
Automated Detection of Serializability Violations
Under Weak Consistency
Kartik Nagar
Purdue University, USA
nagark@purdue.edu

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract
While a number of weak consistency mechanisms have been developed in recent years to improve
performance and ensure availability in distributed, replicated systems, ensuring the correctness
of transactional applications running on top of such systems remains a difficult and important
problem. Serializability is a well-understood correctness criterion for transactional programs;
understanding whether applications are serializable when executed in a weakly-consistent en-
vironment, however remains a challenging exercise. In this work, we combine a dependency
graph-based characterization of serializability and leverage the framework of abstract executions
to develop a fully-automated approach for statically finding bounded serializability violations
under any weak consistency model. We reduce the problem of serializability to satisfiability of
a formula in First-Order Logic (FOL), which allows us to harness the power of existing SMT
solvers. We provide rules to automatically construct the FOL encoding from programs written in
SQL (allowing loops and conditionals) and express consistency specifications as FOL formula. In
addition to detecting bounded serializability violations, we also provide two orthogonal schemes
to reason about unbounded executions by providing sufficient conditions (again, in the form of
FOL formulae) whose satisfiability implies the absence of anomalies in any arbitrary execution.
We have applied the proposed technique on TPC-C, a real-world database program with complex
application logic, and were able to discover anomalies under Parallel Snapshot Isolation (PSI),
and verify serializability for unbounded executions under Snapshot Isolation (SI), two consistency
mechanisms substantially weaker than serializability.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Weak Consistency, Serializability, Database Applications

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.41

Related Version A full version of the paper is available at [24], https://arxiv.org/abs/1806.
08416.

1 Introduction

We consider the problem of detecting serializability violations of transactional programs
executing in a weakly-consistent replicated distributed database. An execution of such
programs is said to be serializable if it is equivalent to some sequential execution of the
transactions that comprise the program. Ensuring that all executions of such programs
are serializable greatly simplifies reasoning about program correctness by reducing the
complexity of understanding concurrent executions to the problem of understanding sequential
ones. Unfortunately, enforcing serializability using runtime synchronization mechanisms

© Kartik Nagar and Suresh Jagannathan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 41; pp. 41:1–41:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nagark@purdue.edu
mailto:suresh@cs.purdue.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://arxiv.org/abs/1806.08416
https://arxiv.org/abs/1806.08416
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Automated Detection of Serializability Violations Under Weak Consistency

is problematic in geo-replicated distributed systems without sacrificing availability (low-
latency) [18]. To reap the correctness benefits of serializability with the performance and
scalability benefits of high-availability, we study the conditions under which transactional
programs can be statically identified to always yield a serializable execution without the need
for global synchronization. The challenge to realizing this goal stems from the complexity in
reasoning about replicated state in which not all replicas share the same view of the data
they hold.

To address this challenge, we present a fully automated static analysis that precisely
encodes salient dependencies in the program as abstract executions defined in terms of
an axiomatic specification of a particular weak consistency model (§4). The analysis then
leverages a theorem prover to systematically search for the presence or absence of cycles
in these executions consistent with these dependencies; the presence of a cycle indicates a
serializability violation (§5.1). Notably, our approach can be applied to any weak consistency
model whose specification can be expressed in first-order logic, a class that subsumes all
realistic data stores we are aware of. More specifically, our approach constructs a dependency
graph [2] from the input program containing a cycle and then asks whether there exists a
valid execution under the given consistency specification that can result in this graph. To do
this, we automatically extract dependency conditions from the transactional program, and
relate these dependencies to artifacts in an event-based model to find whether there exists a
valid abstract execution corresponding to the dependency graph. These dependencies are
encoded in a first-order logic formula that is satisfiable only if there exists an execution that
violates serializability.

Given a transactional program written in SQL, we discover serializability violations
of bounded length under the given weak consistency model (with the bound limiting the
number of concurrent transaction instances that are considered). We output the actual
anomaly including the transactions involved and their inputs. This output can then be
used to strengthen the consistency of the transactions involved in the anomaly (or even
modifying the transactions themselves). Since the approach is parametric on a consistency
policy, it can also be used to determine the weakest consistency policy for which the program
is serializable. Similar to other bounded verification techniques used to detect bugs in e.g.,
concurrent programs [23], we posit that most serializability violations will manifest using a
small number of transaction instances.

Nonetheless, we additionally provide two orthogonal schemes to reason about arbitrarily
long executions with an unbounded number of transaction instances (§5.2, §5.3). The first
scheme formalizes the argument that it is enough to check serializability violations in bounded
executions by proving that longer violations beyond that bound would induce violations
within the bound. The second scheme applies an inductive argument to check the absence of
anomalies in arbitrarily long executions. Our approach is sound, but not complete - while
all discovered anomalies are justified by counterexamples offered by the theorem prover, we
cannot rule out the possibility of serializability violations appearing in unbounded executions
that are not identified by these two schemes.

As serious case studies to assess the applicability of our approach, we have applied our
technique on TPC-C, a real-world transactional program, and a course grading applica-
tion [19] (§6). In both cases, we were able to detect multiple serializability violations under
Eventual Consistency and a weaker variant of snapshot isolation (SI) called parallel snapshot
isolation [26], and verified that these anamolies do not occur when using SI for unbounded
executions. We now present an overview of our approach using a simple example.

K.Nagar and S. Jagannathan 41:3

withdraw (ID , Amount)
SELECT Balance AS bal WHERE AccID=ID
IF bal > Amount

UPDATE SET Balance =bal - Amount WHERE AccID=ID

Figure 1 Example Application.

withdraw(1, 50) ar //

RW,WW

''

withdraw(1, 60)
RW

gg

Figure 2 Abstract Execution E and its Dependency Graph.

2 Overview

In this section, we show how our approach discovers serializability violations, and how
the output of our analysis can be used to repair violations using selective synchronization.
Consider a simple banking application which maintains the balance of multiple accounts in a
table Account which is indexed using the primary key AccID and contains the field Balance.
Consider a withdraw operation (shown in Fig. 1) written in a SQL-style language, which
takes ID and Amount as input, and deducts the amount from the account with account number
ID, if the balance is sufficient. Suppose the application is deployed in a distributed, replicated
environment which allows concurrent invocations of the withdraw operation at potentially
different replicas, with the only guarantee provided being eventual consistency - eventually,
all replicas will witness all updates to the Balance field. Under eventual consistency, the
application is clearly not serializable, since concurrent withdraws operations to the same
account–whose total withdrawn amount exceeds the balance of the account–could both
succeed, which is not possible in a serializable execution.

A convenient way to express executions in such an environment is to use an axiomatic
event-based representation. In this framework, an abstract execution [12] is expressed
as the tuple (T, vis, ar), where T is the set of transaction invocations, vis ⊆ T × T is a
visibility relation such that if t vis−→ t′ then updates of t are visible to t′, and ar ⊆ T × T
is an arbitration relation which totally orders all writes to the same location and ensures
eventual consistency [9]. For example, if t1 = withdraw(1,50), t2 = withdraw(1,60), then
E = ({t1, t2}, {}, {(t1, t2)}) is an abstract execution which is not serializable, because the
final value of Balance in the account number 1 will only reflect the withdraw operation
t2 (assuming an initial Balance of 100 in AccID 1), since there is no visibility constraint
enforced between the two operations. This is an example of a lost update [5] anomaly. Our
goal is to automatically construct such anomalous executions.

A useful technique to detect serializability violations is to build dependency graphs
from abstract executions, and then search for cycles in the dependency graph. The nodes
of the dependency graph are invocations, and edges indicate dependencies between them.
There are three type of dependencies relevant to serializability detection: t1

WR−−→ t2 is a
read dependency, which means that t2 reads a value written by t1, t1

WW−−→ t2 is a write
dependency, which means that both t1 and t2 write to the same location, with the write of
t2 arbitrated after t1, and t1

RW−−→ t2 is an anti-dependency, which means that t1 does not
read a value written by t2 but instead reads an older version. For example, the dependency
graph of the anomalous execution E described above is shown in Fig. 2.

CONCUR 2018

41:4 Automated Detection of Serializability Violations Under Weak Consistency

t1 //
##

t2 // t3 // t4 // t5 t1 //
&&

t2 // t3 // t4 // t5

t1 // t2 //
��

t3 // t4 // t5 t1 // t2 //
##

t3 // t4 // t5

Figure 3 Different possibilities for paths of length 4 in the dependency graphs of the banking
application. Note that transactions in bold perform writes.

In our approach, we start with a dependency graph containing a cycle, and then ask
whether an execution corresponding to the dependency graph is possible. From the transaction
code, we automatically extract the conditions under which a dependency edge can manifest
between invocations of the transactions. In our running example, a dependency edge (of
any type) between two withdraw invocations can only manifest if they are called with the
same account ID. Further, we link the dependency edges with the relations vis and ar of the
corresponding abstract execution. For example, t1

RW−−→ t2 ⇒ ¬(t2
vis−−→ t1), because otherwise,

t1 would read the value written by t2. This is useful because different consistency schemes
can be axiomatically expressed by placing constraints on the vis and ar relations.

In order to prevent the anomalous execution in our running example, we can use PSI
[26] which ensures that if two invocations write to the same location, then they cannot be
concurrent. While PSI is implemented using a complex, distributed protocol, in our abstract
framework, it can be simply expressed using the following constraint: ∀t, t′. t WW−−→ t′ =⇒
t

vis−→ t′. Now, the anomalous execution E is not possible, because t1
WW−−→ t2 ⇒ t1

vis−→ t2,
which contradicts t2

RW−−→ t1.
To summarize, the following is the relevant portion of formulae that we generate for the

above application under PSI:

∀t, t′. t RW−−→ t′ ⇒ (∃r. AccID(r) = ID(t) ∧ AccID(r) = ID(t′) ∧ bal(t′) > Amount(t′)) (1)
∀t, t′, r. (AccID(r) = ID(t) ∧ bal(t) > Amount(t) ∧ AccID(r) = ID(t′)

∧bal(t′) > Amount(t′) ∧ t ar−→ t′)⇒ t
WW−−→ t′ (2)

∀t, t′. t RW−−→ t′ ⇒ ¬(t′ vis−→ t) (3)

∀t, t′. t WW−−→ t′ ⇒ t
vis−→ t′ (4)

We use t, t′ to denote invocations of the transaction, and r to denote a record in the
database. We define the function AccID to access the primary key of a record. Similarly, ID,
Amount, etc. are functions which map an invocation to its parameters and local variables.
The existence of a dependence between two invocations forces the existence of a record
that both invocations must access, as well as conditions on the local variables required to
perform the access (Eqn. 1). On the other hand, if two invocations are guaranteed to write
to the same location, there must exist a WW dependency between them (Eqn. 2). Now,
it is not possible to have invocations t1 and t2, obeying Eqns. (1)-(4) such that t1

RW−−→ t2

and t2
RW−−→ t1, the condition necessary to induce a cycle and thus manifest a serializability

violation.
In fact, it is not possible to have a cycle of any arbitrary length in a dependency graph of

this application under PSI. To show this, we use the following observation: any long path in
a dependency graph generated by the above application will have chords in it, resulting in a
shorter path. In fact, it can be shown that the shortest path between any two invocations in
any dependency graph of the application (if there is a path) will always be less than or equal

K.Nagar and S. Jagannathan 41:5

to 3. This can shown by using the above constraints (1)-(4) (and adding similar constraints
for WR edges), instantiating a path of length 4 such that there is no chord between any of
the nodes involved in the path, and then showing the unsatisfiability of such an encoding.
Since a cycle is also a path, it is now sufficient to only check for cycles of length 3, since any
longer cycle will necessarily induce a cycle of length less than or equal to 3.

Intuitively, this is happening in the banking application because the presence of any
dependency edge between two nodes implies that both invocations must access the same
account, and at least one of them must perform a write. Further, any two writes are always
related by a WW edge. Now, as shown in Figure 3, in any path of length 4 in the dependency
graph, one of t1 or t2 and one of t4 or t5 must be a write, which implies a chord between
the two writes. Hence, there will always be a shorter path of length less than or equal to 3
between t1 and t5.

3 Preliminaries

3.1 Input Language and Database Model
v ∈ Variables f ∈ Fields Q ∈ {MIN, MAX, COUNT}
⊕ ∈ {+,−,×, /} � ∈ {<,≤,=, >,≥} ◦ ∈ {∧,∨}

ed := f | v | ed ⊕ ed | Z
φd := f� ed | f ∈ v | ¬φd | φd ◦ φd
ec := v | CHOOSE v | ec ⊕ ec | Z
φc := v� ec | v = NULL | v1 ∈ v2 | ¬φc | φc ◦ φc
c := SELECT f̄ AS v WHERE φd | SELECT Q f AS v WHERE φd | UPDATE SET f = ec WHERE φd |

INSERT VALUES f̄ = ēc | DELETE WHERE φd | v = ec | IF φc THEN c ELSE c | c ; c
FOREACH v1 IN v2 DO c END | SKIP

vlist := v | vlist, vlist
T := Tname(vlist){c}

We start with description of the language of transactional programs in our framework.
We assume a database model, where data is organized in tables with multiple records, where
each record has multiple fields and transactions can insert/delete records and read/modify
fields in selected records. The grammar is essentially a simplified version of standard SQL,
allowing SQL statements which access the database to be combined with usual program
connectives such as conditionals, sequencing and loops. Every transactional program T
has a set of parameter variables (vlist) which are instantiated with values on invocation,
and a set of local variables which are used to store intermediate values from the database
(typically as output of SELECT queries). For a transactional program T , let Vars(T) be the
set of parameters and local variables of T . Let Stmts(T) be the set of SQL statements (i.e.
INSERT, DELETE, SELECT or UPDATE) in T .

To simplify the presentation, we will assume that there is only one table and each record
is a set of values indexed by the set Fields. Furthermore all fields store integer values. The
FOREACH loop iterates over a set of records in v2, and assigns v1 to an individual record
during each iteration. We call v2 as the loop variable. Let D(v) denote the nesting depth
of v, which is 0 if v is assigned a value outside any loop (or is a parameter variable), and
otherwise is the number of enclosing loops. For a variable v assigned a value inside a loop,
let LVar(v, i) denote the loop variable at depth i, for all 1 ≤ i ≤ D(v).

SQL statements use predicates φd to select records that would be accessed/modified,
where φd allows all boolean combinations of comparison predicates between fields and values.
Conditionals used inside IF statements (φc) are only allowed to used local variables and

CONCUR 2018

41:6 Automated Detection of Serializability Violations Under Weak Consistency

parameters. To check whether the output of a SELECT query is empty, we use the conditional
expression v = NULL, where v stores the output of the query.

We assume a fixed non-empty subset of Fields to be the primary key PK. Any two
records must have distinct values in at least one of their PK fields. Assume that there is
a special field called Alive ∈ Fields whose value is 1 if the record is in the database, 0
otherwise. Initially, all records are not Alive. When a record is inserted into the database,
it becomes Alive, and when the record is deleted, it again becomes not Alive.

3.2 Abstract Executions
Executions of transactional programs in our framework are expressed using an event structure,
which is based on the approach used in [5]. The execution of a transaction instance consists
of events, which are database operations. A database operation is a read or write to a field
of a record. Let R = PK → Z be the set of all possible primary keys. Then, the set of all
database operations is O = {wri(r, f, n) | r ∈ R, f ∈ Fields \ PK, n ∈ Z} ∪ {rd(r, f, n) | r ∈
R, f ∈ Fields, n ∈ Z} .

To simplify the presentation, we assume that a transaction reads (writes) at most once
from (to) a field of a record and does not read any record that it writes, inserts or deletes.
These assumptions allow us to ignore the ordering among events of a single transaction
instance. Our approach can be easily adapted if these assumptions are not satisfied.

I Definition 1 (Transaction Instance). A transaction instance is a tuple σ = (TID, ε), where
TID is a unique transaction instance-ID and ε ⊆ O is a set of events.

In this work, we assume that transactions are executed in an environment which guarantees
atomicity and isolation (also called atomic visibility [12]). That is, either all events of a
transaction are made visible to other transactions, or none are, and the same set of transactions
are visible to all events in a transaction. Atomicity and isolation are crucial properties for
transactional programs, and both can be implemented efficiently in a replicated, distributed
environment [9, 3]. Note that atomicity and isolation does not guarantee serializability,
as seen in example in §2, and our goal is to explore serializability in this context of weak
consistency.

I Definition 2 (Abstract Execution). An abstract execution is a tuple χ = (Σ, vis, ar), where
Σ is a set of transaction instances, vis ⊆ Σ× Σ is an anti-symmetric, irreflexive relation, and
ar ⊆ Σ× Σ is a total order on Σ such that vis ⊆ ar.

Intuitively, given transaction instances σ, σ′ in an abstract execution χ, if σ vis−→ σ′, then
all writes performed by σ are visible to σ′ and hence may affect the output of the reads
performed by σ′. ar is used to order all writes to the same location. We use the notation
σ ` o to specify that transaction instance σ performs a database operation o. The length of
an abstract execution is defined to be the number of transaction instances involved in the
execution (i.e. |Σ|).

Given a set of transaction instances Σ′, we use the notation [Σ′]<wri(r,f)> = {σ ∈ Σ′ | σ `
wri(r, f, n), n ∈ Z} to denote the set of transactions which are writing to field f of record
r. We use the notation MAXar(Σ′) to denote σ ∈ Σ′ such that ∀σ′ ∈ Σ′. σ = σ′ ∨ σ′ ar−→ σ.
Given a transaction instance σ, we use vis−1(σ) to denote the set {σ′ ∈ Σ | σ′ vis−→ σ}. The
last writer wins nature of the database dictates that a transaction reads the most recent
value (according to ar) written by the transactions visible to it. Formally, this is specified as
follows: σ ` rd(r, f, n)⇒ (f 6∈ PK⇒ MAXar([vis−1(σ)]<wri(r,f)>) ` wri(r, f, n)) ∧ (f ∈ PK⇒
r(f) = n).

K.Nagar and S. Jagannathan 41:7

I Definition 3 (Dependency Graph). Given an abstract execution χ = (Σ, vis, ar), the
dependency graph Gχ = (Σ, E) is a directed, edge-labeled multigraph where the edges and
their labels are defined as follows :

σ
WRr,f−−−−→ σ′ if σ′ ` rd(r, f, n) and σ = MAXar([vis−1(σ′)]<wri(r,f)>).

σ
WWr,f−−−−→ σ′ if σ ` wri(r, f, n), σ′ ` wri(r, f,m) and σ ar−→ σ′.

σ
RWr,f−−−−→ σ′ if σ ` rd(r, f, n), σ′ ` wri(r, f,m) and there exists another transaction

instance σ′′ such that σ′′ WRr,f−−−−→ σ and σ′′ WWr,f−−−−→ σ′.
Edges in the dependency graph Gχ also induce corresponding binary relations on the
transaction instances (we use the same notation for these relations). Let WR,WW,RW be the
union of WRr,f ,WWr,f ,RWr,f for all r, f respectively. The following lemma follows directly
from the definition1:

I Lemma 4. Given an abstract execution χ = (Σ, vis, ar) and its dependency graph Gχ =
(Σ, E), the following are true:

If σ WRr,f−−−−→ σ′ ∈ E, then σ vis−→ σ′.
If σ WWr,f−−−−→ σ′ ∈ E, then σ ar−→ σ′.
If σ RWr,f−−−−→ σ′ ∈ E, then ¬(σ′ vis−→ σ).

In our framework, transaction instances are generated by assigning values to all the parameter
variables of a transactional program T , written using the grammar specified in §3.1. We
use the notation Γ(σ) to denote the transactional program T associated with transaction
instance σ.

Different weak consistency and weak isolation models can be expressed by placing
constraints on vis and ar relations associated with an abstract execution. This gives rise to
the notion of valid abstract executions under a specific model, which are executions satisfying
the constraints associated with those models. Below, we provide examples of several known
weak consistency and weak isolation models:

Full Serializability : ΨSer , vis = ar
Selective Serializability for Transactional Programs T1, T2 [16] : ΨSer(T1,T2) , ∀σ1, σ2.

((Γ(σ1) = T1 ∧ Γ(σ2) = T2) ∨ (Γ(σ1) = T2 ∧ Γ(σ2) = T1) ∧ σ1
ar−→ σ2)⇒ σ1

vis−→ σ2

Causal Consistency (CC) [22] : ΨCC , ∀σ1, σ2, σ3. σ1
vis−→ σ2 ∧ σ2

vis−→ σ3 ⇒ σ1
vis−→ σ3

Prefix Consistency (PC) (equivalent to repeatable read in centralized databases) [27, 10] :
ΨPC , ∀σ1, σ2, σ3. σ1

ar−→ σ2 ∧ σ2
vis−→ σ3 ⇒ σ1

vis−→ σ3

Parallel Snapshot Isolation (PSI) [26] : ΨPSI , ∀σ1, σ2. σ1
WW−−→ σ2 ⇒ σ1

vis−→ σ2
Different models can be also be combined together to create a hybrid model. For example,
ΨPSI ∧ ΨPC is equivalent to Snapshot Isolation [4] in centralized databases. Below, we
formalize the classical notion of conflict serializability [6] in our setting and then relate it to
the presence of cycles in the dependency graph.

I Definition 5 (Serializable Execution). An abstract execution χ = (Σ, vis, ar) is said to be
serializable if there exists another abstract execution χ′ = (Σ, vis′, ar′) which satisfies ΨSer
such that Gχ and Gχ′ are isomorphic.

I Theorem 6. Given an abstract execution χ = (Σ, vis, ar), if there is no cycle in the
dependency graph Gχ, then χ is serializable.

1 All proofs can be found in Appendix C in the extended version of the paper[24].

CONCUR 2018

41:8 Automated Detection of Serializability Violations Under Weak Consistency

3.3 Operational Semantics

We now propose an operational semantics to generate abstract executions from transactional
programs under a consistency specification. The purpose of the operational semantics is to
link SQL statements with abstract database operations, and to prove the soundness of our
encoding in FOL. Here, we only provide an informal overview; the full operational semantics
can be found in Appendix B of [24].

The semantics is a transition system ST,Ψ = (∆,→) parametrized over a set of trans-
actional programs T and a consistency specification Ψ. The state (δ ∈ ∆) is stored as a
tuple (Σ, vis, ar,P) where Σ is the set of committed transaction instances, vis and ar are
relations on Σ, and P is the running pool of transaction instances. The transitions are of
two types : spawning a new instantiation of a transactional program T ∈ T or executing
a statement of a transaction instance in the running pool. When a new execution of a
transaction instance begins, a subset of Σ is non-deterministically selected to be made visible
to the new instance. A view of the database is constructed for the new instance based on
the set of visible transactions and the ar relation (ensuring the last writer wins policy), and
all queries of the transaction instance are answered on the basis of this view. At any point,
any transaction instance from P can be non-deterministically selected for execution of its
next statement. Any new event generated during the execution of a transaction instance
is stored in the running pool. Finally, when a transaction instance wants to commit, it is
checked whether the consistency specification (Ψ) is satisfied if the instance were to commit,
and if yes, it is added to Σ. We can now define a valid abstract execution in terms of traces
of the transition system:

I Definition 7 (Valid execution of T under Ψ). An abstract execution χ = (Σ, vis, ar) is said
to be a valid execution produced by T under Ψ if there exists a trace ({}, {}, {}, {}) →∗
(Σ, vis, ar, {}) of the transition system ST,Ψ.

4 FOL Encoding

4.1 Vocabulary

Given a set of transactional programs T and a consistency specification Ψ we now show how
to construct a formula in FOL such that any valid abstract execution χ of T under Ψ and its
dependency graph Gχ is a satisfying model of the formula. The encoding is parametric over
T and Ψ. We first describe the vocabulary of the encoding. We define two uninterpreted
sorts τ and R, such that members of τ are transaction instances, and members of R are
records. In addition, we also define a finite sort T which contains the transaction types,
where each type is a transactional program.

The function Γ : τ → T associates each transaction instance with its type. For each
transactional program T ∈ T and for each variable v ∈ Vars(T), the variable projection
function ρv gives the value of v in a transaction instance. The signature of ρv depends
upon the type of the variable and whether it is assigned inside a loop. First, let us consider
variables which are assigned values outside any loop. In our framework, variables are of
two types : a value or a set of values. Further, the value can be either an integer (e.g. the
parameter ID of the withdraw transaction) or a record. Let V = Z ∪R. If v is a value, the
ρv has the signature τ → V. If v is a set of values, then ρv is a predicate with signature
V× τ → B, such that ρv(r, t) is true if r belongs to v in the transaction instance t.

K.Nagar and S. Jagannathan 41:9

Consider a loop of the form : FOREACH v1 IN v2 DO c END. All local variables which
are assigned values inside the loop body (including v1) will be indexed by values in the set
v2. Hence, if a local variable v3 is assigned inside the loop, and it is a value, then ρv3 will
have the signature V × τ → V. On the other hand, if v3 stores a set of values, then ρv3

will have the signature V× V× τ → B, with the interpretation that ρv3(r1, r2, t) is true if
v3 contains r2 in the iteration where v1 is r1 ∈ v2. Similarly, nested loops will have local
variables which are indexed by records in all enclosing loops.

To summarize, the signature of ρv is either VD(v) × τ → V or VD(v)+1 × τ → B. Similar
to the variable projection function, the field projection function ρf : R → Z is defined for
each field f ∈ Fields, such that ρf(r) gives the value of f in a record r.

We define predicates WR,WW,RW all of type τ × τ → B which specify the read, write
and anti-dependency relations respectively between transaction instances. We also define
predicates WRR,RWR,WWR all of type R×Fields× τ × τ → B which provide more context
by also specifying the records and fields causing the dependencies. Predicates vis, ar of type
τ × τ → B specify the visibility and arbitration relation between transaction instances. The
predicate Alive : R× τ → B indicates whether a record is Alive for a transaction instance.

4.2 Relating Dependences with Abstract Executions
By Lemma 4, in any abstract execution, the presence of a dependency edge between two
transaction instances enforces constraints on the vis and/or ar relations between the two
instances. The following formula encodes this along with basic constraints satisfied on vis
and ar:

ϕbasic = TotalOrder(ar) ∧ ∀(t, s : τ). (vis(t, s)⇒ ¬vis(s, t)) ∧ (vis(t, s)⇒ ar(t, s))
∧ (WR(t, s)⇒ vis(t, s)) ∧ (WW(t, s)⇒ ar(t, s)) ∧ (RW(t, s)⇒ ¬vis(s, t)) (5)

The following formula encodes a fundamental constraint involving the dependency relations
on the same field of the same record due to the last writer wins nature of the database:

ϕdep =
∧

f∈Fields

∀(t1, t2, t3 : T)(r : R). WRR(r, f, t2, t1) ∧ RWR(r, f, t1, t3)⇒WWR(r, f, t2, t3)

Finally, the consistency specification Ψ can be directly encoded using the relations and
functions defined in our vocabulary (we denote this formula by ϕΨ).

4.3 Relating dependences with transactional programs
The presence of a dependency edge between two transaction instances places constraints
on the type of transactional programs generating the instances and their parameters. To
automatically infer these constraints, we use the following strategy : if there is a dependency
edge between two instances, then there must exist SQL statements in both transactions
which access a common record.

To encode this, we first extract the conditions under which a SQL statement in a
transactional program can be executed. By performing a simple syntactic analysis over the
code of a transaction T , we obtain a mapping ΛT from each SQL statement in Stmts(T) to
a conjunction of enclosing IF conditionals (the complete algorithm can be found in Appendix
A of [24]).

The FOL encoding of all conditionals in a program and all WHERE clauses in a SQL
statement is constructed by replacing variables and fields with the corresponding variable
projection and field projection functions respectively. A representative set of rules for this

CONCUR 2018

41:10 Automated Detection of Serializability Violations Under Weak Consistency

Jv = NULLKt = (∃(r1, . . . , rD(v) : R).
∧D(v)

i=1 V(Jri ∈ LVar(v, i)Kt), fresh(r1, . . . , rD(v), r)
∀(r : R).¬ρv(r1, . . . , rD(v), r, t))

Jr ∈ vKt = (∃(r1, r2, . . . , rD(v) : R).
∧D(v)

i=1 V(Jri ∈ LVar(v, i)Kt), fresh(r1, . . . , rD(v))
ρv(r1, . . . , rD(v), r, t))

Jv1 ∈ v2Kt = (ϕ1 ∧ ϕ2, ψ2) Jv1Kt = (ϕ1, ψ1)
Jψ1 ∈ v2Kt = (ϕ2, ψ2)

Jf� eKt,r =

{
(ϕ, ρf(r)� ψ) if f ∪ F(e) ⊆ PK

(true, true) otherwise
JeKt,r = (ϕ,ψ)

Figure 4 Encoding conditionals and WHERE clauses.

encoding are shown in Fig. 4. For conditionals φ used in IF statements, we use the notation
JφKt to describe the FOL encoding specialized to transaction instance t. The interpretation
is that JφKt is satisfiable only if the conditional φ is true in the transaction instance t. If φ
is inside a loop, then JφKt must be satisfiable if φ is true in any arbitrary iteration of the
enclosing loop(s) in t. For this reason, JφKt is actually represented as a tuple (ϕ,ψ), where
ϕ chooses any arbitrary iteration of enclosing loops, and the formula ψ is the value of the
conditional in that iteration. We define an evaluation function V(ϕ,ψ) = ϕ ∧ ψ which gives
the final FOL encoding.

The formula ϕ chooses an iteration by instantiating records belonging to loop variables
of all enclosing loops. For example, consider the encoding of v = NULL. Here, ϕ instantiates
a record belonging to the loop variable of every enclosing loop of v (encoded as V(Jri ∈
LVar(v, i)Kt)), and ψ encodes that ρv in the chosen iteration is false for every record. Similarly,
in the encoding of Jr ∈ vKt, ρv must be true for the record r. In the encoding of Jv1 ∈ v2Kt,
we first obtain the value of v1 (the second term in the tuple Jv1Kt), and then check whether
it is present in v2.

A similar procedure is used to obtain the encoding of the WHERE clauses used inside SQL
statements. Since WHERE clauses are evaluated on records, the encoding is specialized on both
records and transaction instances, for which we use the notation JφKt,r. The interpretation is
that JφKt,r is satisfiable only if φ is true for transaction instance t on record r. The encoding
replaces field accesses with the corresponding field projection function applied on r. Note
that the field projection function is only used for primary key fields which are accessed within
WHERE clauses (expressed as F ⊆ PK). The complete encoding for all types of conditionals
and WHERE clauses can be found in the Appendix A of [24].

As stated earlier, our strategy is to encode the necessary condition for a dependency edge
based on the access of a common record. For each pair of transaction types T1, T2 ∈ T, each
dependency typeR ∈ {WR,RW,WW}, and each pair of SQL statements c1 ∈ Stmts(T1), c2 ∈
Stmts(T2), we compute a necessary condition ηR→,T1,T2

c1,c2
(t1, t2) for dependency R to exist

between instances t1 and t2 of types T1 and T2 due to statements c1 and c2 respectively. The
following formula encodes the fact that a dependency between two transaction instances can
be caused due to a dependency between any two SQL statements in those transactions:

ϕR→,T1,T2 , ∀(t1, t2 : τ).(Γ(t1) = T1 ∧ Γ(t2) = T2 ∧R(t1, t2))⇒
∨

c1∈Stmts(T1)
c2∈Stmts(T2)

ηR→,T1,T2
c1,c2 (t1, t2)

The general format of ηR→,T1,T2
c1,c2

(t1, t2) is a conjunction of the conditionals required to
execute the statements c1 and c2 (i.e. ΛT1(c1) and ΛT2(c2)) in t1 and t2 resp. and the
WHERE clauses of the two statements evaluated on some record r. If they can never access the

K.Nagar and S. Jagannathan 41:11

same field of the same record, then ηR→,T1,T2
c1,c2

(t1, t2) is simply false. While this is the general
format of the clauses, in addition, we can also infer more information depending upon the
type of the SQL statements. To illustrate this we present a sample rule below:

c1 ≡ SELECT MAX f AS v WHERE φ1 c2 ≡ UPDATE SET f = e WHERE φ2

c1 ∈ Stmts(T1) c2 ∈ Stmts(T2) Γ(t1) = T1 Γ(t2) = T2 JvKt1 = (ϕ1, ψ1) JeKt2 = (ϕ2, ψ2)
ηRW→,T1,T2

c1,c2 (t1, t2) = (∃r. V(JΛT1 (c1)Kt1) ∧ V(Jφ1Kt1,r) ∧ V(JΛT2 (c2)Kt2) ∧ V(Jφ2Kt2,r)∧
Alive(r, t2) ∧ ϕ1 ∧ ϕ2 ∧ ψ1 < ψ2)

The rule encodes a necessary condition for an anti-dependency to exist from a SELECT
MAX to a UPDATE statement. First, it encodes that the conflicting SQL statements actually
execute in their respective transactions and there is a common record which satisfies the
WHERE clauses of both statements. SELECT MAX selects the record with the maximum value
in the field f among all records that satisfy φ1, and stores the value in variable v. If there is
an anti-dependency from SELECT MAX to UPDATE, then the updated value must be greater
than the output of SELECT MAX, because otherwise, the update does not affect the output of
SELECT MAX.

In addition, some transaction instances may be guaranteed to execute certain SQL
statements, which forces the presence of a dependency edge between them. For example, if two
transaction instances are guaranteed to update the same field of a record, then there must be a
WW dependeny between them. For each pair of transaction types T1, T2 ∈ T, each dependency
type R ∈ {WR,RW,WW}, and each pair of SQL statements c1 ∈ Stmts(T1), c2 ∈ Stmts(T2),
we compute a condition η→R,T1,T2

c1,c2
(t1, t2) which forces the dependency R to exist between

instances t1 and t2 of types T1 and T2 respectively due to c1 and c2. The following formula
encodes this:

ϕ→R,T1,T2 , ∀t1, t2.(Γ(t1) = T1 ∧ Γ(t2) = T2 ∧
∨

c1∈Stmts(T1)
c2∈Stmts(T2)

η→R,T1,T2
c1,c2 (t1, t2))⇒R(t1, t2)

c1 ≡ UPDATE SET f = e1 WHERE φ1 c2 ≡ UPDATE SET f = e2 WHERE φ2

c1 ∈ Stmts(T1) c2 ∈ Stmts(T2) Γ(t1) = T1 Γ(t2) = T2

η→WW,T1,T2
c1,c2 (t1, t2) = (∃r. V(JΛT1 (c1)Kt1) ∧ V(Jφ1Kt1,r) ∧ V(JΛT1 (c1)Kt2) ∧ V(Jφ2Kt2,r)∧

Alive(r, t1) ∧ Alive(r, t2) ∧ ar(t1, t2))

η→R,T1,T2
c1,c2

(t1, t2) is computed in the same manner as ηR,T1,T2→
c1,c2

(t1, t2). As an example
consider the above rule. Two UPDATE statements modifying the same field are guaranteed to
cause a WW dependency if both statements actually execute in their respective transactions,
and there exists a common record accessed by both statements which is Alive to both
transactions.

In addition, there are some auxiliary facts which are satisfied by all abstract executions
(which we encode as the formula ϕaux) such as a record present in the output variable of a
SELECT query must satisfy the WHERE clause of the query, the value of the iterator variable
in a loop must belong to the loop variable, etc. For more details, we again refer to the
Appendix. The final encoding is defined as follows:

ϕT,Ψ , ϕbasic ∧ ϕdep ∧
∧

R∈{WR,RW,WW}

∧
T1,T2∈T

(ϕR→,T1,T2 ∧ ϕ→R,T1,T2) ∧ ϕΨ ∧ ϕaux (6)

I Theorem 8. Given a set of transactional programs T and a consistency specification Ψ,
for any valid abstract execution χ = (Σ, vis, ar) generated by T under Ψ and its dependency

CONCUR 2018

41:12 Automated Detection of Serializability Violations Under Weak Consistency

graph Gχ, there exists a satisfying model of the formula ϕT,Ψ with τ = Σ and the binary
predicates vis, ar,WR,RW,WW being equal to the corresponding relations in χ and Gχ.

Note that ϕT,Ψ is always satisfiable, since the empty abstract execution is a satisfying model.

5 Applications

5.1 Bounded Anomaly Detection

By Theorem 6, any execution which violates serializability must have a cycle in its dependency
graph. We can directly instantiate a dependency graph which contains a cycle of bounded
length and then ask for a satisfying model of the formula built in the previous section which
contains the cycle. We introduce a new predicate D : τ×τ → B which represents the presence
of any dependency edge between two transaction instances : ϕD , ∀(t1, t2 : τ).D(t1, t2)⇔
(t1 = t2)∨WR(t1, t2)∨RW(t1, t2)∨WW(t1, t2). A cycle of length less than or equal to k can now
be directly encoded as follows: ϕCycle,k , ∃t1, . . . , tk.

∧k−1
i=1 D(ti, ti+1) ∧ D(tk, t1) ∧ (t1 6= tk).

I Theorem 9. Given a set of transactional programs T and a consistency specification Ψ, if
ϕT,Ψ ∧ ϕD ∧ ϕCycle,k is UNSAT, then all valid abstract executions produced by T under Ψ of
length less than or equal to k are serializable.

5.2 Verifying Serializability: The Shortest Path Approach

We propose a condition, which can be also be encoded in FOL, and which if satisfied would
imply that it is enough to check for violations of bounded length to prove the absence of
violations of any arbitrary length.

The condition is based on the simple observation that any long path in the dependency
graph could induce a short path due to chords among the nodes in the path (as demonstrated
in the example in §2). This would imply that any long cycle would also induce a short
cycle, and hence lack of short cycles would imply the lack of longer cycles. To check for
this condition, we encode a shortest path of length k in the dependency graph and then ask
whether there is a satisfying model:

ϕShortest Path,k , ∃t1, . . . , tk, tk+1.

k∧
i=1

D(ti, ti+1)∧
k−1∧
i=1

k+1∧
j=i+2

¬D(ti, tj)∧
∧

1≤i<j≤k+1
ti 6= tj

The condition instantiates a path of length k in the dependency graph and also asserts the
absence of any chord, which implies that the path is shortest. If there does not exist a
shortest path of length k, then there also cannot exist a shortest path of greater length,
because if not, such a path would necessarily contain a shortest path of length k. Now, it is
enough to check for cycles of length less than or equal to k, because any longer cycle would
contain a path of length at least k, which would imply the presence of a shorter path and
thus a cycle of length less than or equal to k.

I Theorem 10. Given a set of transactional programs T and a consistency specification
Ψ, if both ϕT,Ψ ∧ ϕD ∧ ϕShortest Path,k and ϕT,Ψ ∧ ϕD ∧ ϕCycle,k are UNSAT, then all valid
abstract executions produced by T under Ψ are serializable.

K.Nagar and S. Jagannathan 41:13

5.3 Verifying Serializability: An Inductive Approach
We now present an alternative approach to verifying serializability which uses the transitivity
and irreflexivity of the ar relation to show lack of cycles. In this approach, our goal is to
show that if there is a path in the dependency graph from t1 to t2, then t1

ar−→ t2. By the
irreflexivity of ar, this would imply that there cannot be a cycle in the dependency graph.
Since paths can be of arbitrary length, we will use the transitivity of ar and an inductive
argument to obtain a simple condition which can be encoded in FOL.

I Lemma 11. Given a set of transactional programs T, a consistency specification Ψ and a
subset of programs T′ ⊆ T, if for all valid executions χ and their dependency graphs Gχ, the
following conditions hold:
1. if σ1 → σ2 in Gχ and Γ(σ1) ∈ T′, then σ1

ar−→ σ2

2. if σ1 → σ2 → σ3 in Gχ, then either σ1
ar−→ σ3 or σ2

ar−→ σ3
then all valid executions which contain at least one instance of a program in T′ are serializable.

The proof uses an inductive argument to show that if there is path from σ1, an instance of a
program in T′ to any other instance σ2, then σ1

ar−→ σ2. This would imply that any instance
of T′ cannot be present in a cycle. The above conditions can be directly encoded in FOL:

ϕInductive,T′ , (∃(t1, t2 : τ). Γ(t1) ∈ T′ ∧ D(t1, t2) ∧ t1 6= t2 ∧ ¬ar(t1, t2))∨

(∃(t1, t2, t3 : τ).D(t1, t2) ∧ D(t2, t3) ∧
∧

1≤i<j≤3
ti 6= tj ∧ ¬ar(t1, t3) ∧ ¬ar(t2, t3)) (7)

I Theorem 12. Given a set of programs T and a consistency specification Ψ, if ϕT,Ψ ∧ϕD ∧
ϕInductive,T′ is UNSAT, then all valid executions of T under Ψ which contains at least one
instance of a program in T′ are serializable.

If T′ = T, then all valid executions of T are serializable, otherwise, we can focus only on
programs in T \ T′, and re-apply the technique with ϕT′,Ψ ∧ ϕD ∧ ϕInductive,T′′ for T′′ ⊆ T′.
In the next section, we show how we use this technique to verify serializability of TPC-C, a
real-world database benchmark.

6 Case Studies

We have developed a tool called Anode which takes a set of programs written in the language
presented in §3.1 and a consistency specification and uses the encoding rules presented in §4
to automatically generate an FOL encoding. We use the Z3 SMT solver to determine the
satisfiabiliy of the generated formulae. In order to evaluate the effectiveness of our approach,
we have applied the proposed technique on TPC-C [1], a well-known Online Transaction
Processing (OLTP) benchmark widely used in the database community, and a Courseware
application (used in [19]) which is a representative of course registration systems used in
universities.

TPC-C. TPC-C has a complex database schema with 9 tables, and complex application
logic in its 5 transactions. The transactions contain loops and conditionals, have multiple
parameters and behave differently depending upon the values of the parameters; they also
use complex queries such as SELECT MIN and SELECT MAX. To the best of our knowledge,
this is the first automated static analysis for validating serializability of TPC-C under weak
consistency.

CONCUR 2018

41:14 Automated Detection of Serializability Violations Under Weak Consistency

Order-Status1 RW
,,

New-Order
WR 22

Payment
WR
rr

Order-Status2RW
ll

Figure 5 Long fork anomaly in TPC-C under PSI.

Under eventual consistency, TPC-C has a number of ‘lost update’ anomalies, similar to
the anomaly in the banking application described in §2. These anomalies are small in length
and were automatically detected using encoding presented in §5.1 (with k = 2) . To get rid
of these anomalies, we upgraded the consistency specification to PSI [26]. Under PSI, we did
not find any anomalies for k = 2 or k = 3, but for k = 4, the ‘long fork’ anomaly involving
the New-Order, Payment and Order-Status transactions was discovered, as shown in Fig. 5.

This anomaly happens because the New-Order and Payment transactions update two
different tables (Order and Customer table resp.) while the Order-Status transaction
reads both those tables. Since there is no synchronization between New-Order and Payment
transactions, it is possible for Order-Status1 to see the update of New-Order but not
Payment, and the vice versa for Order-Status2. We also discovered a similar anomaly
involving two instances of New-Order and two instances of Stock-level transactions.

To get rid of these anomalies, we further upgraded the consistency level to Snapshot
Isolation (SI), after which we did not find any anomalies for k = 4. We then turned our
attention to verifying serializability of TPC-C under SI. We first tried the Shortest Path
approach (which worked well for the banking application), but we were able to discover
a long path (which can be arbitrarily extended) without any chords. Next, we tried the
inductive approach, which was successful in proving serializability of TPC-C. Specifically,
with T′ = {New-Order, Payment}, the formula ϕInductive,T′ was shown to be UNSAT, and with
the remaining 3 transactions ϕInductive,{Delivery} was UNSAT. The remaining two transactions
do not have any dependencies between them, which implies that all executions of TPC-C
under SI are serializable.

Courseware. The Courseware application maintains a database of courses and students, and
provides the functionality of adding/removing students and courses, and enrolling students
into courses subject to course capacities. Under EC, the following anomalies were discovered
by our encoding : (1) two concurrent Enroll transactions may enroll students beyond the
course capacity, (2) two courses with the same name or two students with the same name
may be registered, (3) a student may be enrolled in a course which is being concurrently
removed, or the student is being concurrently removed. Note that all these anomalies were
discovered for k = 2.

In order to remove these violations, we upgraded the consistency model in a number of
ways : the Enroll transaction was upgraded to PSI, while selective serializability was used for
two instances of AddCourse and AddStudent, and for instances of Enroll and RemCourse,
Enroll and RemStudent. While these upgrades took care of the above mentioned anomalies,
we discovered a new long fork anomaly (for k = 4) as shown in Fig. 6. Here, two Enroll
transactions trying to enroll a student (s) into a course (c) see conflicting views of the
database, with one Enroll witnessing the student but not the course, and vice versa for the
other. We note that while this is an actual serializability violation, it is completely harmless
as both transactions which witness inconsistent database states ultimately fail, so that the
final database state is the same as that which manifests at the end of an execution in which

K.Nagar and S. Jagannathan 41:15

Enroll1(s,c) RW
,,

AddCourse(c)
WR 22

AddStudent(s)
WR
rr

Enroll2(s,c)RW
ll

Figure 6 Long fork anomaly in the Courseware application under PSI.

the effects of neither of the two enroll transactions occur. This is a limitation of our analysis
as it does not provide any way to ignore harmless serializability violations. We plan to
address this issue as part of future work.

In order to remove this violation, we upgraded the consistency level of Enroll to SI,
after which we did not find any anomalies. Next, we moved to verification, and here we were
successfully able to use the Shortest Path approach and prove that there does not exist a
shortest path in any dependency graph of the Courseware application of length greater than
or equal to 8. Along with the fact there does not exist any cycle of length less than or equal
to 8, this implies that any execution of the application is serializable. In all instances, the
solver produced its output in a few (< 10) seconds.

7 Related Work and Conclusions

Serializability is a well-studied problem in the database community, but there is a lack of
static automated techniques to check for serializability of database applications. Early work
by Fekete et al. [17] and Jorwekar et al. [20] proposed lightweight syntactic analyses to check
for serializability under SI in centralized databases, by looking for dangerous structures in
the static dependency graph of an application (which is an over-approximation of all possible
dynamic dependency graphs). Several recent works [5, 12, 13, 14, 30, 28] have continued
along this line, by deriving different types of dangerous structures in dependency graphs
that are possible under different weak consistency mechanisms, and then checking for these
structures on static dependency graphs.

However, static dependency graphs are highly imprecise representations of actual exe-
cutions, and any analysis reliant on these graphs is likely to yield a large number of false
positives. Indeed, recent effortsin this space [5, 13, 14] recognize this and propose complex
conditions to reduce false positives for specific consistency mechanisms, but these works
do not provide any automated methodology to check those conditions on actual programs.
Further, application logic could prevent these harmful structures from manifesting in actual
executions, for example as in TPC-C, which has a harmful structure in its static dependency
graph under SI, but which does not appear in any dynamic dependency graph. In our work,
we precisely model the application logic and the consistency specification using FOL, so that
the solver would automatically derive harmful structures which are possible under the given
consistency specification and search for them in actual dependency graphs taking application
logic into account.

[8] proposes a static analysis for serializability under causal consistency by constructing
actual dependency graphs with cycles using a FOL encoding. While this work is similar to
ours in spirit, their notion of serializability is stronger than ours, since they allow transactions
to be grouped together in sessions, with the serial order forced to accommodate the chosen
session order. While this eases the task of verifying serializability for unbounded executions,
it also results in a large number of harmless serializability violations, for which they propose

CONCUR 2018

41:16 Automated Detection of Serializability Violations Under Weak Consistency

various ad hoc filtering approaches. Further, their focus is on programs operating on high-level
data types rather than SQL programs, and their analysis is not parametric on consistency
specifications.

There are also dynamic anomaly detection techniques [29, 11, 7] which either build
the dependency graphs at run-time and check for cycles, or analyze the trace of events
after execution. These approaches do not provide any guarantee that all anomalies will be
detected, even for bounded executions. A number of approaches have been proposed recently
[25, 19, 21, 15] which attempt to verify that high-level application invariants are preserved
under weak consistency. These approaches are also parametric on consistency specifications,
but they are not completely automated as they require correctness conditions in the form of
invariants from the user, and they do not tackle serializability.

To conclude, in this paper we take the first step towards building a precise, fully automated
static analysis for veifying serializability of database applications under weak consistency.
We leverage the acyclic dependency graph based characterization of serializability and the
framework of abstract executions to develop a FOL based analysis which is parametric on
the consistency specification. We show how our approach can be used to detect bounded
anomalies, and to verify serializability under specific conditions for unbounded executions.
We show the practicality of our approach by successfully applying it on several realistic
database benchmarks.

References

1 Tpc-c benchmark. http://www.tpc.org/tpc_documents_current_versions/pdf/
tpc-c_v5.11.0.pdf. Online; Accessed 20 April 2018.

2 Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions.
In Proceedings of the 16th International Conference on Data Engineering, San Diego, Cali-
fornia, USA, February 28 - March 3, 2000, pages 67–78, 2000. doi:10.1109/ICDE.2000.
839388.

3 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. ACM Trans. Database Syst., 41(3):15:1–15:45,
2016. doi:10.1145/2909870.

4 Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, San Jose, California,
May 22-25, 1995., pages 1–10, 1995. doi:10.1145/223784.223785.

5 Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with
atomic visibility. In 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, pages 7:1–7:15, 2016. doi:10.4230/
LIPIcs.CONCUR.2016.7.

6 Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

7 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Serializability
for eventual consistency: criterion, analysis, and applications. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 458–472, 2017. URL: http://dl.acm.org/citation.
cfm?id=3009895.

8 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Static serializabil-
ity analysis for causal consistency. In Proceedings of the 39th ACM SIGPLAN Conference on

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://dx.doi.org/10.1109/ICDE.2000.839388
http://dx.doi.org/10.1109/ICDE.2000.839388
http://dx.doi.org/10.1145/2909870
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dl.acm.org/citation.cfm?id=3009895
http://dl.acm.org/citation.cfm?id=3009895

K.Nagar and S. Jagannathan 41:17

Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,
June 18-22, 2018, pages 90–104, 2018. doi:10.1145/3192366.3192415.

9 Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually con-
sistent transactions. In Programming Languages and Systems - 21st European Symposium
on Programming, ESOP 2012, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 67–86, 2012. doi:10.1007/978-3-642-28869-2_4.

10 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
sequence protocol: A robust abstraction for replicated shared state. In 29th European Con-
ference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic, pages 568–590, 2015. doi:10.4230/LIPIcs.ECOOP.2015.568.

11 Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable isolation for snapshot
databases. ACM Trans. Database Syst., 34(4):20:1–20:42, 2009. doi:10.1145/1620585.
1620587.

12 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transactional
consistency models with atomic visibility. In 26th International Conference on Concurrency
Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages 58–71, 2015. doi:
10.4230/LIPIcs.CONCUR.2015.58.

13 Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016, pages 55–64, 2016. doi:10.1145/2933057.2933096.

14 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic laws for weak consistency.
In 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8,
2017, Berlin, Germany, pages 26:1–26:18, 2017. doi:10.4230/LIPIcs.CONCUR.2017.26.

15 Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is believing: A
client-centric specification of database isolation. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, pages 73–82, 2017. doi:10.1145/3087801.3087802.

16 Alan Fekete. Allocating isolation levels to transactions. In Proceedings of the Twenty-
fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 13-15, 2005, Baltimore, Maryland, USA, pages 206–215, 2005. doi:10.1145/1065167.
1065193.

17 Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, and Patrick E. O’Neil a fnd Dennis
E. Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–
528, 2005. doi:10.1145/1071610.1071615.

18 Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi:10.1145/
564585.564601.

19 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’cause i’m strong enough: reasoning about consistency choices in distributed systems. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 371–384, 2016. doi:10.1145/2837614.2837625.

20 Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. Automating the
detection of snapshot isolation anomalies. In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007,
pages 1263–1274, 2007. URL: http://www.vldb.org/conf/2007/papers/industrial/
p1263-jorwekar.pdf.

CONCUR 2018

http://dx.doi.org/10.1145/3192366.3192415
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.568
http://dx.doi.org/10.1145/1620585.1620587
http://dx.doi.org/10.1145/1620585.1620587
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://dx.doi.org/10.1145/2933057.2933096
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.26
http://dx.doi.org/10.1145/3087801.3087802
http://dx.doi.org/10.1145/1065167.1065193
http://dx.doi.org/10.1145/1065167.1065193
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/2837614.2837625
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf

41:18 Automated Detection of Serializability Violations Under Weak Consistency

21 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone to-
gether: compositional reasoning and inference for weak isolation. PACMPL, 2(POPL):27:1–
27:34, 2018. doi:10.1145/3158115.

22 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cas-
cais, Portugal, October 23-26, 2011, pages 401–416, 2011. doi:10.1145/2043556.2043593.

23 Madan Musuvathi. Systematic concurrency testing using CHESS. In Proceedings of the
6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, held
in conjunction with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008), PADTAD 2008, Seattle, Washington, USA, July 20-21, 2008,
page 10, 2008. doi:10.1145/1390841.1390851.

24 Kartik Nagar and Suresh Jagannathan. Automated Detection of Serializability Violations
under Weak Consistency (Extended Version). arXiv:1806.08416.

25 K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative program-
ming over eventually consistent data stores. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 413–424, 2015. doi:10.1145/2737924.2737981.

26 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 385–400, 2011.
doi:10.1145/2043556.2043592.

27 Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements
for cloud storage. In ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP 13, Farmington, PA, USA, November 3-6, 2013, pages 309–324, 2013. doi:
10.1145/2517349.2522731.

28 Todd Warszawski and Peter Bailis. Acidrain: Concurrency-related attacks on database-
backed web applications. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 5–20, 2017. doi:10.1145/3035918.3064037.

29 Kamal Zellag and Bettina Kemme. Consistency anomalies in multi-tier architectures:
automatic detection and prevention. VLDB J., 23(1):147–172, 2014. doi:10.1007/
s00778-013-0318-x.

30 Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang
Li. Transaction chains: achieving serializability with low latency in geo-distributed storage
systems. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 276–291, 2013. doi:10.1145/2517349.
2522729.

http://dx.doi.org/10.1145/3158115
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/1390841.1390851
http://arxiv.org/abs/1806.08416
http://dx.doi.org/10.1145/2737924.2737981
http://dx.doi.org/10.1145/2043556.2043592
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/3035918.3064037
http://dx.doi.org/10.1007/s00778-013-0318-x
http://dx.doi.org/10.1007/s00778-013-0318-x
http://dx.doi.org/10.1145/2517349.2522729
http://dx.doi.org/10.1145/2517349.2522729

	Introduction
	Overview
	Preliminaries
	Input Language and Database Model
	Abstract Executions
	Operational Semantics

	FOL Encoding
	Vocabulary
	Relating Dependences with Abstract Executions
	Relating dependences with transactional programs

	Applications
	Bounded Anomaly Detection
	Verifying Serializability: The Shortest Path Approach
	Verifying Serializability: An Inductive Approach

	Case Studies
	Related Work and Conclusions

