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Abstract
We propose a fragment of many-sorted second order logic called EQSMT and show that checking
satisfiability of sentences in this fragment is decidable. EQSMT formulae have an ∃∗∀∗ quan-
tifier prefix (over variables, functions and relations) making EQSMT conducive for modeling
synthesis problems. Moreover, EQSMT allows reasoning using a combination of background the-
ories provided that they have a decidable satisfiability problem for the ∃∗∀∗ FO-fragment (e.g.,
linear arithmetic). Our decision procedure reduces the satisfiability of EQSMT formulae to satis-
fiability queries of ∃∗∀∗ formulae of each individual background theory, allowing us to use existing
efficient SMT solvers supporting ∃∗∀∗ reasoning for these theories; hence our procedure can be
seen as effectively quantified SMT (EQSMT ) reasoning.
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1 Introduction

The goal of program synthesis is to automatically construct a program that satisfies a given
specification. This problem has received a lot of attention from the research community in
recent years [33, 4, 14]. Several different approaches have been proposed to address this
challenge (see [4, 17] for some of these). One approach to program synthesis is to reduce
the problem to the satisfiability problem in a decidable logic by constructing a sentence
whose existentially quantified variables identify the program to be synthesized, and the inner
formula expresses the requirements that the program needs to meet.

This paper furthers this research program by identifying a decidable second-order logic
that is suitable for encoding problems in program synthesis. To get useful results, one needs
to constrain the semantics of functions and relations used in encoding the synthesis problem.
Therefore our logic has a set of background theories, where each of the background theories is
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31:2 A Decidable Fragment of Second Order Logic With Applications to Synthesis

assumed to be independently axiomatized and equipped with a solver. Finally, to leverage the
advances made by logic solvers, our aim is to develop a decision procedure for our logic that
makes black-box calls to the decision procedures (for ∃∗∀∗ satisfiability) for the background
theories.

With the above goal in mind, let us describe our logic. It is a many-sorted logic that can
be roughly described as an uninterpreted combination of theories (UCT) [20]. A UCT has a
many-sorted universe where there is a special sort σ0 that is declared to be a foreground sort,
while the other sorts (σ1, . . . σn) are declared to be background sorts. We assume that there
is some fixed signature of functions, relations, and constants over each individual background
sort that is purely over that sort. Furthermore, we assume that each background sort σi
(i > 0) comes with an associated background theory Ti; Ti can be arbitrary, even infinite,
but is constrained to formulae with functions, relations and constants that only involve
the background sort σi. Our main contribution is a decidability result for the satisfiability
problem modulo these theories for boolean combinations of sentences of the form

(∃x)(∃R)(∃F)(∀y)(∀P)(∀G)ψ, (1)

x is a set of existentially quantified first order variables. These variables can admit values
in any of the sorts (background or foreground);
R is a set of existentially quantified relational variables, whose arguments are restricted
to be over the foreground sort σ0;
F is a set of existentially quantified function variables, which take as arguments elements
from the foreground sort σ0, and return a value in any of the background sorts σi;
y is a set of universally quantified first order variables over any of the sorts;
P is a set of universally quantified relational variables, whose arguments could be of any
of the sorts; and
G is a set of universally quantified function variables, whose arguments can be from any
sort and could return values of any sort.

Thus our logic has sentences with prefix ∃∗∀∗, allowing for quantification over both first order
variables and second-order variables (relational and functional). To obtain decidability, we
have carefully restricted the sorts (or types) of second-order variables that are existentially
and universally quantified, as described above.

Our decidability result proceeds as follows. By crucially exploiting the disjointness of
the universes of background theories and through a series of transformations, we reduce
the satisfiability problem for our logic to the satisfiability of several pure ∃∗∀∗ first-order
logic formulas over the individual background theories T1, . . . Tn. Consequently, if the
background theories admit (individually) a decidable satisfiability problem for the first-order
∃∗∀∗ fragment, then satisfiability for our logic is decidable. Examples of such background
theories include Presburger arithmetic, the theory of real-closed fields, and the theory of
linear real arithmetic. Our algorithm for satisfiability makes finitely many black-box calls to
the engines for the individual background theories.

Salient aspects of our logic and our decidability result
Design for decidability. Our logic is defined to carefully avoid the undecidability that looms
in any logic of such power. We do not know of any decidable second-order logic fragment
that supports background theories such as arithmetic and uninterpreted functions. While
quantifier-free decidable logics can be combined to get decidable logics using Nelson-Oppen
combinations [23], or local theory extensions [32], combining quantified logics is notoriously
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hard, and there are only few restricted classes of first-order logic that are known to be
decidable.

Our design choice forces communication between theories using the foreground sort,
keeping the universes of the different sorts disjoint, which allows a decidable combination of
∃∗∀∗ theories. We emphasize that, unlike existing work on quantified first-order theories that
are decidable by reduction to quantifier-free SMT, our logic allows existential and universal
quantification over the background theories as well, and the decision procedure reduces
satisfiability to ∃∗∀∗ fragment of the underlying theories. Our result can hence be seen as a
decidable combination of ∃∗∀∗ theories that further supports second-order quantification.

Undecidable Extensions. We show that our logic is on the edge of the decidability barrier,
by showing that lifting some of the restrictions we have will render the logic undecidable. In
particular, we show that if we allow outer existential quantification over functions (which is
related to the condition demanding that all function variables are universally quantified in
the inner block of quantifiers), then satisfiability of the logic is undecidable. Second, if we
lift the restriction that the underlying background sorts are pairwise disjoint, then again the
logic becomes undecidable. The design choices that we have made hence seem crucial for
decidability.

Expressing Synthesis Problems. Apart from decidability, a primary motivational design
principle of our logic is to express synthesis problems. Synthesis problems typically can be
expressed in ∃∗∀∗ fragments, where we ask whether there exists an object of the kind we
wish to synthesize (using the block of existential quantifiers) such that the object satisfies
certain properties (expressed by a universally quantified formula). For instance, if we are
synthesizing a program snippet that is required to satisfy a Hoare triple (pre/post condition),
we can encode this by asking whether there is a program snippet such that for all values of
variables (modeling the input to the snippet), the verification condition corresponding to
the Hoare triple holds. In this context, the existentially quantified variables (first order and
second order) can be used to model program snippets. Furthermore, since our logic allows
second-order universal quantification over functions, we can model aspects of the program
state that require uninterpreted functions, in particular pointer fields that model the heap.

Evaluation on Synthesis Problems. We illustrate the applicability of our logic for two
classes of synthesis problems. The first class involves synthesizing recursive programs that
work over inductive data-structures. Given the precise pre/post condition for the program
to be synthesized, we show how to model recursive program synthesis by synthesizing
only a straight-line program (by having the output of recursive calls provided as inputs
to the straightline program). The verification condition of the program requires universal
quantification over both scalar variables as well as heap pointers, modeled as uninterpreted
functions. Since such verification-conditions are already very expressive (even for the purpose
of verification), we adapt a technique in the literature called natural proofs [20, 28, 25], that
soundly abstracts the verification condition to a decidable theory. This formulation still has
universal quantification over variables and functions, and combines standard background
theories such as arithmetic and theory of uninterpreted functions. We then show that synthesis
of bounded-sized programs (possibly involving integer constants that can be unbounded) can
be modeled in our logic. In this modeling, the universal quantification over functions plays a
crucial role in modeling the pointers in heaps, and modeling uninterpreted relations that
capture inductive data-structure predicates (such as lseg, bstree, etc.).

CSL 2018
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term := c | (x + c) | ite(pred, term, term)
pred := (term < 0) | (term = 0) | (term > 0)

(a) Grammar for Mthree. ite(·, ·, ·) stands for
if-then-else.

n0

n00

n000 n001 n002

...
...

(b) Program skeleton.

Figure 1 Synthesizing Mthree using EQSMT.

The second class of synthesis involves taking a recursive definition of a function, and
synthesizing a non-recursive (and iteration free) function equivalent to it. In our modeling,
the existential quantification over the foreground sort as well as the background sort of
integers is utilized, as the synthesized function involves integers.

The crux of our contribution, therefore, is providing a decidable logic that can express
synthesis problems succinctly. Such a logic promises to provide a useful interface between
researchers working on practical synthesis applications and researchers working on engineering
efficient tools for solving them, similar to the role SMT plays in verification.

2 Motivating EQSMT for synthesis applications

In program synthesis, the goal is to search for programs, typically of bounded size, that
satisfy a given specification. The ∃-Block of an EQSMT formula can be used to express the
search for the syntactic program. The inner formula, then, must interpret the semantics of
this syntactic program, and express that it satisfies the specification. If the specification is a
universally quantified formula, then, we can encode the synthesis problem in EQSMT.

One of the salient features of the fragment EQSMT is the ability to universally quantify
over functions and relations. Often, specifications for programs, such as those that manipulate
heaps, involve a universal quantification over uninterpreted functions (that model pointers).
EQSMT aptly provides this functionality, while still remaining within the boundaries of
decidability. Further, EQSMT supports combination of background theories/sorts; existential
quantification over these sorts can thus be used to search for programs with arbitrary
elements from these background sorts. As a result, the class of target programs that can
be expressed by an EQSMT formula is infinite. Consequently, when our decision procedure
returns unsatisfiable, we are assured that no program (from an infinite class of programs)
exists, (most CEGIS solvers for program synthesis cannot provide such a guarantee.)

We now proceed to give a concrete example of a synthesis problem which will demonstrate
the power of EQSMT. Consider the specification of the following function Mthree, which is a
slight variant of the classical McCarthy’s 91 function [22], whose specification is given below.

Mthree(n) =
{
n− 30 if n > 13
Mthree(Mthree(Mthree(n+ 61))) otherwise

(2)

We are interested in synthesizing a straight line program that implements the recursive
function Mthree, and can be expressed as a term over the grammar specified in Figure 1a.

Here, we only briefly discuss how to encode this synthesis problem in EQSMT, and the
complete details can be found in Appendix A. First, let us fix the maximum height of the
term we are looking for, say to be 2. Then, the program we want to synthesize can be
represented as a tree of height at most 2 such that every node in the tree can have ≤ 3 child
nodes (because the maximum arity of any function in the above grammar is 3, corresponding
to ite). The skeleton of such an expression tree is shown in Figure 1b. Every node in the
tree is named according to its path from the root node.
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The synthesis problem can then be encoded as the following formula

φMthree ≡ (∃n0, n00, n01, . . . n022 : σ0) (∃Left,Mid,Right : σ0σ0)
(∃ADD, ITE, LTZero, EQZero, GTZero, INPUT, C1, C2, C3 : σlabel)
(∃c1, c2, c3 : N) (∃flabel : σ0, σlabel)

ϕwell-formed ∧ (∀x : N)(∀gval : σ0,N) (ϕsemantics =⇒ ϕspec)

Here, the nodes n0, n00, . . . are elements of the foreground sort σ0. The binary relations
Left,Mid,Right over the foreground sort will be used to assert that a node n is the left,middle,
right child respectively of node n′ : Left(n′, n), Mid(n′, n), Right(n′, n). The operators or
labels for nodes belong to the background sort σlabel, and can be one of ADD (+), ITE (ite),
LTZero (< 0), GTZero (> 0), (EQZero (= 0)), INPUT (denoting the input to our program), or
constants C1, C2, C3 (for which we will synthesize natural constants c1, c2, c3 in the (infinite)
background sort N). The function flabel assigns a label to every node in the program, and
the formula ϕwell-formed asserts some sanity conditions:

ϕwell-formed ≡
∧
ρ 6=ρ′

nρ 6= nρ′ ∧ Left(n0, n00) ∧
∧
ρ 6=00
¬(Left(n0, nρ))) ∧ · · ·

∧ ¬(ADD = ITE) ∧ ¬(ADD = LTZero) ∧ · · · ∧ ¬(C1 = C3) ∧ ¬(C2 = C3)

∧
∧
ρ

(flabel(nρ)=ADD) ∨ (flabel(nρ)=ITE) ∨ · · · ∨ (flabel(nρ)=C3)

The formula ϕsemantics asserts that the “meaning” of the program can be inferred from the
meaning of the components of the program. We will use the function gval, that assigns value
to nodes from N, for this purpose :

ϕsemantics ≡
∧

ρ,ρ1,ρ2



(
flabel(nρ) = ADD ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2)

)
=⇒ gval(nρ) = gval(nρ1) + gval(nρ2)

)
...

∧ flabel(nρ) = C3 =⇒ gval(nρ) = c3


Finally, the formula ϕspec expresses the specification of the program as in Equation (2).

A complete description is provided in Appendix A.
Observe that the formula φMthree has existential and universal quantification over functions

and relations, as allowed by our decidable fragment EQSMT. The existentially quantified
functions map the foreground sort σ0 to one of the background sorts, and the existentially
quantified relations span only over the foreground sort.

We encoded the above EQSMT formula in the z3 [12] SMT solver (see Section 6 for
details), which synthesized the expression fun(n) = ite(n > 13, n− 30,−16). In Section 6,
we show that we can synthesize a large class of such programs amongst others.

3 Many-sorted Second Order Logic and the EQSMT Fragment

We briefly recall the syntax and semantics of general many-sorted second order logic, and
then present the EQSMT fragment of second order logic.

Many-sorted second-order logic
A many-sorted signature is a tuple Σ = (S,F ,R,V,V fun,V rel) where, S is a nonempty
finite set of sorts, F , R, V, V fun, V rel are, respectively, sets of function symbols, relation
symbols, first order variables, function variables and relation variables. Each variable x ∈ V

CSL 2018



31:6 A Decidable Fragment of Second Order Logic With Applications to Synthesis

is associated with a sort σ ∈ S, represented as x : σ. Each function symbol or function
variable also has an associated type (w, σ) ∈ S∗ × S, and each relation symbol and relation
variable has a type w ∈ S+. We assume that the set of symbols in F and R are either finite
or countably infinite, and that V, V fun, and V rel are all countably infinite. Constants are
modeled using 0-ary functions. We say that Σ is unsorted if S consists of a single sort.

Terms over a many-sorted signature Σ have an associated sort and are inductively defined
by the grammar

t :σ := x :σ | f(t1 :σ1, t2 :σ2, . . . , tm :σm) | F (t1 :σ1, t2 :σ2, . . . , tn :σn)

where f : (σ1σ2 · · ·σm, σ) ∈ F , and F : (σ1σ2 · · ·σn, σ) ∈ V fun. Formulae over Σ are inductively
defined as

φ := ⊥ | φ⇒ φ | t :σ = t′ :σ | R(t1 :σ1, t2 :σ2, . . . , tm :σm) |
R(t1 :σ1, t2 :σ2, . . . , tn :σn) | (∃x :σ)φ | (∃F :w, σ)φ | (∃R′ :w)φ

where R : (σ1σ2 · · ·σm) ∈ R, R,R′ are relation variables, F is a function variable, of
appropriate types. Note that equality is allowed only for terms of same sort. A formula is
said to be first-order if it does not use any function or relation variables.

The semantics of many sorted logics are described using many-sorted structures. A
Σ-structure is a tupleM = (U , I) where U = {Mσ}σ∈S is a collection of pairwise disjoint S
indexed universes, and I is an interpretation function that maps each each variable x : σ to
an element in the universe Mσ, each function symbol and each function variable to a function
of the appropriate type on the underlying universe. Similarly, relation symbols and relation
variables are also assigned relations of the appropriate type on the underlying universe. For
an interpretation I, as is standard, we use I[cx/x] to denote the interpretation that maps
x to cx, and is otherwise identical to I. For function variable F and relation variable R,
I[fF /F ] and I[RR/R] are defined analogously.

Interpretation of terms in a model is the usual one obtained by interpreting variables,
functions, and function variables using their underlying interpretation in the model; we skip
the details. The satisfaction relationM |= φ is also defined in the usual sense, and we will
skip the details.

A first-order theory is a tuple T = (ΣT ,AT ), where AT is a set of (possibly infinite)
first-order sentences. Theory T is complete if every sentence α or its negation is entailed by
AT , i.e., either every model satisfying AT satisfies α, or every model satisfying AT satisfies
¬α. A theory AT is consistent if it is not the case that there is a sentence α such that both
α and ¬α are entailed.

The logic EQSMT
We now describe EQSMT, the fragment of many-sorted second order logic that we prove
decidable in this paper and that we show can model synthesis problems.

Let Σ = (S,F ,R,V,V fun,V rel) be a many sorted signature. Σ is a pure signature if (a)
the type of every function symbol and every relation symbol is over a single sort (however,
function variables and relation variables are allowed to mix sorts), (b) there is a special
sort σ0 (which we call the foreground sort, while other sorts σ1, . . . , σk are called background
sorts) and (c) there are no function or relation symbols involving σ0.

The fragment EQSMT is the set of sentences defined over a pure signature Σ, with
foreground sort σ0 and background sorts σ1, . . . σk, by the following grammar

φ := ϕ | ∃(x : σ)φ | (∃R : w)φ | (∃F : w, σi)φ
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where, σ ∈ S, w ∈ σ+
0 (i.e., only foreground sort), 1 ≤ i ≤ k, and ϕ is a universally quantified

formula defined by the grammar

ϕ := ψ | ∀(y : σ)ϕ | (∀R : w′)ϕ | (∀F : w′, σ)ϕ

where, σ ∈ S, w′ ∈ S+, and ψ is quantifier free over Σ.
The formulas above consist of an existential quantification block followed by a universal

quantification block. The existential block can have first-order variables of any sort, relation
variables that are over the foreground sort only, and function variables that map tuples
of the foreground sort to a background sort. The inner universal block allows all forms of
quantification – first-order variables, function variables, and relation variables of all possible
types. The inner formula is quantifier-free. We will retrict our attention to sentences in this
logic, i.e., we will assume that all variables (first-order/function/relation) are quantified. We
will denote by xi (resp. yi ), the set of existentially (resp. universally) quantified first order
variables of sort σi, for every 0 ≤ i ≤ k.

The problem

The problem we consider is that of deciding satisfiability of EQSMT sentences with background
theories for the background sorts. First we introduce some concepts.

An uninterpreted combination of theories (UCT) over a pure signature, with {σ0, σ1, . . . ,

σk} as the set of sorts, is the union of theories {Tσi}1≤i≤k, where each Tσi is a theory over
signature σi. A sentence φ is

⋃k
i=1 Tσi -satisfiable if there is a multi-sorted structureM that

satisfies φ and all the sentences in
⋃k
i=1 Tσi .

The satisfiability problem for EQSMT with background theories is the following. Given
a UCT {Tσi}1≤i≤k and a sentence φ ∈ EQSMT , determine if φ is

⋃k
i=1 Tσi-satisfiable. We

show that this is a decidable problem, and furthermore, there is a decision procedure that
uses a finite number of black-box calls to satisfiability solvers of the underlying theories to
check satisfiability of EQSMT sentences.

For the rest of this paper, for technical convenience, we will assume that the boolean
theory Tbool is one of the background theories. This means bool ∈ S and the constants
> : bool,⊥ : bool ∈ F . The set of sentences in Tbool is Abool = {> 6= ⊥,∀(y : bool) · (y =
> ∨ y = ⊥)}. Note that checking satisfiability of a ∃∗∀∗ sentence over Tbool is decidable.

4 The Decision Procedure for EQSMT

In this section we present our decidability result for sentences over EQSMT in presence of
background theories. Let us first state the main result of this paper.

I Theorem 1. Let Σ be a pure signature with foreground sort σ0 and background sorts
σ1, . . . , σk. Let {Tσi}1≤i≤k be a UCT such that, for each i, checking Tσi-satisfiability of

∃∗∀∗ first-order sentences is decidable. Then the problem of checking
k⋃
i=1

Tσi-satisfiability of

EQSMT sentences is decidable.

We will prove the above theorem by showing that any given EQSMT sentence φ over a
UCT signature Σ can be transformed, using a sequence of satisfiability preserving transform-
ation steps, to the satisfiability of ∃∀ first-order formulae over the individual theories.

We give a brief overview of the sequence of transformations (Steps 1 through 4). In Step 1,
we replace the occurrence of every relation variable R (quantified universally or existentially)
of sort w by a function variable F of sort (w, bool). Note that doing this for the outer

CSL 2018
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existentially quantified relation variables keeps us within the syntactic fragment. In Step 2,
we eliminate function variables that are existentially quantified. This crucially relies on the
small model property for the foreground universe, similar to EPR [5]. This process, however,
adds both existential first-order variables and universally quantified function variables. In
Step 3, we eliminate the universally quantified function variables using a standard Ackermann
reduction [27], which adds more universally quantified first-order variables.

The above steps result in a first-order ∃∗∀∗ sentence over the combined background
theories, and the empty theory for the foreground sort. In Step 4, we show that the
satisfiability of such a formula can be reduced to a finite number of satisfiability queries of
∃∗∀∗ sentences over individual theories.

Step 1: Eliminating relation variables
The idea here is to introduce, for every relational variable R (with type w), a function
variable fR (with type (w, σbool)) that corresponds to the characteristic function of R.

Let φ be EQSMT formula over Σ. We will transform φ to an EQSMT formula φStep-1 over
the same signature Σ. Every occurrence of an atom of the form R(t1 :σi1 , . . . , tk :σik) in φ,
is replaced by fR(t1 :σi1 , . . . , tk :σik) = > in φStep-1. Further, every quantification Q(R : w)
is replaced by Q(fR : w, bool), where Q ∈ {∀,∃}. Thus, the resultant formula φStep-1 has no
relation variables. Further, it is a EQSMT formula, since the types of the newly introduced
existentially quantified function variables are of the form (σ+

0 , σbool). The correctness of the
above transformation is captured by the following lemma.

I Lemma 2. φ is
k⋃
i=1

Tσi-satisfiable iff φStep-1 is
k⋃
i=1

Tσi-satisfiable.

Step 2: Eliminating existentially quantified function variables
We first note a small-model property with respect to the foreground sort for EQSMT
sentences. This property crucially relies on the fact that existentially quantified function
variables do not have their ranges over the foreground sort.

I Lemma 3 (Small-model property for σ0). Let φ be an EQSMT sentence with foreground
sort σ0 and background sorts σ1, . . . σk. Let n be the number of existentially quantified
first-order variables of sort σ0 in φ. Then, φ is ∪ki=1Tσi-satisfiable iff there is a structure
M = ({Mσi}ki=0, I), such that |Mσ0 | ≤ n,M |= ∪ki=1Tσi andM |= φ.

Proof (Sketch). We present the more interesting direction here. Consider a model M =

(U , I) such that M |=
k⋃
i=1

Tσi and M |= φ. Let I∃ be the interpretation function that

extends I so that (U , I∃) |= ϕ, where ϕ is the inner universally quantified subformula of
φ. Let U = {I∃(x) ∈ Mσ0 |x ∈ x0} be the restriction of the foreground universe to the
interpretations of the variables x0. Clearly, |U | ≤ |x0|.

Let us first show that (U|U , I∃|U ) |= ϕ. For this, first see that for every extension I∃∀ of
I∃ with interpretations of all the universal FO variables, we must have have (U , I∃∀) |= ψ,
where ψ is the quantifier free part of ϕ (and thus also of φ). Now, clearly (U , I∃∀) |= ψ must
also hold for those extensions IU∃∀ which map all universal variables in y0 to the set U and
maps all universally quantified function variables of range sort σ0 to function interpretations
whose ranges are limited to the set U .

Thus, it must also be the case that when we restrict the universe Mσ0 to the set U , we
have that (U|U , I∃|U ) |= ∀ ∗ ψ. This is because every universal extension I ′ of I∃|U is also a
projection of one of these IU∃∀ interpretations. J
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The proof of the above statement shows that if there is a model that satisfies φ (in
Lemma 3), then there is a model that satisfies φ and in which the foreground universe
contains only elements that are interpretations of the first-order variables x0 over the
foreground sort (and hence bounded). Consequently, instead of existentially quantifying
over a function F (of arity r) from the foreground sort σ0 to some background sort σi, we
can instead quantify over first-order variables xF of sort σi that capture the image of these
functions for each r-ary combination of x0.

Let φStep-1 be the EQSMT sentence over Σ obtained after eliminating relation variables.
Let ψStep-1 be the quantifier free part (also known as the matrix) of φStep-1. Now, define

ψ̃ ≡ ψrestrict ∧ ψStep-1, where, ψrestrict ≡
∧
y∈y0

( ∨
x∈x0

y = x
)
.

Let φ̃ the sentence obtained by replacing the matrix ψStep-1 in φStep-1, by ψ̃. Then, the
correctness of this transformation is noted below.

I Lemma 4. φStep-1 is
k⋃
i=1

Tσi-satisfiable iff φ̃ is
k⋃
i=1

Tσi-satisfiable.

We now eliminate the existentially quantified function variables in φ̃, one by one. Let
φ̃ = (∃F :σm0 , σ)∃∗∀∗ ψ̃, where σ is a background sort. For every m-tuple t = (t[1], . . . , t[m])
over the set x0, we introduce a variable xFt of sort σ. Let xF be the set of all such nm

variables, where n = |x0| is the number of existential first order variables of sort σ0 in φ̃.
Next, we introduce a fresh function variable GF of sort σm0 , σ, and quantify it universally.
GF will be used to emulate the function F . Let us define

ψStep-2 ≡ (∀GF : σm0 , σ)
(
ψemulate =⇒ ψ̄

)
where, ψemulate ≡

∧
t∈xm0

(
GF (t[1], . . . , t[m]) = xFt

)
and ψ̄ is obtained by replacing all occur-

rences of F in ψ̃ by GF . Now define φStep-2 to be the sentence

φStep-2 ≡ (∃xF : σ)∃∗∀∗(∀GF : σm0 , σ)ψStep-2.

The following lemma states the correctness guarantee of this transformation.

I Lemma 5. φStep-2 is
k⋃
i=1

Tσi-satisfiable iff φStep-1 is
k⋃
i=1

Tσi-satisfiable.

Step 3: Eliminating universal function variables
The recipe here is to perform Ackermann reduction [2] for every universally quantified
function variable.

Let φStep-2 ≡ ∃∗∀∗(∀F : w, σ)ψStep-2, where ψStep-2 is the quantifier free part of φStep-2,
and let |w| = m. For every term t of the form F (t1, . . . , tm) in ψStep-2, we introduce a fresh
first order variable yF(t1,t2,...,tm) of sort σ, and replace every occurrence of the term t in ψStep-2

with yF(t1,t2,...,tm). Let ψ̂ be the resulting quantifier free formula. Let yF be the collection
of all the newly introduced variables. Let us now define ψStep-3 ≡

(
ψack =⇒ ψ̂

)
. Here,

ψack ≡
∧

yFt ,y
F
t′
∈yF

[
(
m∧
j=1

tj = t′j) =⇒ (yFt = yFt′ )
]
where, t = F (t1, . . . tm), t′ = F (t′1, . . . , t′m).

Then, the transformed formula φStep-3 ≡ ∃∗∀∗(∀yF :σ)ψStep-3 is correct:

I Lemma 6. φStep-2 is
k⋃
i=1

Tσi-satisfiable iff φStep-3 is
k⋃
i=1

Tσi-satisfiable.
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Step-4: Decomposition and black box calls to ∃∗∀∗ Theory solvers
The EQSMT sentence φStep-3 obtained after the sequence of steps 1 through 3 is a first order
∃∗∀∗ sentence over Σ. This sentence, however, may possibly contain occurrences of variables
of the foreground sort σ0. Intuitively, the objective of this step is to decompose φStep-3

into ∃∗∀∗ sentences, one for each sort, and then use decision procedures for the respective
theories to decide satisfiability of the decomposed (single sorted) sentences. Since such a
decomposition can result into ∃∗∀∗ sentences over the foreground sort, we must ensure that
there is indeed a decision procedure to achieve this. For this purpose, let us define Tσ0 be
the empty theory (that is Aσ = ∅). Checking satisfiability of ∃∗∀∗ sentences over Tσ0 is
decidable. Also, satisfiability is preserved in the presence of Tσ0 in the following sense.

I Lemma 7. φStep-3 is
k⋃
i=1

Tσi-satisfiable iff φStep-3 is
k⋃
i=0

Tσi-satisfiable.

We first transform the quantifier free part ψStep-3 of φStep-3 into an equivalent CNF formula
ψCNF. Let φCNF be obtained by replacing ψStep-3 by ψCNF. Let φCNF ≡ ∃∗∀∗ψCNF, where
ψCNF ≡

r∧
i=1

ψi and each ψi is a disjunction of atoms. Since φCNF is a first order formula over

a pure signature, all atoms are either of the form R(· · · ) or t = t′ (with possibly a leading
negation). Now, equality atoms are restricted to terms of the same sort. Also since Σ is pure,
the argument terms of all relation applications have the same sort. This means, for every
atom α, there is a unique associated sort σ ∈ S, which we will denote by sort(α).

For a clause ψi in ψCNF, let atoms(ψi) be the set of atoms in ψi. Let atomsσ(ψi) =
{α ∈ atoms(ψi) | sort(α) = σ}, and let ψσi ≡

∨
α∈atomsσ(ψi)

α. Then, we have the identity

ψCNF ≡
r∧
j=1

∨
σ∈S

ψσj . We now state our decomposition lemma.

I Lemma 8. φCNF is
k⋃
i=0

Tσi-satisfiable iff there is a mapping L : {1, . . . , r} → S such that

for each 0 ≤ i ≤ k , the formula φLi ≡ (∃xi : σi)(∀yi : σi)
∧

j∈L−1(σi)
ψσij is Tσi-satisfiable.

Proof (Sketch). We present the more interesting direction here. Let φSkolem be an equi-
satisfiable Skolem norm form of φCNF. That is, φSkolem = ∀∗ψSkolem, where ψSkolem is obtained
from ψCNF by replacing all existential variables x0,x1 . . . ,xk by Skolem constants. We will
use the same notation ψi for the ith clause of ψSkolem. Then, consider a structureM such

thatM |=
k⋃
i=0

Tσi andM |= φSkolem. Now, suppose, on the contrary, that there is a clause

ψj such that for every sort σi, we have M 6|= ∀(yi : σi)ψj . This means, for every sort σi,
there is a interpretation Ii (that extends I with valuations of yi), such that either Ii leads
to falsity of Tσi or the clause ψj . Let cσi1 , c

σi
2 , . . . c

σi
|yi|

be the values assigned to the universal
variables yi in Ii. Then, construct an interpretation I ′ by extending I with the variables
yi interpreted with cσi ’s . This interpretation I ′ can be shown to either violate one of the
theory axioms or the formula ψj . In either case, we have a contradiction. J

The contract L above identifies, for each clause ψj , one sort σi such that the restriction ψσij
of ψj to σi can be set to true. Thus, in order to decide satisfiability of φCNF, a straightforward
decision procedure involves enumerating all contracts, L ∈ [{1, . . . , r} → S]. For each
contract L and for each sort σi, we construct the sentence φLi , and make a black-box call to
the ∃∗∀∗ theory solver for Tσi . If there is a contract L for which each of these calls return
“SATISFIABLE”, then φCNF (and thus, the original formula φ) is satisfiable. Otherwise, φ is
unsatisfiable.
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5 Undecidability Results

The logic that we have defined was carefully chosen to avoid undecidability of the satisfiability
problem. We now show that natural generalizations or removal of restrictions in our logic
renders the satisfiability problem undecidable. We believe our results are hence not simple
to generalize any further.

One restriction that we have is that the functions that are existentially quantified
cannot have σ0 as their range sort. A related restriction is that the universal quantification
block quantifies all uninterpreted function symbols, as otherwise they must be existentially
quantified on the outside block.

Let us now consider the fragment of logic where formulas are of the form (∃x0) (∃F)(∀y0)ψ
where in fact we do not even have any background theory. Since the formula is over a single
sort, we have dropped the sort annotations on the variables. It is not hard to see that this
logic is undecidable.

I Theorem 9. Consider signature with a single sort σ0 (and no background sorts). The
satisfiability problem for sentences of the following form is undecidable.

(∃x0) (∃F)(∀y0)ψ

Proof (Sketch). We can show this as a mild modification of standard proofs of the un-
decidability of first-order logic. We can existentially quantify over a variable Zero and a
function succ, demand that for any element y, succ(y) is not Zero, and for every y, y′, if
succ(y) = succ(y′), then y = y′. This establishes an infinite model with distinct elements
succn(Zero), for every n ≥ 0. We can then proceed to encode the problem of non-halting of
a 2-counter machine using a relation R(t, q, c1, c2), which stands for the 2CM is in state q at
time t with counters c1 and c2, respectively. It is easy to see that all this can be done using
only universal quantification (the relation R can be modeled as a function easily). J

The theorem above has a simple proof, but the theorem is not new; in fact, even more
restrictive logics are known to be undecidable (see [8]).

Another important restriction that we have is that the foreground sort and the various
background sorts are pariwise disjoint. This requirement is also not negotiable if decidability
is desired, as it is easy to show the following result. Once again we have dropped sort
annotations, since we only have a single sort.

I Theorem 10. Consider a signature with a single sort σ1 and let Tσ1 be the theory of
Presburger arithmetic. The satisfiability problem is decidable for sentences of the form

(∃x1) (∃R) (∀y1)ψ

Proof (Sketch). We can use a similar proof as the theorem above, except now that we use
the successor function available in Presburger arithmetic. We can again reduce non-halting
of Turing machines (or 2-counter machines) to satisfiability of such formulas. J

Stepping further back, there are very few subclasses of first-order logic with equality that
have a decidable satisfiability problem, and the only standard class that admits ∃∗∀∗ prefixes
is the Bernays-Schönfinkel-Ramsey class (see [5]). Our results can be seen as an extension of
this class with background theories, where the background theories admit locally a decidable
satisfiability problem for the ∃∗∀∗ fragment.
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6 Applications to Synthesis

6.1 Synthesis: Validity or Satisfiability?

Though we argued in Section 2 that synthesis problems can be modeled using satisfiability
of EQSMT sentences, there is one subtlety that we would like to highlight. In synthesis
problems, we are asked to find an expression such that the expression satisfies a specification
expressed as a formula in some logic. Assuming the specification is modeled as a universally
quantified formula over background theories, we would like to know if ∀yϕ(e, y) holds for
the synthesized expression e. However, in a logical setting, we have to qualify what “holds”
means; the most natural way of phrasing this is that ∀yϕ(e, y) is valid over the underlying
background theories, i.e., holds in all models that satisfy the background theories. However,
the existential block that models the existence of an expression is clearly best seen as a
satisfiability problem, as it asks whether there is some foreground model that captures an
expression. Requiring that it holds in all foreground models (including those that might
have only one element) would be unreasonable.

To summarize, the synthesis problem is most naturally modeled as a logical problem
where we ask whether there is some foreground model (capturing a program expression) such
that all background models, that satisfy their respective background theories, also satisfy the
quantifier free formula expressing that the synthesized expression satisfies the specification.
This is, strictly speaking, neither a satisfiability problem nor a validity problem!

We resolve this by considering only complete and consistent background theories. Hence
validity of a formula under a background theory T is equivalent to T -satisfiability. Con-
sequently, synthesis problems using such theories can be seen as asking whether there is
a foreground universe (modeling the expression to be synthesized) and some background
models where the specification holds for the expression. We can hence model synthesis purely
as a satisfiability problem of EQSMT, as described in Section 2.

Many of the background theories used in verification/synthesis and SMT solvers are
complete theories (like Presburger arithmetic, FOL over reals, etc.). One incomplete theory
often used in verification is the theory of uninterpreted functions. However, in this case,
notice that since the functions over this sort are uninterpreted, validity of formulas can be
modeled using a universal quantification over functions, which is supported in EQSMT ! The
only other adjustment is to ensure that this background theory has only infinite models
(we can choose this background theory to be the theory of (N,=), which has a decidable
satisfiability problem). Various scenarios such as modeling pointers in heaps, arrays, etc.,
can be naturally formulated using uninterpreted functions over this domain.

The second issue in modeling synthesis problems as satisfiability problems for EQSMT is
that in synthesis, we need to construct the expression, rather than just know one exists.
It is easy to see that if the individual background theory solvers support finding concrete
values for the existentially quantified variables, then we can pull back these values across
our reductions to give the values of the existentially quantified first-order variables (over all
sorts), the existentially quantified function variables as well as the existentially quantified
relation variables, from which the expression to be synthesized can be constructed.

6.2 Evaluation

We illustrate the applicability of our result for solving synthesis problems.

Synthesis of recursive programs involving lists. We model the problem of synthesizing
recursive programs with lists, that will meet a pre/post contract C assuming that recursive
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calls on smaller data-structures satisfy the same contract C. Though the programs we seek
are recursive, we can model certain classes of programs using straight-line programs.

To see this, let us take the example of synthesizing a program that finds a particular key
in a linked list (list-find). We can instead ask whether there is a straight-line program which
takes an additional input which models the return value of a possible recursive call made on
the tail of the list. The straight-line program must then work on the head of the list and
this additional input (which is assumed to satisfy the contract C) to produce an output that
meets the same contract C.

For this problem, we modeled the program to be synthesized using existential quantifica-
tion (over a grammar that generates bounded length programs) as described in Section 2.
The pointer next and recursive data structures list, lseg in the verification condition
were modeled using universal quantification over function variables and relation variables,
respectively. Moreover, in order to have a tractable verification condition, we used the
technique of natural proofs [20, 25, 28] that soundly formulates the condition in a decidable
theory. We used z3 [12] to ackermanize the universally quantified functions/relations (lseg,
list and next). We encoded the resulting formula as a synthesis problem in the SyGuS
format [4] and used an off-the-shelf enumerative counter-example guided synthesis (CEGIS)
solver. A program was synthesized within 1s, which was manually verified to be correct.

We also encoded other problems involving lists : list-length (calculating the length of a
list), list-sum (computing sum of the keys in a list), list-sorted (checking if the sequence of
keys in the list is sorted) and list-count-occurrence (counting the number of occurrences of
a key in the list), using a CEGIS solver, and report the running times and the number of
programs explored in Table 1.

We are convinced that EQSMT can handle recursive program synthesis (of bounded size)
against separation logics specifications expressed using natural proofs (as in [25]).

Synthesis of straight-line programs equivalent to given recursive programs. In the second
class of examples, we turn to synthesizing straight-line programs given a recursive function as
their specification. For example, consider Knuth’s generalization of the recursive McCarthy
91 function:

M(n) =
{
n− b if n > a

M c(n+ d)) otherwise

for every integer n, and where (c − 1)b < d. For the usual McCarthy function, we have
a = 100, b = 10, c = 2, and d = 11.

Consider the problem of synthesizing an equivalent recursion-free expression. The pro-
grams we consider may have if-then-else statements of nesting depth 2, with conditionals
over linear expressions having unbounded constants. Existential quantification over the
background arithmetic sort allowed us to model synthesizing these unbounded constants. Our
specification demanded that the value of the expression for n satisfy the recursive equations
given above.

We modeled the foreground sort inside arithmetic, and converted our synthesis problem to
a first-order ∃∗∀∗ sentence over Presburger arithmetic and Booleans. We experimented with
several values for a, b, c, d (with (c− 1)b < d), and interestingly, solutions were synthesized
only when (d− (c− 1)b) = 1. Given Knuth’s result that a closed form expression involves
taking remainder modulo this expression (and since we did not have the modulo operation in
our syntax), it turns out that simple expressions do not exist otherwise. Also, whenever the
solution was found, it matched the recursion-free expression given by Knuth (see Theorem 1
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Table 1 Synthesis of list programs and recursive programs.

Program # Programs Explored Time(s)
in SyGuS

list-find ∼5k 0.5
list-length ∼40k 5
list-sum ∼160k 15
list-sorted ∼206k 45

list-count-occurrence ∼1.3 million 134
Knuth : (a = 100, b = 10, c = 2, d = 11) - 2
Knuth : (a = 15, b = 30, c = 3, d = 61) - 6
Knuth : (a = 3, b = 20, c = 4, d = 62) - 27
Knuth : (a = 9, b = 11, c = 5, d = 45) - 49
Knuth : (a = 99, b = 10, c = 6, d = 51) - 224

Takeuchi - 100

in [19]). In Table 1, we provide the running times of our implementation on various parameters.
We also compared our implementation with the popular synthesis tool Sketch [33] on these
examples. For the purpose of comparison, we used the same template for both Sketch
and our implementation. Further, since Sketch does not allow encoding integers with
unbounded size (unlike our encoding in integer arithmetic), we represented these constants,
to be synthesized, using bitvectors of size 8. Sketch does not return an answer within the
set time-limit of 10 minutes for most of these programs.

We also modeled the Tak function (by Takeuchi) given by the specification below.

t(x, y, z) =
{
y if x ≤ y
t(t(x− 1, y, z), t(y − 1, z, x), t(z − 1, x, y)) otherwise

Our implementation synthesized the program t(x, y, z)= ite(x ≤ y, y, ite(y ≤ z, z, x)) in
about 100s.

7 Related Work

There are several logics known in the literature that can express synthesis problems and are
decidable. The foremost example is the monadic second-order theory over trees, which can
express Church’s synthesis problem [10] and other reactive synthesis problems over finite data
domains, and its decidability (Rabin’s theorem [30]) is one of the most celebrated theorems
in logic that is applicable to computer science. Reactive synthesis has been well studied and
applied in computer science (see, for example, [7]). The work reported in [21] is a tad closer
to program synthesis as done today, as it synthesizes syntactically restricted programs with
recursion that work on finite domains.

Caulfield et al [11] have considered the decidability of syntax-guided synthesis (SyGuS)
problems, where the synthesized expressions are constrained to belong to a grammar (with
operators that have the usual semantics axiomatized by a standard theory such as arithmetic)
that satisfy a universally quantified constraint. They show that the problem is undecidable
in many cases, but identify a class that asks for expressions satisfying a regular grammar
with uninterpreted function theory constraints to be decidable.

The ∃∗∀∗ fragment of pure predicate logic (without function symbols) was shown to be
decidable by Bernays and Schönfinkel (without equality) and by Ramsey (with equality) [5],
and is often called Effectively Propositional Reasoning (EPR) class. It is one of the few
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fragments of first-order logic known to be decidable. The EPR class has been used in program
verification [16, 24], and efficient SMT solvers supporting EPR have been developed [26].

The work by [1] extends EPR to stratified typed logics, which has some similarity with our
restriction that the universes of the foreground and background be disjoint. However, the logic
therein does not allow background SMT theories unlike ours and restricts the communication
between universally and existentially quantified variables via equality between existential
variables and terms with universally quantified variables as arguments. In [15], EPR with
simple linear arithmetic (without addition) is shown to be decidable.

Theory extensions [32] and model theoretic and syntactic restrictions theoreof [31] have
been explored to devise decidable fragment for quantified fragments of first order logic. Here,
reasoning in local theory extensions of a base theory can be reduced to the reasoning in the
base theory (possibly with an additional quantification). Combination of theories which are
extensions of a common base theory can similarly be handled by reducing the reasoning to a
decidable base theory. Similar ideas have been employed in the context of combinations of
linear arithmetic and the theory of uninterpreted functions with applications to construct
interpolants [18] and invariants [6] for program verification. EQSMT does not require the
background theories to be extensions of a common base theory.

Verification of programs with arrays and heaps can be modeled using second order
quantification over the arrays/heaps and quantifier alternation over the elements of the
array/heaps which belong to the theory of Presburger arithmetic. While such a logic is, in
general, undecidable, careful syntactic restrictions such as limiting quantifier alternation [9]
and flatness restrictions [3]. We do not restrict the syntax of our formulae, but ensure
decidability via careful sort restrictions. A recent paper [20] develops sound and complete
reasoning for a so-called safe FO fragment of an uninterpreted combination of theories.
However, the logic is undecidable, in general, and also does not support second-order
quantification.

The SyGuS format has recently been proposed as a language to express syntax guided
synthesis problems, and there have been several synthesis engines developed for various
tracks of SyGuS [4]. However, the syntax typically allows unbounded programs, and hence
the synthesis problem is not decidable. In [13], the candidate program components are
“decorated” with annotations that represent transformers of the components in a sound
abstract domain. This reduces the synthesis problem (∃∗∀∗) to the search for a proof (∃∗∃∗)
in the abstract domain.

When expressing synthesis problems for programs that manipulate heaps, we rely on
natural-proofs style sound abstraction of the verification conditions. Natural synthesis [29]
extends this idea to an inductive synthesis procedure.

8 Conclusions and Future Work

The logic EQSMT defined herein is meant to be a decidable logic for communication between
researchers modeling program synthesis problems and researchers developing efficient logic
solvers. Such liaisons have been extremely fruitful in verification, where SMT solvers have
served this purpose. We have shown the logic to be decidable and its efficacy in modeling
synthesis problems. However, the decision procedure has several costs that should not be
paid up front in any practical synthesis tool. Ways to curb such costs are known in the
literature of building efficient synthesis tools. In particular, searching for foreground models
is similar to EPR where efficient engines have been developed [26], and the search can also
be guided by CEGIS-like approaches [4]. And the exponential blow-up caused by guessing
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contracts between solvers (in Step 4 of our procedure) is similar to arrangements agreed
upon by theories combined using the Nelson-Oppen method, again for which efficient solvers
have been developed. Our hope is that researchers working on logic engines will engineer an
efficient decision procedure for EQSMT that can solve synthesis problems.
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A Encoding Mthree in EQSMT

We are interested in synthesizing a straight line program that implements the function Mthree,
and can be expressed as a term over the grammar in Figure 1a.

Let us see how to encode this synthesis problem in EQSMT. First, let us fix the maximum
height of the term we are looking for, say to be 2. Then, the program we want to synthesize
can be represented as a tree of height at most 2 such that every node in the tree can have
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≤ 3 child nodes (because the maximum arity of any function in the above grammar is 3,
corresponding to ite). A skeleton of such a expression tree is shown in Figure 1b. Every
node in the tree is named according to its path from the root node.

The synthesis problem can then be encoded as the formula

φMthree ≡ (∃n0, n00, n01, . . . n022 : σ0) ( ∃Left,Mid,Right : σ0, σ0︸ ︷︷ ︸
Existentially quantified relations

)

(∃ADD, ITE, LTZero, EQZero, GTZero, INPUT, C1, C2, C3 : σlabel)
(∃c1, c2, c3 : N) ( ∃flabel : σ0, σlabel︸ ︷︷ ︸

Existentially quantified functions

)

ϕwell-formed

∧ (∀x : N)( ∀g0
val, g

1
val, g

2
val, g

3
val : σ0,N︸ ︷︷ ︸

Universally quantified functions

) (ϕsemantics =⇒ ϕspec) (3)

Here, the nodes are elements of the foreground sort σ0. The binary relations Left,Mid,Right
over the foreground sort will be used to assert that a node n is the left,middle, right child
respectively of node n′ : Left(n′, n), Mid(n′, n), Right(n′, n). The operators or labels for
nodes belong to the background sort σlabel, and can be one of ADD (+), ITE (ite), LTZero (< 0),
GTZero (> 0), (EQZero (= 0)), INPUT (denoting the input to our program), or constants
C1, C2, C3 (for which we will synthesize natural constants c1, c2, c3 in the (infinite) background
sort N). The function flabel assigns a label to every node in the program, and the formula
ϕwell-formed asserts some sanity conditions:

ϕwell-formed ≡
∧
ρ 6=ρ′

nρ 6= nρ′ ∧ Left(n0, n00) ∧
∧
ρ 6=00
¬(Left(n0, nρ))) ∧ · · ·

∧ ¬(ADD = ITE) ∧ ¬(ADD = LTZero) ∧ · · · ∧ ¬(C1 = C3) ∧ ¬(C2 = C3)

∧
∧
ρ

(flabel(nρ)=ADD) ∨ (flabel(nρ)=ITE) ∨ · · · ∨ (flabel(nρ)=C3) (4)

The formula ϕsemantics asserts that the “meaning” of the program can be inferred from
the meaning of the components of the program. The functions g0

val, g
1
val, g

2
val, g

3
val, will assigns

value to nodes from N, for this purpose :

ϕsemantics ≡ ϕADD ∧ ϕITE ∧ ϕLTZero ∧ ϕEQZero ∧ ϕGTZero ∧ ϕINPUT ∧ ϕC1 ∧ ϕC2 ∧ ϕC3

(5)

where each of the formulae ϕADD, · · · , ϕC3 specify the semantics of each node when labeled
with these operations:

ϕADD ≡
∧

ρ,ρ1,ρ2

(
flabel(nρ) = ADD ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2)

=⇒
∧

i=0,1,2,3
gival(nρ) = gival(nρ1) + gival(nρ2)

) (6)

ϕITE ≡
∧

ρ,ρ1,ρ2,ρ3

[
flabel(nρ) = ITE ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2) ∧ Right(nρ, nρ3)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) = 1 =⇒ gival(nρ) = gival(nρ2)

∧ gival(nρ1) = 0 =⇒ gival(nρ) = gival(nρ3)
)]

(7)
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ϕLTZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) < 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) ≥ 0 =⇒ gival(nρ) = 0
)] (8)

ϕEQZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) = 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) 6= 0 =⇒ gival(nρ) = 0
)] (9)

ϕGTZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) > 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) ≤ 0 =⇒ gival(nρ) = 0
)] (10)

The formula ϕINPUT states that for a node labeled INPUT, the value of that node is the
input toMthree. Hence, such a node nρ evaluates to x, x+61, g1

val(n0) and g2
val(n0) respectively

under g0
val, g1

val, g2
val and g3

val:

ϕINPUT ≡
∧
ρ

[
flabel(nρ) = INPUT =⇒

g0
val(nρ) = x

∧g1
val(nρ) = x+ 61

∧g2
val(nρ) = g1

val(n0)
∧g3

val(nρ) = g2
val(n0)]

(11)

Finally we have the semantics of constant labels:

ϕC1 ≡
∧
ρ

[
flabel(nρ) = C1 =⇒

∧
i=0,1,2,3

gival(nρ) = c1

]
(12)

The formulae ϕC2 and ϕC3 are similar and thus skipped.

Last, the formula ϕspec expresses the specification of the program as in Equation (2).

ϕspec ≡
(
x > 13 =⇒ g0

val(n0) = x− 30
)

∧
(
x ≤ 13 =⇒ g0

val(n0) = g3
val(n0)

) (13)
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