.A of its premise;
t ends either on a cut-formula or on a position that is not the principal νX.A.

u therefore violates strong validity (def. 24). J

C Details and proofs for section 5

Remember that this proposition is about the extended labelling of def. 29:

I Proposition 30. If π is an extended labelled circular representation then dπe is a circular
representation of a valid µMALLω proof.

Proof. First remark that lemma 32, as it is stated on p. 19, still holds for this extended
labelling. The proof is the same as before, bearing in mind to replace every mention of (νb(a))

with (Rec(a)). As for the previous labelling, the proof of this proposition crucially rely on it.
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Suppose π is a labelled circular representation. Let dπe be its erasure. dπe is thus a
circular representation of a µMALLω preproof. Suppose b an infinite branch of dπe, that is
an infinite ascending path in the tree-with-back-edges dπe, starting from the root. Let b0 be
the corresponding infinite branch in π. Le S0 be the occurrence of sequent in π which is the
lowest back-edge target infinitely often crossed by b0. Being the target of some back-edge(s),
S0 is the premise of a (Rec(a)) rule, for some variable a.

This implies that b0 is of the form b0 = r
∗→
u0
S0

∗→
u1
S1 →

be
S0

∗→
u2
S2 →

be
S0 · · · where r is

the root of π and where the ui do not cross S0 except at their sources.
Remark that the positions labelled by a are the same in all Si, as there are back-edges

from every Si+1 to S0. The difference, however, is that these positions are labelled with a−
in S0 and with a+ in every Si+1. Let P0 be the set of those positions. P0 is finite and non
empty. Now we would like, as in the proof of prop. 15, to construct an infinite thread along
b0. However, because P0 may contain more than one element, we cannot know by advance,
for each Si, which p ∈ P0 will support an infinite thread. Thus, we will use Kőnig’s lemma
to show the existence of such a thread. Let T0 be the tree whose vertices are the pairs (i, p)
where 1 6 i < ω and p ∈ P0, whose roots are the vertices of the form (1, p) and where, for
i > 1, the father of (i, p) is2 (i− 1, t(ui)(p)). Here we have to prove that t(ui)(p) is defined
and that it belongs to P0 for every i and p ∈ P0. This is ensured by lemma 32 thanks to the
labels.

Remark that every edge in T0 induces a progressing thread. Indeed, for i > 1 and p ∈ P0:
T(ui)(p) is a ν-thread in ui,
its target is p in Si, which is labelled with a+
and its source is p in S0, which is labelled with a−.

An examination of the rules that may compose ui shows that the only way for that to be
true is that T(ui)(p) is progressing. Now T0 is an infinite tree with a finite number of roots
and an arity bounded by Card(P0), hence, by Kőnig’s lemma, it has an infinite branch
(1, p1)← (2, p2)← (3, p3) · · · .

This infinite branch induces in turn an infinite thread

(S0, p0) ∗−→
T(u1)(p1)

(S1, p1)→
be

(S0, p1) ∗−→
T(u2)(p2)

(S2, p2)→
be

(S0, p2) · · ·

This thread is valid because every T(ui)(pi) is progressing. And it is indeed a thread of
b0 = r

∗→
u0
S0

∗→
u1
S1 →

be
S0

∗→
u2
S2 →

be
S0 · · · Hence b0 is valid, what was to be demonstrated. J

D Details of finitization for π∞

To finitize π∞ we try to apply the same method as for the example (8) p. 11, by expanding
every labelled formula to a non-labelled one and expanding the rules that need it to match
these transform. This works perfectly for H and G, which appear respectively as formulas of
the premises (Rec(b)) and (Rec(a)). But the situation is more delicate for K for which we
have to face a double difficulty: in the premise of (Rec(c)), K is not a formula of the sequent
but a subformula, and it appears in two different formulas.

Let us try to transform this situation into one that would fit our method. First we would
like to have only one formula containing K instead of the two I and J . Unfortunately, none
of them can be unlabelled without breaking the labelling. Fortunately the solution to that is
easy: I, J is simply equivalent to L := I O J .

2 Recall that t(u) and T(u) are defined in defs. 6 and 8, p. 6.
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Now we would like I O J to be a ν-formula that we could label. We already made use, in
the previous example, of the isomorphism A[νX.B[A[X]]] ' νX.A[B[X]] (∗)

to turn an almost-ν-formula into a real one. Let us apply that again.
The formula L = I O J is equal to L′[K] where L′[Y ] := I ′[Y ] O J ′[Y ], that is: L =

L′[νY.I ′[Y ]]. In order to apply an isomorphism of the form (∗) we would like I ′[Y ] to be of
the formM ′[L′[Y ]] for a givenM ′. This is unfortunately not the case as I ′[Y ] is a subformula
of L′[Y ]. However, a careful examination of the flow of I, J and K along the loops of π∞
makes apparent the fact that

I ′[Y ] = µZ.((Z O J ′[Y ])⊕⊥) ' µ_.((I ′[Y ] O J ′[Y ])⊕⊥) = M ′[L′[Y ]]

where M ′[Y ] is defined to be µ_.(Y ⊕ ⊥), in which we use the notation µ_.A to denote
a µX.A with X not appearing free in A. This degenerate µ binder could be removed to
simplify the formulas involved in the finitisation, but we keep it to stay as close as possible
to the original structure of I, trying to preserve its head connective.

When we stick all that together we get L = I O J ' L′[νY.M ′[L′[Y ]]] ' νY.L′[M ′[Y ]]
which is a ν-formula that we know, when labelled, how to expand into an unlabelled formula.
If we stopped here our analysis, we would then define:

C := F OGOH Lc− := νY.L′[M ′[C⊥ ⊕ Y ]] Lc+ := C⊥ ⊕ Lc−.

However we will do yet a bit more work in order to get the structure of Lc− closer to L’s one.
Indeed the isomorphism (∗) can be used in the other direction:

νY.L′[M ′[C⊥⊕Y ]] ' L′[νY.M ′[C⊥⊕L′[Y ]]] = I ′[νY.M ′[C⊥⊕L′[Y ]]] O J ′[νY.M ′[C⊥⊕L′[Y ]]].

This, finally, leads us to define: C := F OGOH Kc− := νY.M ′[C⊥⊕L′[Y ]] which allows to
expand I ′[Kc−] and J ′[Kc−]. On the other hand, this is not sufficient to define an expansion
of Kc+, and we still need an ad hoc treatment for formulas containing it:

“I ′[Kc+]” := Ic+ := M ′[C⊥ ⊕ L′[Kc−]] “I ′[Kc+] O J ′[Kc+]” := Lc+ := C⊥ ⊕ L′[Kc−]

With these expansions of labelled formulas into unlabelled formulas, we can finitize the
derivation of fig. 9a into the very close derivation of fig. 9b, on which the rules dealing with
labelling can be expanded into µMALL derivations.
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