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Abstract
The concept of fairness for a concurrent program means that the program must be able to
exhibit an unbounded amount of nondeterminism without diverging. Game semantics models
of nondeterminism show that this is hard to implement; for example, Harmer and McCusker’s
model only admits infinite nondeterminism if there is also the possibility of divergence. We solve
a long standing problem by giving a fully abstract game semantics for a simple stateful language
with a countably infinite nondeterminism primitive. We see that doing so requires us to keep
track of infinitary information about strategies, as well as their finite behaviours. The unbounded
nondeterminism gives rise to further problems, which can be formalized as a lack of continuity in
the language. In order to prove adequacy for our model (which usually requires continuity), we
develop a new technique in which we simulate the nondeterminism using a deterministic stateful
construction, and then use combinatorial techniques to transfer the result to the nondeterministic
language. Lastly, we prove full abstraction for the model; because of the lack of continuity, we
cannot deduce this from definability of compact elements in the usual way, and we have to use a
stronger universality result instead. We discuss how our techniques yield proofs of adequacy for
models of nondeterministic PCF, such as those given by Tsukada and Ong.
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1 Introduction

Picture two concurrent processes P and Q with shared access to a variable v that holds
natural numbers and is initialized to 0. The execution of P consists in an infinite loop that
increments the value of v at each iteration. Meanwhile, Q performs some computation A,
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24:2 Game Semantics for Countable Nondeterminism

and then prints out the current value of v and terminates the whole program. Since we
cannot predict in advance how may cycles of the loop in P will have elapsed by the time
the computation A has completed, the value that ends up printed to the screen may be
arbitrarily large. Furthermore, under the basic assumption that the task scheduler is fair ;
i.e., any pending task must eventually be executed, our program must always terminate by
printing out some value to the screen.

We have therefore built an unbounded nondeterminism machine, that can print out
arbitrarily large natural numbers but which never diverges. This is strictly more powerful
than finitary choice nondeterminism2. What we have just shown is that if we want to solve
the problem of building a fair task scheduler, then we must in particular be able to solve the
problem of building an unbounded nondeterminism machine.

This is an important observation to make about concurrent programming, because the
task of modelling unbounded nondeterminism is difficult – indeed, considerably more so than
that of modelling bounded nondeterminism. Dijkstra argues in [7, Ch. 9] that it is impossible
to implement unbounded nondeterminism, showing that the natural constructs from which we
construct imperative programs satisfy a continuity property that unbounded nondeterminism
lacks. Park [17] shows that these problems can be surmounted if we use a weaker version of
continuity (e.g., ω1- rather than ω-continuity), but the failure of composition to be continuous
is a problem in itself for semanticists, for whom continuity is often a key ingredient in proofs
of computational adequacy and full abstraction.

We shall explore some of these problems and how they may be solved, using game
semantics to give a fully abstract model of a simple stateful language – Idealized Algol –
enhanced with a countable nondeterminism primitive. We begin with a pair of examples
that will illustrate the lack of continuity, from a syntactic point of view. Let nat be our
natural number type and consider a sequence of functions <n : nat → nat, where <n k

evaluates to 0 if k < n and diverges otherwise. In that case, the least upper bound of the <n
is the function that combines all their convergent behaviours; i.e., the function λk.k; 0 that
evaluates its input and then returns 0. If ? : nat is an unbounded nondeterminism machine,
then function application to ? is not continuous; indeed, <m ? may diverge – since ? may
evaluate to m+ 1, say. But (λk.k; 0) ? always converges to 0.

Lack of continuity is a problem in denotational semantics because fixed-point combinators
are typically built using least upper bounds, and proving adequacy of the model typically
requires that these least upper bounds be preserved. In a non-continuous situation, we will
need to come up with new techniques in order to prove adequacy without using continuity.

A closely connected problem with unbounded nondeterminism is that it leads to terms
that may be distinguished only by their infinitary behaviour. A program that flashes a light
an unboundedly nondeterministic number of times cannot reliably be distinguished in finite
time from a program that flashes that light forever: however long we watch the light flash,
there is always a chance that it will stop at some point in the future. From a game semantics
point of view, this corresponds to the observation that it is not sufficient to consider sets of
finite plays in order to define strategies: we must consider infinite sequences of moves as well.

2 Using recursion, we can build a program out of finite nondeterminism that can produce arbitrarily large
natural numbers; however, this program also admits the possibility of divergence, unless we are able to
insist on fairness.
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1.1 Related Work
Our game semantics model bears closest resemblance to that of Harmer and McCusker
[8], which is a fully abstract model of Idealized Algol with finite nondeterminism. Indeed,
our work can be viewed as an extension of the Harmer-McCusker model with the extra
information on infinite plays that we need to model countable nondeterminism.

The idea of adding infinite traces into strategies in order to model unbounded non-
determinism goes back to Roscoe’s work on CSP [20], and is very similar to work by Levy
[13] on game semantics for a higher order language. In particular, we will need something
similar to Levy’s notion of a lively strategy – one that is a union of deterministic strategies –
a property that does not automatically hold when we start tracking infinite plays.

An alternative approach to the game semantics of nondeterminism can be found in
Tsukada and Ong’s sheaf model of nondeterministic PCF [21] and in the more general work
on concurrency by Winskel et al. (e.g., see [22] and [5]), in which there is a very natural
interpretation of nondeterminism. Although we are able to give a model of Idealized Algol
with countable nondeterminism in the more traditional Harmer-McCusker style, it seems
necessary to introduce this extra machinery in order to model stateless languages such as
PCF (and certainly to model concurrency). In the last section of this paper, we will show
how our methods can be applied under very general circumstances, and in particular to some
of these models of nondeterministic stateless languages.

Related work by Laird [11, 12] discusses a semantics for PCF with unbounded non-
determinism based on sequential algorithms and explores the role played by continuity;
however, this semantics is not fully abstract. Laird’s work is interesting because it shows
that we can obtain a traditional adequacy proof for a semantics with one-sided continuity:
composition is continuous with respect to functions, but not with respect to arguments.

The idea of using some constrained version of continuity to prove adequacy for countable
nondeterminism goes back to Plotkin’s work on power-domains [4]. A crucial observation
in both [4] and [11] is that this sort of proof requires a Hoare logic in which we can reason
about all the countable ordinals. We cannot use these techniques here, however, because our
composition is not continuous on either side.

1.2 Contributions
The main concepts of game semantics and the steps we take to establish full abstraction
are well-established, with a few exceptions. The idea of including infinitary information in
strategies is not new, but this particular presentation, though closely related to that of [13],
is the first example of using the technique to establish a compositional full abstraction result
for may and must testing.

Levy’s work in [13] is part of a tradition of techniques used to handle unbounded
nondeterminism operationally, normally using Labelled Transition Systems (see, for example,
[19]). The contribution of this work is to apply the basic idea of including infinitary
information to a compositional setting, where the semantics is built using the algebraic
structure of higher-order programs.

There are two points in the traditional Full Abstraction proof that depend on composition
being continuous, and we have had to come up with ways of getting round them. Firstly,
in the absence of continuity, it no longer suffices to show that we can define every compact
strategy; instead, we need a universality result allowing us to define certain infinite strategies
– specifically, the recursive ones.

CSL 2018



24:4 Game Semantics for Countable Nondeterminism

For the proof of adequacy, we have had to come up with a new technique, which can
be thought of as a kind of synthesis between the two usual methods of proving adequacy –
one involving logical relations and the other using more hands-on operational techniques.
We do this by separating out the deterministic, continuous part of the strategy from the
nondeterministic, discontinuous part. Using the stateful language, we can simulate individual
evaluation paths of a nondeterministic program using a deterministic device that corresponds
to the idea of ‘mocking’ a random number generator for testing purposes. This allows us
to appeal to the adequacy result for deterministic Idealized Algol. We then rely on more
combinatorial techniques in order to factor the nondeterminism back in.

This new technique is actually very generally applicable. We shall show that it may be
used to prove adequacy for models of nondeterministic PCF under very mild assumptions.
The Tsukada-Ong model, for example, satisfies these assumptions, allowing us to obtain an
adequacy result for PCF with countable nondeterminism.

2 Idealized Algol with Countable Nondeterminism

We describe a type theory and operational semantics for Idealized Algol with countable
nondeterminism. The types of our language are defined inductively as follows:

T ::= nat | com | Var | T → T .

Meanwhile, the terms are those given in [3], together with the nondeterministic choice:

M ::= x | λx.M |M M | YT |
n | skip | suc | pred |
If0 | ; | := |
@3 | newT | mkvar | ? .

The typing rule for ? is Γ ` ?: nat. We shall use v to range over variables of type Var.
We define a small-step operational semantics for the language; this presentation is

equivalent to the big-step semantics given in [8], except with a different rule for the countable
rather than finite nondeterminism.

First, we define a Felleisen-style notion of evaluation context E inductively as follows.

E ::= − | EM | suc E | pred E | If0 E |
E; | E := | @E | mkvar E | newTE

We then give the appropriate small-step rules in Figure 1. In each rule, 〈s,M〉 is a
configuration of the language, where M is a term, and s is a store; i.e., a function from the
set of variables free in M to the set of natural numbers. If s is a store and v a variable, we
write 〈s | v 7→ n〉 for the state formed by updating the value of the variable v to n.

If 〈∅,M〉 is a configuration with empty store, we callM a closed term. Given a closed term
M of ground type com or nat, we write that M ⇓ x (where x = skip in the com case and is a
natural number in the nat case) if there is a finite sequence M −→M1 −→ · · · −→Mn = x.
If there is no infinite sequenceM −→M1 −→M2 −→ · · · , then we say thatM must converge,
and write M ⇓must. In general, we refer to a (finite or infinite) sequence M −→M1 −→ · · ·
that either terminates at an observable value or continues forever as an evaluation π of M .

3 That is, variable @ccess.
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〈s, (λx.M) N〉 −→ 〈s,M [N/x]〉 〈s,YTM〉 −→ 〈s,M(YTM)〉

〈s, suc n〉 −→ 〈s, n + 1〉 〈s, pred n〉 −→ 〈s, 0 t (n− 1)〉 〈s, If0 0MN〉 −→ 〈s,M〉

〈s, If0 (n + 1)MN〉 −→ 〈s,N〉 〈s, @(mkvar MN)〉 −→ 〈s,M〉

〈s, (mkvar MN) := L〉 −→ 〈s,N L〉 〈s, v := n〉 −→ 〈〈s | v 7→ n〉, skip〉

s(v) = n
〈s, @v〉 −→ 〈s, n〉 〈s, skip;M〉 −→ 〈s,M〉

〈s, newTλv.M〉 −→ 〈〈s | v 7→ 0〉,M〉
〈s,M〉 −→ 〈s,M ′〉

〈s, E[M ]〉 −→ 〈s, E[M ′]〉

〈s, ?〉 −→ 〈s, n〉
n ∈ N

Figure 1 Small-step operational semantics for Idealized Algol with countable nondeterminism.

Since the only case where we have any choice in which rule to use is the application of the
rule for ?, π may be completely specified by a finite or infinite sequence of natural numbers.

Let T be an Idealized Algol type, and let M,N : T be closed terms. Then we write
M vm&m N if for all contexts C[−] of ground type with a hole of type T , we have

C[M ] ⇓ V ⇒ C[N ] ⇓ V
C[M ] ⇓must⇒ C[N ] ⇓must

We write M ≡m&m N if M vm&m N and N vm&m M .

3 Game Semantics

3.1 Arenas
An arena is given by a triple A = (MA, λA, `A), where

MA is a countable set of moves,
λA : MA → {O,P}×{Q,A} designates each move as either an O-move or a P -move, and
as either a question or an answer. We define λOPA = pr1 ◦λA and λQAA = pr2 ◦λA. We
also define ¬ : {O,P} × {Q,A} → {O,P} × {Q,A} to be the function that reverses the
values of O and P while leaving {Q,A} unchanged.
`A is an enabling relation between MA + {∗} and MA satisfying the following rules:
If a `Ab, then λOPA (a) 6= λOPA (b).
If ∗ `Aa, then λA(a) = OQ and b 6`Aa for all b ∈MA.
If a `Ab and b is an answer, then a is a question.

We say that a move a ∈MA is initial in A if ∗ `Aa.

Our base arenas will be the flat arenas for the types nat and com. Given a set X, the flat
arena on X is the arena with a single O-question q and a P -answer x for each x ∈ X, where

CSL 2018



24:6 Game Semantics for Countable Nondeterminism

∗ `q and q `x for each x. The denotations of the types nat and com are the flat arenas N
and C on, respectively, the set of natural numbers and the singleton {a}.

We assume that our arenas are enumerated; i.e., that the set MA is equipped with a
partial surjection N→MA. The denotation of any IA type has a natural enumeration.

Given an arena A, a justified string in A is a sequence s of moves in A, together with
justification pointers that go from move to move in the sequence. The justification pointers
must be set up in such a way that every non-initial move m in s has exactly one justification
pointer going back to an earlier move n in s such that n `Am; we say that n justifies m. In
particular, every justified string begins with an initial move, and hence with an O-question.

A legal play s is a justified string in A that strictly alternates between O-moves and
P -moves and is such that the corresponding QA-sequence formed by applying λQAA to moves
is well-bracketed. We write LA for the set of legal plays in A.

If s is a justified string, we will write sa for an arbitrary justified string extending s by a
single move a, itself justified by some move in s.

3.2 Games and strategies
We use the approach taken by Abramsky and McCusker [3] – a middle road between the
arenas of Hyland and Ong and the games of [2] that makes the linear structure more apparent.

Let s be a legal play in some arena A. If m and n are moves in s such that there is a
chain of justification pointers leading from m back to n, we say that n hereditarily justifies
m. Given some set S of initial moves in s, we write s|S for the subsequence of s made up of
all those moves hereditarily justified by some move in S.

A game is a tuple A = (MA, λA, `A, PA), where (MA, λA, `A) is an arena and PA is
a non-empty prefix-closed set of legal plays in that arena such that if s ∈ PA and I is a
non-empty set of initial moves in s, then s|I ∈ PA.

Our base games will be the games N and C on the arenas of the same names, where
PN = {ε, q} ∪ {qn : n ∈ N} and PC = {ε, q, qa}.

3.2.1 Connectives
Let A,B be games. Then we may define games A×B, A⊗B, A( B and !A as in [3]. As
an example, we give the definition of A( B:

MA(B = MA +MB .

λA(B = [¬ ◦ λA, λB ] .
∗ `A(Bn ⇔ ∗ `Bn .

m `A(Bn ⇔
m `An or m `Bn
or (for m 6= ∗) ∗ `Bm and
∗ `An .

PA(B = {s ∈ LA(B : s|A ∈ PA and s|B ∈ PB} .

3.2.2 Modelling countable nondeterminism
As in [8], we model nondeterministic computations by relaxing the determinism constraint
on strategies – so player P may have multiple replies to any given O-move.

In addition, we have to keep track of any possible divergence in the computation so we
can distinguish terms such as If0 ? Ω 0, which may diverge, and 0, which must converge.
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a)

N1 N2
q

q

n1
q

n2
...

b)

N1 N2
q

q

n1
...
q

nm
0

Figure 2 Finite plays alone are not sufficient to distinguish between terms of a language with
countable nondeterminism.

To fix this problem, we follow [8] by modelling a strategy as a pair (Tσ, Dσ), where Tσ is
a nondeterministic strategy in the usual sense and Dσ is the set of those O-positions where
there is a possibility of divergence.

We need to take some care when we compose strategies using ‘parallel composition plus
hiding’. Specifically, we need to be able to add new divergences into strategies when they
arise through ‘infinite chattering’ or livelock. For example, the denotation of the term

M = Ynat→nat(λf.λn.n; (fn))

is given by a total strategy, without divergences: namely the strategy µ with plays of the
form shown in Figure 2(a). However, when we compose this strategy with any total strategy
for N on the left, we expect the resulting strategy to contain divergences, since the term
Mn diverges for any n. Semantically, this corresponds to the fact that we have a legal
interaction q q n q n · · · with an infinite tail in N1; when we perform ‘hiding’ by restricting
the interaction to N, we have no reply to the initial move q.

The approach adopted in [8] is to check specifically for infinite chattering between
strategies σ : A ( B and τ : B ( C by checking whether there is an infinite increasing
sequence of interactions between σ and τ with an infinite tail in B. If there is such a sequence,
then it restricts to some O-position in σ; τ and we add in a divergence at that position.

Harmer and McCusker’s approach works very satisfactorily for finite nondeterminism,
but not at all for countable nondeterminism. To see why, consider the term

N = Ynat→nat→nat(λg.λmn.If0 m 0 (n; (g (pred m) n)))? .

This term first chooses a natural number m, and then reads from its input n for a total of m
times before eventually returning 0. Thus, its denotation is the strategy ν with maximal
plays of arbitrary length of the form shown in Figure 2(b). Note that this strategy strictly
contains the strategy µ that we considered before, and therefore that the denotation of
If0 ?MN has the same denotation as N , even though for any n, Mn 6⇓must, while Nn ⇓must.
Moreover, if we try to compose JNK with the strategy on N that always returns 1, then we
end up with an infinite increasing sequence of positions, which triggers the introduction of a
divergent play into the composite strategy – even though N must converge.

Aside from showing that the naive extension of the Harmer-McCusker model cannot be
sound, this example actually leads to composition not being associative (e.g., see [9, 4.4.1]).

What this illustrates is the point made by Park in [17] and [18]: namely, that we can
no longer deduce the infinitary behaviour of a strategy by looking at the limits of its finite
plays; instead, we need to keep track of infinite sequences of moves explicitly, in the style

CSL 2018
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of [20] and [13]. When we use this technique, the denotation of M will contain an infinite
sequence, while the denotation of N will contain arbitrarily long finite sequences, but no
infinite sequences.

3.2.3 Strategies
We define an infinite justified string in an arena A in the obvious way. We say such a string
is recursive if it corresponds, via the enumeration on MA, to a pair of recursive functions
N→ N – one giving the sequence of moves and the other giving the justification relation.

We define PA to be PA together with the set of all those recursive infinite justified
sequences that have all finite prefixes in PA. Note that we deliberately ignore any non-
recursive infinitary behaviours, since these cannot be detected by computable contexts.

We shall represent a strategy using two sets: a set Tσ of traces, which takes the role of the
plays that may occur in the strategy (as in the usual definition of a deterministic strategy),
and a second set Dσ of divergences; i.e., O-positions at which the strategy may elect to
diverge. In order to model observational equivalence more closely, we shall require Dσ to
be postfix-closed, since observable contexts cannot detect divergences that occur after the
program might already have diverged: consider, for example, the terms Ωnat→nat or (λn.n)
and Ωnat→nat or (λn.(n or Ωnat)) (where we have defined M or N to be If0 ? M N).

For technical reasons we keep track of infinite plays in both Tσ and Dσ, with the rule that
any infinite play in Tσ must be contained in Dσ (since it clearly corresponds to a divergent
evaluation). We will require that every divergence arise from a trace; i.e., if every play in Dσ

must have some prefix that is contained in both Tσ and Dσ. A consequence of this is that if
d ∈ Dσ is infinite and has no finite prefixes in Dσ, then it must also be contained in Tσ. Not
too much importance should be given, however, to the presence or absence of infinite plays
in Tσ: it is quick to show that once we pass to the intrinsic quotient, any such distinction
vanishes.

Let A be a game. A strategy σ for A is a pair (Tσ, Dσ), where:
Tσ is a non-empty prefix-closed subset of PA such that if s ∈ Tσ is a P -position and
sa ∈ PA then sa ∈ Tσ.
Dσ ⊂ PA is a postfix-closed set of plays in PA that either end with an O-move or are
infinite. We require Dσ to obey the following rules:
Divergences come from traces If d ∈ Dσ then there exists s v d such that s ∈ Tσ∩Dσ.
Diverge-or-reply If s ∈ Tσ is an O-position, then either s ∈ Dσ or sa ∈ Tσ for some sa.
Infinite positions are divergent If s ∈ Tσ is infinite, then s ∈ Dσ.

3.2.4 Composition of strategies
Given games A,B,C, we define a justified string over A,B,C to be a sequence s of moves
with justification pointers from all moves except the initial moves in C. Given such a string,
we may form the restrictions s|A,B and s|B,C by removing all moves in either C or A, together
with all justification pointers pointing into these games. We define s|A,C to be the sequence
formed by removing all moves from B from s and all pointers to moves in B, unless we have
a sequence of pointers a→ b→ c, in which case we replace them with a pointer a→ c.

We call s a legal interaction if s|A,B ∈ PA(B, s|B,C ∈ PB(C and s|A,C ∈ PA(C . We
write int∞(A,B,C) for the set of (possibly infinite) legal interactions between A, B and C.

Now, given strategies σ : A( B and τ : B ( C, we define

Tσ‖Tτ = {s ∈ int∞(A,B,C) : s|A,B ∈ Tσ, s|B,C ∈ Tτ} ,

and then set Tσ;τ = {s|A,C : s ∈ Tσ‖Tτ}.
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As for divergences in σ; τ , our approach is actually simpler than that in [8]; we set

Dσ Dτ =

s ∈ int∞(A,B,C)

∣∣∣∣∣∣
either s|A,B ∈ Dσ and s|B,C ∈
Tτ
or s|A,B ∈ Tσ and s|B,C ∈ Dτ

 .

We then set Dσ;τ = poclA(C{s|A,C : s ∈ Dσ Dτ}, where poclX denotes the postfix closure
of X; i.e., the set of all O-plays in PA(C that have some prefix in X.

Note that there is no need to consider separately, as Harmer and McCusker do, divergences
that arise through ‘infinite chattering’: in our model, we will see that a case of infinite
chattering between strategies σ and τ is itself a legal interaction between the two strategies,
which is necessarily divergent (because it is infinite) and therefore gives rise to some divergence
in σ; τ .

We need to impose one more condition on strategies:

I Definition 1. Let σ be a strategy for a game A. We say that σ is complete if Tσ = Tσ;
i.e., Tσ contains an recursive infinite play s if it contains every finite prefix of s.

Any finite-nondeterminism strategy in the sense of [8] may be interpreted as a complete
strategy by enlarging it with all its infinite recursive limiting plays. However, when we
introduce countable nondeterminism, we also introduce strategies that are not complete. For
example, the strategy ν that we mentioned above has an infinite increasing sequence of plays
q0 v q0q0 v · · · , but has no infinite play corresponding to its limit. Nonetheless, we do
not want to allow arbitrary strategies: for example, the strategy µ above should include the
infinite play qq0q0 . . . ; the strategy µ◦ formed by removing this infinite play has no meaning
in our language. Indeed, if we compose µ◦ with the strategy 0 for N on the left, then the
resulting strategy does not satisfy diverge-or-reply. The difference with ν is that every play
qq0 · · · q0 ∈ Tν may be completed in ν by playing the move 0 on the right. In other words, ν
is the union of complete strategies, while µ◦ is not.

I Definition 2. Let σ be a strategy for a game A. We say that σ is locally complete if it may
be written as the union of complete strategies; i.e., there exist σi such that Tσ =

⋃
Tσi and

Dσ =
⋃
Dσi . Note that since Tσ and Dσ are countable sets (because there are countably

many recursive plays), this union may be taken to be countable.

It will be slightly more convenient to use an equivalent definition, based on unions of
deterministic strategies, which are a special case of complete strategies.

I Definition 3. We say that a strategy σ for a game A is deterministic if
it is complete;
if sa, sb are P -plays in Tσ then a = b and the justifier of a is the justifier of b;
if s ∈ Dσ then either s is infinite or there is no a such that sa ∈ Tσ.

We say that a strategy σ is lively or locally deterministic if there exists a collection of
deterministic strategies σi such that Tσ =

⋃
Tσi and Dσ =

⋃
Dσi . It is clear that a strategy

is lively if and only if it is locally complete, and that the collection of σi may again be taken
to be countable.

From now on, we will use strategy to mean lively (or locally complete) strategy. This
means that we will need to show that the composition of lively strategies is again lively.

I Lemma 4. Let A,B,C be games and let σ : A( B, τ : B ( C be deterministic strategies.
Then σ; τ is complete.
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Proof. The proof relies on a lemma from [10] that states (in our language) that if σ and τ
are deterministic strategies and s ∈ Tσ;τ then there is a unique minimal s ∈ Tσ‖Tτ such that
s|A,C = s. That means that if s1 v s2 v · · · is an infinite increasing sequence of plays in Tσ;τ ,
with limit s, then there is a corresponding infinite increasing sequence of legal interactions
s1 v s2 v · · · . Then the limit of the si is an infinite legal interaction s and we must have
s|A,B ∈ σ, s|B,C ∈ τ by completeness of σ and τ . Therefore, s = s|A,C ∈ Tσ;τ . J

It is, of course, true that the composition of deterministic strategies is deterministic, but
we do not really need this fact.

I Corollary 5. The composition of strategies σ : A ( B and τ : B ( C is a well-formed
strategy for A( C.

Proof. The only tricky point is establishing that diverge-or-reply holds for σ; τ . Again, it
is sufficient to prove this in the case that σ and τ are deterministic and complete. Then it
essentially follows from the argument used in [1] that shows that a partiality at an O-position
s ∈ Tσ;τ must arise either from a partiality in Tσ or Tτ or from ‘infinite chattering’ between
σ and τ . In the first case, the diverge-or-reply rule for σ and τ gives us a divergence at s in
σ; τ . In the second case, an infinite chattering between σ and τ corresponds to an infinite
interaction s ∈ int∞(A,B,C) (with a tail in B) such that s|A,C = s. Completeness for σ and
τ tells us that s|A,B ∈ Dσ and s|B,C ∈ Dτ and therefore that s|A,C ∈ Dσ;τ . J

3.2.5 Associativity of composition
The proof of associativity of composition is the same in our model as it is in any other
model of game semantics if we treat infinite plays the same as finite ones. However, it is
worth saying a few words about associativity, since the model obtained by naively extending
the Harmer-McCusker model to unbounded nondeterminism does not have an associative
composition. The point is that there is not really a problem with associativity itself, but
rather that this naive model gives the wrong result for the composition of strategies with
infinite nondeterminism. For example, if ν is the strategy we defined above, and 0 is the
‘constant 0’ strategy on N, then 0; ν has a divergence in the naive model, because the strategies
0 and ν appear to be engaged in infinite chattering. In our model, on the other hand, the
strategy ν contains no infinite plays, and so no divergences arise in the composition.

3.3 A symmetric monoidal closed category
Given a game A, we define a strategy idA on A( A, where TidA is given by

{s ∈ PA1(A2 : for all even-length t v s, t|A1 = t|A2} ,

where we distinguish between the two copies of A by calling them A1 and A2, and where
Dσ is the set of all infinite plays in Tσ. This is an identity for the composition we have
defined, and so we get a category GND of games and nondeterministic strategies. Moreover,
the connectives ⊗ and ( exhibit GND as a symmetric monoidal closed category.
GND has an important subcategory GD of deterministic complete strategies; this category

is isomorphic to the category considered in [3].

3.4 A Cartesian closed category
We follow the construction given in [3], using the connectives ! and × to build a Cartesian
closed category G!

ND from GND whose objects are the well-opened games in GND and where
a morphism from A to B in G!

ND is a morphism from !A to B in GND.
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This is similar to the construction of a co-Kleisli category for a linear exponential comonad,
but technical issues relating to well-openedness prevent us from presenting it in this way.

3.5 Constraining strategies
Given a non-empty justified string s, we define the P -view psq of s inductively as follows.

psmq = m, if m is initial;
psntmq = psqnm , if m is an O-move and

n justifies m;
psmq = psqm, if m is a P -move.

We say that a play sm ending in a P -move is P -visible if the justifier of m is contained in
pmq. We say that a strategy σ for a game A is visible if every P -position s ∈ Tσ is P -visible.
It can be shown that the composition of visible strategies is visible, and that we can build a
Cartesian closed category using our exponential.

After passing to the intrinsic quotient, the resulting category G!
D,vis of games and

deterministic visible strategies is a fully abstract model of Idealized Algol [3].

3.6 Recursive strategies
Most full abstraction results go via a definability result that says that all compact strategies
are definable [6]. However, deducing full abstraction from compact definability makes essential
use of continuity properties that are absent when we deal with countable nondeterminism.
We will therefore need to appeal to a stronger result – that of universality, which states that
every strategy is definable. Clearly, universality does not hold for any of our categories of
games – for example, there are many non-computable functions N→ N. However, Hyland
and Ong proved in [10] that every recursively presentable innocent strategy is PCF-definable.

If σ is a complete strategy for a game A, we say σ is recursive if Tσ ∩PA and Dσ ∩PA are
recursively enumerable subsets of ωω (under the enumeration of MA). Here, we throw away
the infinite plays in Tσ and Dσ, but we do not lose any information because σ is complete.

If σ is lively, we say that σ is recursive, and if σ is the union of complete recursive
strategies σ1, σ2, · · · , where the map i 7→ σi is a recursive function N→ (N→ N)→ 2.

Note that there are plenty of strategies that we want that are not the union of a recursive
sequence of deterministic strategies – for example, the strategy on (N→ C)→ C that calls
its natural-number argument infinitely many times is complete and has no O-branching, but
its infinite traces include every recursive sequence of natural numbers.

Using these definitions, it seems to be hard to prove that the composition of recursive
strategies is itself a recursive strategy: the tricky point is to show that the decomposition into
complete strategies may still be taken to be given by a recursive strategy. The example in the
previous paragraph shows that we cannot use the same proof as we did in the non-recursive
case, which used deterministic strategies. Fortunately, we do not need to be able to show
that the composition of recursive strategies is recursive in order to prove our full abstraction
result, so we leave this problem for future work.

In the case that σ is recursive and deterministic, we can prove the following result.

I Proposition 6 (Recursive Universality for Idealized Algol). Let S be an Idealized Algol type
and let σ : JSK be a recursive deterministic strategy. Then there exists a term M : S of
Idealized Algol such that σ = JMK.
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Proof. We use the ‘innocent factorization’ result of [3] to reduce to the innocent case and
the proceed in a manner similar to the argument used in [16]. J

Note that Proposition 6 is sharper than the result in [10], which only proves that every
recursive strategy may be defined up to observational equivalence. Idealized Algol allows
us to store variables and then use them multiple times without having to read them again,
which allows us to to define all recursive visible strategies exactly. Compare with [16], which
proves a similar result for call-by-value PCF.

3.7 Deterministic Factorization
Our definability results will hinge on a factorization theorem, showing that every non-
deterministic strategy may be written as the composition of a deterministic strategy with
the nondeterministic ‘oracle’ >N. We can then deduce universality from universality in the
model of deterministic Idealized Algol.

Note that our result is a bit simpler than in [8] because of the unbounded nondeterminism.

I Proposition 7. Let σ : I → A be a strategy for a game A in GND. Then we may write σ
as >N; Det(σ), where Det(σ) : !N→ A is a deterministic strategy and >N : N is the strategy
that contains every play in !N and has no finite divergences.

Proof. We begin by fixing an injection codeA from the set of P -moves in A into the natural
numbers. In the enumerated case, this is given to us already.

We first assume that the strategy σ is complete. Then the strategy Det(σ) is very easy
to describe. For each O-position s ∈ Tσ, we have some set B of possible replies to s, which
we order as b1, b2, · · · , where codeA(b1) < codeA(b2) < · · · . We insert a request to the oracle
for a natural number; then, depending on her answer j, we play the next move as follows:

If 0 < j ≤ codeA(b1), then play b1.
If codeA(bn) < j ≤ codeA(bn+1) then play bn+1.
If j = 0 and s ∈ Dσ, then play nothing, and put the resulting play inside DDet(σ).
Otherwise, play b1.

We close under limits to make the strategy Det(σ) complete. Det(σ) is clearly deterministic.
Checking that >N; Det(σ) = σ is easy for finite plays; for infinite plays, it follows by
completeness of σ.

Lastly, if σ is the union of complete strategies σ1, σ2, · · · , we insert an additional request
to the oracle immediately after the very first move by player O; after receiving a reply k, we
play according to σk. J

Note that Det(σ) is recursive if σ is and is visible if σ is.

4 Full abstraction

4.1 Denotational Semantics
The category in which we shall model our language is the category G!

ND,vis – the Cartesian
closed category of (enumerated) games with nondeterministic visible strategies. We have
a natural embedding G!

D,vis ↪→ G!
ND,vis, and we know that G!

D,vis is a universal and fully
abstract model of Idealized Algol.

We model the language compositionally, using denotations as in [8] for the nondeterministic
constants and modelling ? using the strategy >N : N.
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Any term M : T of Idealized Algol with countable nondeterminism may be written as
M = C[?], where C is a multi-holed context not involving the constant ?. Then the term
λn.C[n] is a term of Idealized Algol, and therefore has a denotation !N→ JT K as in [3].

I Lemma 8. The term C[?] has the same denotation as the term (λn.C[n])?.

Proof. This is a straightforward argument by structural induction on C, and the constant >N
does not really play a role. We prove inductively on T that if Γ `C[?] : T is a term-in-context,
then its denotation may be given by the following composite.

JΓK lunit;(>N×id)−−−−−−−−→ N× JΓK JΓ,n : nat `C[n] : T K−−−−−−−−−−−−−→ JT K J

4.2 Computational Adequacy
The computational adequacy result for our model can be stated as follows.

I Proposition 9 (Computational Adequacy). Let M : com be a closed term of nondeterministic
Idealized Algol. M ⇓ skip if and only if qa ∈ TJMK. M ⇓must if and only if DJMK = ∅.

Traditional proofs of computational adequacy using logical relations make essential use
of the continuity of composition with respect to a natural ordering on strategies (see, for
example, [8] and [9] for the finite nondeterminism case). In our case, since composition is not
continuous in the language itself, we cannot use this technique. In order to prove adequacy,
we use a new technique that involves using a deterministic stateful construction to model
the nondeterminism inside a deterministic world in which continuity holds. To do this, we
shall return to the concept of an evaluation π of a term as a sequence of natural numbers
encoding the nondeterministic choices that we have made.

I Lemma 10. Let M = C[?] be a term of type com, where C[−] is a multi-holed context of
(deterministic) Idealized Algol. Write σM for the denotation of the term λn.C[n].

If M ⇓ skip then there exists some total deterministic strategy σ : !N such that qa ∈ Tσ;σM .
If M 6 ⇓must then there exists some total deterministic strategy σ : !N such that Dσ;σM 6= ∅.

Proof. Let n1, . . . , nk, d be a finite sequence of natural numbers. We define an Idealized
Algol term Nn1,...,nk,d : (nat→ com)→ com to be the following.

λf.newnat(λv.f(v := (suc @v); casek+1 @v Ω n1 · · ·nkd)) .

Here, casek+1 a n0 · · · nk d is a new shorthand that evaluates to ni if a evaluates to i, and
evaluates to d if a evaluates to j > k. This term calls the function f , passing in n1 the first
time, n2 the second and so on, passing in d at every call beyond k + 1.

Now let π be a finite evaluation of 〈s, C[?]〉 that converges to skip. Encode π as a sequence
n1, . . . , nk. Let d be some arbitrary number. Then we can show that the following term also
converges to skip in the same way:

Nn1,...,nk,d(λn.C[n]) .

The idea here is similar to one used in testing; we want to test the behaviour of a non-
deterministic program, and to do so we mock the random number generator in order to
simulate a particular evaluation path using purely deterministic programs.

If instead π is a finite evaluation of 〈s, C[?]〉 that diverges (but nevertheless only involves
finitely many calls to the nondeterministic oracle), then the term Nn1,...,nk,d(λn.C[n]) will
diverge according to the same execution path.
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Digging into the construction of new within Idealized Algol, as given in [3], we see that
for any term F of type nat→ com the denotation of Nn1,...,nk,dF is given by the composite

I
cell0−−→ !Var

!Jλv.v:=(suc @v);casek+1 @v Ω n1···nkdK−−−−−−−−−−−−−−−−−−−−−−−−−→ !N JF K−−→ C .

We set σπ to be the composite of the left two arrows. Observe that σπ is the strategy with
unique maximal infinite play as follows.

q n1 · · · q nk q d q d · · ·

Setting F = λn.C[n], we see that JF K = σM . So, by adequacy for the Idealized Algol model,
qa ∈ Tσπ ;σM if and only if we have Nn1,...,nk,d(λn.C[n]) ⇓ skip, which is the case if and only
if M ⇓ skip along the evaluation π. Similarly, Dσπ ;σM 6= ∅ if and only if Nn1,...,nk,d(λn.C[n])
diverges, which is equivalent to saying that M diverges along the evaluation π.

Lastly, we need to deal with the case that there is an infinite evaluation π = n1, n2, . . .

of M that consults the nondeterministic oracle infinitely often. In this case, M must
certainly diverge along the evaluation π. For each j, we define π(j)

n to be the strategy for !N
corresponding to the term Nn1,...,nj ,Ω. So π

(j)
n has a unique finite maximal play

q n1 q n2 · · · q nj q ,

at which point the strategy has a partiality.
Evaluation of the term Nn1,...,nj ,Ω(λn.C[n]) must diverge, since it will proceed according

to the evaluation π and eventually reach the divergence (since π consults the oracle infinitely
often). This implies that D

σ
(j)
π ;σM

6= ∅ for all j.
We define σπ to be the least upper bound of the σ(j)

π (e.g., in the sense of [8]). Since
composition is continuous for deterministic (!) strategies, we deduce that Dσπ ;σM 6= ∅.

σπ has plays of the form q n1 q n2 · · · , and so it is total. J

From the proof of this result, we can establish the converse, which we will also need.

I Lemma 11. Let M = C[?] be as before. Let σ : !N be a total deterministic strategy.
If qa ∈ Tσ;σM then M ⇓ skip.
If Dσ;σM 6= ∅ then M 6⇓must.

Proof. Since σ is total and deterministic, it must have a maximal infinite play sσ of the
form q m1 q m2 · · · , where m1,m2, . . . is some infinite sequence of natural numbers. If the
strategy σM contains some play s such that s|!N = s, then σ = σπ for some infinite evaluation
π of M . Otherwise, let t be the maximal sub-play of s such that s|!N = t for some s ∈ σM .
Then, if we replace σ with the strategy σ′ that plays according to t and subsequently plays
q d q d · · · for our fixed value d, we will have σ′;σM = σ;σM . In either case, σ′ = σπ for
some evaluation π of the term M .

Now suppose that there exists σ : !N such that qa ∈ Tσ;σM . We may assume that σ = σπ
for some evaluation π of M . Therefore, qa ∈ Tσπ ;σM , which means that M ⇓ skip along π.
The corresponding statement for must convergence follows in the same way. J

Note that these last two lemmas may be cast entirely in the model of deterministic
Idealized Algol given in [3], since they only refer to the denotations of deterministic terms.
We can therefore prove a more general version of Proposition 9.

I Definition 12. Let σ : A→ B be a (deterministic) strategy. We say that σ is winning if
every play in σ may be extended to a play that ends with a P -move in B; i.e., σ is total and
contains no sequences having an infinite tail in A.
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This definition is motivated by Lemmas 10 and 11 in the following sense: if σM : N→ C
is a strategy, then there exists some σM such that Dσ;σM 6= ∅ if and only if σ is not winning.

The following is now an easy corollary of Lemmas 10 and 11.

I Corollary 13. Let C be a Cartesian closed category that admits a faithful Cartesian functor
J : G!

vis ↪→ C. Let >N : 1 → JN be a morphism in C and use it to extend the semantics of
Idealized Algol of G!

vis to a semantics of nondeterministic Idealized Algol, as in Section 4.1.
Suppose we have two predicates ⇓ skip and ⇓must defined on strategies 1 → JC in C

satisfying the following rules for all strategies σ : N→ C in G!
vis.

(>N; Jσ) ⇓ skip if and only if there is some s ∈ σ such that s|C = qa.
(>N; Jσ) ⇓must if and only if σ is winning.

Then the semantics of nondeterministic Idealized Algol inside C is adequate in the following
sense. For all terms M of nondeterministic Idealized Algol of type com:

M ⇓ skip if and only if JMK ⇓ skip.
M ⇓must if and only if JMK ⇓must.

We can then deduce Proposition 9 by verifying that the following predicates on strategies
σ : 1→ C in the category G!

ND,vis satisfy the conditions of Corollary 13.
σ ⇓ skip ⇔ qa ∈ Tσ.
σ ⇓must ⇔ Dσ = ∅.

Corollary 13 is very general, and is intended to be applied in multiple situations. In
particular, it may be applied to a game semantics in which we define a ‘nondeterministic
visible strategy’ on a game A to be a deterministic visible strategy for N → A, up to a
suitable equivalence relation. This model is an example of a much more general construction
that is the subject of ongoing research by the authors. In this sense, our main model based
on nondeterministic strategies is not necessary in order to obtain our full abstraction result.
Nevertheless, we felt it important to give a model based on nondeterministic strategies, since
these are the ‘natural’ game semantic interpretation of nondeterminism.

4.3 Intrinsic Equivalence and Soundness
We define intrinsic equivalence of strategies as follows. If σ, τ are two strategies for a game A,
we say that σ ∼ τ if for all test morphisms α : A→ C we have σ;α = τ ;α. Having defined
this equivalence, we may prove soundness in the usual way.

I Theorem 14 (Soundness). Let M,N be two closed terms of type T . If JMK ∼ JNK then
M ≡m&m N .

For full abstraction, we need to take the intrinsic quotient in order to identify, for example,
the terms λn.Ω and λn.If0 n Ω Ω: nat→ nat. These terms are observationally equivalent,
but their denotations are not equal; for example, q ∈ DJλn.ΩK, but q 6∈ DJλn.If0 n Ω ΩK.

The point here is that even though q is not explicitly a divergence in the second case, it
is nonetheless impossible to prevent the strategy from eventually reaching a divergence.

Given a nondeterministic strategy σ for a game A, we may treat σ as a game in its own
right (a sub-game of A). Moreover, for any s ∈ Tσ, we have a particular branch of that game
in which play starts at s. We say that s is unreliable if player P has a strategy for the game
starting at s that ensures that the (possibly infinite) limiting play is in Dσ.

We then say that a strategy σ is divergence-complete if every unreliable point of σ is
contained in Dσ. Every strategy σ can clearly be extended to a minimal divergence-complete
strategy dc(σ); Murawski’s explicit characterization of the intrinsic collapse [15], which may
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be applied to our model, essentially says that σ ∼ τ if and only if σ and τ have the same
complete plays and dc(σ) = dc(τ).

An important fact about intrinsic equivalence is the following Lemma, whose proof makes
use of the fact that the infinite plays in our strategies are given by recursive functions.

I Lemma 15. Let σ, τ be strategies for a game A. Suppose that σ;α = τ ;α for all recursive
strategies α : A→ C. Then σ ∼ τ .

4.4 Universality

Let S, T be Idealized Algol types and let σ : S → T be a recursive morphism in G!
ND,vis. We

want to prove that σ is the denotation of some term.
By our nondeterministic factorization result, we know that σ = >N; Det(σ), where Det(σ)

is a deterministic recursive strategy. By universality for G!
D,vis, we know that Det(σ) = JMK

for some closed term M : S → T . Then σ = >N; Det(σ) = J?K ; JMK = JM ?K.

4.5 Full abstraction

I Theorem 16 (Full abstraction). Let M,N be two closed terms of type T . If M ≡m&m N

then JMK ∼ JNK.

Proof. Let A = JT K. Suppose that JMK 6∼ JNK; so there is some strategy α : A → C such
that JMK ;α 6= JNK ;α. By Lemma 15, we can choose α to be recursively presentable; by
universality, we have α = JP K for some closed term P of type T → com. Then we have
JMK ; JP K 6= JNK ; JP K; by computational adequacy, it follows that M 6 ≡m&mN . J

5 Conclusion

We conclude by making a few remarks about the situation when our base deterministic
language is PCF rather than Idealized Algol.

The principal difficulties in modelling nondeterministic stateless languages were overcome
by Tsukada and Ong in [21], where they outlined how to define an innocent nondeterministic
strategy by retaining ‘branching time information’ in strategies. An additional benefit of the
retention of branching time information is that we no longer need to keep track of infinite
plays in order to model unbounded nondeterminism. Tsukada and Ong’s primary model was
based on sheaves over a site of plays, but they also give a more direct way of characterizing
nondeterministic innocence, based on ideas by Levy [14].

The model given in [21] is not sound for must-equivalence, but the authors make the
claim that it their model may be easily modified to yield a model that is sound for this type
of equivalence, using the same techniques from [8] that we have used.

We could use our methods to help establish this claim in the case of unbounded non-
determinism; specifically, our proof of adequacy will extend to such a model. Indeed, Corollary
13 can easily be modified to apply to PCF, even though we have used Idealized Algol terms
in the proof. Corollary 13 then reduces the proof of adequacy to a combinatorial check on
morphisms from N → C on strategies in the well-known category G!

vis, together with an
examination of what happens to those strategies when we compose them with >N.
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