
An Algebraic Decision Procedure for Two-Variable
Logic with a Between Relation
Andreas Krebs
Universität Tübingen, Germany

Kamal Lodaya
The Institute of Mathematical Sciences, Chennai, India

Paritosh K. Pandya
Tata Institute of Fundamental Research, Mumbai, India

Howard Straubing
Boston College, USA

Abstract
In earlier work (LICS 2016), the authors introduced two-variable first-order logic supplemented
by a binary relation that allows one to say that a letter appears between two positions. We
found an effective algebraic criterion that is a necessary condition for definability in this logic,
and conjectured that the criterion is also sufficient, although we proved this only in the case of
two-letter alphabets. Here we prove the general conjecture. The proof is quite different from
the arguments in the earlier work, and required the development of novel techniques concerning
factorizations of words. We extend the results to binary relations specifying that a factor appears
between two positions.

2012 ACM Subject Classification Theory of computation→ Algebraic language theory, Theory
of computation → Finite Model Theory

Keywords and phrases two-variable logic, finite model theory, algebraic automata theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.28

Acknowledgements We would like to thank Boston College, IMSc and TIFR for hosting our
collaborative visits.

1 Introduction

In this paper we work with finite word models. The first-order definable languages – those
definable in the logic FO[<]– were shown equivalent to starfree expressions by the work
of Schützenberger [14], McNaughton and Papert [9]. The algebraic viewpoint established
decidability of the definability question, that is, whether a given regular language is first-order
definable. The first level of the quantifier alternation hierarchy was characterized by Knast
[7]. Recently Place and Zeitoun characterized some more levels of the hierarchy [12, 13].
Two-variable logic was algebraically characterized by Thérien and Wilke [20]. They also
showed decidability of its definability, and also of levels of the until hierarchy of temporal
logic LTL, which was shown equivalent to first-order logic by Kamp [6].

In our earlier paper [8] we extended two-variable logic over finite words with between
relations and studied this logic FO2[<, bet] and associated temporal logics. A between
relation a(x, y), for letters a of the finite alphabet, says that there is a position z labelled
with the letter a such that x < z < y. The monoid variety MeDA is obtained by applying
an operation Me (see Section 2) to the variety DA of two-variable logic [15]. We showed that

© Andreas Krebs, Kamal Lodaya, Paritosh Pandya, and Howard Straubing;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

∆2[<] = FO2[<]

Π2[<]

BΣ2[<]63U2

∆3[<]3U2, 63BB2

Π3[<]3BB2

FO[<]

BΣ1[<,Suc]

∆2[<,Suc] = FO2[<,Suc]63BB2

Π2[<,Suc]3BB2

BΣ2[<,Suc] 63U2

∆3[<,Suc]3U2 FO2[<, bet]63BB2

FO2[<, betfac]3BB2

Figure 1 Dot depth and quantifier alternation hierarchies. The language U2 over alphabet
A = {a, b, c} is (A∗ \ (A∗ac∗aA∗)) ∪ (A∗ \ (A∗bc∗bA∗))ac∗aA∗, it consists of words which have no
occurrence of bc∗b before an occurrence of ac∗a. The language BB2 over {a, b} is (a(ab)∗b)∗.

MeDA is an upper bound for FO2[<, bet], cutting across the quantifier alternation and until
nesting depth hierarchies. We conjectured that this bound is tight and were able to show
this for alphabets of size two. In this paper we establish this conjecture. Hence definability
of a regular language in FO2[<, bet] is decidable. The variety MeDA first appeared in a
paper by Weil [22]. Thus we provide a logical characterization of this variety.

The proof is somewhat intricate. We develop new techniques of factorization which are
amenable to simulation using logic. At the end we rely on some hard algebra: the theorem
on the locality of variety DA, first shown by Almeida [1, 11]. Building on these techniques
we show another main result, that the semigroup variety MeDA ∗D, obtained by applying
to MeDA semidirect products with semigroups for the definite languages, characterizes a
simple extension of our logic FO2[<, bet] to between relations 〈u〉(x, y), for words u over the
alphabet, which say that u is a factor, or substring, contained at positions between x and y.
(So there are infinitely many between relations in this extended logic FO2[<, betfac].) The
techniques we use here come from early work on providing a “delay” bound to varieties such
as DA*D [17, 21].

For the reader familiar with the lower levels of the quantifier alternation hierarchy of
first-order logic (see [4] for a survey), these are the classes on the right in Figure 1. Those
on the left are the classes of the original dot depth hierarchy of Cohen and Brzozowski [3].
The logics which we have introduced in [8] and in this paper are at top centre. They have a
nonempty intersection with every level of both the hierarchies. The two example languages
have played a prominent role in our work.

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:3

We also gave in [8] a tight complexity of Expspace for satisfiability of FO2[<, bet]. The
techniques extend to provide the same complexity bounds for FO2[<, betfac]. This is an
exponential blowup over LTL, but as noted in our earlier paper, these logics allow succinct
binary representation of threshold constraints.

2 Setup

We denote by FO2[<,Suc] two-variable first-order logic with the successor relation Suc and
the order relation <, interpreted in finite words over a finite alphabet A. (As usual, this
stands for both the set of formulas, and the family of languages over A defined by such
formulas.) Variables in first-order formulas are interpreted as positions in a word, and for
each letter a ∈ A there is a unary relation a(x), interpreted to mean ‘the letter in position
x is a’. Thus sentences in this logic define properties of words, or, what is the same thing,
languages L ⊆ A∗. Two-variable logic over words has been extensively studied, and has many
equivalent characterizations in terms of temporal logic, regular languages, and the algebra of
finite semigroups. (See, for instance, [19] and the many references cited therein.)

In [8] we extended FO2[<,Suc] to express ‘betweenness’ with only two variables. More
precisely, predicates

a(x, y) = ∃z(a(z) ∧ x < z ∧ z < y),

which assert that there is an occurrence of the letter a strictly between x and y, were added
to form the logic FO2[<, bet]. We also showed that counting the number of occurrences of
the letter between x and y upto a threshold is definable in FO2[<, bet]. In Section 7 we
will consider a further extension of this logic where we allow specification of factors between
positions x and y.

We showed that languages defined by sentences of this logic satisfy an algebraic condition,
which we explain next. For further background on the basic algebraic notions in this section,
see Pin [10].

A semigroup is a set together with an associative multiplication. It is a monoid if it also
has a multiplicative identity 1.

All of the languages defined by sentences of FO[<] are regular languages. Our characteriz-
ation of languages in these logics is based on properties of the syntactic semigroup S(L) (resp.
syntactic monoid M(L)) of a regular language L. This is the transition semigroup (monoid)
of the minimal deterministic automaton recognizing L, and therefore finite. Equivalently,
S(L) is the smallest semigroup S that recognizes L, that is: There is a homomorphism
h : A+ → S and a subset X ⊆ S such that L = h−1(X) (and similarly for monoids).

Let S be a finite semigroup. An idempotent e ∈ S is an element satisfying e2 = e.
If S is a finite semigroup and s1, s2 ∈ S, we write s1 ≤J s2 if s1 = rs2t for some

r, t ∈ S. This is a preorder, the so-called J -ordering on S. Let E(S) denote the set of all
idempotents in S. If e ∈ E(S), then Me denotes the submonoid of M generated by the set
{s ∈ S : e ≤J s}. The operation Me appears in an unpublished memo of Schützenberger
cited by Brzozowski [2]. He uses the submonoid generated by the generators of an idempotent
element e of a semigroup. For example, if abc mapped to an idempotent element e, Me would
correspond to the language (a+ b+ c)∗.

The operation can be used at the level of semigroup and monoid classes. Thus the variety
MeDA has monoids M , all of whose submonoids of the form eMee for e ∈ E(M), are in the
variety DA. Our main result is:

I Theorem 1. Let L ⊆ A∗. L is definable in FO2[<, bet] iff M(L) ∈MeDA.

CSL 2018

28:4 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

In our earlier paper [8], we proved necessity of the algebraic condition, but only proved
sufficiency in the case |A| = 2. Sections 3 to 6 are devoted to the proof of sufficiency for
general alphabets.

The logical machinery we will use is quite standard (see [18]). In our paper [8], we defined
Ehrenfeucht-Fraïssé games for the logic FO2[<, bet]. We use the games in this paper to prove
the existence of an FO2[<, bet] formula θ, by the equivalent formulation that there is an
integer k > 0 such that, if (w, i), (w′, j) are marked words in which i and j are inequivalent,
then Player 1 has a winning strategy in the k-round game for FO2[<, bet] in (w, i), (w′, j).
That is, (w, i) |= θ, (w′, j) 6|= θ, so Player 1 has a winning strategy in the k-round game,
where k is the quantifier depth of θ. Conversely, suppose Player 1 always has such a winning
strategy. Consider all marked words (w, i), and take the union of all the ≡k-classes of these
wi. This union is defined by a depth-k formula which we call θ. If there were any (w′, j) |= θ

where j is inequivalent, then we would have some (w, i) with (w, i) ≡k (w′, j), contrary to
hypothesis. So θ is satisfied by exactly the required (w, i).

Notation. If w ∈ A∗, then we write α(w) to denote the set of letters that occur in w. We
will interpret a(x, y) to be false whenever y ≤ x.

3 The factorization sequence

We are going to prove Theorem 1, that our algebraic condition from [8] indeed holds over all
alphabets. We only need to prove one direction.

I Lemma 2 (MeDA characterizes FO2[<, bet]). Suppose finite monoid M satisfies the
property e ·Me · e ∈ DA for all e ∈ E(M). Then for all m ∈M, h−1(m) ∈ FO2[<, bet].

This will be proved by induction on the alphabet size. It is trivial for a one-letter alphabet,
so assume |A| > 1 and that the theorem holds for all strictly smaller alphabets.

The bulk of the proof is combinatorics on words and finite model theory. We only use
the algebra at the end.

For now we distinguish a letter a ∈ A, and restrict our attention to a-words w with the
following three properties:

α(w) = A

a is the first letter of w
a is the last letter to appear in a right-to-left scan of w; that is, w = xay where
α(y) = A\{a}.

We describe an algorithm for constructing a sequence of factorizations for any a-word.
Each step of the algorithm is divided into two sub-steps, and we will refer to each of these
sub-steps as a factorization scheme. The factors that occur in each scheme are formed by
concatenating factors from the previous scheme. That is, at each step, we clump smaller
factors into larger ones, so the number of factors decreases (non-strictly) at each step.

We begin by putting a linear ordering < on the set of proper subalphabets of A that
contain the letter a. This will be a topological sort of the subset partial order. That is, if
B,C are two such subalphabets with B (C, then B < C, but otherwise the ordering is
arbitrary. For example, with A = {a, b, c, d}, we can take

{a} < {a, b} < {a, c} < {a, b, c} < {a, d} < {a, b, d} < {a, c, d},

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:5

as one of many possibilities. One way to think about our techniques is as a refinement of
Thérien and Wilke’s combinatorial characterization of DA [20] which only used the inclusion
order over an alphabet.

Here is the algorithm, which is the new development over DA:
Initially factor w as au1 · · · auk, where each α(ui) is properly contained in A.
For each proper subalphabet B of A with a ∈ B, following the linear order

For each factor u such that α(u) = B, combine all sequences of consecutive factors of
this kind into a single factor. We say that B is now collected.
For each factor u such that α(u) = B, combine each such factor with the factor
immediately to its right. We say that B is now capped.

Here is an example. We begin with an a-word and its initial factorization:

adccdcc · adc · a · a · a · addccdcccdbcdc · a · ac · abcbbd

We use the ordering in the example above. We start with B = {a} and collect B:

adccdcc · adc · aaa · addccdcccdbcdc · a · ac · abcbbd

then cap it:

adccdcc · adc · aaaaddccdcccdbcdc · aac · abcbbd

We choose B = {a, b}. There is nothing to do here, because no factor contains just a and
b. B = {a, c} is already collected, because there is no pair of consecutive factors with this
alphabet, so we cap it:

adccdcc · adc · aaaaddccdcccdbcdc · aacabcbbd

The next subalphabet in order that occurs as a factor is {a, c, d}. We collect:

adccdccadc · aaaaddccdcccdbcdc · aacabcbbd

then cap:

adccdccaddadaaaaddccdcccdbcdc · acabcbbd

Let us make a few general observations about this algorithm: Every proper subset of A
containing a that occurs as the alphabet of a factor will eventually be capped, because the
rightmost factor auk of the initial factorization contains all the letters of A. Once B has been
collected, there is no pair of consecutive factors with content B. Once B has been capped,
there are no more factors with content B nor with strictly smaller content. Thus at the end
of the process, every factor contains all the letters of A.

Note as well that immediately after a subalphabet B is collected to create a (possibly)
larger factor u, both the factor immediately to the right of u and immediately to the left of
u must contain a letter that is not in u.

CSL 2018

28:6 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

4 Starts and jumps

We establish below several model-theoretic properties of the factorization schemes produced
by the above algorithm.

I Lemma 3.
(a) There is a formula start in FO2[<, bet] such that for all a-words w, (w, i) |= start(x)

if and only if i is the first position in a factor of w.
(b) Let φ1(x) be a formula in FO2[<, bet]. Then there is a formula next in FO2[<, bet] with

the following property: Let w be an a-word and let i be the first position in some factor of
w that is not the rightmost factor. Then (w, i) |= φ1(x) if and only if (w, isucc) |= next(x),
where isucc is the first position in the next factor of w. We also define the analogous
property, with ‘rightmost’ replaced by ‘leftmost’, next by previous, and isucc by ipred.

Proof. We prove these properties by induction on the construction of the sequence of
factorization schemes. That is, we prove that they hold for the initial factorization scheme,
and that they are preserved in each sub-step of the algorithm. For the induction, we will
use Ehrenfeucht-Fraïssé games for the logic FO2[<, bet] to argue for the existence of the
formula start = startτ (see Section 2).

We note that the claim in Item (b) implies the condition on games (possibly with different
parameters). If for every formula φ1 there is a corresponding ‘successor’ formula next, then
there is some constant c such that qd(next) ≤ c + qd(φ1), where qd denotes quantifier
depth. Suppose that Player 2 wins the (k + c)-round game in (w, isucc), (v, isucc). Then
(w, isucc) ≡k+c (v, jsucc). Consider the formula φ1 that defines the ≡k-class of (w, i). Then
(w, isucc) |= next, so (v, jsucc) |= next. Thus (v, j) |= φ1, so (w, i) ≡k (v, j), and Player 2
wins the k-round game in these words.

We begin with Item (a): For the initial factorization, we simply take start(x) to be a(x):
the factor starts are exactly the positions that contain a. We now assume that τ is some
factorization scheme in the sequence, and that for the preceding factorization scheme σ, the
required formula, which we denote startσ, exists.

To establish this formulation, let (w, i), (w′, j) be as described. Since, by the inductive
hypothesis, the formula startσ for the preceding scheme σ exists, we can treat this as if
it is an atomic formula, in describing our game strategy. Observe that i must also be the
start of a factor of w according to the previous factorization scheme σ. We write this as
startσ(i) rather than the more verbose (w, i) |= startσ(x). If j does not satisfy startσ(j),
then by induction we are done, and can take the number k of rounds to be the quantifier
depth of startσ. Thus j is the start of a factor with respect to the scheme σ, not with respect
to τ. This can happen in one of two ways, depending on whether the most recent sub-step
collected a subalphabet B, or capped a subalphabet B.

In the first case, we will describe a winning strategy for Player 1 in a game that lasts
just a few more rounds than the game for the previous scheme. Position j was the start of
a factor in the prior scheme σ, and has been collected into a larger factor that begins at
position to the left of j. First suppose that i is the start of a factor with content different
from B. Then this factor must contain some c /∈ B. Player 1 then wins as follows: He moves
right in (w′, j), jumping to the start j′ of the next factor (which must satisfy startσ(j′)). In
so doing, all the letters he jumps belong to B. Player 2 must also jump to the right in (w, i),
and must also land on the start of a factor in the scheme σ; otherwise, by induction, Player
1 will win the game in the next k rounds. But to do so, Player 2 will have to jump over a
position containing c, so she cannot legally make this move. Thus i must be the start of

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:7

Figure 2 Game-based proof of definability of factor starts. The figure shows the two words
just after the step collecting the subalphabet B. We suppose i, j are factor starts for the preceding
factorization scheme σ, and that i, but not j, is a factor start for the present scheme τ. This means
that the factor with respect to σ beginning at j was joined to the previous factor as a result of
the collection. If Player 1 moves to the start j′ of the next factor of w′ with respect to σ (blue
arrow), then he jumps over precisely the letters of B. Thus for Player 2 to have a response, i must
be the start of a factor with alphabet B. But this means that the factor with respect to σ in w that
precedes i must contain a letter not in B. As a result, Player 2 cannot reply to a move by Player 1
to the start j′′ of the factor with respect to σ that precedes j (red arrow).

a factor with content B. In this case, Player 1 moves left in (w′, j) to j′′, the start of the
previous factor with respect to σ. In doing so, he jumps over letters in B. Now Player 2 must
also jump to the left in (w, i) to a position that was the start of a factor with respect to σ,
but must jump over a letter not in B to do this, so Player 1 wins again. (See Figure 2.)

In the second case, where B was capped, j was the start of a factor that immediately
followed a newly-collected factor with content B. Player 1 jumps left to j′, the start position
of this factor, and in doing so jumps over a segment with content B. Thus Player 2 must
jump to the start of a factor with respect to σ. For this to be a legal move, the segment she
jumps must have content B. However, this is impossible, for any factor with this content in
the scheme σ would have been capped by the following factor, so that i cannot be the start
of a factor for τ. (Figure 3.)

Now for Item (b). Again, we use a game argument. We claim it will be enough to
establish the following for sufficiently large values of k: Let (w, i), (v, j) be marked words,
where i, j are the starts of factors, and let (w, isucc), (v, isucc) be the same words, where the
indices isucc, jsucc mark the start of the successor factors. If Player 1 has a winning strategy
in the k-round game in (w, i), (v, j), then he has a winning strategy in the k′-round game in
(w, isucc), (v, isucc) for some k′ that depends only on k and the alphabet size, and not on v
and w. Equivalently, if Player 2 wins in (w, isucc), (v, isucc) then she wins in (w, i), (v, j). Of
course, there is the analogous formulation for previous.

So we will suppose Player 1 has a winning strategy in the k-round game in (w, i), (v, j),
where k is at least as large as the quantifier depth of startτ . We will prove the existence
of a strategy in (w, isucc), (v, jsucc) for the k′-round game, where k′ is larger than k. (By
tracing through the various cases of the proof carefully, you can figure out how large k′
needs to be.) What we will show in fact is that for each τ, Player 1 can force the starting
configuration (w, isucc), (v, jsucc) to the configuration (w, i), (v, j), and from there apply his
winning strategy in (w, i), (v, j).

CSL 2018

28:8 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

Figure 3 This shows the case just after the step that caps the subalphabet B. Again suppose i, j
are factor starts for the preceding factorization scheme σ, and that i, but not j, is a factor start
for the present scheme τ. If Player 1 moves in v from j to j′, the start of the factor preceding j
with respect to σ, then only letters in B are jumped. If Player 2 moves left from i to another factor
start with respect to σ, she will have to jump over letters that are not in B, because all factors with
alphabet B have been capped; thus Player 2 cannot respond to this move.

The base step is where τ is the initial factorization scheme. Here the factor starts are
just the positions where the letter a occurs. Player 1 begins by jumping from isucc to i. For
Player 2 to respond correctly, she must jump from jsucc to j, because she is required to move
left and land on a position containing a while jumping over a segment that does not contain
the letter a.

So now we will suppose that τ is not the initial factorization scheme. We again denote
the previous factorization scheme by σ. We assume that the property in Item (b) holds for σ.
Thanks to what we proved above, we know that the property in Item (a) holds for both τ
and σ. This means that we can treat startτ and startσ essentially as atomic formulas.

If isucc is also the successor of i (that is, the start of the next factor) with respect to the
previous factorization scheme σ, and jsucc is the successor of j, then we have the desired
result by induction. Thus we may suppose that one or both of the factor starts, either
between i and isucc or between j and jsucc, or both, were eliminated in the most recent
sub-step of the algorithm.

Let us suppose first that the most recent sub-step was a collection step, collecting the
subalphabet B. Player 1 jumps from isucc left to i. The set of jumped letters is B. Player 2
must respond by jumping to some j′ < jsucc where j′ satisfies startτ . If j′ < j, then the set
of jumped letters necessarily contains a letter not in B, so such a move is not legal. Thus
j′ = j. Player 1 now follows his winning strategy in (w, i), (v, j). The identical strategy works
for the predecessor version, because any factor following the sequence of collected factors
must contain a letter not in B.

So suppose that the most recent sub-step was a capping step, and that the subalphabet B
was capped. We may suppose that there is some i′ with i < i′ < isucc such that startσ(i′), but
not startτ (i′). Thus the interval from i to i′ − 1 has content B and constitutes a factor that
was collected during the prior sub-step, before being capped in the present one. Player 1 uses
his strategy from the previous factorization scheme to force the configuration to (w, i′), (v, j′),
where j′ is the start of the factor preceding j in the scheme σ. Observe that we must have
that j′ does not satisfy startτ because i′ does not satisfy startτ . Thus j < j′ < jsucc, so the
interval from j to j′− 1 is also a factor with content B that was collected during the previous

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:9

substep. Player 1 now moves from i′ left to i. Player 2 must respond with a move to j′′ ≤ j
such that startτ (j′′) holds. We cannot have j′′ < j, for then the set of jumped letters would
include a letter not in B. Thus j′′ = j, and the game is now in the configuration (w, i), (v, j).

The strategy for a capped step in the predecessor game uses the same idea: We may
assume there is some i′ with iprec < i′ < i such that the interval from iprec to i′−1 has content
B and constitutes a factor that was collected during the prior sub-step, before being capped
in the present one. Thus in the previous scheme σ, i′ was the successor position of iprec.
Player 1 uses his strategy from the previous scheme to force the game to the configuration
(w, i′), (v, j′), where j′ is the successor of jprec in the scheme σ. We must have the set of
jumped letters to be B in each case, so the intervals from i′ to i− 1 and j′ to j − 1 are the
caps applied in the scheme τ, and thus i is the successor of i′, and j the successor of j′, in
the scheme σ. Player 1 now uses his strategy for the scheme σ to force the game from the
configuration (w, i′), (v, j′) to (w, i), (v, j). J

5 Simulating factorization in logic

A factorization scheme σ gives a factorization σ(w) = (w1, . . . , wk) of an a-word w. This
in turn gives a word σh(w) = m1 · · ·mk ∈ M+. We say that σ admits simulations if the
following properties hold.

For each sentence ψ ∈ FO2[<,Suc] over the alphabet M , there exists a sentence φ ∈
FO2[<, bet] over the alphabet A with the following property. Let w be an a-word.

w |= φ iff σh(w) |= ψ.

For each formula ψ(x) ∈ FO2[<,Suc] with one free variable over the alphabet M, there
exists a formula φ(x) ∈ FO2[<, bet] with one free variable over the alphabet A with the
following property. Let w be an a-word, 1 ≤ i ≤ k and let ji be the position within w of
the first letter of wi in σ(w). Then

(w, ji) |= φ(x) iff (σh(w), i) |= ψ(x).

I Lemma 4 (Simulation). Each factorization scheme in our sequence admits simulations.

It is useful to have abbreviations for commonly used subformulas of FO2[<, bet]. If B is
a subalphabet of A, we write [B](x, y) to mean the conjunction of ¬c(x, y) over all c /∈ B; in
other words, ‘every letter between x and y belongs to B’. [a](x, y) is always true if y ≤ x

because a(x, y) is false whenever y ≤ x. We denote by JBK(x, y) the conjunction of [B](x, y)
together with the conjunction of b(x, y) over all b ∈ B; in other words, B is exactly the set
of letters between x and y.

Proof. The first claim in the Theorem follows easily from the second. So we will begin with
the formula ψ(x) ∈ FO2[<,Suc] over M and and show how to produce φ(x). We prove this
by induction on the construction of formula ψ. So the base case is where ψ(x) is an atomic
formula m(x), where m ∈M. This means that for each factorization scheme σ, we have to
produce a formula φm,σ(x) such that for an a-word w, (w, i) |= φm,σ(x) if and only if the
factor starting at i maps to m under h.

We do this by induction on the sequence of factorization schemes. In the initial factoriza-
tion, every factor is of the form au, where a /∈ α(u). This factor maps to m if and only if
h(u) = m′ for some m′ ∈M satisfying h(a) ·m′ = m. Since we suppose the main theorem
holds for every alphabet strictly smaller than A, there is a sentence ρ ∈ FO2[<, bet] such that

CSL 2018

28:10 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

u |= ρ if and only if h(u) = m′ where h(a) ·m′ = m. We now relativize ρ to obtain a formula
ρ′ with one free variable that is satisfied by (w, i) if and only if the factor of w starting at i
has the form au, where u |= ρ. To do this, we do a standard relativization trick, working
from the outermost quantifier of ρ inward. We can assume that all the quantifiers at the
outermost level quantify the variable y. We replace each of these quantified formulas ∃yη(y)
by ∃y(y > x ∧ ¬a(x, y) ∧ η(y)). Similarly, as we work inward, we rewrite each occurrence of
∃z′(z′ > z ∧ η) and ∃z′(z′ < z ∧ η), where {z, z′} = {x, y}, by adding the clause ¬a(z, z′) or
¬a(z′, z). In essence, each time we jump left or right to a new position, we check that in so
doing we did not jump over any occurrence of a, and thus remain inside the factor.

We now assume that τ is not the initial factorization scheme, and that the formula
φm,σ(x) exists for the preceding factorization scheme σ. We first consider the case where τ
was produced during a step that collected a subalphabet B. Observe that we can determine
within a formula whether i is the start of a factor that was produced during this collection
step, with the criterion

∃y(x < y ∧ startτ (y) ∧ JBK(x, y)).

(This includes the case where the collection is trivial because there is only one factor to
collect.) If this condition does not hold, then we can test whether the factor maps to m with
the formula produced during the preceding step. So we suppose that i is the first position
of one of the new ‘collected’ factors. Since B (A, there is a sentence ρ of FO2[<, bet]
satisfied by exactly the words over this smaller alphabet that map to m. Once again, we
must relativize ρ to make sure that whenever we introduce a new quantifier ∃x(y > x ∧ · · ·)
or ∃x(y < x ∧ · · ·) we do not jump to a position outside the factor. To do this, we can
replace ∃x(y > x ∧ · · ·) by

∃x(y > x ∧ [B](x, y) ∧ ∃x(y < x ∧ startτ (x) ∧ [B](x, y))).

In other words, we did not jump over any letter not in {a} ∪B, and there is a factor start
farther to the right that we can reach without jumping over any letter not in B. We replace
∃x(y < x ∧ · · ·) by

∃x(y < x ∧ [B](y, x) ∧ ∃x(x ≤ y ∧ startτ (x) ∧ [B](x, y))),

using essentially the same idea.
Now suppose that τ was produced during a step that capped the subalphabet B. Again,

we can write a formula that says that i is the start of a new factor produced in this process:
it is exactly the formula that said i was the start of a factor that collected B in the preceding
scheme σ. So we only need to produce a formula that says the factor of w beginning at i
maps to m under the assumption that this is one of the new ‘capped’ factors. Our factor
has the form u1u2, where u2 is the cap and u1 is the factor in which B was collected. We
consider all pairs m1,m2 such that m1 ·m2 = m. We know that there are formulas ρ1(x)
and ρ2(x) telling us that the factors in the preceding scheme σ map to m1 and m2. We use
the same formula ρ1(x), and take its conjunction with next(x), the successor formula derived
from ρ2(x) by means of Item (b) in Lemma 3. We are using the fact that the start of u2 is
the successor of the start of u1 under the preceding scheme σ.

We are almost done (and we no longer need to induct on the sequence of factorization
schemes) because FO2[<,Suc] formulas can be reduced to a few normal forms [5]. Let us
first suppose that our formula ψ has the form ∃x(Suc(x, y)∧κ(x)). The inductive hypothesis

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:11

is that there is a formula µ simulating κ. Let previous be the predecessor formula whose
existence is given by Item (b) of Lemma 3. We claim that previous simulates ψ. To see this,
suppose w is an a-word, and ji is the position where the ith factor of w begins.

Suppose (w, ji) |= previous. Then (w, ji+1) |= µ.
So (σh(w), i+ 1) |= κ, which gives (σh(w), i) |= ψ.
This implication also runs in reverse, so we have shown that previous simulates ψ. Using

the successor formula in place of the predecessor formula gives us the analogous result for ψ
in the form ∃x(Suc(y, x) ∧ κ(x)). J

6 Proof of the main lemma

Proof of Lemma 2. Again, we assume |A| > 1 and that the theorem holds for all strictly
smaller alphabets. Let m ∈ M , where M satisfies the MeDA property. We need to show
h−1(m) is defined by a sentence of FO2[<, bet]. As an overview, we will first, through a
series of quite elementary steps, reduce this to the problem of showing that for each a ∈ A
and s ∈ M, the set of a-words mapping to s is defined by a sentence of FO2[<, bet]. We
then use Lemma 4 on simulations, together with the identity LDA = DA ∗D [1] to find a
defining sentence for the set of a-words that map to s.

First note that h−1(m) =
⋃
B⊆A{w ∈ h−1(m) : α(w) = B}.

It thus suffices to find, for each subalphabet B, a sentence ψB of FO2[<, bet] defining
the set of words {w ∈ h−1(m) : α(w) = B}. We then obtain a sentence for h−1(m) as∨

B⊆A

(ψB ∧
∧
b∈B

∃xb(x) ∧
∧
b/∈B

¬∃xb(x)).

Since we obtain the sentences ψB for proper subalphabets B of A by the induction hypothesis,
we only need to find ψA.

For each w with α(w) = A, let last(w) be the last letter of w to appear in a right-to-left
scan of w. It will be enough to find, for each a ∈ A, a sentence φa of FO2[<, bet] defining
{w ∈ h−1(m) : last(w) = a}, since we then get ψA as

∃y(a(y) ∧ ∀x(x > y → ¬a(x)) ∧
∧
b 6=a
∃x(x > y ∧ b(x))) ∧ φa.

A word w with α(w) = A and last(w) = a has a unique factorization w = uv, where
α(u) = A\{a}, and v is an a-word. We consider all factorizations m = m1m2 in M . By
the inductive hypothesis, there is a sentence µ of FO2[<, bet] defining the set of all words
over A\{a} that map to m1. Suppose that we are able to find a sentence ν defining the
set of all a-words mapping to m2. We can then use a simple relativizing trick to obtain a
sentence defining all concatenations uv such that u |= µ and v |= ν. One simply modifies
each quantified subformula ∃xζ of µ and ν, starting from the outside, changing them to

∃x(¬∃y(y ≤ x ∧ a(y))) and ∃x(∃y(y ≤ x ∧ a(y))).

The conjunction of the two modified sentences now says that µ holds in the factor preceding
the first occurrence of a, and ν holds in the factor that begins at the first occurrence of a.
Take the disjunction of these conjunctions over all factorizations m1m2 of m to obtain φa.

It remains to show how to construct a sentence that defines the set of a-words that map
to a given element s of M . Let w ∈ A∗ be an a-word. Let σ be the final factorization scheme
in our sequence, so that

σ(w) = (w1, . . . , wk), σh(w) = m1 · · ·mk ∈M+.

CSL 2018

28:12 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

w
0
I I

x
I
y

x

R0

y − |v1|

R1

y − |v2|

R2 Rl

y − |vl|

Rl+1

y

I I
i1 u1

I I
i2 u2

I I
i3 u3

I I
i4 u4

I I
i5 u5

I I
i6 u6

I I
i7u7

I I
v2

I I
v1

I I
v3

I I
v1

Figure 4 Occurrence sequence for model w, x: (1) Region R1 starts at position y − |v1| where v1

is the longest negative requirement. This means any negative factor vi which starts in region R0

will finish before y. Similarly, any negative factor vi other than v1 starting in R2 will end before y.
On the other hand, any v1 starting after R0 will necessarily end after y. (2) Positive requirements
start in order u1 < u2 . . . < u7. Moreover, u1, u2, u3 start in R0, words u4, u5 start in R1 and u6

starts in R2. Finally, u7 starts in Rl+1.

In fact, each wi can be mapped to the subalphabet

N = {h(v) ∈M : α(v) = A, v ∈ aA∗},

so we can restrict to this subalphabet N of M .
The map n 7→ n extends to a homomorphism from N+ into the subsemigroup S of M

generated by the elements of N . Since the generators of S are images of words v with
α(v) = A, we have eSe ⊆ eMee, which is in DA for every idempotent e ∈ E(S) by definition
of MeDA. Locality of DA means that having all eSe in DA, the semigroup S is in DA*D.
Thus the set of words over N multiplying to s ∈ S is defined by a sentence ψ over N in
FO2[<, succ] [20]. We can take the conjunction of this with a sentence that says every
letter belongs to the alphabet N , and thus obtain a sentence ψ′ over M , also in FO2[<,Suc],
defining this same set of words. Thus by the Simulation Lemma 4, there is a sentence φ in
FO2[<, bet] that defines the set of a-words that map to s. This completes the proof. J

7 A logic for intermediate occurrences of factors

As an extension of the techniques we developed, we add to two-variable logic ‘betweenness’
predicates 〈u〉(x, y) for u ∈ A+. If u = a1 . . . an, then

〈u〉(x, y) = ∃z1 . . .∃zn(x < z1 < . . . zn < y∧Suc(z1, z2)∧· · ·∧Suc(zn−1, zn)∧a1(z1)∧· · ·∧an(zn)).

We call the logic FO2[<, betfac]. Its increased expressiveness does not translate to
computational difficulty, which we will show by translation to temporal logic LTL[6]. For
convenience, for u = a1u2 . . . an, we will abbreviate by u the LTL formula a1∧X(a2∧· · ·∧Xan).

I Theorem 5. Satisfiability of FO2[<, betfac] is Expspace-complete.

Proof. In [8] we gave an Expspace lower bound for FO2[<, bet], so we only have to give an
Expspace upper bound. We give an exponential translation from an FO2[<, betfac] sentence
to temporal logic LTL, whose satisfiability is decidable in Pspace [16].

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:13

For a fixed betweenness predicate mentioning x and y in a FO2[<, betfac] sentence,
consider all such predicates within the same scope, because they refer to the same x and y
points. They may specify existence or non-existence requirements. Existence of a factor uvw
implies the existence of a factor v and conversely for non-existence, we discard such implied
requirements.

As an example of the interaction of these requirements, consider the positive requirements
a(x, y) and b(x, y) and the negative requirement ¬cacbc(x, y) on the word cccccacbc where
x = 1 and y = 9 are the first and last positions. All three requirements are satisfied, because
the factor cacbc is not present strictly between x and y. Order the negative requirements
by length, without loss of generality we have |v1| > · · · > |vl| for negative requirements
¬v1(x, y), . . . ,¬vl(x, y). All these must be satisfied at the positions from x+ 1 to y − |v1|,
all except ¬v1 at positions from there upto y − |v2|, and so on. We can express this by the
formula Neg below:

(¬v1∧· · ·∧¬vl)U
(
X|v1|−1y∧(¬v2∧· · ·∧¬vl)U|v1|−|v2|X

|v2|−1y∧ . . . ((¬vl)U|vl−1|−|vl|X
|vl|−1y) . . .

)
,

where the bounded untils are defined by pUiq = p∧X(pUi−1q) and pU0q = q. The subformulae
X|v1|−1y,X|v2|−1y, . . . ,X|vl−1|−1y in Neg are redundant since they follow from the last X|vl|−1y

and the durations of the bounded untils. We will develop this idea below.
Neg is not quite an LTL formula since y is a first-order variable. Abbreviate by N the

formula (¬v1∧· · ·∧¬vl) to the left of the first until in Neg. We can write Neg more properly
as Neg(Q(y)) = NU(Q(y)) where we will replace Q(y) later by a temporal formula.

There are also the positive requirements to satisfy. We take a disjunction over the
possible orderings of positions where they are satisfied for the first time, which we abbreviate
specifying where in three intervals (x, y − |v1|], (y − |v1|, y − |vl|], (y − |vl|, y) they are to be
placed. (The first two intervals are left-open and right-closed.) It follows from the fact that
we have no implied factors that if the starting point of a factor is before the starting point of
another, its ending point also precedes the ending point of the other.

O = u1(x, y − |v1|] < · · · < uk(x, y − |v1|] < uk+1(y − |v1|, y − |vl|] < · · · <
uk+j(y − |v1|, y − |vl|] < uk+j+1(y − |vl|, y − |uk+j+i|] < · · · < uk+j+i(y − |vl|, y − |uk+j+i|].

More precisely there are l + 1 intervals to consider, by dividing up the middle interval
(y − |v1|, y − |vl|] into l − 1 subintervals as was done in formula Neg above.

The formula

Pos0 = ¬u1U(u1 ∧ (¬u2U(u2 · · · ∧ (¬ukU(uk ∧ (trueUX|uk−1|y) . . .)))

takes care of the first block of requirements. This has to be interleaved to the left of the first
until in Neg. That is, Neg(Q(y)) = NU(Q(y)) is replaced by

Pos′0(Q(y)) = (¬u1∧N)U
(
u1∧N∧((¬u2∧N)U(u2∧N∧· · ·∧((¬uk∧N)U(uk∧(NU(Q(y))))) . . .))

)
.

Similarly the next j requirements have to be divided and interleaved with the bounded
untils in the middle intervals in Neg, specified by formulae Pos1, . . . , Posl−1 in much the
same manner, and the last i requirements specified by formula Posl, have to be interleaved
with the last |vl|−1 nexts in Neg and updated to Pos′1(Q(y)), . . . , Pos′l−1(Q(y)), Pos′l(Q(y))
to form:

Neg′ = Pos′0(Pos′1(. . . (Pos′l−1(Pos′l(X
min(|vl|,|uk+j+i|)−1y))) . . .)).

CSL 2018

28:14 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

The outcome of this interleaving procedure is that we have a formula having a single
occurrence of the non-temporal variable y at the end. The size of this formula, for one
ordering O, is polynomial in the size of the between requirements. The number of possible
orderings O is exponential in the number of between requirements, l + k + j + i above.

The technique of Etessami, Vardi and Wilke allows replacing the point y using its
type [5], which produces an LTL formula. As argued by them, the complete LTL formula
produced is exponential in terms of the sentence we started with. The exponentially many
disjunctions produced by different orderings above compose with their procedure to give an
exponential-sized formula. J

8 Characterization of F O2[<, betfac]

The class of languages definable in the logic FO2[<, betfac] corresponds to a variety of finite
semigroups rather than monoids. An operation which can be lifted to the level of semigroup
and monoid classes is the semidirect product (which is not effective in general). We have
obtained an effective algebraic characterization of FO2[<, betfac]. Presenting the proof will
require a detour into the algebraic theory of finite categories, so we will restrict ourselves here
with the statement and the algebraic characterization, and reserve the proof of effectiveness
for the full version of the paper.

I Theorem 6 (FO2[<, betfac] characterizes MeDA ∗D). Let L ⊆ A+. L is definable in
FO2[<, betfac] if and only if S(L) ∈MeDA ∗D. Moreover, there is an effective procedure
for determining if S(L) ∈MeDA ∗D.

Since MeDA contains ∆3[<] in the quantifier alternation hierarchy [22], MeDA ∗D
contains ∆3[<,Suc], which includes the language BB2 = (a(ab)∗b)+ which we showed in [8]
was not in MeDA. On the other hand it does not contain BB3 = (a(a(ab)∗b)∗b)+. Consider
the language U3 which is a sublanguage of A∗c(a+ b)∗cA∗ such that between the marked c’s,
the factor bb does not occur before the factor aa. This is in MeDA ∗D since it is defined by
the Π2[<,Suc] sentence

∀x∀y∀z∀z′(c(x) ∧ c(y) ∧ x < z < z′ < y ∧ Suc(z, z′) ∧ b(z) ∧ b(z′)
→ ∃w∃w′(x < w < w′ < z ∧ Suc(w,w′) ∧ a(w) ∧ a(w′))).

The proof of the theorem, in both directions, depends on the characterization of V ∗D in
terms of V [17]. This can be stated in several different ways, but all depend on some scheme
for treating words of length k over A as individual letters. Here is a standard version. Let
k > 0. Let A be a finite alphabet, and let B = Ak. We treat B as a finite alphabet itself – to
distinguish the word w ∈ A∗ of length k from the same object considered as a letter of B,
we write {w} in the latter case. We will define, for a word w ∈ A+ with |w| ≥ k − 1, a new
word w′ ∈ B∗, where w′ is simply the sequence of length-k factors of w. So, for example,
with A = {a, b} and k = 3, if w = aa, then w′ = 1 ∈ B, while if w = ababba, then

w′ = {aba}{bab}{abb}{bba}.

To make sure that the lengths match up, we supplement A with a new symbol ∗ and define
B′ as (A ∪ {∗})k, and w′′ as the sequence of length-k factors of ∗k−1w. For example, with
this new definition, if k = 3 and w = ababba, then

w′′ = {∗ ∗ a}{∗ab}{aba}{bab}{abb}{bba}.

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:15

I Theorem 7 (characterization of V ∗D [17]). Let h : A+ → S be a homomorphism onto a
finite semigroup. S ∈ V∗D if and only if there exist: an integer k > 1, and a homomorphism
h′ : B∗ → M ∈ V, where B = Ak, such that whenever v, w ∈ A+ are words that have the
same prefix of length k − 1, and the same suffix of length k − 1, and v′, w′ are the sequence
of k-length factors of v, w respectively, with h′(v′) = h′(w′), then h(v) = h(w).

In brief, you can determine h(w) by looking at the prefix and suffix of w of length k − 1,
and checking the value of w′ under a homomorphism h′ into an element of V. Note that the
statement is false if V is the trivial variety (and only in this case), but we can correct by
replacing D in the statement by LI.

In the full version of the paper we will show:

I Proposition 8 (Delay). Let φ be a sentence of FO2[<, betfac]. Then there exist k > 1
and a sentence φ′ of FO2[<, bet] interpreted over (A ∪ {∗})k, with this property: if w ∈ A+

with |w| ≥ k − 1, then w |= φ if and only if w′′ |= φ′.

I Proposition 9 (Expansion). Let φ′ be a sentence of FO2[<, bet] interpreted over (A∪{∗})k,
where k > 1. Then there is a sentence φ of FO2[<, betfac] with this property: if w ∈ A+

with |w| ≥ k − 1, then w |= φ if and only if w′′ |= φ′.

Proof of Characterization Theorem 6. Let L ⊆ A+, and suppose that L is definable by a
sentence φ of FO2[<, betfac]. Let k > 1 and φ′ in FO2[<, bet] be as given by Proposition 8.
Let L′ ⊆ ((A∪ {∗})k)∗ be the language defined by φ′. We will show that S(L) ∈MeDA ∗D.

Let h : A+ → S(L) be the syntactic morphism of L. Let h′ be the syntactic morphism
of L′ and let h′′ be the restriction of h′ to elements of (Ak)∗. Since φ′ is a sentence of
FO2[<, bet], the syntactic monoid of L′, and hence the image of h′′, belongs to MeDA. It
is therefore enough, in view of Theorem 7, to suppose that v, w ∈ A+ have the same prefix of
length k− 1 and the same suffix of length k− 1, and that h′′(v′) = h′′(w′), and then conclude
that h(v) = h(w). To show h(v) = h(w) we must show that for any x, y ∈ A∗, xvy ∈ L if
and only if xwy ∈ L. Given the symmetric nature of the statement, it is enough to show
xvy ∈ L implies xwy ∈ L. So let xvy ∈ L. Then xvy |= φ, so (xvy)′′ |= φ′. We take apart
(xvy)′′: Suppose x = a1 · · · ar, v = b1 · · · bs, y = c1 · · · ct.

The leftmost r + k − 1 letters of (xvy)′′ are

{∗k−1a1}{∗k−2a1a2} · · · {arb1 · · · bk−1}.

The rightmost t letters of (xvy)′′ are

{bs−k+2 · · · bsc1}{bs−k+3 · · · bsc1c2} · · · {ct−k+1 · · · ct}.

(The exact form of the last factor will be different if t < k− 1.) In between these two factors,
we have the s− k + 1 letters of v′. Thus h′((xvy)′′) = m1h

′′(v′)m2, where m1,m2 depend
only on x, y and the prefix and suffix of v of length at most k − 1. It follows that we likewise
have h′((xwy)′′) = m1h

′′(w′)m2, with the same m1,m2. Since h′′(v′) = h′′(w′), we conclude
h′((xvy)′′) = h′((xwy)′′), so (xwy)′′ |= φ′. Thus xwy |= φ, and so xwy ∈ L. This concludes
the proof that S(L) ∈MeDA ∗D.

Conversely, suppose L ⊆ A+ and that S(L) ∈MeDA ∗D. Let h : A+ → S(L) be the
syntactic morphism of L. Let h′ : (Ak)∗ → M ∈ MeDA be the homomorphism given by
Theorem 7. We extend h′ to ((A ∪ {∗})k)∗ by defining h′(b) = 1 for any b that contains the
new symbol ∗. Then for each m ∈ M , we have a sentence φ′m of FO2[<, bet] interpreted
over ((A ∪ {∗})k)∗ defining (h′)−1(m). Let φm be the sentence over FO2[<, betfac] given

CSL 2018

28:16 An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation

by Proposition 9. For each x ∈ Ak−1, let prefx be a sentence defining the set of strings over
A whose prefix of length k − 1 is x, and similarly define suffx. Observe that both of these
sentences can be chosen to be in FO2[<, betfac]. In fact, these properties are definable in
FO2[<, bet] over A. It follows that the set of words in A+ of length at least k − 1 mapping
to a given value s of S(L) is given by a disjunction of finitely many sentences of the form

prefx ∧ suffy ∧ φ′m.

We thus get the complete preimage h−1(s) by taking the disjunction with a sentence that
says the word lies in a particular finite set. So L itself is definable in FO2[<, betfac]. J

References
1 Jorge Almeida. A syntactical proof of the locality of DA. Int. J. Alg. Comput., 6:165–177,

1996.
2 Janusz Brzozowski. A generalization of finiteness. Semigr. Forum, 13:239–251, 1977.
3 Rina Cohen and Janusz Brzozowski. Dot-depth of star-free events. J. Comput. Syst. Sci.,

5(1):1–16, 1971.
4 Volker Diekert, Paul Gastin, and Manfred Kufleitner. First-order logic over finite words.

Int. J. Found. Comp. Sci., 19:513–548, 2008.
5 Kousha Etessami, Moshe Vardi, and Thomas Wilke. First-order logic with two variables

and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.
6 Johan Anthony Willem Kamp. Tense logic and the theory of linear order. UCLA, 1968.

PhD thesis.
7 Robert Knast. A semigroup characterization of dot-depth one languages. Inf. Theor. Appl.,

17(4):321–330, 1983.
8 Andreas Krebs, Kamal Lodaya, Paritosh Pandya, and Howard Straubing. Two-variable

logic with a between relation. In Martin Grohe, Erik Koskinen, and Natarajan Shankar,
editors, Proc. 31st LICS, New York, pages 106–115. ACM/IEEE, 2016.

9 Robert McNaughton and Seymour Papert. Counter-free automata. MIT Press, 1971.
10 Jean-Éric Pin. Varieties of formal languages. Plenum, 1986.
11 Thomas Place and Luc Segoufin. Decidable characterization of fo2(<,+1) and locality of

DA. Preprint, ENS Cachan, 2014.
12 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation

hierarchy on words. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Kout-
soupias, editors, Proc. 41st Icalp, Part 2, Copenhagen, volume 8573 of LNCS, pages 342–
353, 2014.

13 Thomas Place and Marc Zeitoun. Separation and the successor relation. In Ernst W.
Mayr and Nicolas Ollinger, editors, Proc. 32nd Stacs, Garching, volume 30 of Lipics, pages
662–675, 2015.

14 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Contr.,
8:190–194, 1965.

15 Marcel-Paul Schützenberger. Sur le produit de concaténation non ambigu. Semigr. Forum,
13:47–75, 1976.

16 A. Prasad Sistla and Edmund Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

17 Howard Straubing. Finite semigroup varieties of the form V*D. J. Pure Appl. Alg., 36:53–94,
1985.

18 Howard Straubing. Finite automata, formal languages, and circuit complexity. Birkhäuser,
1994.

A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:17

19 Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular languages. Log.
Meth. Comp. Sci., 3(1:4):1–37, 2007.

20 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In Jeffrey Vitter, editor, Proc. 30th STOC, Dallas, pages 234–240.
ACM, 1998.

21 Bret Tilson. Categories as algebra. J. Pure Appl. Alg., 48:83–198, 1987.
22 Pascal Weil. Some results on the dot-depth hierarchy. Semigr. Forum, 46:352–370, 1993.

CSL 2018

	Introduction
	Setup
	The factorization sequence
	Starts and jumps
	Simulating factorization in logic
	Proof of the main lemma
	A logic for intermediate occurrences of factors
	Characterization of FO^2[<,betfac]

