
On Runtime Enforcement via Suppressions
Luca Aceto
Gran Sasso Science Institute, L’Aquila, Italy; and
Reykjavik University, Reykjavik, Iceland
luca.aceto@gssi.it

Ian Cassar
Reykjavik University, Reykjavik Iceland; and
University of Malta, Msida, Malta
ianc@ru.is

Adrian Francalanza
University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Anna Ingólfsdóttir
Reykjavik University, Reykjavik, Iceland
annai@ru.is

Abstract
Runtime enforcement is a dynamic analysis technique that uses monitors to enforce the beha-
viour specified by some correctness property on an executing system. The enforceability of a logic
captures the extent to which the properties expressible via the logic can be enforced at runtime.
We study the enforceability of Hennessy-Milner Logic with Recursion (µHML) with respect to
suppression enforcement. We develop an operational framework for enforcement which we then
use to formalise when a monitor enforces a µHML property. We also show that the safety syn-
tactic fragment of the logic, sHML, is enforceable by providing an automated synthesis function
that generates correct suppression monitors from sHML formulas.

2012 ACM Subject Classification Theory of computation → Logic and verification, Software
and its engineering → Software verification, Software and its engineering → Dynamic analysis

Keywords and phrases Enforceability, Suppression Enforcement, Monitor Synthesis, Logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.34

Related Version https://arxiv.org/abs/1807.01004

Acknowledgements The research work disclosed in this publication is partially supported by
the projects “Developing Theoretical Foundations for Runtime Enforcement” (184776-051) and
“TheoFoMon: Theoretical Foundations for Monitorability” (163406-051) of the Icelandic Research
Fund, and by the Endeavour Scholarship Scheme (Malta), part-financed by the European Social
Fund (ESF) – Operational Programme II – Cohesion Policy 2014-2020.

1 Introduction

Runtime monitoring [22, 24] is a dynamic analysis technique that is becoming increasingly
popular in the turbid world of software development. It uses code units called monitors to
aggregate system information, compare system execution against correctness specifications,
or steer the execution of the observed system. The technique has been used effectively to
offload certain verification tasks to a post-deployment phase, thus complementing other

© Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:luca.aceto@gssi.it
mailto:ianc@ru.is
mailto:adrian.francalanza@um.edu.mt
mailto:annai@ru.is
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://arxiv.org/abs/1807.01004
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 On Runtime Enforcement via Suppressions

(static) analysis techniques in multi-pronged verification strategies – see e.g., [6, 12, 27, 18, 28].
Runtime enforcement (RE) [33, 34, 21] is a specialized monitoring technique, used to ensure
that the behaviour of a system-under-scrutiny (SuS) is always in agreement with some
correctness specification. It employs a specific kind of monitor (referred to as a transducer [9,
42, 4] or an edit-automaton [33, 34]) to anticipate incorrect behaviour and counter it. Such a
monitor thus acts as a proxy between the SuS and the surrounding environment interacting
with it, encapsulating the system to form a composite (monitored) system: at runtime, the
monitor transforms any incorrect executions exhibited by the SuS into correct ones by either
suppressing, inserting or replacing events on behalf of the system.

We extend a recent line of research [25, 24, 2, 1] and study RE approaches that adopt
a separation of concerns between the correctness specification, describing what properties
the SuS should satisfy, and the monitor, describing how to enforce these properties on
the SuS. Our work considers system properties expressed in terms of the process logic
µHML [30, 32], and explores what properties can be operationally enforced by monitors that
can suppress system behaviour. A central element for the realisation of such an approach is
the synthesis function: it automates the translation from the declarative µHML specifications
to algorithmic descriptions formulated as executable monitors. Since analysis tools ought
to form part of the trusted computing base, enforcement monitoring should be, in and of
itself, correct. However, it is unclear what is to be expected of the synthesised monitor to
adequately enforce a µHML formula. Nor is it clear for which type of specifications should
this approach be expected to work effectively – it has been well established that a number
of properties are not monitorable [15, 40, 16, 25, 2] and it is therefore reasonable to expect
similar limits in the case of enforceability [19]. We therefore study the relationship between
µHML specifications and suppression monitors for enforcement, which allows us to address
the above-mentioned concerns and make the following contributions:
Modelling: We develop a general framework for enforcement instrumentation that is para-

metrisable by any system behaviour that is expressed via labelled transitions, and can
express suppression, insertion and replacement enforcement, Figure 2.

Correctness: We give formal definitions for asserting when a monitor correctly enforces a
formula defined over labelled transition systems, Definitions 3 and 8. These definitions
are parametrisable with respect to an instrumentation relation, an instance of which is
our enforcement framework of Figure 2.

Expressiveness: We provide enforceability results, Theorems 14 and 18 (but also Proposi-
tion 24), by identifying a subset of µHML formulas that can be (correctly) enforced by
suppression monitors.

As a by-product of this study, we also develop a formally-proven correct synthesis function,
Definition 12, that then can be used for tool construction, along the lines of [8, 7].

The setup selected for our study serves a number of purposes. For starters, the chosen
logic, µHML, is a branching-time logic that allows us to investigate enforceability for
properties describing computation graphs. Second, the use of a highly expressive logic allows
us to achieve a good degree of generality for our results, and so, by working in relation to
logics like µHML (a reformulation of the µ-calculus), our work would also apply to other
widely used logics (such as LTL and CTL [17]) that are embedded within this logic. Third,
since the logic is verification-technique agnostic, it fits better with the realities of software
verification in the present world, where a variety of techniques (e.g., model-checking and
testing) straddling both pre- and post-deployment phases are used. In such cases, knowing
which properties can be verified statically and which ones can be monitored for and enforced
at runtime is crucial for devising effective multi-pronged verification strategies. Equipped

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:3

Syntax
ϕ,ψ ∈ µHML ::= tt (truth) |ff (falsehood) |

∨
i∈I ϕi (disjunction)

|
∧
i∈I ϕi (conjunction) | 〈 p, c¡〉ϕ (possibility) | [p, c¡]ϕ (necessity)

|minX.ϕ (least fp.) |maxX.ϕ (greatest fp.) |X (fp. variable)

Semantics

Jtt, ρK def= Sys Jff, ρK def= ∅ JX, ρK def= ρ(X)
J
∧
i∈I ϕi, ρK

def=
⋂
i∈IJϕi, ρK JmaxX.ϕ, ρK def=

⋃{
S | S ⊆ Jϕ, ρ[X 7→ S]K

}
J
∨
i∈I ϕi, ρK

def=
⋃
i∈IJϕi, ρK J minX.ϕ, ρK def=

⋂{
S | Jϕ, ρ[X 7→ S]K ⊆ S

}
J [p, c¡]ϕ, ρK def=

{
s | (∀α, r · s α=⇒ r and (∃σ ·mtch(p, α)=σ and cσ ⇓ true)) implies q ∈ Jϕσ, ρK

}
J〈 p, c¡〉ϕ, ρK def=

{
s | ∃α, r, σ · (s α=⇒ r and mtch(p, α)=σ and cσ ⇓ true and q ∈ Jϕσ, ρK)

}
Figure 1 µHML Syntax and Semantics.

with such knowledge, one could also employ standard techniques [36, 5, 31] to decompose a
non-enforceable property into a collection of smaller properties, a subset of which can then
be enforced at runtime.

Structure of the paper. Section 2 revisits labelled transition systems and our touchstone
logic, µHML. The operational model for enforcement monitors and instrumentation is given
in Section 3. In Section 4 we formalise the interdependent notions of correct enforcement
and enforceability. These act as a foundation for the development of a synthesis function in
Section 5, that produces correct-by-construction monitors. In Section 6 we consider alternative
definitions for enforceability for logics with a specific additional interpretation, and show that
our proposed synthesis function is still correct with respect to the new definition. Section 7
concludes and discusses related work.

2 Preliminaries

The Model. We assume systems described as labelled transition systems (LTSs), triples
〈Sys,Act ∪ {τ} ,→〉 consisting of a set of system states, s, r, q ∈ Sys, a set of observable
actions, α, β ∈ Act, and a distinguished silent action τ /∈ Act (where µ ∈ Act∪{τ}), and a
transition relation, −→ ⊆ (Sys×Act∪{τ}×Sys). We write s µ−−→ r in lieu of (s, µ, r) ∈→,
and use s µ=⇒ s′ to denote weak transitions representing s(τ−→)∗· µ−−→ ·(τ−→)∗s′. We refer
to s′ as a µ-derivative of s. Traces, t, u ∈ Act∗ range over (finite) sequences of observable
actions, and we write s t=⇒ r to denote a sequence of weak transitions s α1==⇒ . . .

αn==⇒ r for
t = α1, . . . , αn. We also assume the classic notion of strong bisimilarity [39, 43] for our model,
s ∼ r, using it as our touchstone system equivalence. The syntax of the regular fragment of
CCS [39] is occasionally used to concisely describe LTSs in our examples.

The Logic. We consider a slightly generalised version of µHML [32, 3] that uses symbolic
actions of the form p, c¡. Patterns, p, abstract over actions using data variables d, e, f ∈ Var;
in a pattern, they may either occur free, d, or as binders, (d) where a closed pattern
is one without any free variables. We assume a (partial) matching function for closed
patterns mtch(p, α) that returns a substitution σ (when successful) mapping variables in
p to the corresponding values in α, i.e., if we instantiate every bound variable d in p with

CONCUR 2018

34:4 On Runtime Enforcement via Suppressions

σ(d) we obtain α. The filtering condition, c, contains variables found in p and evaluates
wrt. the substitutions returned by successful matches. Put differently, a closed symbolic
action p, c¡ is one where p is closed and fv(c) ⊆ bv(p); it denotes the set of actions
J p, c¡K def= { α ∃σ ·mtch(p, α)=σ and cσ ⇓ true } and allows more adequate reasoning about
LTSs with infinite actions (e.g., actions carrying data from infinite domains).

The logic syntax is given in Figure 1 and assumes a countable set of logical variables
X,Y ∈LVar. Apart from standard logical constructs such as conjunctions and disjunctions
(
∧
i∈I ϕi describes a compound conjunction, ϕ1∧ . . .∧ϕn, where I = {1, .., n} is a finite

set of indices, and similarly for disjunctions), and the characteristic greatest and least
fixpoints (maxX.ϕ and minX.ϕ bind free occurrences of X in ϕ), the logic uses necessity
and possibility modal operators with symbolic actions, [p, c¡]ϕ and 〈 p, c¡〉ϕ, where bv(p)
bind free data variables in c and ϕ. Formulas in µHML are interpreted over the system
powerset domain where S∈P(Sys). The semantic definition of Figure 1, Jϕ, ρK, is given
for both open and closed formulas. It employs a valuation from logical variables to sets of
states, ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the structure of
the formulas; ρ′ = ρ[X 7→ S] denotes a valuation where ρ′(X) = S and ρ′(Y) = ρ(Y) for
all other Y 6= X. The only non-standard cases are those for the modal formulas, due to
the use of symbolic actions. Note that we recover the standard logic for symbolic actions
 p, c¡ whose pattern p does not contain variables (p=α for some α) and whose condition
holds trivially (c=true); in such cases we write [α]ϕ and 〈α〉ϕ for short. We generally assume
closed formulas, i.e., without free logical and data variables, and write JϕK in lieu of Jϕ, ρK
since the interpretation of a closed ϕ is independent of ρ. A system s satisfies formula ϕ
whenever s∈ JϕK whereas a formula ϕ is satisfiable, ϕ ∈ Sat, whenever there exists a system
r such that r ∈ JϕK.

I Example 1. Consider two systems (a good system, sg, and a bad one, sb) implementing a
server that interacts on port i, repeatedly accepting requests that are answered by outputting
on the same port, and terminating the service once a close request is accepted (on the same
port). Whereas sg outputs an answer (i!ans) for every request (i?req), sb occasionally refuses
to answer a given request (see the underlined branch). Both systems terminate with i?cls.

sg = recx.
(
i?req.i!ans.x+ i?cls.nil

)
sb = recx.

(
i?req.i!ans.x+ i?req.x+ i?cls.nil

)
We can specify that two consecutive requests on port i indicate invalid behaviour via
the µHML formula ϕ0

def= maxX.[i?req] ([i!ans]X∧[i?req]ff); it defines an invariant property
(maxX. (. . .)) requiring that whenever a system interacting on i inputs a request, it cannot
input a subsequent request, i.e., [i?req]ff, unless it outputs an answer beforehand, in which
case the formula recurses, i.e., [i!ans]X. Using symbolic actions, we can generalise ϕ0 by
requiring the property to hold for any interaction happening on any port number except j.

ϕ1
def= maxX.[(d)?req, d6=j¡]([d!ans, true¡]X∧[d?req, true¡]ff)

In ϕ1, (d)?req binds the free occurrences of d found in d 6=j and [d!ans, true¡]X∧[d?req, true¡]ff.
Using Figure 1, one can check that sg∈Jϕ1K, whereas sb 6∈Jϕ1K since sb

i?req−−−−→ · i?req−−−−→ . . .

3 An Operational Model for Enforcement

Our operational mechanism for enforcing properties over systems uses the (symbolic) trans-
ducers m,n ∈ Trn defined in Figure 2. The transition rules in Figure 2 assume closed terms,
i.e., for every symbolic-prefix transducer, p, c, p′¡.m, p is closed and

(
fv(c)∪fv(p′)∪fv(m)

)
⊆

bv(p), and yield an LTS with labels of the form γIµ, where γ ∈ (Act∪{•}). Our syntax

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:5

Syntax

m,n ∈ Trn ::= id | p, c, p′¡.m |
∑
i∈Imi | recx.m | x

Dynamics

eId
id µIµ−−−→ id

eSel
mj

γIµ−−−→ nj∑
i∈Imi

γIµ−−−→ nj
j∈I eRec

m{recx.m/x} γIµ−−−→ n

recx.m γIµ−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true µ= p′σ

 p, c, p′¡.m γIµ−−−→ mσ
Instrumentation

iTrn

s
α−→ s′

m
αIµ−−−→ n

m[s] µ−→ n[s′]
iAsy s

τ−→ s′

m[s] τ−→ m[s′]
iIns m

•Iµ−−→ n

m[s] µ−→ n[s]
iTer

s
α−→ s′

m 6α−→ m 6•−→
m[s] α−→ id[s′]

Figure 2 A model for transducers (I is a finite index set and m 6γ−−→ means @µ, n ·m γIµ−−−→n).

assumes a well-formedness constraint where for every p, c, p′¡.m, bv(c)∪bv(p′) = ∅. Intu-
itively, a transition m αIµ−−−→ n denotes the fact that the transducer in state m transforms
the visible action α (produced by the system) into the action µ (which can possibly become
silent) and transitions into state n. In this sense, the transducer action αIτ represents the
suppression of action α, action αIβ represents the replacing of α by β, and αIα denotes the
identity transformation. The special case •Iα encodes the insertion of α, where • represents
that the transition is not induced by any system action.

The key transition rule in Figure 2 is eTrn. It states that the symbolic-prefix transducer
 p, c, p′¡.m can transform an (extended) action γ into the concrete action µ, as long as
the action matches with pattern p with substitution σ, mtch(p, γ)=σ, and the condition is
satisfied by σ, cσ ⇓ true (the matching function is lifted to extended actions and patterns in
the obvious way, where mtch(•, •)=∅). In such a case, the transformed action is µ=p′σ, i.e.,
the action µ resulting from the instantiation of the free data variables in pattern p′ with the
corresponding values mapped by σ, and the transducer state reached is mσ. By contrast, in
rule eId, the transducer id acts as the identity and leaves actions unchanged. The remaining
rules are fairly standard and unremarkable.

Figure 2 also describes an instrumentation relation which relates the behaviour of the
SuS s with the transformations of a transducer monitor m that agrees with the (observable)
actions Act of s. The termm[s] thus denotes the resulting monitored system whose behaviour
is defined in terms of Act∪{τ} from the system’s LTS. Concretely, rule iTrn states that
when a system s transitions with an observable action α to s′ and the transducer m can
transform this action into µ and transition to n, the instrumented system m[s] transitions
with action µ to n[s′]. However, when s transitions with a silent action, rules iAsy allows
it to do so independently of the transducer. Dually, rule iIns allows the transducer to
insert an action µ independently of s’s behaviour. Rule iTer is analogous to standard
monitor instrumentation rules for premature termination of the transducer [22, 25, 23, 1],
and accounts for underspecification of transformations. Thus, if a system s transitions with
an observable action α to s′, and the transducer m does not specify how to transform it
(m 6α−→), nor can it transition to a new transducer state by inserting an action (m 6•−→), the
system is still allowed to transition while the transducer’s transformation activity is ceased,
i.e., it acts like the identity id from that point onwards.

CONCUR 2018

34:6 On Runtime Enforcement via Suppressions

I Example 2. Consider the insertion transducer mi and the replacement transducer mr
below:

mi
def= •, true, i?req¡. •, true, i!ans¡.id

mr
def= recx.

(
 (d)?req, true, j?req¡.x+ (d)!ans, true, j!ans¡.x+ (d)?cls, true, j?cls¡.x

)
When instrumented with a system, mi inserts the two successive actions i?req and i!ans before
behaving as the identity. Concretely in the case of sb we can only start the computation as:

mi[sb] i?req−−−−→ •, true, i!ans¡.id[sb] i!ans−−−→ id[sb] α−−→ . . . (where sb
α−−→)

By contrast, mr transforms input actions with either payload req or cls and output actions
with payload ans on any port name, into the respective actions on port j. For instance:

mr[sb] j?req−−−−→ mr[i!ans.sb] j!ans−−−−→ mr[sb] j?cls−−−→ mr[nil]

Consider now the two suppression transducers ms and mt for actions on ports other than j:

ms
def= recx.

(
 (d)?req, d 6= j, τ ¡.x+ (d)!ans, true, d!ans¡.x

)
mt

def= recx.
(
 (d)?req, d 6= j, d?req¡.rec y.

(
 d!ans, true, d!ans¡.x+ d?req, true, τ ¡.y

))
Monitor ms suppresses any requests on ports other than j, and continues to do so after any
answers on such ports. When instrumented with sb, we can observe the following behaviour:

ms[sb] τ−→ ms[i!ans.sb] i!ans−−−→ ms[sb] τ−→ ms[i!ans.sb] i!ans−−−→ ms[sb] . . .

Note that ms does not specify a transformation behaviour for when the monitored system
produces inputs with payload other than req. The instrumentation handles this underspe-
cification by ceasing suppression activity; in the case of sb we get ms[sb] i?cls−−−→ id[nil]. The
transducer mt performs slightly more elaborate transformations. For interactions on ports
other than j, it suppresses consecutive input requests following any serviced request (i.e., an
input on req followed by an output on ans) sequence. For sb we can observe the following:

mt[sb] i?req−−−−→ rec y.
(
 i!ans, true, i!ans¡.mt + i?req, true, τ ¡.y

)
[sb]

τ−→ rec y.
(
 i!ans, true, i!ans¡.mt + i?req, true, τ ¡.y

)
[i!ans.sb] i!ans−−−→ mt[sb]

In the sequel, we find it convenient to refer to p as the transformed pattern p where all the
binding occurrences (d) are converted to free occurrences d. As shorthand notation, we elide
the second pattern p′ in a transducer p, c, p′¡.m whenever p′=p and simply write p, c¡.m;
note that if bv(p) = ∅, then p=p. Similarly, we elide c whenever c=true. This allows us to
express mt from Example 2 as recx.

(
 (d)?req, d6=j¡.rec y.

(
 d!ans¡.x+ d?req, τ ¡.y

))
.

4 Enforceability

The enforceability of a logic rests on the relationship between the semantic behaviour specified
by the logic on the one hand, and the ability of the operational mechanism (the transducers
and instrumentation of Section 3 in our case) to enforce the specified behaviour on the other.

I Definition 3 (Enforceability). A logic L is enforceable iff every formula ϕ∈L is enforceable.
A formula ϕ is enforceable iff there exists a transducer m such that m enforces ϕ.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:7

Definition 3 depends on what is considered to be an adequate definition for “m enforces
ϕ”. It is reasonable to expect that the latter definition should concern any system that the
transducer m– hereafter referred to as the enforcer – is instrumented with. In particular, for
any system s, the resulting composite system obtained from instrumenting the enforcer m
with it should satisfy the property of interest, ϕ, whenever this property is satisfiable.

I Definition 4 (Sound Enforcement). Enforcer m soundly enforces a formula ϕ, denoted as
senf(m,ϕ), iff for all s ∈ Sys, ϕ ∈ Sat implies m[s] ∈ JϕK holds.

I Example 5. Recall ϕ1, sg and sb from Example 1 where sg ∈ Jϕ1K (hence ϕ1 ∈ Sat) and
sb 6∈ Jϕ1K. For the enforcers mi, mr, ms and mt presented in Example 2, we have:

mi[sb] 6∈ Jϕ1K, since mi[sb] i?req−−−−→ · i!ans−−−→ id[sb] i?req−−−−→ id[sb] i?req−−−−→ id[sb]. This counter
example implies that ¬senf(mi, ϕ1).
mr[sg] ∈ Jϕ1K and mr[sb] ∈ Jϕ1K. Intuitively, this is because the ensuing instrumented
systems only generate (replaced) actions that are not of concern to ϕ1. Since this
behaviour applies to any system mr is composed with, we can conclude that senf(mr, ϕ1).
ms[sg] ∈ Jϕ1K and ms[sb] ∈ Jϕ1K because the resulting instrumented systems never
produce inputs with req on a port number other than j. We can thus conclude that
senf(ms, ϕ1).
mt[sg] ∈ Jϕ1K and mt[sb] ∈ Jϕ1K. Since the resulting instrumentation suppresses consec-
utive input requests (if any) after any number of serviced requests on any port other than
j, we can conclude that senf(mt, ϕ1).

By some measures, sound enforcement is a relatively weak requirement for adequate
enforcement as it does not regulate the extent of the induced enforcement. More concretely,
consider the case of enforcer ms from Example 2. Although ms manages to suppress the
violating executions of system sb, thereby bringing it in line with property ϕ1, it needlessly
modifies the behaviour of sg (namely it prohibits it from producing any inputs with req
on port numbers that are not j), even though it satisfies ϕ1. Thus, in addition to sound
enforcement we require a transparency condition for adequate enforcement. The requirement
dictates that whenever a system s already satisfies the property ϕ, the assigned enforcer m
should not alter the behaviour of s. Put differently, the behaviour of the enforced system
should be behaviourally equivalent to the original system.

I Definition 6 (Transparent Enforcement). An enforcer m is transparent when enforcing a
formula ϕ, denoted as tenf(m,ϕ), iff for all s ∈ Sys, s ∈ JϕK implies m[s] ∼ s.

I Example 7. We have already argued – via the counter example sg– why ms does not
transparently enforce ϕ1. We can also argue easily why ¬tenf(mr, ϕ1) either: the simple
system i?req.nil trivially satisfies ϕ1 but, clearly, we have the inequality mr[i?req.nil] 6∼
i?req.nil since mr[i?req.nil] j?req−−−−→ mr[nil] and i?req.nil 6j?req−−−−→.

It turns out that enforcer tenf(mt, ϕ1), however. Although this property is not as easy
to show – due to the universal quantification over all systems – we can get a fairly good
intuition for why this is the case via the example sg: it satisfies ϕ1 and mt[sg] ∼ sg holds.

I Definition 8 (Enforcement). A monitor m enforces property ϕ whenever it does so (i)
soundly, Definition 4 and (ii) transparently, Definition 6.

For any reasonably expressive logic (such as µHML), it is usually the case that not every
formula can be enforced, as the following example informally illustrates.

CONCUR 2018

34:8 On Runtime Enforcement via Suppressions

ϕ,ψ ∈ sHML ::= tt | ff |
∧
i∈I ϕi | [p, c¡]ϕ | X | maxX.ϕ

Figure 3 The syntax for the safety µHML fragment, sHML.

I Example 9. Consider the µHML property ϕns, together with the two systems sra and sr:

ϕns
def= [i?req]ff ∨ [i!ans]ff sra

def= i?req.nil + i!ans.nil sr
def= i?req.nil

A system satisfies ϕns if either it cannot produce action i?req or it cannot produce action i!ans.
Clearly, sra violates this property as it can produce both. This system can only be enforced via
action suppressions or replacements because insertions would immediately break transparency.
Without loss of generality, assume that our monitors employ suppressions (the same argument
applies for action replacement). The monitor mr

def= rec y.
(
 i?req, τ ¡.y+ i!ans, τ ¡.y

)
would in

fact be able to suppress the offending actions produced by sra, thus obtaining mr[sra] ∈ JϕnsK.
However, it would also suppress the sole action i?req produced by the system sr, even
though this system satisfies ϕns. This would, in turn, violate the transparency criterion
of Definition 6 since it needlessly suppresses sr’s actions, i.e., although sr ∈ JϕnsK we have
mr[sr] 6∼ sr. The intuitive reason for this problem is that a monitor cannot, in principle, look
into the computation graph of a system, but is limited to the behaviour the system exhibits
at runtime.

5 Synthesising Suppression Enforcers

Despite their merits, Definitions 3 and 8 are not easy to work with. The universal quantifica-
tions over all systems in Definitions 4 and 6 make it hard to establish that a monitor correctly
enforces a property. Moreover, according to Definition 3, in order to determine whether a
particular property is enforceable or not, one would need to show the existence of a monitor
that correctly enforces it; put differently, showing that a property is not enforceable entails
another universal quantification, this time showing that no monitor can possibly enforce the
property. Lifting the question of enforceability to the level of a (sub)logic entails a further
universal quantification, this time on all the logical formulas of the logic; this is often an
infinite set.We address these problems in two ways. First, we identify a non-trivial syntactic
subset of µHML that is guaranteed to be enforceable; in a multi-pronged approach to system
verification, this could act as a guide for whether the property should be considered at a pre-
deployment or post-deployment phase. Second, for every formula ϕ in this enforceable subset,
we provide an automated procedure to synthesise a monitor m from it that correctly enforces
ϕ when instrumented over arbitrary systems, according to Definition 8. This procedure can
then be used as a basis for constructing tools that automate property enforcement.

In this paper, we limit our enforceability study to suppression monitors, transducers
that are only allowed to intervene by dropping (observable) actions. Despite being more
constrained, suppression monitors side-step problems associated with what data to use in a
payload-carrying action generated by the enforcer, as in the case of insertion and replacement
monitors: the notion of a default value for certain data domains is not always immediate.
Moreover, suppression monitors are particularly useful for enforcing safety properties, as
shown in [33, 10, 20]. Intuitively, a suppression monitor would suppress actions as soon as it
becomes apparent that a violation is about to be committed by the SuS. Such an intervention
intrinsically relies on the detection of a violation. To this effect, we use a prior result from

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:9

[25], which identified a maximally-expressive logical fragment of µHML that can be handled
by violation-detecting (recogniser) monitors. We thus limit our enforceability study to this
maximal safety fragment, called sHML, since a transparent suppression monitor cannot
judiciously suppress actions without first detecting a (potential) violation. Figure 3 recalls
the syntax for sHML. The logic is restricted to truth and falsehood (tt and ff), conjunctions
(
∧
i∈Iϕ), and necessity modalities ([p, c¡]ϕ), while recursion may only be expressed through

greatest fixpoints (maxX.ϕ); the semantics follows that of Figure 1.
A standard way how to achieve our aims would be to (i) define a (total) synthesis function

L− M :: sHML 7→ Trn from sHML formulas to suppression monitors and (ii) then show
that for any ϕ ∈ sHML, the synthesised monitor Lϕ M enforces ϕ. Moreover, we would also
require the synthesis function to be compositional, whereby the definition of the enforcer
for a composite formula is defined in terms of the enforcers obtained for the constituent
subformulas. There are a number of reasons for this requirement. For one, it would simplify
our analysis of the produced monitors and allow us to use standard inductive proof techniques
to prove properties about the synthesis function, such as the aforementioned criteria (ii).
However, a naive approach to such a scheme is bound to fail, as discussed in the next example.

I Example 10. Consider a semantically equivalent reformulation of ϕ1 from Example 1.

ϕ2
def= maxX.([(d)?req, d6=j¡][d!ans, true¡]X)∧ ([(d)?req, d6=j¡][d?req, true¡]ff)

At an intuitive level, the suppression monitor that one would expect to obtain for the
subformula ϕ′2

def= [(d)?req, d6=j¡][d?req, true¡]ff is (d)?req, d 6= j¡.rec y. d?req, τ ¡.y (i.e., an
enforcer that repeatedly drops any req inputs following a req input on the same port),
whereas the monitor obtained for the subformula ϕ′′2

def= [(d)?req, d6=j¡][d!ans, true¡]X is
 (d)?req, d 6= j¡. d!ans¡.x (assuming some variable mapping from X to x). These monitors
would then be combined in the synthesis for maxX.ϕ′′2∧ϕ′2 as

mb
def= recx.

(
 (d)?req, d 6= j¡. d!ans¡.x

)
+
(
 (d)?req, d 6= j¡.rec y. d?req, τ ¡.y

)
One can easily see that mb does not behave deterministically, nor does it soundly enforce
ϕ2. For instance, for the violating system i?req.i?req.nil 6∈ Jϕ2K(= Jϕ1K) we can observe the
transition sequence mb[i?req.i?req.nil] i?req−−−−→ i!ans¡.mb[i?req.nil] i?req−−−−→ id[nil].

Instead of complicating our synthesis function to cater for anomalies such as those
presented in Example 10 – also making it less compositional in the process – we opted for a
two stage synthesis procedure. First, we consider a normalised subset for sHML formulas
which is amenable to a (straightforward) synthesis function definition that is compositional.
This also facilitates the proofs for the conditions required by Definition 8 for any synthesised
enforcer. Second, we show that every sHML formula can be reformulated in this normalised
form without affecting its semantic meaning. We can then show that our two-stage approach
is expressive enough to show the enforceability for all of sHML.

I Definition 11 (sHML normal form). The set of normalised sHML formulas is defined as:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧
i∈I [pi, ci¡]ϕi | X | maxX.ϕ .

The above grammar combines necessity operators with conjunctions into one construct∧
i∈I [pi, ci¡]ϕi. Normalised sHML formulas are required to satisfy two further conditions:

1. For every
∧
i∈I [pi, ci¡]ϕi, for all j, h ∈ I where j 6=h we have J pj , cj¡K ∩ J ph, ch¡K = ∅.

2. For every maxX.ϕ we have X ∈ fv(ϕ).

CONCUR 2018

34:10 On Runtime Enforcement via Suppressions

In a (closed) normalised sHML formula, the basic terms tt and ff can never appear un-
guarded unless they are at the top level (e.g., we can never have ϕ∧ff or maxX0. . . .maxXn.ff).
Moreover, in any conjunction of necessity subformulas,

∧
i∈I [pi, ci¡]ϕi, the necessity guards

are disjoint and at most one necessity guard can satisfy any particular action.

I Definition 12. The synthesis function L− M : sHMLnf 7→Trn is defined inductively as:

LX M def= x L tt M def= L ff M def= id L maxX.ϕ M def= recx.Lϕ M

L
∧
i∈ I

[pi, ci¡]ϕi M
def= rec y.

∑
i∈I

{
 pi, ci, τ ¡.y if ϕi=ff
 pi, ci, pi¡.Lϕi M otherwise

The synthesis function is compositional. It assumes a bijective mapping between formula
variables and monitor recursion variables and converts logical variablesX accordingly, whereas
maximal fixpoints, maxX.ϕ, are converted into the corresponding recursive enforcer. The
synthesis also converts truth and falsehood formulas, tt and ff, into the identity enforcer
id. Normalized conjunctions,

∧
i∈ I [pi, ci¡]ϕi, are synthesised into a recursive summation of

enforcers, i.e., rec y.mi, where y is fresh, and every branch mi can be either of the following:
(i) when mi is derived from a branch of the form [pi, ci¡]ϕi where ϕi 6=ff, the synthesis

produces an enforcer with the identity transformation prefix, pi, ci, pi¡, followed by
the enforcer synthesised from the continuation ϕi, i.e., [pi, ci¡]ϕi is synthesised as
 pi, ci, pi¡.Lϕi M;

(ii) when mi is derived from a branch of the form [pi, ci¡]ff, the synthesis produces a
suppression transformation, pi, ci, τ ¡, that drops every concrete action matching the
symbolic action pi, ci¡, followed by the recursive variable of the branch y, i.e., a branch
of the form [pi, ci¡]ff is translated into pi, ci, τ ¡.y.

I Example 13. Recall formula ϕ1 from Example 1, recast in term of sHMLnf’s grammar:

ϕ1
def= maxX.

∧(
[(d)?req, d6=j¡]

(
[d!ans, true¡]X ∧ [d?req, true¡]ff

))
Using the synthesis function defined in Definition 12, we can generate the enforcer

Lϕ1 M = recx.rec z.
∑(

 (d)?req, d6=j¡.rec y.(d!ans, true¡.x + d?req, true, τ ¡.y)
)

which can be optimized by removing redundant recursive constructs (e.g., rec z._), obtaining:

= recx. (d)?req, d6=j¡.rec y.(d!ans, true¡.x + d?req, true, τ ¡.y) = mt

We now present the first main result to the paper.

I Theorem 14 (Enforcement). The (sub)logic sHMLnf is enforceable.

Proof. By Definition 3, the result follows if we show that for all ϕ∈ sHMLnf, Lϕ M enforces ϕ.
By Definition 8, this is a corollary following from Propositions 15 and 16 stated below. J

I Proposition 15 (Enforcement Soundness). For every system s∈Sys and ϕ∈ sHMLnf then
ϕ ∈ Sat implies Lϕ M[s]∈ JϕK.

I Proposition 16 (Enforcement Transparency). For every system s∈Sys and ϕ∈ sHMLnf
then s∈ JϕK implies Lϕ M[s] ∼ s.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:11

Following Theorem 14, to show that sHML is an enforceable logic, we only need to show
that for every ϕ ∈ sHML there exists a corresponding ψ ∈ sHMLnf with the same semantic
meaning, i.e., JϕK = JψK. In fact, we go a step further and provide a constructive proof using
a transformation 〈〈−〉〉 : sHML 7→ sHMLnf that derives a semantically equivalent sHMLnf
formula from a standard sHML formula. As a result, from an arbitrary sHML formula ϕ
we can then automatically synthesise a correct enforcer using L 〈〈ϕ〉〉 M which is useful for tool
construction.

Our transformation 〈〈ϕ〉〉 relies on a number of steps; here we provide an outline of these
steps. First, we assume sHML formulas that only use symbolic actions with normalised
patterns p, i.e., patterns that do not use any data or free data variables (but they may use
bound data variables). In fact, any symbolic action p, c¡ can be easily converted into a
corresponding one using normalised patterns as shown in the next example.

I Example 17. Consider the symbolic action d!ans, d 6= j¡. It may be converted to a
corresponding normalised symbolic action by replacing every occurrence of a data or free
data variable in the pattern by a fresh bound variable, and then add an equality constraint
between the fresh variable and the data or data variable it replaces in the pattern condition.
In our case, we would obtain (e)!(f), d6=j ∧ e=d ∧ f=ans¡.

Our algorithm for converting sHML formulas (with normalised patterns) to sHMLnf
formulas, 〈〈−〉〉, is based on Rabinovich’s work [41] for determinising systems of equations
which, in turn relies on the standard powerset construction for converting NFAs into DFAs.
It consists in the following six stages that we outline below:
1. We unfold each recursive construct in the formula, to push recursive definitions inside

the formula body. E.g., the formula maxX.
(
[p1, c1¡]X∧[p2, c2¡]ff

)
is expanded to the

formula [p1, c1¡]
(
maxX.[p1, c1¡]X∧[p2, c2¡]ff

)
∧[p2, c2¡]ff.

2. The formula is converted into a system of equations. E.g., the expanded formula from
the previous stage is converted into the set {X0 = [p1, c1¡]X0∧[p2, c2¡]X1, X1 = ff}.

3. For every equation, the symbolic actions in the right hand side that are of the same
kind are alpha-converted so that their bound variables match. E.g., Consider X0 =
[p1, c1¡]X0∧[p2, c2¡]X1 from the previous stage where, for the sake of the example,
p1 = (d1)?(d2) and p2 = (d3)?(d4). The patterns in the symbolic actions are made
syntactically equivalent by renaming d3 and d4 in p2, c2¡ into d1 and d2 respectively.

4. For equations with matching patterns in the symbolic actions, we create a variant that
symbolically covers all the (satisfiable) permutations on the symbolic action conditions.
E.g., Consider X0 = [p1, c1¡]X0∧[p1, c3¡]X1 from the previous stage. We expand this to
X0 = [p1, c1 ∧ c3¡]X0 ∧ [p1, c1 ∧ c3¡]X1 ∧ [p1, c1 ∧ ¬(c3)¡]X0 ∧ [p1,¬(c1) ∧ c3¡]X1.

5. For equations with branches having syntactically equivalent symbolic actions, we carry
out a unification procedure akin to standard powerset constructions. E.g., we convert the
equation from the previous step to X{0} = [p1, c1 ∧ c3¡]X{0,1} ∧ [p1, c1 ∧ ¬(c3)¡]X{0} ∧
[p1,¬(c1) ∧ c3¡]X{1} using the (unified) fresh variables X{0}, X{1} and X{0,1}.

6. From the unified set of equations we generate again the sHML formula starting from
X{0}. This procedure may generate redundant recursion binders, i.e., maxX.ϕ where
X 6∈ fv(ϕ), and we filter these out in a subsequent pass.

We now state the second main result of the paper.

I Theorem 18 (Normalisation). For any ϕ∈sHML there exists ψ∈sHMLnf s.t. JϕK=JψK.

Proof. The witness formula in normal form is 〈〈ϕ〉〉, where we show that each and every stage
in the translation procedure preserves semantic equivalence. J

CONCUR 2018

34:12 On Runtime Enforcement via Suppressions

6 Alternative Transparency Enforcement

Transparency for a property ϕ, Definition 6, only restricts enforcers from modifying the
behaviour of satisfying systems, i.e., when s∈JϕK, but fails to specify any enforcement
behaviour for the cases when the SuS violates the property s/∈JϕK. In this section, we
consider an alternative transparency requirement for a property ϕ that incorporates the
expected enforcement behaviour for both satisfying and violating systems. More concretely,
in the case of safety languages such as sHML, a system typically violates a property along a
specific set of execution traces; in the case of a satisfying system this set of “violating traces”
is empty. However, not every behaviour of a violating system would be part of this set of
violating traces and, in such cases, the respective enforcer should be required to leave the
generated behaviour unaffected.

I Definition 19 (Violating-Trace Semantics). A logic L with an interpretation over systems
J−K : L 7→ P(Sys) has a violating-trace semantics whenever it has a secondary interpretation
J−Kv : L 7→ P(Sys×Act∗) satisfying the following conditions for all ϕ ∈ L:
1. (s, t) ∈ JϕKv implies s /∈ JϕK and s t=⇒ ,
2. s /∈ JϕK implies ∃t · (s, t) ∈ JϕKv .

We adapt the work in [26] to give sHML a violating-trace semantics. Intuitively, the
judgement (s, t) ∈ JϕKv according to Definition 20 below, denotes the fact that s violates the
sHML property ϕ along trace t.

I Definition 20 (Alternative Semantics for sHML [26]). The forcing relation `v⊆
(
Sys ×

Act∗ × sHML
)
is the least relation satisfying the following rules:

(s, ε,ff) ∈ R always
(s, t,

∧
i∈I ϕi) ∈ R if ∃j ∈ I such that (s, t, ϕj) ∈ R

(s, αt, [p, c¡]ϕ) ∈ R if mtch(p, α)=σ, cσ ⇓ true and s α=⇒ s′ and (s′, t, ϕσ) ∈ R
(s, t,maxX.ϕ) ∈ R if (s, t, ϕ{maxX.ϕ/X}) ∈ R .

We write s, t `v ϕ (or (s, t) ∈ JϕKv) in lieu of (s, t, ϕ) ∈`v. We say that trace t is a violating
trace for s with respect to ϕ whenever s, t `v ϕ. Dually, t is a non-violating trace for ϕ
whenever there does not exist a system s such that s, t `v ϕ.

I Example 21. Recall ϕ1, sb from Example 1 where ϕ1 ∈ sHML, and alsomt from Example 5
where we argued in Example 13 that Lϕ1 M = mt (modulo cosmetic optimisations). Even
though sb 6∈ Jϕ1K, not all of its exhibited behaviours constitute violating traces: for instance,
sb

i?req·i!ans======⇒ sb is not a violating trace according to Definition 20. Correspondingly, we also
have mt[sb] i?req·i!ans======⇒ mt[sb].

I Theorem 22 (Adapted and extended from [26]). The alternative interpretation J−Kv of
Definition 20 is a violating-trace semantics for sHML (with J−K from Figure 1) in the sense
of Definition 19.

Equipped with Definition 20 we can define an alternative definition for transparency
that concerns itself with preserving exhibited traces that are non-violating. We can then
show that the monitor synthesis for sHML of Definition 12 observes non-violating trace
transparency.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:13

I Definition 23 (Non-Violating Trace Transparency). An enforcer m is transparent with
respect to the non-violating traces of a formula ϕ, denoted as nvtenf(m,ϕ), iff for all s ∈ Sys
and t ∈ Act∗, when s, t 6`v ϕ then

s
t=⇒ s′ implies m[s] t=⇒ m′[s′] for some m′, and

m[s] t=⇒ m′[s′] implies s
t=⇒ s′.

I Proposition 24 (Non-Violating Trace Transparency). For all ϕ ∈ sHML, s ∈ Sys and
t ∈ Act∗, when s, t 6`v ϕ then

s
t=⇒ s′ implies Lϕ M[s] t=⇒ m′[s′], and

Lϕ M[s] t=⇒ m′[s′] implies s
t=⇒ s′.

We can thus obtain a new definition for “m enforces ϕ” instead of Definition 8 by requiring
sound enforcement, Definition 6, and non-violating trace transparency, Definition 23 (instead
of the transparent enforcement of Definition 6). This in turn gives us a new definition for
enforceability for a logic, akin to Definition 3. Using Propositions 15 and 24, one can show
that sHML is also enforceable with respect to the new definition as well.

7 Conclusion

This paper presents a preliminary investigation of the enforceability of properties expressed
in a process logic. We have focussed on a highly expressive and standard logic, µHML,
and studied the ability to enforce µHML properties via a specific kind of monitor that
performs suppression-based enforcement. We concluded that sHML, identified in earlier
work as a maximally expressive safety fragment of µHML, is also an enforceable logic. To
show this, we first defined enforceability for logics and system descriptions interpreted over
labelled transition systems. Although enforceability builds upon soundness and transparency
requirements that have been considered in other work, our branching-time framework allowed
us to consider novel definitions for these requirements. We also contend that the definitions
that we develop for the enforcement framework are fairly modular: e.g., the instrumentation
relation is independent of the specific language constructs defining our transducer monitors
and it functions as expected as long as the transition semantics of the transducer and the
system are in agreement. Based on this notion of enforcement, we devise a two-phase
procedure to synthesise correct enforcement monitors. We first identify a syntactic subset of
our target logic sHML that affords certain structural properties and permits a compositional
definition of the synthesis function. We then show that, by augmenting existing rewriting
techniques to our setting, we can convert any sHML formula into this syntactic subset.

Related Work

In his seminal work [44], Schneider regards a property (in a linear-time setting) to be
enforceable if its violation can be detected by a truncation automaton, and prevents its
occurrence via system termination; by preventing misbehaviour, these enforcers can only
enforce safety properties. Ligatti et al. in [33] extended this work via edit automata – an
enforcement mechanism capable of suppressing and inserting system actions. A property
is thus enforceable if it can be expressed as an edit automaton that transforms invalid
executions into valid ones via suppressions and insertions. Edit automata are capable of
enforcing instances of safety and liveness properties, along with other properties such as
infinite renewal properties [33, 10]. As a means to assess the correctness of these automata,
the authors introduced soundness and transparency. In both of these settings, there is no

CONCUR 2018

34:14 On Runtime Enforcement via Suppressions

clear separation between the specification and the enforcement mechanism, and properties
are encoded in terms of the languages accepted by the enforcement model itself, i.e., as
edit/truncation automata. By contrast, we keep the specification and verification aspects of
the logic separate.

Bielova et al. [10, 11] remark that soundness and transparency do not specify to what
extent a transducer should modify an invalid execution. They thus introduce a predictability
criterion to prevent transducers from transforming invalid executions arbitrarily. More
concretely, a transducer is predictable if one can predict the number of transformations that
it will apply in order to transform an invalid execution into a valid one, thereby preventing
enforcers from applying unnecessary transformations over an invalid execution. Using this
notion, Bielova et al. thus devise a more stringent notion of enforceability. Although
we do not explore this avenue, Definition 23 may be viewed as an attempt to constrain
transformations of violating systems in a branching-time setup, and should be complementary
to these predictability requirements.

Könighofer et al. in [29] present a synthesis algorithm that produces action replacement
transducers called shields from safety properties encoded as automata-based specifications.
Shields analyse the inputs and outputs of a reactive systems and enforce properties by
modifying the least amount of output actions whenever the system deviates from the specified
behaviour. By definition, shields should adhere to two desired properties, namely correctness
and minimum deviation which are, in some sense, analogous to soundness and transparency
respectively. Falcone et al. in [19, 21, 20], also propose synthesis procedures to translate
properties − expressed as Streett automata − into the resp., enforcers. The authors show that
most of the property classes defined within the Safety-Progress hierarchy [35] are enforceable,
as they can be encoded as Streett automata and subsequently converted into enforcement
automata. As opposed to Ligatti et al., both Könighofer et al. and Falcone et al. separate
the specification of the property from the enforcement mechanism, but unlike our work they
do not study the enforceability of a branching time logic.

To the best of our knowledge, the only other work that tackles enforceability for the
modal µ-calculus [30] (a reformulation of µHML) is that of Martinelli et al. in [37, 38]. Their
approach is, however, different from ours. In addition to the µ-calculus formula to enforce,
their synthesis function also takes a “witness” system satisfying the formula as a parameter.
This witness system is then used as the behaviour that is mimicked by the instrumentation
via suppression, insertion or replacement mechanisms. Although the authors do not explore
automated correctness criteria such as the ones we study in this work, it would be interesting
to explore the applicability of our methods to their setting.

Bocchi et al. [12] adopt multi-party session types to project the global protocol specific-
ations of distributed networks to local types defining a local protocol for every process in
the network that are then either verified statically via typechecking or enforced dynamically
via suppression monitors. To implement this enforcement strategy, the authors define a
dynamic monitoring semantics for the local types that suppress process interactions so as to
conform to the assigned local specification. They prove local soundness and transparency for
monitored processes that, in turn, imply global soundness and transparency by construction.
Their local enforcement is closely related to the suppression enforcement studied in our
work with the following key differences: (i) well-formed branches in a session type are,
by construction, explicitly disjoint via the use of distinct choice labels (i.e., similar to our
normalised subset sHMLnf), whereas we can synthesise enforcers for every sHML formula
using a normalisation procedure; (ii) they give an LTS semantics to their local specifications
(which are session types) which allows them to state that a process satisfies a specification
when its behaviour is bisimilar to the operational semantics of the local specification – we do

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:15

not change the semantics of our formulas, which is left in its original denotational form; (iii)
they do not provide transparency guarantees for processes that violate a specification, along
the lines of Definition 23; (iv) Our monitor descriptions sit at a lower level of abstraction
than theirs using a dedicated language, whereas theirs have a session-type syntax with an
LTS semantics (e.g., repeated suppressions have to be encoded in our case using the recursion
construct while this is handled by their high-level instrumentation semantics).

In [14], Castellani et al. adopt session types to define reading and writing privileges
amongst processes in a network as global types for information flow purposes. These global
types are projected into local monitors capable of preventing read and write violations by
adapting certain aspects of the network. Although their work is pitched towards adaptation
[24, 13], rather than enforcement, in certain instances they adapt the network by suppressing
messages or by replacing messages with messages carrying a default nonce value. It would
be worthwhile investigating whether our monitor correctness criteria could be adapted or
extended to this information-flow setting.

Future Work

We plan to extend this work along two different avenues. On the one hand, we will attempt to
extend the enforceable fragment of µHML. For a start, we intend to investigate maximality
results for suppression monitors, along the lines of [25, 2]. We also plan to consider more
expressive enforcement mechanisms such as insertion and replacement actions. Finally, we
will also investigate more elaborate instrumentation setups, such as the ones explored in [1],
that can reveal refusals in addition to the actions performed by the system.

On the other hand, we also plan to study the implementability and feasibility of our
framework. We will consider target languages for our monitor descriptions that are closer to
an actual implementation (e.g., an actor-based language along the lines of [26]). We could
then employ refinement analysis techniques and use our existing monitor descriptions as
the abstract specifications that are refined by the concrete monitor descriptions. The more
concrete synthesis can then be used for the construction of tools that are more amenable
towards showing correctness guarantees.

References
1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework

for parameterized monitorability. In Foundations of Software Science and Computation
Structures, pages 203–220, Cham, 2018. Springer International Publishing.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for
silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS 2017: Foundations
of Software Technology and Theoretical Computer Science, volume 93 of LIPIcs, pages
7:1–7:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, New York, NY,
USA, 2007.

4 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 599–610. ACM, 2011.

5 Henrik Reif Andersen. Partial model checking. In Proceedings of Tenth Annual IEEE
Symposium on Logic in Computer Science, pages 398–407. IEEE, 1995.

6 Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mi-
chael R. Lowry, Corina S. Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser, and

CONCUR 2018

34:16 On Runtime Enforcement via Suppressions

Richard Washington. Combining test case generation and runtime verification. Theoretical
Computer Science, 336(2-3):209–234, 2005.

7 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdot-
tir. A Runtime Monitoring Tool for Actor-Based Systems., chapter 3, pages 49–74. River
Publishers, 2017.

8 Duncan Paul Attard and Adrian Francalanza. A monitoring tool for a branching-time logic.
In Runtime Verification, pages 473–481, Cham, 2016. Springer International Publishing.

9 Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teubner,
pages 1–278, 1979.

10 Nataliia Bielova. A theory of constructive and predictable runtime enforcement mechanisms.
PhD thesis, University of Trento, 2011.

11 Nataliia Bielova and Fabio Massacci. Predictability of enforcement. In International Sym-
posium on Engineering Secure Software and Systems, pages 73–86. Springer, 2011.

12 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theoretical Computer Science,
669:33–58, 2017.

13 Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming
framework for actor systems. In International Conference on Integrated Formal Methods,
pages 176–192. Springer, 2016.

14 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation
and secure information flow in multiparty communications. Formal Aspects of Computing,
28(4):669–696, July 2016.

15 Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress classification. In Logic
and Algebra of Specification, pages 143–202. Springer, 1993.

16 Clare Cini and Adrian Francalanza. An LTL proof system for runtime verification. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 581–595. Springer, 2015.

17 Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skelet-
ons using branching time temporal logic. In 25 Years of Model Checking, pages 196–215.
Springer, 2008.

18 Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. Combining model checking and
runtime verification for safe robotics. In Runtime Verfication (RV), LNCS, pages 172–189,
Cham, 2017. Springer International Publishing.

19 Yliès Falcone. You should better enforce than verify. In Runtime Verification, pages 89–105.
Springer Berlin Heidelberg, 2010.

20 Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and
enforce at runtime? International Journal on Software Tools for Technology Transfer,
14(3):349, jun 2012.

21 Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime
enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods
in System Design, 38(3):223–262, jun 2011.

22 Adrian Francalanza. A Theory of Monitors. In International Conference on Foundations
of Software Science and Computation Structures, pages 145–161. Springer, 2016.

23 Adrian Francalanza. Consistently-Detecting Monitors. In 28th International Conference on
Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 8:1–8:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

24 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario
Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In Runtime
Verification, pages 8–29, Cham, 2017. Springer International Publishing.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:17

25 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017.

26 Adrian Francalanza and Aldrin Seychell. Synthesising correct concurrent runtime monitors.
Formal Methods in System Design, 46(3):226–261, 2015.

27 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 582–594, New York, NY, USA,
2016. ACM.

28 Katarína Kejstová, Petr Ročkai, and Jiří Barnat. From Model Checking to Runtime Veri-
fication and Back. In RV. Springer, 2017.

29 Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey, Robert
Könighofer, Ufuk Topcu, and Chao Wang. Shield synthesis. Formal Methods in System
Design, 51(2):332–361, Nov 2017.

30 Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

31 Frédéric Lang and Radu Mateescu. Partial model checking using networks of labelled
transition systems and boolean equation systems. In Cormac Flanagan and Barbara König,
editors, TACAS, pages 141–156, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

32 Kim G Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2):265–288, 1990.

33 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1):2–16, Feb
2005.

34 Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In CESORICS,
pages 87–100, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

35 Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Cynthia Dwork,
editor, Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing, pages 377–410. ACM, 1990. doi:10.1145/93385.93442.

36 Fabio Martinelli and Ilaria Matteucci. Partial model checking, process algebra operators
and satisfiability procedures for (automatically) enforcing security properties. In Founda-
tions of Computer Security, pages 133–144. Citeseer, 2005.

37 Fabio Martinelli and Ilaria Matteucci. Through modeling to synthesis of security automata.
Electronic Notes in Theoretical Computer Science, 179:31–46, 2006.

38 Fabio Martinelli and Ilaria Matteucci. An approach for the specification, verification and
synthesis of secure systems. Electronic Notes in Theoretical Computer Science, 168:29–43,
2007.

39 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
Information and computation, 100(1):1–40, 1992.

40 Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, International Symposium
on Formal Methods, pages 573–586. Springer Berlin Heidelberg, 2006.

41 Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Proceedings of the 9th International Conference on Mathematical Foundations
of Programming Semantics, pages 530–543, London, UK, UK, 1994. Springer-Verlag.

42 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, New
York, NY, USA, 2009.

43 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, New York, NY, USA, 2011.

44 Fred B Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

CONCUR 2018

http://dx.doi.org/10.1145/93385.93442

	Introduction
	Preliminaries
	An Operational Model for Enforcement
	Enforceability
	Synthesising Suppression Enforcers
	Alternative Transparency Enforcement
	Conclusion

