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Abstract
We study modal team logic MTL, the team-semantical extension of classical modal logic closed
under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion
logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability
problem of full MTL has been notoriously resistant to a complexity theoretical classification.

In our approach, we adapt the notion of canonical models for team semantics. By construc-
tion of such a model, we reduce the satisfiability problem of MTL to simple model checking.
Afterwards, we show that this method is optimal in the sense that MTL-formulas can efficiently
enforce canonicity.

Furthermore, to capture these results in terms of computational complexity, we introduce a
non-elementary complexity class, TOWER(poly), and prove that the satisfiability and validity
problem of MTL are complete for it. We also show that the fragments of MTL with bounded
modal depth are complete for the levels of the elementary hierarchy (with polynomially many
alternations).
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1 Introduction

It is well-known that non-linear quantifier dependencies, such as w depending only on z

in the sentence ∀x∃y ∀z ∃wϕ, cannot be expressed in first-order logic. To overcome this
restriction, logics of incomplete information such as independence-friendly logic [19] have
been studied. Later, Hodges [20] introduced team semantics to provide these logics with a
compositional interpretation. The fundamental idea is to not consider only plain assignments
to free variables, but instead whole sets of assignments, called teams.

In this vein, Väänänen [38] expressed non-linear quantifier dependencies by the depen-
dence atom =(x1, . . . , xn, y), which intuitively states that the values of y in the team must
depend only on those of x1, . . . , xn. Logics with numerous other non-classical atoms such
as independence ⊥ [9], inclusion ⊆ and exclusion | [7] have been studied since, and have
found manifold application in scientific areas such as statistics, database theory, physics,
cryptography and social choice theory (see also Abramsky et al. [1]).
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Table 1 Complexity landscape of propositional and modal logics of dependence (∗DL), indepen-
dence (∗IL), inclusion (∗Inc) and team logic (∗TL). Entries are completeness results unless stated
otherwise.

Logic Satisfiability Validity References

PDL NP NEXPTIME [26, 36]
MDL NEXPTIME NEXPTIME [33, 11]
PIL NP NEXPTIME-hard, in ΠE2 [13]
MIL NEXPTIME ΠE2 -hard [23, 10]
PInc EXPTIME co-NP [13]
MInc EXPTIME co-NEXPTIME-hard [16]
PTL ATIME-ALT(exp, poly) ATIME-ALT(exp,poly) [12, 14]
MTLk ATIME-ALT(expk+1, poly) ATIME-ALT(expk+1,poly) Theorem 6.1
MTL TOWER(poly) TOWER(poly) Theorem 6.1

Team semantics have also been adapted to a range of propositional [39, 12], modal [35],
and temporal logics [25]. Not only have propositional dependence logic PDL [39] and modal
dependence logic MDL [35] been extensively studied, but propositional and modal logics of
independence and inclusion as well [23, 13, 18, 11]. Here, the non-classical atoms, such as the
dependence atom, range over whole formulas. For example, the instance =(p1, . . . , pn,♦unsafe)
of a modal dependence atom may specify that the reachability of an unsafe state depends
on an “access code” p1 · · · pn (and on nothing else), but instead of exhibiting the explicit
function in question, it only stipulates the existence of such.

Most team logics lack a Boolean negation, and adding it as a connective ∼ usually increases
both the expressive power and the complexity tremendously. The respective extensions
of propositional and modal logic are called propositional team logic PTL [12, 40, 14] and
modal team logic MTL [31, 22]. By means of the negation ∼, these logics can express all
the non-classical atoms mentioned above, and in fact are expressively complete for their
respective class of models [22, 40]. For these reasons, they are both interesting and natural
logics.

The expressive power of MTL is well-understood [22], and a complete axiomatization was
presented by the author [27]. Yet the complexity of the satisfiability problem has been an open
question [31, 22, 6, 15]. Recently, certain fragments of MTL with restricted negation were
shown ATIME-ALT(exp,poly)-complete using the well-known filtration method [28]. In the
same paper, however, it was shown that no elementary upper bound for full MTL can be estab-
lished by the same approach, whereas the best known lower bound is ATIME-ALT(exp,poly)-
hardness, inherited from the fragment PTL [14]. Analogously, the best known model size
lower bound is – as for ordinary modal logic – exponential in the size of the formula.

Contribution. We show that MTL is complete for a non-elementary class we call
TOWER(poly), which contains, roughly speaking, the problems decidable in a runtime that is
a tower of nested exponentials with polynomial height. Likewise, we show that the fragments
MTLk of bounded modal depth k are complete for a class we call ATIME-ALT(expk+1,poly)
and which corresponds to (k + 1)-fold exponential runtime and polynomially many alterna-
tions. These results fill a long-standing gap in the active field of propositional and modal
team logics (see Table 1).
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In our approach, we consider canonical or universal models. Loosely speaking, a canonical
model satisfies every satisfiable formula in some of its submodels, and such models have been
long known for, e.g., many systems of modal logic [2]. In Section 3, we adapt this notion for
modal logics with team semantics, and prove that such models exist for MTL. This enables
us to reduce the satisfiability problem to simple model checking, albeit on models that are of
non-elementary size with respect to |Φ|+ k, where Φ are the available propositional variables
and k is a bound on the modal depth.

Nonetheless, this approach is essentially optimal: In Section 4 and 5, we show that MTL
can, in a certain sense, efficiently enforce canonical models, that is, with formulas that are of
size polynomial in |Φ|+k. In this vein, we then obtain the matching complexity lower bounds
in Section 6 by encoding computations of non-elementary length in such large models.

To the author’s best knowledge, the classes ATIME-ALT(expk,poly) and TOWER(poly)
have not explicitly been considered before. However, there are several candidates for other
natural complete problems. More precisely, there exist problems in TOWER(poly) that are
provably non-elementary, such as the satisfiability problem of separated first-order logic [37],
the equivalence problem for star-free expressions [34], or the first-order theory of finite
trees [4], to only name a few.

Another example is the two-variable fragment of first-order team logic, FO2(∼). It is
related to MTL in the same fashion as classical two-variable logic FO2 to ML. Due to a
reduction from MTL to FO2(∼) (see [29]), the satisfiability and validity problems of FO2(∼)
are TOWER(poly)-complete problems as a corollary of this paper, while its fragments FO2

k(∼)
of bounded quantifier rank k are ATIME-ALT(expk+1,poly)-hard.

Due to space constraints, several technical proofs (which are marked with (?)) are omitted
or only sketched. They can be found in the full version of this paper [30].

2 Preliminaries

The power set of a set X is P(X). We let |X| denote the length of the encoding of a formula
or structure X. The sets of all satisfiable resp. valid formulas of a given logic L are SAT(L)
and VAL(L), respectively.

We assume the reader to be familiar with alternating Turing machines [3]. We assume all
reductions in this paper implicitly as logspace reductions ≤log

m .
The class ATIME-ALT(exp,poly) contains the problems decidable by an alternating

Turing machine in time 2p(n) with p(n) alternations, for a polynomial p. It is a natural
class that has several complete problems [13, 21, 14]. Here, we generalize it to capture the
elementary hierarchy expk(n), defined by exp0(n) := n and expk+1(n) := 2expk(n).

I Definition 2.1. For k ≥ 0, ATIME-ALT(expk,poly) is the class of problems decided by an
alternating Turing machine with at most p(n) alternations and runtime at most expk(p(n)),
for a polynomial p.

Note that setting k = 0 or k = 1 yields the classes PSPACE and ATIME-ALT(exp,poly),
respectively [3]. If k is replaced by a polynomial instead, we obtain the following class.

I Definition 2.2. TOWER(poly) is the class of problems that are decided by a deterministic
Turing machine in time expp(n)(1) for some polynomial p.

Note that a similar class, TOWER, is defined by replacing p by an arbitrary elementary
function [32]. By contrast, to the author’s best knowledge, TOWER(poly) has not yet
been explicitly studied. The reader may verify that both ATIME-ALT(expk,poly) and
TOWER(poly) are closed under polynomial time reductions (and hence also ≤log

m ).

CSL 2018
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Modal team logic

We fix a countably infinite set PS of propositional symbols. Modal team logic MTL, introduced
by Müller [31], extends classical modal logic ML as in the following grammar, where ϕ denotes
an MTL-formula, α an ML-formula, and p ∈ PS.

ϕ ::= ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | α
α ::= ¬α | α ∧ α | α ∨ α | �α | ♦α | p | >

The set of propositional variables occurring in ϕ ∈ MTL is denoted by Prop(ϕ).
We use the common abbreviations ⊥ := ¬>, α → β := ¬α ∨ β and α ↔ β := (α ∧

β) ∨ (¬α ∧ ¬β). For easier distinction, we have classical formulas denoted by α, β, γ, . . . and
reserve ϕ,ψ, ϑ, . . . for general team-logical formulas.

The modal depth md(θ) of an (ML or MTL) formula θ is recursively defined:

md(p) := md(>) := 0
md(∼ϕ) := md(¬ϕ) := md(ϕ)
md(ϕ ∧ ψ) := md(ϕ ∨ ψ) := max{md(ϕ),md(ψ)}
md(♦ϕ) := md(�ϕ) := md(ϕ) + 1

MLk and MTLk are the fragments of ML and MTL with modal depth ≤ k, respectively. If
the propositions are restricted to a fixed set Φ ⊆ PS as well, then the fragment is denoted
by MLΦ

k , or MTLΦ
k , respectively.

Let Φ ⊆ PS be a finite set of propositions. A Kripke structure (over Φ) is a tuple
K = (W,R, V ), where W is a set of worlds, (W,R) is a directed graph, and V : Φ→ P(W ) is
the valuation. Occasionally, by slight abuse of notation, we use the mapping V −1 : W → P(Φ)
defined by V −1(w) := {p ∈ Φ | w ∈ V (p)} instead of V , i.e., the set of propositions that are
true in a given world.

If w ∈W , then (K, w) is called pointed structure. ML is evaluated on pointed structures
in the classical Kripke semantics. By contrast, MTL is evaluated on pairs (K, T ), called
structures with teams, where T ⊆W is called team (in K).

Every team T has an image RT := {v | w ∈ T, (w, v) ∈ R} , and if w ∈ W , we simply
write Rw instead of R{w}. RiT is inductively defined as R0T := T and Ri+1T := RRiT . A
successor team of T is a team S such that S ⊆ RT and T ⊆ R−1S, where R−1 := {(v, w) |
(w, v) ∈ R}. Intuitively, S is formed by picking at least one successor of every world in T .

The semantics of MTL can now be defined as follows.1

(K, T ) � α ⇔ ∀w ∈ T : (K, w) � α if α ∈ ML, and otherwise as
(K, T ) � ∼ψ ⇔ (K, T ) 2 ψ,
(K, T ) � ψ ∧ θ ⇔ (K, T ) � ψ and (K, T ) � θ,
(K, T ) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (K, S) � ψ, and (K, U) � θ,
(K, T ) � ♦ψ ⇔ (K, S) � ψ for some successor team S of T ,
(K, T ) � �ψ ⇔ (K, RT ) � ψ.

We often omit K and write T � ϕ or w � α.

1 Often, the “atoms” of MTL are restricted to literals p,¬p instead of ML-formulas α. However, this
implies a restriction to formulas in negation normal form, and both definitions are equivalent due to the
flatness property of ML (cf. [22, Proposition 2.2]).
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An MTL-formula ϕ is satisfiable if it is true in some structure with team over Prop(ϕ),
which is then called a model of ϕ. Analogously, ϕ is valid if it is true in every structure with
team over Prop(ϕ).

Note that the empty team is usually excluded in the above definition, since most ∼-free
logics with team semantics have the empty team property, i.e., the empty team trivially
satisfying every formula [35, 23, 18]. However, this distinction is unnecessary for MTL: ϕ is
satisfiable iff >∨ ϕ is true in some non-empty team2, and ϕ is true in some non-empty team
iff ∼⊥ ∧ ϕ is satisfiable.

The modality-free fragment MTL0 syntactically coincides with propositional team logic
PTL [12, 14, 40]. The usual interpretations of the latter, i.e., sets of Boolean assignments,
can easily be represented as teams in Kripke structures. For this reason, we identify PTL
and MTL0 in this paper.

Note that the connectives ∨, → and ¬ are not the usual truth-functional connectives
on the level of teams, i.e., Boolean disjunction, implication and negation. The exception
are singleton teams, on which team semantics and Kripke semantics coincide. Using ∧ and
∼ however, we can define Boolean disjunction ϕ1 6 ϕ2 := ∼(∼ϕ1 ∧ ∼ϕ2) and implication
ϕ1 _ ϕ2 := ∼ϕ1 6 ϕ2.

The notation �iϕ is defined via �0ϕ := ϕ and �i+1ϕ := ��iϕ, and analogously for ♦iϕ.
To state that at least one element of a team satisfies α ∈ ML, we write Eα := ∼¬α. That the
truth value of α is constant in the team is expressed by the constancy atom =(α) := α6 ¬α.

The well-known bisimulation relation 
Φ
k fundamentally defines the expressive power of

modal logic [2] and plays a key role in our results.

I Definition 2.3. Let Φ ⊆ PS and k ≥ 0. For i ∈ {1, 2}, let (Ki, wi) be a pointed
structure, where Ki = (Wi, Ri, Vi). Then (K1, w1) and (K2, w2) are (Φ, k)-bisimilar, in
symbols (K1, w1)
Φ

k (K2, w2), if
∀p ∈ Φ: w1 ∈ V1(p)⇔ w2 ∈ V2(p),
and if k > 0,
∀v1 ∈ R1w1 : ∃v2 ∈ R2w2 : (K1, v1)
Φ

k−1 (K2, v2) (forward condition),
∀v2 ∈ R2w2 : ∃v1 ∈ R1w1 : (K1, v1)
Φ

k−1 (K2, v2) (backward condition).

The notion of bisimulation was also lifted to team semantics by Hella et al. [17]:

I Definition 2.4 (cf. [17, 23, 22]). Let Φ ⊆ PS and k ≥ 0. For i ∈ {1, 2}, let (Ki, Ti)
be a structure with team. Then (K1, T1) and (K2, T2) are (Φ, k)-team-bisimilar, written
(K1, T1)
Φ

k (K2, T2), if
∀w1 ∈ T1 : ∃w2 ∈ T2 : (K1, w1)
Φ

k (K2, w2),
∀w2 ∈ T2 : ∃w1 ∈ T1 : (K1, w1)
Φ

k (K2, w2).

If no confusion can arise, we will also refer to teams T1, T2 that are (Φ, k)-team-bisimilar
simply as (Φ, k)-bisimilar. The proofs of the following propositions are straightforward and
can be found in the full version [30].

I Proposition 2.5 (?). Let Φ ⊆ PS be finite, and k ≥ 0. For i ∈ {1, 2}, let (Ki, wi) be a
pointed structure, where Ki = (Wi, Ri, Vi). Then the following statements are equivalent:
1. ∀α ∈ MLΦ

k : (K1, w1) � α⇔ (K2, w2) � α,
2. (K1, w1)
Φ

k (K2, w2),

2 In team semantics, > ∨ ϕ is not tautologically true, but rather existentially quantifies a subteam.

CSL 2018



30:6 Canonical Models and the Complexity of Modal Team Logic

3. (K1, {w1})
Φ
k (K2, {w2}).

Moreover, if k > 0, they are equivalent to:
4. (K1, w1)
Φ

0 (K2, w2) and (K1, R1w1)
Φ
k−1 (K2, R2w2).

As a result, the forward and backward condition from Definition 2.3 can be equivalently
stated in terms of team-bisimilarity of the respective images. On the level of teams, a similar
characterization holds:

I Proposition 2.6 (?). Let Φ ⊆ PS be finite, and k ≥ 0. Let (Ki, Ti) be a structure with
team for i ∈ {1, 2}. Then the following statements are equivalent:
1. ∀α ∈ MLΦ

k : (K1, T1) � α⇔ (K2, T2) � α,
2. ∀ϕ ∈ MTLΦ

k : (K1, T1) � ϕ⇔ (K2, T2) � ϕ,
3. (K1, T1)
Φ

k (K2, T2),

3 Types and canonical models

Many modal logics admit a “universal” model, also called canonical model. Given a canonical
model K, and a satisfiable formula (or set of formulas), the latter is then also true in some
point of K. See also Blackburn et al. [2, Section 4.2] for the explicit construction of such a
model for ML.

Unfortunately, a canonical model for ML is necessarily infinite, and consequently imprac-
tical for complexity theoretic considerations. Instead, we define (Φ, k)-canonical models for
finite Φ ⊆ PS and k ∈ N, which are then proved canonical for the fragment MLΦ

k . However,
by Proposition 2.5, the size of a (Φ, k)-canonical model is necessarily at least the number of
equivalence classes of 
Φ

k .
The equivalence classes of 
Φ

k are proper classes. However, speaking about teams would
require sets of such classes. For this reason, we inductively define types, which properly
reflect bisimulation, but exist as sets. We usually refer to types as τ .

I Definition 3.1. Let Φ ⊆ PS be finite. The set of (Φ, k)-types, written ∆Φ
k , is defined

inductively as ∆Φ
0 := P(Φ)× {∅} and ∆Φ

k+1 := P(Φ)×P(∆Φ
k ).

Let (K, w) = (W,R, V,w) be a pointed structure. Then its (Φ, k)-type, written JK, wKΦ
k ,

is the unique (Φ′,∆′) ∈ ∆Φ
k such that V −1(w) = Φ′ and, in case k > 0, additionally

∀τ ′ ∈ ∆Φ
k−1 : τ ′ ∈ ∆′ ⇔ ∃v ∈ Rw : JK, vKΦ

k−1 = τ ′.

Given a team T in K, the types in T are denoted by JK, T KΦ
k :=

{
JK, wKΦ

k | w ∈ T
}
.

For a type τ = (Φ′,∆′), we define shorthands Φτ := Φ′ and Rτ := ∆′.
Intuitively, the first component Φτ consists of the propositions which any model of type τ

must satisfy in its root, and Rτ is the set of types which any model of type τ must contain
in the image of its root. Roughly speaking, Φτ reflects the first condition of Definition 2.3,
propositional equivalence, while Rτ reflects the forward and backward conditions.

Every type τ ∈ ∆Φ
k is satisfiable in the sense that there is at least one pointed structure

(K, w) such that JK, wKΦ
k = τ .

The following assertions are straightforward to prove by induction, and ascertain that
types properly reflect the notion of bisimulation.

I Proposition 3.2 (?). Let Φ ⊆ PS be finite and k ≥ 0. Then (K, w) 
Φ
k (K′, w′) if and

only if JK, wKΦ
k = JK′, w′KΦ

k , and (K, T )
Φ
k (K′, T ′) if and only if JK, T KΦ

k = JK′, T ′KΦ
k .

We are now ready to state the formal definition of canonicity:
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I Definition 3.3. A structure with team (K, T ) is (Φ, k)-canonical if JK, T KΦ
k = ∆Φ

k .

In the following, we often omit Φ and K and write only JwKk or JT Kk, and simply say that T
is (Φ, k)-canonical if K is clear.

It is a standard result that for every Φ and k ≥ 0 there exists a (Φ, k)-canonical model
(cf. Blackburn et al. [2]), or in other words, that the logic MLΦ

k admits canonical models.

Canonical models in team semantics

The logic MTL is significantly more expressive than ML [22]. Nonetheless, we will show that
every satisfiable MTLΦ

k -formula can be satisfied in a (Φ, k)-canonical model. In other words,
the canonical models of MTLΦ

k and MLΦ
k actually coincide.

I Theorem 3.4. Let (K, T ) be (Φ, k)-canonical and ϕ ∈ MTLΦ
k . Then ϕ is satisfiable if and

only if (K, T ′) � ϕ for some T ′ ⊆ T .

Proof. Assume (K, T ) and ϕ are as above. As the direction from right to left is trivial,
suppose that ϕ is satisfiable, i.e., has a model (K̂, T̂ ). As a team in K that satisfies ϕ, we
define

T ′ :=
{
w ∈ T

∣∣∣ JK, wKΦ
k ∈ JK̂, T̂ KΦ

k

}
.

By Proposition 2.6 and 3.2, it suffices to prove JK̂, T̂ KΦ
k = JK, T ′KΦ

k . Moreover, the direction
“⊇” is clear by definition. As T is (Φ, k)-canonical, for every τ ∈ JK̂, T̂ KΦ

k there exists a world
w ∈ T of type τ . Consequently, JK̂, T̂ KΦ

k ⊆ JK, T ′KΦ
k . J

How large is a (Φ, k)-canonical model at least? The number of types can be written via
the function exp∗k, which is defined by

exp∗0(n) := n, exp∗k+1(n) := n · 2exp∗k(n).

Observe that this function resembles expk(n) (cf. p. 3) except for an additional factor of n in
every “level” of the nested exponents. By Definition 3.1, we immediately obtain:

I Proposition 3.5. |∆Φ
k | = exp∗k

(
2|Φ|

)
for all k ≥ 0 and finite Φ ⊆ PS.

Next, we present an algorithm that solves the satisfiability and validity problems of
MTL and its fragments MTLk by computing a canonical model. Let us first explicate this
construction in a lemma.

I Lemma 3.6. There is an algorithm that, given Φ ⊆ PS and k ≥ 0, computes a (Φ, k)-
canonical model in time polynomial in |∆Φ

k |.

Proof. Let K = (W,R, V ) be the computed structure. The idea is to construct sets L0 ∪
L1 ∪ · · · ∪ Lk =: W of worlds in stage-wise manner such that Li is (Φ, i)-canonical.

For L0, we simply add a world w for each Φ′ ∈ P(Φ) such that V −1(w) = Φ′.
For i > 0, we iterate over all L′ ∈ P(Li−1) and Φ′ ∈ P(Φ) and insert a new world w

into Li such that Rw = L′ and again V −1(w) = Φ′. An inductive argument shows that Li
is (Φ, i)-canonical for all i ∈ {0, . . . , k}. As k ≤ |∆Φ

k |, and each Li is constructed in time
polynomial in |∆Φ

i | ≤ |∆Φ
k |, the overall runtime is polynomial in |∆Φ

k |. J

The next lemma allows, roughly speaking, to replace a polynomial of exp∗k by simply
expk, with only polynomial blowup in its argument.

CSL 2018
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I Lemma 3.7. For every polynomial p there is a polynomial q such that p(exp∗k(n)) ≤
expk(q((k + 1) · n)) for all k ≥ 0 and n ≥ 1.

Proof. For p(n) bounded by cnd, with c, d ∈ N, let q(n) := cdnd + c (cf. [30]). J

I Theorem 3.8. SAT(MTLk) and VAL(MTLk) are in ATIME-ALT(expk+1,poly).

Proof. Consider the following algorithm. Let ϕ ∈ MTLk be the input, n := |ϕ|, and
Φ := Prop(ϕ). Construct deterministically, as in Lemma 3.6, a (Φ, k)-canonical structure
(K, T ) = (W,R, V, T ) in time p(|∆Φ

k |) for a polynomial p.
By a result of Müller [31], the model checking problem of MTL is solvable by an alternating

Turing machine that has runtime polynomial in |ϕ|+ |K|, and alternations polynomial in |ϕ|.
We call this algorithm as a subroutine: by Theorem 3.4, ϕ is satisfiable (resp. valid) if and
only if for at least one team (resp. all teams) T ′ ⊆ T we have (K, T ′) � ϕ. Equivalently, this
is the case if and only if (K, T ) satisfies > ∨ ϕ (resp. ∼(> ∨∼ϕ)).

Let us turn to the overall runtime. K is constructed in time polynomial in |∆Φ
k | =

exp∗k(2|Φ|) ≤ exp∗k+1(|Φ|) ≤ exp∗k+1(n). The subsequent model checking runs in time poly-
nomial in |K|+ n, and hence polynomial in exp∗k+1(n) as well. By Lemma 3.7, we obtain a
total runtime of expk+1(q((k + 2) · n)) for a polynomial q. J

The upper bound for MTL can be proved similarly, since k := md(ϕ) is polynomial in |ϕ|.
Moreover, the alternations can be eliminated with additional exponential blowup.

I Corollary 3.9. SAT(MTL) and VAL(MTL) are in TOWER(poly).

4 Efficiently expressing bisimilarity

Kontinen et al. [22] proved that MTL is expressively complete up to bisimulation, i.e., it can
define every property of teams that is closed under 
Φ

k for some finite Φ and k. Two such
team properties are in fact (Φ, k)-bisimilarity itself – in the sense that two worlds in a team
have the same type – as well as (Φ, k)-canonicity. Consequently, these properties are defined
by MTLΦ

k -formulas. However, by a simple counting argument, formulas defining arbitrary
team properties are of non-elementary size w. r. t. Φ and k in the worst case.

From now on, we always assume some finite Φ ⊆ PS and omit it in the notation, i.e., we
write k-canonicity, k-bisimilarity, 
k, and so on.

In this section, we present an “approximation” (in a sense we clarify below) of k-bisimilarity
that can be expressed in a formula χk that is of polynomial size in Φ and k. Likewise, in
Section 5 we present a formula canonk of polynomial size that expresses k-canonicity. Finally,
in Section 6, we apply χk and canonk in order to prove the lower bound for Corollary 3.9,
i.e., TOWER(poly)-hardness of SAT(MTL) and VAL(MTL) (and an analogous result for
Theorem 3.8). Here, the idea is to enforce a sufficiently large structure with canonk and then
to encode a non-elementary computation into it. Clearly, χk and canonk being polynomial
in Φ and k is crucial for the reduction.

Scopes

To implement k-bisimilarity, we pursue a recursive approach. In the spirit of Proposition 2.5,
the (k + 1)-bisimilarity of two points w, v is expressed in terms of k-team-bisimilarity of Rw
and Rv. Conversely, to verify k-team-bisimilarity of Rw and Rv, we proceed analogously to
the forward and backward conditions of Definition 2.3 and reduce the problem to checking
k-bisimilarity of pairs of points in Rw and Rv.
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T
S

α1 α3α2

⇒
α1 α3α2

S

Tα2
S

Figure 1 Example of subteam selection in the scope α2.

A clear obstacle is that MTL cannot speak about two teams Rw,Rv simultaneously, let
alone check for bisimilarity. Instead, we consider a team that is the “marked union” of Rw
and Rv.

More generally, for all formulas α ∈ ML we define the subteam Tα := { w ∈ T | w � α }.
The corresponding “decoding” operator

α ↪→ ϕ := ¬α ∨ (α ∧ ϕ)

was considered by Kontinen and Nurmi [24] and Galliani [8]. Here, α ↪→ ϕ is true in T if
and only if Tα � ϕ.

Now, instead of defining an n-ary relation on teams, a formula ϕ can define a unary
relation – a team property – parameterized by “marker formulas” α1, . . . , αn ∈ ML. We
emphasize this by writing ϕ(α1, . . . , αn).

This is the “approximation” mentioned earlier: In order to compare Rw and Rv, we
require that Rw = Tα and Rv = Tβ for some team T and distinct α, β ∈ ML. It will be
useful if the “markers” are invariant under traversing edges in the structure:

I Definition 4.1. Let K = (W,R, V ) be a Kripke structure. A formula α ∈ ML is called a
scope (in K) if (w, v) ∈ R implies w � α⇔ v � α. Two scopes α, β are called disjoint (in K)
if Wα and Wβ are disjoint.

In order to avoid interference, we always assume that scopes are formulas in MLPS\Φ0 ,
i.e., they are always purely propositional and do not contain propositions from Φ.

It is desirable to be able to speak about subteams in a specific scope. Formally, if S
is a team, let TαS := T¬α ∪ (Tα ∩ S). For singletons {w}, we simply write Tαw instead of
Tα{w}. Intuitively, TαS is obtained from T by “shrinking” the subteam Tα down to S without
impairing T \ Tα (see Figure 1 for an example).

The following observations are straightforward:

I Proposition 4.2 ([30]). Let α, β be disjoint scopes and S,U, T teams in a Kripke structure
K = (W,R, V ). Then the following laws hold:
1. Distributive laws: (T ∩ S)α = Tα ∩ S = T ∩ Sα = Tα ∩ Sα and (T ∪ S)α = Tα ∪ Sα.
2. Disjoint selection commutes:

(
TαS
)β
U

=
(
T βU
)α
S
.

3. Disjoint selection is independent:
(
(TαS )βU

)
α

= Tα ∩ S.
4. Image and scope commute: (RT )α =

(
R(Tα)

)
α

= R(Tα).
5. Selection propagates: If S ⊆ T , then R

(
TαS
)

= (RT )αRS.

Accordingly, we write RiTα instead of (RiT )α or Ri(Tα) and Tα1,α2
S1,S2

for (Tα1
S1

)α2
S2
.

Subteam quantifiers

We refer to the following abbreviations as subteam quantifiers, where α ∈ ML:

∃⊆α ϕ := α ∨ ϕ ∀⊆α ϕ := ∼∃⊆α∼ϕ
∃1
α ϕ := ∃⊆α

[
Eα ∧ ∀⊆α (Eα _ ϕ)

]
∀1
α ϕ := ∼∃1

α∼ϕ

CSL 2018
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α

β

T

z


0 
0 
0
1? ⇒ 
0 
0 
0 ⇒

RT

z z

RT βz

Figure 2 As z violates the backward condition, χ∗
0(α, β) detects a 
0-free subteam, refuting

∃1
α∃1

βχ0(α, β).

Intuitively, they quantify over subteams S ⊆ Tα (in case of ∃⊆α /∀⊆α ) or over worlds w ∈ Tα
(for ∃1

α/∀1
α), and require that the shrunk team TαS resp. Tαw satisfies ϕ.

I Proposition 4.3 (?). ∃⊆α ,∀⊆α ,∃1
α,∀1

α have the following semantics:

T � ∃⊆αϕ ⇔ ∃S ⊆ Tα : TαS � ϕ T � ∃1
αϕ ⇔ ∃w ∈ Tα : Tαw � ϕ

T � ∀⊆αϕ ⇔ ∀S ⊆ Tα : TαS � ϕ T � ∀1
αϕ ⇔ ∀w ∈ Tα : Tαw � ϕ

Proof sketch. Here, we sketch only the existential cases, as the universal ones work dually.
The formula ∃⊆α ϕ := α ∨ ϕ allows to split T into subteams U1 ⊆ Tα and U2, where U2 � ϕ.
As U2 must contain T¬α, clearly it is of the form TαS for some S. Conversely, every team of
the form TαS induces a splitting of T into U1, U2 as above.

The singleton quantifier, ∃1
α, states that for some non-empty U ⊆ Tα it holds that TαS � ϕ

for every non-empty S ⊆ U . This is equivalent to TαU � ϕ being true for some singleton
U ⊆ Tα. J

Implementing bisimulation

Finally, we have all ingredients to implement k-bisimulation in the following inductive manner:

χ0(α, β) := (α ∨ β) ↪→
∧
p∈Φ

=(p)

χk+1(α, β) := χ0(α, β) ∧�χ∗k(α, β)

χ∗k(α, β) := (¬α ∧ ¬β) 6
(

Eα ∧ Eβ ∧ ∼
[
(α6 β) ∨ (Eα ∧ Eβ ∧ ∼∃1

α∃1
βχk(α, β))

])
Here, ↪→ is defined as on p. 9. Let us prove that these formulas define bisimulation:

I Theorem 4.4 (?). Let k ≥ 0. For all Kripke structures K, teams T in K, disjoint scopes
α, β in K, and points w ∈ Tα and v ∈ Tβ it holds:

Tα,βw,v � χk(α, β) if and only if w 
kv,
T � χ∗k(α, β) if and only if Tα 
kTβ.

Moreover, both χk(α, β) and χ∗k(α, β) are MTLk-formulas that are constructible in space
O(log(k + |Φ|+ |α|+ |β|)).

Proof sketch. By induction on k. First, the formula χ0(α, β) expresses w 
0 v when
evaluated on a team Tα,βw,v . By the semantics of ↪→, χ0(α, β) is true if and only if {w, v} � =(p)
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s0 s1 s2 s3, 2222|Φ|

= 16 = |∆3| elements

· · ·

· · ·

3-canonical2-canonical1-canonical0-c.

Offset

Scope:

T

Figure 3 Visualization of the 3-staircase for Φ = ∅, where the subteam Tsi is i-canonical with
offset 3− i.

for all p ∈ Φ. By definition of =(·), then w � p⇔ v � p for all p ∈ Φ, i.e., w 
0 v. For χk+1,
recall that w 
k+1 v is equivalent to w 
0 v and Rw 
k Rv. Consequently, χk+1 defines
(k + 1)-bisimilarity on points under the assumption that χ∗k defines k-bisimilarity on teams.

Finally, χ∗k(α, β) checks Tα 
k Tβ as follows. If at least one of these teams is empty,
then it is easy to see that χ∗k acts correctly. For non-empty Tα and Tβ , the idea is to isolate
any single point z ∈ Tα ∪ Tβ that serves as a counter-example against JTαKk = JTβKk by, say,
JzKk ∈ JTβKk \ JTαKk. We erase Tβ \ {z} from T using the disjunction ∨, as Tβ \ {z} � α6 β.
The remaining team is exactly T βz , in which ∃1

α∃1
βχk(α, β) fails (see Figure 2). The case

JzKk ∈ JTαKk \ JTβKk is detected analogously. Moreover, the formulas can be constructed in
logspace in a straightforward manner, and md(χk) = md(χ∗k) = k. J

Let us again stress that χk implements only an approximation of 
k, as it relies on
scopes to be labeled in the structure correctly.

5 Enforcing a canonical model

As discussed before, we now aim at constructing an MTLk-formula that is satisfiable but
permits only k-canonical models. For k = 0, Hannula et al. [13] defined the PTL-formula

max(X) := ∼
∨
x∈X

=(x)

and proved that T � max(Φ) if and only if T is 0-canonical, i.e., contains all Boolean
assignment over Φ. We generalize this for all k, i.e., construct a satisfiable formula canonk
that has only k-canonical models.

Staircase models

Our approach is to express k-canonicity by inductively enforcing i-canonical sets of worlds
for i = 0, . . . , k located in different “height” inside the model. For this purpose, we employ
distinct scopes s0, . . . , sk (“stairs”), and introduce a specific class of models:

I Definition 5.1. Let k, i ≥ 0 and let (K, T ) be a Kripke structure with team, K = (W,R, V ).
A team T is k-canonical with offset i if for every τ ∈ ∆k there exists w ∈ T with JRiwKk = {τ}.

(K, T ) is called k-staircase if for all i ∈ {0, . . . , k} we have that Tsi is i-canonical with
offset k − i.

CSL 2018
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A 3-staircase for Φ = ∅ is depicted in Figure 3, which is easily adapted for Φ 6= ∅ and
arbitrary k. In particular, it is a directed forest, which means that its underlying undirected
graph is acyclic and all its worlds are either roots (i.e., without predecessor) or have exactly
one predecessor. Moreover, it has bounded height, where the height of a directed forest is
the greatest number h such that every path traverses at most h edges.

I Proposition 5.2. For each k ≥ 0, there is a finite k-staircase (K, T ) such that s0, . . . , sk
are disjoint scopes in K, and K is a directed forest with height at most k and its set of roots
being exactly T .

Observe that a model being a k-staircase is a stronger condition than k-canonicity.

I Corollary 5.3. Every satisfiable MTLk-formula has a finite model (K, T ) such that K is a
directed forest with height at most k and its set of roots being exactly T .

Enforcing canonicity

In the rest of the section, we illustrate how a k-staircase can be enforced in MTL inductively.
For Φ = ∅, the inductive step – obtaining (k + 1)-canonicity from k-canonicity – is

captured by the formula ∀⊆α ∃1
β �χ

∗
k(α, β). It states that for every subteam T ′ ⊆ Tα there

exists a point w ∈ Tβ such that JRT ′Kk = JRwKk. Intuitively, every possible set of types is
captured as the image of some point in Tβ . As a consequence, if Tα is k-canonical with offset
1, then Tβ will be (k + 1)-canonical.

Note that the straightforward formula �kmax(Φ) expresses 0-canonicity of RkT , but not
0-canonicity of T with offset k (consider, e.g., a singleton T ). Instead, we use the formula

max-offi(β) := β ↪→
(
♦i> ∧

(
�imax(Φ)

)
∧ ∀1

β �
i
∧
p∈Φ

=(p)
)
.

It states that RiTβ is 0-canonical, but that Riw admits only one propositional assignment
for each w ∈ Tβ . In this light, k-canonicity with offset i is altogether defined as follows:

ρi0(β) := ∃⊆β max-offi(β)

ρik+1(α, β) := ∀⊆α ∃
⊆
β

(
ρi0(β) ∧�i∀1

β �χ
∗
k(α, β)

)
canonk := ρk0(s0) ∧

k∧
m=1

ρk−mm (sm−1, sm)

I Theorem 5.4 (?). Let k ≥ 0. The formula canonk is an MTLk-formula and constructible
in space O(log(|Φ|+ k)).

Moreover, if K is a Kripke structure with disjoint scopes s0, . . . , sk, then (K, T ) � canonk
if and only if (K, T ) is a k-staircase.

Proof sketch. By induction on k. We sketch the induction step.
Suppose Tα is k-canonical with offset i + 1. For each S ⊆ Tα, the formula ρik+1(α, β)

quantifies a subteam U ⊆ Tβ that is 0-canonical with offset i. Additionally, it also forces all
points in RiU (and hence at least one point of every 0-type) to mimic the k-types of Ri+1S

in all points of their image. Together, this results in (k + 1)-canonicity with offset i. J

It remains to demonstrate that the restriction of the si being scopes a priori can be
omitted, since we can, in a sense, define it in MTL as well. For this, let Ψ ⊆ PS be disjoint
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from Φ. Then the formula below ensures that Ψ is a set of disjoint scopes “up to height k”,
which is sufficient for our purposes.

scopesk(Ψ) :=
∧

x,y∈Ψ
x 6=y

¬(x ∧ y) ∧
k∧
i=1

(
(x ∧�ix) ∨ (¬x ∧�i¬x)

)
.

I Lemma 5.5. If ϕ ∈ MTLk, then ϕ is satisfiable if and only if ϕ ∧�k+1⊥ is satisfiable.

Proof. As the direction from right to left is trivial, assume that ϕ is satisfiable. By Corol-
lary 5.3, it then has a model (K, T ) that is a directed forest of height at most k. But then
(K, T ) � �k+1⊥, since Rk+1T = ∅ and (K, ∅) satisfies all ML-formulas, including ⊥. J

I Theorem 5.6. canonk ∧ scopesk({s0, . . . , sk}) ∧ �k+1⊥ is satisfiable, but has only k-
staircases as models.

Proof. By combining Proposition 5.2, Theorem 5.4 and Lemma 5.5, the formula is satisfiable.
Since in every model (K, T ) the propositions s0, . . . , sk must be disjoint scopes due to �k+1

and scopesk, we can apply Theorem 5.4. J

Let us stress that the formula canonk is again only an approximation of k-canonicity,
since the scopes s0, . . . , sk−1 are necessary for the construction as well. However, both χk
and canonk being efficiently constructible is crucial for our main result in the next section.

6 Complexity lower bounds

In this section, we provide the matching lower bounds for Theorem 3.8 and Corollary 3.9:

I Theorem 6.1. SAT(MTL) and VAL(MTL) are complete for TOWER(poly). For all k ≥ 0,
SAT(MTLk) and VAL(MTLk) are complete for ATIME-ALT(expk+1,poly).

The above complexity classes are complement-closed, and MTL and MTLk are closed
under negation. For this reason, it suffices to consider SAT(MTL) and SAT(MTLk). Moreover,
the case k = 0 is equivalent to SAT(PTL) being ATIME-ALT(exp,poly)-hard, which was
proven by Hannula et al. [14]. Their reduction works in logarithmic space.

Consequently, the result boils down to the following lemma:

I Lemma 6.2. If L ∈ TOWER(poly), then L ≤log
m SAT(MTL).

If k ≥ 1 and L ∈ ATIME-ALT(expk+1,poly), then L ≤log
m SAT(MTLk).

We devise for each L a reduction x 7→ ϕx such that ϕx is a formula that is satisfiable if and
only if x ∈ L. By assumption, there exists a single-tape alternating Turing machine M that
decides L (for L ∈ TOWER(poly), w.l.o.g. M is alternating as well). Then M = (Q,Γ, δ),
where Q is the disjoint union of Q∃ (existential states), Q∀ (universal states), Qacc (accepting
states) and Qrej (rejecting states). Also, Q contains some initial state q0. Γ is the finite tape
alphabet, [ the blank symbol, and δ the transition relation.

We design ϕx in a fashion that forces its models (K, T ) to encode an accepting computation
of M on x. Let us call any legal sequence of configurations of M (not necessarily starting
with the initial configuration) a run. Then, similarly as in Cook’s famous theorem [5], we
encode runs as square “grids” with a vertical “time” coordinate and a horizontal “space”
coordinate in the model, i.e., each row of the grid represents a configuration of M .

CSL 2018
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W.l.o.g. M has runtime at most N and tape cells {1, . . . , N}. A run of M is then a
function C : {1, . . . , N}2 → Γ ∪ (Q× Γ). In M ’s initial configuration, for instance, we have
C(1, 1) = (q0, x1), C(i, 1) = xi for 2 ≤ i ≤ n, and C(i, 1) = [ for n < i ≤ N .

Due to the semantics of MTL, such a run must be encoded in (K, T ) very carefully. We let
T contain N2 worlds wi,j in which the respective value of C(i, j) is encoded in a propositional
assignment. However, we cannot simply pursue the standard approach of assembling a
large N ×N -grid in the edge relation R in order to compare successive configurations; by
Corollary 5.3, we cannot force the model to contain R-paths longer than |ϕx|.

Instead, to define grid neighborship, we let wi,j encode i and j in its type. More precisely,
we impose a linear order ≺k on ∆k that is defined by an MTLk-formula ζk. Then, instead
of using � and ♦, we examine the grid by letting ζk judge whether a given pair of worlds
is deemed (horizontally or vertically) adjacent. Analogously to χ∗k, we also define an order
≺∗k on teams via a formula ζ∗k . Since order is a binary relation, the formulas are once more
parameterized by two scopes:

ζ0(α, β) :=
∨
p∈Φ

[
(α ↪→ ¬p) ∧ (β ↪→ p) ∧

∧
q∈Φ
q<p

(α ∨ β) ↪→ =(q)
]

ζk+1(α, β) := ζ0(α, β) 6
(
χ0(α, β) ∧ �ζ∗k(α, β)

)
ζ∗k(α, β) := ∃1

sk

(
∃1
βχk(sk, β)

)
∧
(
∼∃1

αχk(sk, α)
)

∧
((
χ∗k(α, β) ∧ (α ∨ β)

)
∨
(
∀1
α∨β∼ζk(sk, α ∨ β)

))
We refer the reader to the full paper [30] for the proof that there exist orders ≺k and ≺∗k

on ∆k and P(∆k) that are defined by ζk and ζ∗k in the following sense:

I Theorem 6.3 (?). Let k ≥ 0, and (K, T ) be a k-staircase with disjoint scopes α, β, s0, . . . , sk.
If w ∈ Tα and v ∈ Tβ, then

Tα,βw,v � ζk(α, β) if and only if JwKk ≺k JvKk,
T � ζ∗k(α, β) if and only if JTαKk ≺∗k JTβKk.

Furthermore, both ζk(α, β) and ζ∗k(α, β) are MTLk-formulas that are constructible in space
O(log(k + |Φ|+ |α|+ |β|)).

Encoding runs in a team

Next, we discuss in more detail how runs C : {1, . . . , N}2 → Γ ∪ (Q× Γ) are encoded in a
team T . Given a world w ∈ T , we partition the image Rw with two special propositions
t /∈ Φ (“timestep”) and p /∈ Φ (“position”). Then we assign to w the pair `(w) := (i, j) such
that J(Rw)tKk−1 is the i-th element, and J(Rw)pKk−1 is the j-th element in the order ≺∗k−1.
We call the pair `(w) the location of w (in the grid).

Accordingly, we fix N := |P(∆Φ
k−1)|. For the case of fixed k, M has runtime bounded by

expk+1(g(n)) for a polynomial g. Then taking Φ := {p1, . . . , pg(n)} yields a sufficiently large
coordinate space, as

expk+1(g(n)) = expk+1(|Φ|) = 2expk−1(2|Φ|) ≤ 2exp∗k−1(2|Φ|) = 2|∆
Φ
k−1| = |P(∆Φ

k−1)|

by Proposition 3.5. Likewise, if in the second case M has runtime bounded by expg(n)(1),
we let Φ := ∅ and compute k := g(|x|) + 1, but otherwise proceed identically.



M. Lück 30:15

Next, let Ξ be a constant set of propositions disjoint from Φ that encodes the range of
C via some bijection c : Ξ → Γ ∪ (Q× Γ). If a world w satisfies exactly one proposition p
of those in Ξ, then we define c(w) := c(p). Intuitively, c(w) is the content of the grid cell
represented by w.

Using ` and c, the function C can be encoded into a team T as follows. First, a team T

is called grid if every point in T satisfies exactly one proposition in Ξ, and if every location
(i, j) ∈ {1, . . . , N}2 occurs as `(w) for some point w ∈ T . Moreover, a grid T is called
pre-tableau if for every location (i, j) and every element p ∈ Ξ there is some world w ∈ T
such that `(w) = (i, j) and w � p. Finally, a grid T is a tableau if any two elements w,w′ ∈ T
with `(w) = `(w′) also agree on Ξ, i.e., c(w) = c(w′).

Let us motivate the above definitions. Clearly, the definition of a grid T means that T
captures the whole domain of C, and that c is well-defined on the level of points. If T is
additionally a tableau, then c is also well-defined on the level of locations. In other words,
every tableau T induces a function CT : {1, . . . , N}2 → Γ ∪ (Q × Γ) via CT (i, j) := c(w),
where w ∈ T is arbitrary such that `(w) = (i, j). Finally, a pre-tableau is, roughly speaking,
the “union” of all possible C. In particular, given any pre-tableau, the definition ensures
that arbitrary tableaus can be obtained from it by the means of subteam quantification ∃⊆
(cf. p. 9).

A tableau T is legal if CT is a run of M , i.e., if every row is a configuration of M , and if
every pair of two successive rows represents a valid δ-transition.

The idea of the reduction is now to capture the alternating computation of M by nesting
polynomially many quantifications (via ∃⊆ and ∀⊆) of legal tableaus, of which each one
is the continuation of the computation of the previous one. For this purpose, we devise
formulas such as ψpre-tableau(α) and ψlegal(α) that express that Tα is a pre-tableau, or a legal
tableau, respectively. These formulas rely on canonk to achieve a sufficiently large team, and
on ζk resp. ζ∗k for accessing adjacent grid cells in order to verify the transitions between
configurations.

Due to space constraints, we cannot present their implementation here. Instead, we refer
the reader to the appendix or the full version of the paper [30] for details.

7 Concluding remarks

In Theorem 6.1, we settled the open question of the complexity of MTL and established
TOWER(poly)-completeness for its satisfiability and validity problem. Likewise, the frag-
ments MTLk are proved complete for ATIME-ALT(expk+1,poly), the levels of the elementary
hierarchy with polynomially many alternations.

As our main tool, we introduced a suitable notion of canonical models for modal logics
with team semantics. We showed that such models exist for MTL and MTLk, and that some
satisfiable MTLk-formulas of polynomial size have only k-canonical models.

Our lower bounds carry over to two-variable first-order team logic FO2(∼) and its fragment
FO2

k(∼) of bounded quantifier rank k as well [29]. While the former is TOWER(poly)-
complete, the latter is ATIME-ALT(expk+1,poly)-hard. However, no matching upper bound
for the satisfiability problem of FO2

k(∼) exists.
In future research, it could be useful to further generalize the concept of canonical models

for other logics with team semantics. Do logics such as FO2
k(∼) permit a canonical model

in the spirit of k-canonical models for MTLk, and does this yield a tight upper bound on
the complexity of their satisfiability problem? How do MTLk and FO2

k(∼) differ in terms of
succinctness?
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A Details of the reduction (Lemma 6.2)

In the appendix, we present our lower bound in detail:

I Lemma 6.2. If L ∈ TOWER(poly), then L ≤log
m SAT(MTL).

If k > 0 and L ∈ ATIME-ALT(expk+1,poly), then L ≤log
m SAT(MTLk).

We describe the reduction x 7→ ϕx. In what follows, let n := |x|. The correctness proof
for the reduction will be built on several claims. These claims are not hard to derive, and for
detailed proofs of all steps we refer the reader to the full version of the paper [30].

An discussed in Section 6, we choose to represent a location (i, j) in a point w as a pair
(∆′,∆′′) by stipulating that ∆′ = J(Rw)tKk−1 and ∆′′ = J(Rw)pKk−1, where t (“time”) and p

(“position”) are special propositions in PS \ Φ. To access the two components of a encoded
location independently, we introduce the operator |αq ψ := (α ∧ ¬q) ∨ ((α ↪→ q) ∧ ψ), where
q ∈ {t, p} and α ∈ ML. It is easy to check that T � |αq ψ iff TαTq

� ψ.
In order to compare the locations of grid cells, for q ∈ {t, p} we define the formulas

ψq
≺(α, β), which tests whether the location in Tα is less than the one in Tβ w. r. t. its q-

component (assuming singleton teams Tα and Tβ), and ψq
≡(α, β) which checks for equality

of the respective component:

ψq
≺(α, β) := � |αq |βqζ∗k−1(α, β) ψq

≡(α, β) := � |αq |βqχ∗k−1(α, β)

For this purpose, ψq
≺ is built upon the formula ζ∗k−1 from Theorem 6.3, while ψq

≡ checks for
equality with the help of χ∗k−1 from Theorem 4.4.

I Claim (a). Let K be a structure with a team T and disjoint scopes α and β.
Suppose w ∈ Tα and v ∈ Tβ, where `(w) = (iw, jw) and `(v) = (iv, jv). Then:

Tα,βw,v � ψ
t
≡(α, β) ⇔ iw = iv Tα,βw,v � ψ

p
≡(α, β) ⇔ jw = jv.

Moreover, if α, β, s0, . . . , sk are disjoint scopes in K and (K, T ) is a k-staircase, then:

Tα,βw,v � ψ
t
≺(α, β) ⇔ iw < iv Tα,βw,v � ψ

p
≺(α, β) ⇔ jw < jv.

Next, we construct formulas that check whether a given team is a grid, pre-tableau, or a
tableau, respectively. To check that every location (i, j) ∈ {1, . . . , N}2 of the grid occurs as
`(w) of some w ∈ T , we quantify over all pairs (∆′,∆′′) ∈ P(∆k−1)2. To cover all these sets
of types we can quantify, for instance, over the images of all points of Tsk . As we cannot

http://dx.doi.org/10.1016/j.ic.2016.07.008
http://dx.doi.org/10.1109/LICS.2017.8005094
http://dx.doi.org/10.1016/j.apal.2016.03.003
http://dx.doi.org/10.1016/j.apal.2017.01.007
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pick two subteams from the same scope at once, we enforce a k-canonical copy Ts′
k
of Tsk in

the spirit of Theorem 5.4:

canon′ := ρk0(s0) ∧
k∧

m=1
ρk−mm (sm−1, sm) ∧ ρ0

k(sk−1, s
′
k)

I Claim (b). If s0, . . . , sk, s
′
k are disjoint scopes in K, then (K, T ) � canon′ if and only if

(K, T ) is a k-staircase and Ts′
k
is k-canonical.

Moreover, canon′ ∧ scopesk({s0, . . . , sk, s
′
k})∧�k+1⊥ is satisfiable, but is only satisfied by

k-staircases (K, T ) in which both Tsk and Ts′
k
are k-canonical. Furthermore, both formulas

are constructible in space O(log(|Φ|+ k)).

The next formulas define grids resp. pre-tableaus.

ψpair(α) := �
[(
|αt χ∗k−1(sk, α)

)
∧
(
|αp χ∗k−1(s′k, α)

)]
ψgrid(α) :=

(
α ↪→

∨
e∈Ξ

e ∧
∧
e′∈Ξ
e′ 6=e

¬e′)
)
∧ ∀1

sk
∀1
s′
k
∃1
α ψpair(α)

ψpre-tableau(α) := ψgrid(α) ∧ ∀1
sk
∀1
s′
k

∧
e∈Ξ
∃1
α

(
ψpair(α) ∧ (α ↪→ e)

)
In all subsequent claims, we always assume that T is a team in a Kripke structure K

such that (K, T ) satisfies canon′ ∧�k+1⊥. Moreover, all stated scopes are always assumed
pairwise disjoint in K (as we can enforce this later in the reduction with scopesk(· · · )).

I Claim (c). T � ψgrid(α) if and only if Tα is a grid and T � ψpre-tableau(α) if and only if
Tα is a pre-tableau.

The other special case of a grid, that is, a tableau, requires a more elaborate approach to
define in MTL. The difference to a grid or pre-tableau is that we have to quantify over all
pairs (w,w′) of points in T , and check that they agree on Ξ if `(w) = `(w′). However, as
discussed before, while ∀1 can quantify over all points in a team, it cannot quantify over pairs.
As a workaround, we consider not only a tableau Tα, but also a second tableau that acts as a
copy of Tα. Formally, for grids Tα, Tβ , let Tα ≈ Tβ denote that for all pairs (w,w′) ∈ Tα×Tβ
it holds that `(w) = `(w′) implies c(w) = c(w′).

As ≈ is symmetric and transitive, Tα ≈ Tβ in fact implies both Tα ≈ Tα and Tβ ≈ Tβ , and
hence that both Tα and Tβ are tableaus such that CTα = CTβ , where CTα , CTβ : {1, . . . , N}2 →
Γ ∪ (Q× Γ) are the induced runs as discussed on p. 15.

ψtableau(α) := ψgrid(α) ∧ ∃⊆γ0
ψgrid(γ0) ∧ ψ≈(α, γ0)

ψ≈(α, β) :=∀1
α∀1

β

((
ψt
≡(α, β) ∧ ψp

≡(α, β)
)

_6
e∈Ξ

((α ∨ β) ↪→ e)
))

In the following claim (and in the subsequent ones), we use the scopes γ0, γ1, γ2, . . . as
“auxiliary pre-tableaus”. Later, we will also use them as domains to quantify extra locations
or rows from. (The index of γi is incremented whenever necessary to avoid quantifying from
the same scope twice.) For this reason, from now on we always assume, for sufficiently large
i, that Tγi is a pre-tableau. This can be later enforced in the reduction with ψpre-tableau(γi).

I Claim (d). T � ψtableau(α) if and only if Tα is a tableau.
For grids Tα, Tβ, it holds T � ψ≈(α, β) if and only if Tα ≈ Tβ.

CSL 2018
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To ascertain that a tableau contains a run of M , we have to check whether each row indeed is
a configuration of M and whether consecutive configurations adhere to the transition relation
δ of M . For the latter, in the spirit of Cook’s theorem [5], it suffices to consider all legal
windows in the grid, i.e., cells that are adjacent as follows, where e1, . . . , e6 ∈ Γ ∪ (Q× Γ):

e1 e2 e3

e4 e5 e6

If, say, (q, a, q′, a′, R) ∈ Q× Γ×Q× Γ× {L,R,N} is a transition – M switches to state
q′ from q, replacing a on the tape by a′, and moves to the right – then the windows obtained
by setting e1 = e4 = b, e2 = (q, a), e5 = a′, e3 = b′, e6 = (q′, b′) are legal for all b, b′ ∈ Γ.
Using this scheme, δ is completely represented by some constant finite set win ⊆ Ξ6 of tuples
(e1, . . . , e6) that represent the allowed windows in a run of M .

Let us next explain how adjacency of cells is expressed. Suppose that two points w ∈ Tα
and v ∈ Tβ are given. That v is the immediate (t- or p-)successor of w then means that no
element of the order exists between them. Simultaneously, w and v have to agree on the
other component of their location, which is expressed by the first conjunct below. Formally,
if q ∈ {t, p} and q ∈ {t, p} \ {q}, then we define:

ψq
succ(α, β) := ψq

≡(α, β) ∧ ψq
≺(α, β) ∧ ∼∃1

γ0

(
ψq
≺(α, γ0) ∧ ψq

≺(γ0, β)
)

I Claim (e). If w ∈ Tα and v ∈ Tβ, then:

Tα,βw,v � ψ
t
succ(α, β)⇔ ∃i, j ∈ {1, . . . , N} : `(w) = (i, j) and `(v) = (i+ 1, j)

Tα,βw,v � ψ
p
succ(α, β)⇔ ∃i, j ∈ {1, . . . , N} : `(w) = (i, j) and `(v) = (i, j + 1)

In this vein, we proceed by quantifying windows in the tableau Tα by quantifying elements
from six tableaus Tγ1 , . . . , Tγ6 that are copies of Tα. For this purpose, we abbreviate

∃≈αγi ϕ := ∃⊆γi ψgrid(γi) ∧ ψ≈(α, γi) ∧ ϕ.

Intuitively, under the premise that Tγi is a pre-tableau and Tα is a tableau, it “copies the
tableau Tα into Tγi” by shrinking Tγi accordingly. This is proven analogously to Claim (d).
The next formula states that the picked points are adjacent as shown in the picture below:

ψwindow(γ1, . . . , γ6) :=
∧

i∈{1,2,3}

ψt
succ(γi, γi+3) ∧ ψp

succ(γ1, γ2) ∧ ψp
succ(γ2, γ3)

Based on the above two, the formula defining legal tableaus follows.

ψlegal(α) := ψtableau(α) ∧ ∃≈αγ1
· · · ∃≈αγ6

ϑ1 ∧ ϑ2 ∧ ϑ3

We check that no two distinct cells in any row both contain a state of M :

ϑ1 := ∀1
γ1
∀1
γ2

(
ψt
≡(γ1, γ2) ∧ ψp

≺(γ1, γ2)
)

_∧
(q1,a1),(q2,aq)∈Q×Γ

∼
(
(γ1 ↪→ c−1(q1, a1)) ∧ (γ2 ↪→ c−1(q2, a2)

))
We also check that every row contains a state. Intuitively, ∀1

γ1
fixes some row and ∃1

γ2
ψt
≡(γ1, γ2)

searches that particular row for a state:

ϑ2 := ∀1
γ1
∃1
γ2
ψt
≡(γ1, γ2) ∧ 6

(q,a)∈Q×Γ

(γ2 ↪→ c−1(q, a))
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Finally, every window must be valid:

ϑ3 := ∀1
γ1
· · · ∀1

γ6

(
ψwindow(γ1, . . . , γ6) _ 6

(e1,...,e6)∈win

6∧
i=1

(γi ↪→ ei)
)

I Claim (f). T � ψlegal(α) iff Tα is a legal tableau, i.e., CTα exists and is a run of M .

To now encode the initial configuration on input x = x1 · · ·xn in a tableau, we access the
first n cells of the first row and assign the respective letter of x, as well as the initial state to
the first cell. Moreover, we assign [ to all other cells in that row. For each q ∈ {t, p}, we can
check whether the location of a point in Tα is minimal in its q-component:

ψq
min(α) := ∼∃1

γ0
ψq
≺(γ0, α)

This enables us to fix the first row of the configuration:

ψinput(α) := ∃≈αγ1
· · · ∃≈αγn+1

∃1
γ1
· · · ∃1

γnψ
t
min(γ1) ∧ ψp

min(γ1) ∧
(
γ1 ↪→ c−1(q0, x1)

)
n∧
i=2

ψp
succ(γi−1, γi) ∧

(
γi ↪→ c−1(xi)

)
∧ ∀1

γn+1

((
ψt
≡(γn, γn+1)) ∧ ψp

≺(γn, γn+1)
)

_
(
γn+1 ↪→ c−1([)

))
I Claim (g). Let Tα be a tableau. Then T � ψinput(α) if and only if CTα(1, 1) = (q0, x1),
CTα(1, i) = xi for 2 ≤ i ≤ n, and CTα(1, i) = [ for n < i ≤ N .

Until now, we ignored the fact that M alternates between universal and existential
branching polynomially often. To simulate this, we quantify polynomially many tableaus in
an alternating fashion, each containing a part of the computation of M .

Each of these tableaus should possess a tail configuration, which is the configuration
where M either accepts, rejects, or alternates from existential to universal branching or vice
versa. Formally, a number i ∈ {1, . . . , N} is a tail index of C if there exists j such that either
1. C(i, j) has an accepting or rejecting state,
2. or C(i, j) has an existential state and and there are i′ < i and j′ with a universal state in

C(i′, j′),
3. or C(i, j) has a universal state and there are i′ < i and j′ with an existential state in

C(i′, j′).
The least such i is called first tail index, and the corresponding configuration is the first tail
configuration.

The idea is that we can split the computation of M into multiple tableaus if any tableau
(except the initial one) contains a run that continues from the previous tableau’s first tail
configuration.

We formalize the above as follows. Assume that Tα is a tableau, and that Tβ = {w} with
`(w) = (i, j) for some i. Then the formula ψtail(α, β) is meant to be true if and only if the
i-th row of CTα is a tail configuration. Roughly speaking, with the parameters α and β we
pass to ψtail(α, β) a tableau (viz. Tα) and the index of a row (viz. i). By using the shortcut

Q′-state(β) := 6
(q,a)∈Q′×Γ

(β ↪→ c−1(q, a)),

we check if a given singleton Tβ = {w} encodes an accepting, rejecting, existential, universal,
or an arbitrary state by setting Q′ to Qacc, Qrej, Q∃, Q∀ or Q, respectively. As a result, we
can define:

ψfirst-tail(α, β) := ψtail(α, β) ∧ ∼∃1
γ1

(
ψt
≺(γ1, β) ∧ ψtail(α, γ1)

)
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ψtail(α, β) := ∃≈αγ0
∃1
α ψ

t
≡(α, β) ∧Q-state(α) ∧

[
Qacc-state(α) 6Qrej-state(α) 6

∃1
γ0

(
ψt
≺(γ0, α) ∧

(
Q∃-state(α) ∧Q∀-state(γ0)) 6 (Q∀-state(α) ∧Q∃-state(γ0)

))]
I Claim (h). Suppose that Tα is a tableau, Tβ = {w}, and `(w) = (i, j).

Then T � ψtail(α, β) if and only if i is a tail index of CTα ; and T � ψfirst-tail(α, β) if and
only if i is the first tail index of CTα .

Formally, given a run C of M that has a tail configuration, C accepts if the state q in its
first tail configuration is in Qacc, C rejects if q ∈ Qrej, and C alternates otherwise. That a
run of the form CTα accepts resp. rejects is expressed by

ψacc(α) := ∃≈αγ2
∃1
γ2
Qacc-state(γ2) ∧ ψfirst-tail(α, γ2),

ψrej(α) := ∃≈αγ2
∃1
γ2
Qrej-state(γ2) ∧ ψfirst-tail(α, γ2).

In this formula, first the tableau Tα is copied to Tγ2 to extract with ∃1
γ2

the world
carrying an accepting/rejecting state, while ψfirst-tail(α, γ2) ensures that no alternation or
rejecting/accepting state occurs at some earlier point in CTα . If the first tail configuration of
the run contains an alternation, and if the run was existentially quantified, then it should be
continued in a universally quantified tableau, and vice versa. The following formula expresses,
given two tableaus Tα, Tβ , that CTβ is a continuation of CTα , i.e., that the first configuration
of CTβ equals the first tail configuration of CTα . In other words, if i is the first tail index of
CTα , then CTα(i, j) = CTβ (1, j) for all j ∈ {1, . . . , N}.

ψcont(α, β) := ∃1
γ2
ψfirst-tail(α, γ2) ∧ ∀1

α∀1
β[(

ψt
min(β) ∧ ψt

≡(α, γ2) ∧ ψp
≡(α, β)

)
_
∧
e∈Ξ

(α ∨ β) ↪→ =(e)
]

The above formula first obtains the first tail index i of CTα and stores it in a singleton
y ∈ Tγ2 . Then for all worlds w ∈ Tα and v ∈ Tβ , where v is t-minimal (i.e., in the first row)
and w is in the same row as y, and which additionally agree on their p-component, the third
line states that w and v agree on Ξ. Altogether, the i-th row of CTα and the first row of CTβ
then have to coincide.

The number of alternations is polynomially bounded, i.e., M performs at most r(n)− 1
alternations for a polynomial r. In other words, we require at most r = r(n) tableaus, which
we call α1, . . . , αr. In the following, the formula ψrun,i describes the behaviour of the i-th
run. W.l.o.g. r is even and q0 ∈ Q∃. We may then define the final run by

ψrun,r := ∀⊆αr
[(
ψlegal(αr) ∧ ψcont(αr−1, αr)

)
_
(
∼ψrej(αr) ∧ ψacc(αr)

)]
.

For 1 < i < r and even i, let

ψrun,i := ∀⊆αi
[(
ψlegal(αi) ∧ ψcont(αi−1, αi)

)
_
(
∼ψrej(αi) ∧

(
ψacc(αi) 6 ψrun,i+1

))]
and for 1 < i < r and odd i

ψrun,i := ∃⊆αi
[
ψlegal(αi) ∧ ψcont(αi−1, αi) ∧ ∼ψrej(αi) ∧

(
ψacc(αi) 6 ψrun,i+1

)]
.

Analogously, the initial run is described by

ψrun,1 := ∃⊆α1

(
ψlegal(α1) ∧ ψinput(α1) ∧ ∼ψrej(α1) ∧

(
ψacc(α1) 6 ψrun,2

))
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Let us state the set Ψ ⊆ PS of all relevant scopes and the set Ψ′ ⊆ Ψ of scopes that
accommodate pre-tableaus:

Ψ := {si | 0 ≤ i ≤ k} ∪ {s′k} ∪ {γi | 0 ≤ i ≤ n+ 1} ∪ {αi | 1 ≤ i ≤ r}
Ψ′ := {γi | 0 ≤ i ≤ n+ 1} ∪ {αi | 1 ≤ i ≤ r}

W.l.o.g. n ≥ 5, as γ1, . . . , γ6 are always used. Then we ultimately define

ϕx := canon′ ∧ scopesk(Ψ) ∧
∧
p∈Ψ′

ψpre-tableau(p) ∧ ψrun,1,

which is an MTLk-formula since we deliberately omitted the conjunct �k+1⊥ here. However,
by Lemma 5.5, ϕx is satisfiable if and only if ϕx ∧�k+1⊥ is satisfiable. Finally, it is not hard
using the above claims to prove that ϕx ∧�k+1⊥ is satisfiable if and only if M accepts x.
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