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Abstract
We consider the reachability problem for timed automata having diagonal constraints (like
x− y < 5) as guards in transitions. The best algorithms for timed automata proceed by enumer-
ating reachable sets of its configurations, stored in a data structure called “zones”. Simulation
relations between zones are essential to ensure termination and efficiency. The algorithm employs
a simulation test Z 4 Z ′ which ascertains that zone Z does not reach more states than zone
Z ′, and hence further enumeration from Z is not necessary. No effective simulations are known
for timed automata containing diagonal constraints as guards. We propose a simulation relation
4d

LU for timed automata with diagonal constraints. On the negative side, we show that deciding
Z 64d

LU Z ′ is NP-complete. On the positive side, we identify a witness for Z 64d
LU Z ′ and propose

an algorithm to decide the existence of such a witness using an SMT solver. The shape of the
witness reveals that the simulation test is likely to be efficient in practice.
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1 Introduction

Timed automata [1] are models of real-time systems. They are finite automata equipped
with real valued variables called clocks. These clocks can be used to constrain the time
difference between events: for instance when an event a occurs a clock x can be set to 0
in the transition reading a, and when an event b occurs, the transition reading b can check
if x ≤ 4. These constraints on clocks are called guards and clocks which are made 0 in a
transition are said to be reset in the transition. Guards of the form x − y > 5 are called
diagonal constraints. They are convenient for checking conditions about events in the past:
when an event c occurs, we want to check that between events a, b which occurred previously
(in the said order), the time gap is at least 5. One can then reset a clock x at a, y at b
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28:2 Reachability in Timed Automata with Diagonal Constraints

and check for x− y > 5 at c. It is known that such diagonal constraints do not add to the
expressive power: each timed automaton can be converted into an equivalent one with no
diagonal guards, that is, a diagonal-free automaton [4]. However, this conversion leads to an
exponential blowup in the number of states, which is unavoidable in general [6].

State reachability is a basic question in timed automata verification. The problem is to
decide if there exists a run of the automaton from the initial state to a given accepting state.
This is known to be PSPACE-complete [1]. In practice, the best algorithms for reachability
proceed by a forward analysis of the automaton: starting from its initial state, enumerate
reachable sets of its configurations stored in the form of a data structure called zones. Zones
are conjunctions of difference constraints (like x− y < 6 ∧ w > 4) which can be efficiently
represented and manipulated using Difference Bound Matrices [11]. Abstractions of zones
are necessary for termination and efficiency of this enumeration. These abstractions are
functions with a finite range mapping each set of configurations to a bigger set. For diagonal
free timed automata various implementable abstraction functions are known [2, 16]. For
timed automata with diagonal constraints, no such abstraction functions are known and
such a forward analysis method does not work. A naïve method would be to analyze the
equivalent diagonal free automaton, but then this introduces a (systematic) blowup.

Abstractions of zones can be used in two ways during the forward analysis: explicitly or
implicitly. In the explicit case, each time a new zone Z appears, the abstraction function a

is applied on it and a(Z) is stored. Further enumeration starts from a(Z). For this explicit
method to work, a(Z) needs an efficient representation. Hence only abstractions where
a(Z) is also a zone (also called convex abstractions) are used. Extra+

LU [2] is the best known
convex abstraction for diagonal free automata and is implemented in the state-of-the-art tool
UPPAAL [3]. In the implicit case, zones are not extrapolated and are stored as they are.
Each time a new zone Z appears, it is checked if there exists an already visited zone Z ′ such
that Z ⊆ a(Z ′). Intuitively this means that zone Z cannot see more states than Z ′ and hence
the enumeration at Z can stop. Given that a has finite range, the computation terminates.
Since abstractions of zones are not stored explicitly, there is no restriction for a to result in
a zone, but an efficient inclusion test Z ⊆ a(Z ′) is necessary as this test is performed each
time a new zone appears. For diagonal-free automata, the best known abstraction is a4LU

and it subsumes Extra+
LU . The inclusion test Z ⊆ a4LU(Z ′) can be done in O(|X|2) where

X is the number of clocks [16]. In both cases - explicit or implicit - it is important to have
an abstraction that transforms zones into as big sets as possible, so that the enumeration
can terminate with fewer zone visits.

In this paper, we are interested in the implicit method for timed automata with diagonal
constraints. Since the abstractions that are usually used are based on simulation relations,
the inclusion test Z ⊆ a(Z ′) boils down to a simulation test Z 4 Z ′ between zones. In
particular, the a4LU abstraction is based on a simulation relation 4LU [2]. We choose to take
this point of view: from the next section, we refrain from using abstractions and present them
as simulations instead. We propose a simulation 4d

LU that is sound for diagonal constraints.
Contrary to the diagonal free case, we show that the simulation test Z 64d

LU Z ′ is NP-complete.
But on the positive side, we give a characterization of a witness for the fact that Z 64d

LU Z ′

and encode the existence of such a witness as the satisfiability of a formula in linear arithmetic.
This gives an algorithm for Z 64d

LU Z ′. The shape of the witness shows that in practice
the number of potential candidates would be low and the simulation test is likely to be
efficient. We have implemented our algorithm in a prototype tool. Preliminary experiments
demonstrate that the number of zones enumerated using 4d

LU simulation drastically reduces
compared to the number of zones obtained by doing the diagonal free conversion followed by
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a forward analysis using 4LU . This simulation relation 4d
LU and the associated simulation

test also open the door for extending optimizations studied for diagonal free automata [15],
to the case of diagonal constraints; and also extending analysis of priced timed automata
with diagonal constraints [7, 18].

Related work. Convex abstractions used for diagonal free timed automata had been in
use also for diagonal constraints in tools like UPPAAL and KRONOS [19]. It was shown
in [5] that this is incorrect: there are automata with diagonal constraints for which using
Extra+

LU will give a yes answer to the reachability problem, whereas the accepting state is
not actually reachable in the automaton. This is because the extra valuations added during
the computation enable guards which were originally not enabled in the automaton, leading
to spurious executions. A non convex abstraction for diagonal constraints appears in [5], but
the corresponding inclusion test is not known. The current algorithm for diagonal constraints
proceeds by an abstraction refinement method [8].

Organization of the paper. Section 2 gives the preliminary definitions. In Section 3, we
propose a simulation relation 4d

LU between zones and observe some of its properties. Section
4 gives an algorithm for Z 64d

LU Z ′ via reduction to an SMT formula. Section 5 shows that
Z 64d

LU Z ′ is NP-hard by a reduction from 3-SAT. We report some experiments and conclude
in Section 6. Missing proofs can be found in the extended version [12].

2 Preliminaries

Let N denote the set of natural numbers, Z the set of integers and R≥0 the set of non-negative
reals. We denote the power set of a set S by P(S). A clock is a variable that ranges over
R≥0. Fix a finite set of clocks X. A valuation v is a function which maps each clock x ∈ X
to a value in R≥0. Let Φ(X) denote the set of clock constraints φ formed using the following
grammar: φ := x ∼ c | x− y ∼ c | φ ∧ φ, where x, y ∈ X, c ∈ N and ∼ ∈ {<,≤,=,≥, >}
Constraints of the form x− y ∼ c are called diagonal constraints. For a clock constraint φ,
we write v |= φ if the constraint given by φ is satisfied by replacing each clock x in φ with
v(x). For δ ∈ R≥0, we write v + δ for the valuation defined by (v + δ)(x) = v(x) + δ for all
clocks x. For a set R of clocks, we write [R]v for the valuation obtained by setting each clock
x ∈ R to 0 and each x /∈ R to v(x).

I Definition 1 (Timed Automata). A timed automaton A is a tuple (Q,X,∆, q0, F ) where
Q is a finite set of states, X is a finite set of clocks, q0 ∈ Q is the initial state, F ⊆ Q is
a set of accepting states and ∆ ⊆ Q × Φ(X) × P(X) ×Q is the transition relation. Each
transition in ∆ is of the form (q, g, R, q′) where g ∈ Φ(X) is called the guard of the transition
and R ⊆ X is the set of clocks that are said to be reset at the transition.

Timed automata with no diagonal constraints are called diagonal-free. The semantics
of timed automata is described as a transition system over the space of its configurations.
A configuration is a pair (q, v) where q ∈ Q is a state and v is a valuation. There are two
kinds of transitions. Delay transitions are given by (q, v) →δ (q, v + δ) for each δ ∈ R≥0,
and action transitions are given by (q, v) →t (q′, v′) for each transition t ∈ ∆ of the form
(q, g, R, q′), if v |= g and v′ = [R]v. The initial configuration is (q0,0) where 0 denotes the
valuation mapping each clock to 0. Note that the above transition system is infinite. A run
of a timed automaton is an alternating sequence of delay and action transitions starting
from the initial configuration: (q0,0) →δ0→t0 (q1, v1) →δ1→t1 · · · (qn, vn). A run of the
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28:4 Reachability in Timed Automata with Diagonal Constraints

above form is said to be accepting if the last state qn ∈ F . The reachability problem for
timed automata is the following: given an automaton A, decide if there exists an accepting
run. This problem is known to be PSPACE-complete [1]. As the space of configurations is
infinite, the main challenge in solving this problem involves computing a finite (and as small
as possible) abstraction of the timed automaton semantics. In this section, we recall the
reachability algorithm for the diagonal free case. For the rest of the section we fix a timed
automaton A.

Instead of working with configurations, standard solutions in timed automata analysis
work with sets of valuations. The “successor” operation is naturally extended to the case of
sets. For every transition t of A and every set of valuationsW , we have a transition⇒t defined
as follows: (q,W )⇒t (q′,W ′) where W ′ = {v′ | ∃v ∈W, ∃δ ∈ R≥0 : (q, v)→t→δ (q′, v′)}.
Note that in the definition we have a→δ following the→t. This ensures that the⇒ successors
(where ⇒ =

⋃
t∈∆ ⇒t) are closed under time successors. Moreover, the sets which occur

during timed automata analysis using the ⇒ relation have a special structure, and are called
zones. A zone is a set of valuations which can be described using a conjunction of constraints
of the form: x ∼ c or x−y ∼ c where x, y ∈ X and c ∈ N. Zones can be efficiently represented
using Difference Bound Matrices (DBMs). To each automaton A, we associate a transition
system consisting of (state, zone) pairs: the zone graph ZG(A) is a transition system whose
nodes are of the form (q, Z) where q is a state of A and Z is a zone. The initial node is
(q0, Z0) with Z0 = {0 + δ | δ ≥ 0}. Transitions are given by ⇒.

I Lemma 2. The zone graph ZG(A) is sound and complete for reachability [9].

Although the zone graph is a more succinct representation than the space of configurations,
it could still be infinite. The reachability algorithm employs simulation relations between
zones to obtain a finite abstraction of the zone graph that is sound and complete1.

We start by defining this notion of simulations at the level of configurations. A (time-
abstract) simulation between pairs of configurations of A is a reflexive and transitive relation
(q, v) 4 (q′, v′) such that: q = q′; for every (q, v) →δ (q, v + δ) there exists δ′ such that
(q, v′)→δ′ (q, v′ + δ′) satisfying (q, v + δ) 4 (q, v′ + δ′); and if (q, v)→t (q1, v1), then there
exists (q, v′)→t (q1, v

′
1) satisfying (q1, v1) 4 (q1, v

′
1) for the same transition t. We say that

(q, v) is simulated by (q′, v′). We write v 4 v′ if (q, v) 4 (q, v′) for all states q. Simulations
can be extended to relate zones in the natural way: we write Z 4 Z ′ if for all v ∈ Z there
exists v′ ∈ Z ′ such that v 4 v′. A simulation relation 4 is said to be finite if there exists
N ∈ N such that for all n > N and every sequence of zones {Z1, Z2, . . . , Zn}, there exists
i < j ≤ n such that Zj 4 Zi.

Reachability algorithm. The input to the algorithm is a timed automaton A. The algorithm
maintains two lists, Passed and Waiting, and makes use of a finite simulation relation 4
between zones. The initial node (q0, Z0) is added to the Waiting list. Wlog. we assume that
q0 is not accepting. The algorithm repeatedly performs the following steps:
Step 1. If Waiting is empty, then return “A has no accepting run”; else pick (and remove) a

node (q, Z) from Waiting.
Step 2. For each successor (q, Z) ⇒ (q1, Z1) such that Z1 6= ∅ perform the following

operations: if q1 is accepting, return “A has an accepting run”; else check if there exists

1 Existing reachability algorithms make use of what are known as abstraction operators [2, 16], which are
based on simulation relations. Instead of abstractions, we choose to present the algorithm directly using
simulations between zones.
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a node (q1, Z
′
1) in Passed or Waiting such that Z1 4 Z ′1: if yes, ignore the node (q1, Z1),

otherwise add (q1, Z1) to Waiting.
Step 3. Add (q, Z) to Passed and proceed to Step 1.

I Theorem 3. The reachability algorithm terminates with a correct answer.

The reachability algorithm relies on an operation Z1 4 Z ′1, where 4 is some finite
simulation relation as defined earlier. It has been shown that for the simulation relation
4LU of [2] which works for diagonal free automata, checking Z 4LU Z ′ can be done in time
O(|X|2) [16]. Hence in diagonal free timed automata, this simulation test is as efficient as
checking normal inclusion Z ⊆ Z ′. The successor computation can also be implemented in
O(|X|2) [20] using Difference Bound Matrices. These matrices can also be viewed as graphs.
We recall this graph-based representation of zones and some of its properties.

I Definition 4 (Distance graph). A distance graph G has clocks as vertices, with an additional
special vertex x0 representing constant 0. Between every two vertices there is an edge with a
weight of the form (/, c) where c ∈ Z and / ∈ {≤, <} or (/, c) = (<,∞). An edge x /c−→ y

represents a constraint y − x / c: or in words, the distance from x to y is bounded by c. We
let [[G]] be the set of valuations of clock variables satisfying all the constraints given by the
edges of G with the restriction that the value of x0 is 0.

We will sometimes write 0 instead of x0 for clarity. An arithmetic over the weights (/, c)
can be defined as follows [3].
Equality (/1, c1) = (/2, c2) if c1 = c2 and /1 = /2.
Addition (/1, c1) + (/2, c2) = (/, c1 + c2) where / = < iff either /1 or /2 is <.
Total order (/1, c1) < (/2, c2) if either c1 < c2 or (c1 = c2 and /1 = < and /2 = ≤).

This arithmetic lets us talk about the weight of a path as the sum of the weights of its edges.
A cycle in a distance graph G is said to be negative if the sum of the weights of its edges

is at most (<, 0). A distance graph is in canonical form if there are no negative cycles and
the weight of the edge from x to y is the lower bound of the weights of paths from x to y.
Given a distance graph, its canonical form can be computed by using an all-pairs shortest
paths algorithm like Floyd-Warshall’s [3] in time O((|X|+ 1)3) where |X| is the number of
clocks. Note that the number of vertices in the distance graph is |X|+ 1. A folklore result
is that: a distance graph G has no negative cycles iff [[G]] 6= ∅. Given two distance graphs
G1, G2 (not necessarily in their canonical form), we define min(G1, G2) to be the distance
graph obtained by setting for each x→ y the minimum of the corresponding weights in G1
and G2. For two distance graphs G1 and G2, we have [[min(G1, G2)]] = [[G1]] ∩ [[G2]].

A simulation relation for timed automata with diagonal constraints was proposed in
[5], but it has not been used in the reachability algorithm since no algorithm for the zone
simulation test was known.

3 A new simulation relation in the presence of diagonal constraints

In this section, we introduce a new simulation relation 4d
LU which extends the 4LU simulation

of [2]. For this, we first assume that all guards in timed automata are rewritten in the form
x− y / c or x / c, where c ∈ Z and / ∈ {<,≤}. We will also assume that X is a set of clocks
including the 0 clock.

I Definition 5 (LU-bounds). An LU bounds function is a pair of functions L : X ×X 7→
Z ∪ {∞} and U : X ×X 7→ Z ∪ {−∞} mapping each clock difference x − y to a constant
or ∞ or −∞ such that the conditions below are satisfied (we write L(x− y), U(x− y) for
L(x, y) and U(x, y) respectively):
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28:6 Reachability in Timed Automata with Diagonal Constraints

d

v(x) − v(y) v′(x) − v′(y)

Do not relate v and v′ if there is a guard x − y ≤ d or x − y < d

Figure 1 Black dots illustrate the values of v(x)− v(y) and v′(x)− v′(y). The value v(x)− v(y)
satisfies the guard x− y / d but v′(x)− v′(y) does not satisfy the same guard.

either L(x− y) =∞ and U(x− y) = −∞, or L(x− y) ≤ U(x− y) for all distinct pairs of
clocks x, y ∈ X,
L(x− 0) = 0 and U(0− x) = 0 for all non zero clocks x ∈ X

The L stands for lower and U stands for upper. Intuitively, each LU -bounds function
corresponds to a set of guards given by x− y / c with L(x− y) ≤ c ≤ U(x− y). We will now
define a simulation relation 4d

LU between valuations parameterized by LU -bounds. The idea
is to give a relation v 4d

LU v′ such that v′ satisfies all guards compatible with the parameter
LU that v satisfies. To achieve this, the situation as illustrated in Figure 1 needs to be
avoided. This is formalized by the following definition and the subsequent lemma.

I Definition 6 (LU-preorder 4d
LU). Let LU be a bounds function. A valuation v′ simulates

a valuation v with respect to LU , written as v 4d
LU v′, if for every pair of distinct clocks

x, y ∈ X the following hold:
v′(x)− v′(y) < L(x− y) if v(x)− v(y) < L(x− y)
v′(x)− v′(y) ≤ v(x)− v(y) if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

For a valuation v, we write 〈v〉LU for the set of all v′ such that v 4d
LU v′.

I Lemma 7. Let x, y be distinct clocks in X, and x− y / c with c ∈ Z be a guard. Let LU
be a bounds function such that L(x− y) ≤ c ≤ U(x− y). Then, for every pair of valuations
v, v′ such that v 4d

LU v′, if valuation v |= x− y / c then v′ |= x− y / c.

The next lemma shows that time delay preserves 4d
LU from two valuations v and v′ with

v 4d
LU v′. In fact, it is strong in the sense that if we delay δ from v, then the same delay

from v′ satisfies the LU preorder conditions. The proof of this lemma uses the fact that
L(x− 0) = 0 and U(0− x) = 0 for all non-zero clocks x.

I Lemma 8. Let LU be a bounds function. For every pair of valuations v and v′, if v 4d
LU v′,

then v + δ 4d
LU v′ + δ for all δ ≥ 0.

The next lemma shows that resets preserve 4d
LU under certain conditions on LU .

I Lemma 9. Let LU be a bounds function satisfying U(x− 0) ≥ U(x− y) for all y ∈ X and
L(0− y) ≤ L(x− y) for all x ∈ X. Then, v 4d

LU v′ implies [R]v 4d
LU [R]v′ for every R ⊆ X.

The LU preorder can be extended to configurations: (q, v) 4d
LU (q, v′) if v 4d

LU v′. The
above three lemmas give the necessary ingredients to generate an LU bounds function from
a timed automaton A such that the associated LU preorder is a simulation on its space of
configurations.

Let G be a set of constraints. We construct a new set G from G in the following way:
Add all the constraints of G to G
For each clock x ∈ X, add the constraints x ≤ 0 and −x ≤ 0 to G
For each constraint x− y / c ∈ G, add the constraints x / c and −y / c to G
Remove all constraints of the form x / c1 where c1 ∈ R<0 and constraints of the form
−x / c2 where c2 ∈ R>0 from G.
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We define an LU -bounds function on G in the natural way: for each pair of clocks
x, y ∈ X, we set L(x− y) = min{c | x− y / c ∈ G} and U(x− y) = max{c | x− y / c ∈ G}.
If there are no guards of the form x− y / c in G, then we set L(x− y) to be ∞ and U(x− y)
to be −∞. Note that since G contains the constraints x ≤ 0 and has no constraints x / c
where c ∈ R<0, L(x − 0) = 0 for all x ∈ X. Similarly, U(0 − x) = 0 for all x ∈ X. For a
timed automaton A, let GA be the set of guards present in A. The LU -bounds of A is the
LU -bounds function defined on GA. The next theorem follows from Lemmas 7, 8 and 9.

I Theorem 10. For every timed automaton A, the relation 4d
LU obtained from the LU -bounds

of A is a simulation relation on its configurations.

We use this simulation relation extended to zones in the reachability algorithm, as
described in Page 4. To do so, we need to give an algorithm for the simulation test Z 4d

LU Z ′,
and show that 4d

LU is finite. Correctness and termination follow from Theorem 3. We first
describe the simulation test, and then prove finiteness. Observe that Z 64d

LU Z ′ iff there
exists v ∈ Z such that 〈v〉LU ∩ Z ′ = ∅. We give a distance graph representation for 〈v〉LU .

I Definition 11 (Distance graph for 〈v〉LU). Given a valuation v and an LU bounds function,
we construct distance graph GLU

〈v〉 as follows. For every pair of distinct clocks x, y ∈ X, add
the edges:

y −→ x with weight (<,L(x− y)), if v(x)− v(y) < L(x− y),
y −→ x with weight (≤, v(x)− v(y)), if L(x− y) ≤ v(x)− v(y) ≤ U(x− y).

Using Definition 6 we can show that [[GLU

〈v〉]] equals 〈v〉LU . The properties of distance
graphs as described in Page 5 then lead to the following theorem.

I Theorem 12. Let Z,Z ′ be zones such that Z ′ is non-empty, and let LU be a bounds
function. Let GZ′ be the canonical distance graph of Z ′. Then, Z 64d

LU Z ′ iff there is a
valuation v ∈ Z and a negative cycle in min(GLU

〈v〉, GZ′) in which no two consecutive edges
are from GZ′ .

A witness to the fact that Z 64d
LU Z ′ is therefore a v ∈ Z and a negative cycle of a certain

shape given by Theorem 12. As explained in Section 4, existence of such a witness can be
encoded as satisfiability of a formula in linear arithmetic. This gives an NP procedure. A
satisfying assignment to the formula reveals a valuation v ∈ Z and a corresponding negative
cycle across GLU

〈v〉 and GZ′ . Although there is no fixed bound on the length of this negative
cycle (contrary to the diagonal free case), note that each y → x edge from GLU

〈v〉 in the
negative cycle needs to have finite U(x − y) and L(x − y) constants (apart from x → 0
edges). If for an automaton, many pairs of clocks have no diagonal constraints (which we
believe occurs often in practice) then this simulation test would need to enumerate only a
small number of cycles.

The final step is to show that 4d
LU is finite. We make use of a notation: we write ↓Z to

be the set of valuations u such that u 4d
LU v for some v ∈ Z. Note that Z 64d

LU Z ′ implies
↓Z 6= ↓Z ′.

I Theorem 13. The simulation relation 4d
LU is finite for every LU bounds function.

Proof. We will first show that for any zone Z, ↓Z is a union of d-regions (parameterized by
LU) which are defined below. We will subsequently show that there are only finitely many
d-regions. The observation that Z 64d

LU Z ′ implies ↓Z 6= ↓Z ′ then proves the theorem.
Given a valuation v and LU -bounds function, we define the following relations over pairs

of clocks:

CONCUR 2018



28:8 Reachability in Timed Automata with Diagonal Constraints

y
1−→ x if v(x)− v(y) < L(x− y)

y
2−→ x if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

A d-region R is a set of valuations that satisfies the following:
all valuations in R have the same 1−→ and 2−→ relations.
for every subset S = {y1

2−→ x1, y2
2−→ x2, . . . , yk

2−→ xk} of ordered pairs of clocks, every

valuation in R satisfies one of the following constraints: either
(
i=k∑
i=1

xi − yi = c

)
or

c− 1 <
(
i=k∑
i=1

xi − yi
)
< c for an integer c satisfying

i=k∑
i=1

L(xi − yi) ≤ c ≤
i=k∑
i=1

U(xi − yi).

We will now show that if a d-region R intersects ↓Z then R ⊆ ↓Z. Let v ∈ R be such
that v ∈ ↓Z. Let v′ be another valuation in R. Suppose v′ /∈ ↓Z. Then 〈v′〉LU ∩Z = ∅. That
is, min(GLU

〈v′〉, GZ) has a negative cycle; let us call it Nv′ . Let Nv be the cycle Nv′ with the
edges coming from GLU

〈v′〉 replaced with the same edges from GLU

〈v〉. We want to show that Nv
is negative. Since v and v′ come from the same region R, we have:

The weight of a type 1 edge yi
1−→ xi is (<,L(xi − yi)) in both Nv and Nv′ . Let (<,S1)

be the sum of the weights of the type 1 edges. This sum is the same in Nv and Nv′ .
We let (≤, S2) = (≤,

∑
i v(xi)− v(yi)) and (≤, S′2) = (≤,

∑
i v
′(xi)− v′(yi)) be the sum

of the weights of type 2 edges yi
2−→ xi in Nv and Nv′ respectively. Then, for some integer

c, either S2 = S′2 = c or c− 1 < S2 < c and c− 1 < S′2 < c.
Also the edges coming from GZ have the same weight in Nv and Nv′ . Call (/3, S3) the
sum of the weights of the edges coming from GZ . Finally, let (/, S = S1 + S2 + S3) and
(/, S′ = S1 +S′2 +S3) be the weights of Nv and Nv′ respectively. Since Nv′ is negative, (/, S′)
is at most (<, 0). Now, S1 and S3 are integers, and using the relation between S2 and S′2, we
deduce that Nv is also negative. This entails 〈v〉LU ∩ Z = ∅, and contradicts the assumption
v ∈ ↓Z. We get R ⊆ ↓Z, thereby showing that each ↓Z is a union of d-regions.

Each d-region depends only on the 1−→ and 2−→ relations and the values of c for each subset
S of 2−→ edges. Since number of clocks is finite, the number of possible relations 1−→ and 2−→ is
finite. For each such relations, the possible values for the constants c is finite. Thus there
are only finitely many d-regions. J

4 Algorithm for Z 64d

LU
Z ′

Theorem 12 gives a witness for the fact that Z 64d
LU Z ′. In this section, we encode the

existence of this witness as an SMT formula over linear arithmetic. For clarity of exposition,
we will also restrict to timed automata having no strict constraints as guards, that is, every
guard is of the form x− y ≤ c or x ≤ c. This would in particular imply that in the zones
obtained during the forward analysis, there will be no strict constraints.

I Definition 14 (Satisfiability modulo Linear Arithmetic). Let Prop be a set of propositional
variables, and Vars a set of variables ranging over reals. An atomic term is a constraint of
the form c1x1 + c2x1 + · · ·+ ckxk ∼ d where c1, . . . , cn, d ∈ Z and x1, x2, . . . , xk ∈ Vars and
∼ ∈ {≤, <,=, >,≥}. A formula in linear arithmetic is a boolean combination of propositional
variables and atomic terms. Formula φ is satisfiable if there exists an assignment of boolean
values to propositions in Prop, and real values to variables in Vars such that replacing every
occurrence of the variables and propositions by the assigment evaluates φ to true.

The next lemma follows from [17].
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I Lemma 15. Satisfiability of a formula in linear arithmetic is in NP.

Fix two zones Z,Z ′ and a bounds function LU . Zones Z and Z ′ are given by their
canonical distance graphs GZ and GZ′ . We write cyx for the weight of the edge y → x

in GZ and c′yx for the weight of y → x in GZ′ . Further we assume that the set of clocks
is {0,1, . . . ,n}. The final formula will be obtained by constructing suitable intermediate
subformulas as explained below:
Step 1. Guess a v ∈ Z.
Step 2. Guess a subset of edges y → x which forms a cycle (or a disjoint union of cycles).
Step 3. Guess a colour for each edge y → x in the cycle: red or blue. No two consecutive

edges in the cycle can both be red. Red edges correspond to edges from GZ′ . Blue edges
correspond to edges from GLU

〈v〉.
Step 4. Assign weights to each edge y → x: if it is coloured red, the weight is c′yx (edge

weight of GZ′). If the edge y → x is blue, assign weight according to the following cases:
wyx = (<,L(x− y)) if v(x)− v(y) < L(x− y)
wyx = (≤, v(x)− v(y)) if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

Add up the weights of all the edges (the comparison < or ≤ component of the weight can
be maintained using a boolean). If there are no strict edges (that is with weight <) in
the chosen cycle, check if the sum is < 0. Else, check if the sum is ≤ 0.

Formula for Step 1. We first guess a valuation v ∈ Z. We use real variables v0, v1, . . . , vn
to denote a valuation. These variables should satisfy the constraints given by Z:

v0 = 0 and
∧

x,y∈{0,...,n}

vx − vy ≤ cyx (1)

Call the above formula Φ1(v̄) where v̄ = (v0, . . . , vn). A satisfying assignment to Φ1 corres-
ponds to a valuation in Z.

Formula for Step 2. We now need to guess a set of edges of the form y → x which forms
a cycle, or a disjoint union of simple cycles. We will also ensure that no vertex appears in
more than one cycle. We will use boolean variables eij for i, j ∈ {0, . . . , n} and i 6= j.

The cycle must be non-empty.∨
0≤i,j≤n,j 6=i

eij (2)

If we pick an incoming edge to a clock, then we need to pick an outgoing edge.∧
0≤i≤n

( ∨
0≤j≤n,j 6=i

eji

)
=⇒

( ∨
0≤j≤n,j 6=i

eij

)
(3)

We do not pick more than one outgoing or incoming edges for each clock.∧
0≤i≤n

∧
0 ≤ j, k ≤ n

j 6= k, i 6= j, i 6= k

¬(eij ∧ eik) ∧ ¬(eji ∧ eki) (4)

Conjunction of (2, 3, 4) gives a formula Φ2(ē) over variables ē = {e01, . . . , enn−1}.

I Lemma 16. Let σ2 : ē 7→ {true, false} be an assignment which satisfies Φ2. Then the set
of edges {x→ y} such that σ2(exy) is true forms a vertex-disjoint union of cycles.

CONCUR 2018
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Formula for Step 3. To colour the edges of the cycle formed by eij , we will use boolean
variables ri for 0 ≤ i ≤ n to color the source of the red edges. Once the red edges are
determined, the blue edges are also uniquely determined. Only edges chosen by ē are coloured
red, and no two consecutive edges can be coloured red.∧

0≤i≤n

(
ri =⇒

∨
0≤j≤n

eij ∧ ¬rj
)

(5)

Then, red edges are edges with corresponding source i satisfying ri. So for all i, j ∈ {0, . . . , n}
with i 6= j we introduce the macro redij := eij ∧ ri. Blue edges are those that have been
chosen for the cycle and have not been coloured red: blueij := eij ∧ ¬ri. Each blue edge
should satisfy one of the two conditions mentioned in Definition 11.∧

i,j∈{0,...,n},i6=j

blueij =⇒ vj − vi ≤ U(j − i) (6)

Conjunction of (5) and (6) gives formula Φ3.

I Lemma 17. Let σ3 be an assignment to variables v̄, ē and r̄. Suppose σ3 is a satisfying
assignment for Φ1 ∧Φ2 ∧Φ3. Then, the set of edges with σ3(eij) being true forms a collection
of vertex disjoint cycles using edges from GZ′ or from GLU

〈v〉 for some v ∈ Z.

Formula for Step 4. The last step is to add up weights of the red and blue edges. We make
use of real-valued variables wi for each source i of an edge. We associate weights of red and
blue edges.∧

i,j∈{0,...,n},i6=j

(redij =⇒ wi = c′ij)∧((blueij ∧ condition1) =⇒ wi = L(j − i))

∧((blueij ∧ condition2) =⇒ wi = vj − vi) (7)

where, condition1 := vj − vi < L(j − i) and condition2 := L(j − i) ≤ vj − vi ≤ U(j − i).
Uncoloured edges take weight 0,∧
0≤i≤n

( ∧
0≤j≤n,j 6=i

¬eij
)

=⇒ (wi = 0) (8)

A boolean variable strict is true if one of the blue edges has a weight of the form (<, c).

strict ⇐⇒
∨

i,j∈{0,...,n},i6=j

blueij ∧ condition1 (9)

The final formula checks if the sum of the weights is at most (<, 0).

((
∑

0≤i≤n wi) < 0) ∨ [ strict ∧ ((
∑

0≤i≤n wi) = 0)] (10)

Conjunction of (7), (8) and (10) gives formula Φ4. The final formula is Φ = Φ1∧Φ2∧Φ3∧Φ4.

I Theorem 18. Formula Φ as constructed above is satisfiable iff Z 64d
LU Z ′.

Note that there are O(n+ 1) real variables vi, wi, and O((n+ 1)2) booleans eij , ri. Given
the representations of Z,Z ′ and the LU bounds, the entire formula Φ can be computed in
O((n+ 1)3), with formula (4) taking the maximum time. This gives an NP procedure for
Z 64d

LU Z ′ (c.f. Lemma 15).
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5 Checking Z 64d

LU
Z ′ is NP-hard

We will consider a special kind of LU bounds, which already turns out to be hard. We say
that an LU bounds is symmetric if L(x− y) = −U(y − x) for all distinct pairs of clocks x, y.
This symmetry gives rise to some nice properties which we will use to show hardness.

I Lemma 19. Let v, v′ be valuations and LU a symmetric bounds function. Then, v 4d
LU v′

iff for all distinct pairs of clocks x, y (denoting a = v(x)− v(y) and a′ = v′(x)− v′(y)):
either both a′ and a are < L(x− y)
or L(x− y) ≤ a′ = a ≤ U(x− y)
or both a′ and a are > U(x− y).

Proof. Since L(x− y) = −U(y− x), we deduce that L(x− y) ≤ a ≤ U(x− y) iff L(y− x) ≤
−a ≤ U(y − x). The rest follows by applying Definition 6 on a, a′ and −a,−a′. J

Thanks to the above lemma, when LU is symmetric: v 4d
LU v′ iff v′ 4d

LU v, and hence
4d

LU an equivalence over valuations. To make this explicit, we will write v 'LU v′ instead of
v 4d

LU v′, and [v]LU instead of 〈v〉LU for symmetric LU . With this definition, for symmetric
LU , we get Z 64d

LU Z ′ iff there exists v ∈ Z such that for all v′ 'LU v, we have v′ 6∈ Z ′.
Throughout this section, we will fix a symmetric LU bounds function.

The second condition in Lemma 19 constrains the difference between certain pairs of
clocks to a constant value for all valuations in an equivalence class of 'LU . We formalize
this notion. Let v be a valuation. Two clocks x and y are said to be tight in v if L(x− y) ≤
v(x) − v(y) ≤ U(x − y). We denote this by x� y (can be read as x and y are tied to
each other). Notice that� is symmetric. Let�∗ (can again be read as the tight relation)
denote the reflexive and transitive closure of�. The�∗ relation is an equivalence over
clocks. For every v′ ∈ [v]LU , Lemma 19 gives: v′(x)− v′(y) = v(x)− v(y) when x�∗ y and
v′(x)− v′(y) < L(x− y) when x 6�∗ y and v(x)− v(y) < L(x− y). Notice also that the�∗

equivalence classes are identical for v′ and v when v′ 'LU v.
Next, we make an observation about zones which do not have strict constraints (like

x− y < c). We say that a zone Z is topologically closed if every edge y −→ x in the canonical
distance graph of Z has weight of the form (≤, c) with c ∈ Z, or (<,∞). A valuation v

mapping each x to an integer is said to be an integral valuation. The next proposition says
that for certain topologically closed zones Z and Z ′, if Z 64d

LU Z ′ then there is an integral
valuation as a witness to this non-simulation. The proof of this proposition makes use of a
non-trivial observation on zones. We refer the reader to [12] for more details.

I Proposition 20. Let Z be a topologically closed zone s.t. the�∗ equivalence classes of
every valuation in Z are the same. Let LU be a symmetric bounds function. Let Z ′ be a zone
with Z 64d

LU Z ′. Then, there exists an integral valuation u ∈ Z such that [u]LU ∩ Z ′ is empty.

We now have the necessary ingredients to give the proof of NP-hardness. Consider the
decision problem which takes as inputs two zones Z,Z ′ and outputs whether Z 64d

LU Z ′. We
will give a polynomial time reduction from 3-SAT to this decision problem, showing that it
is NP-hard.

Notation. Let Var be a finite set of propositional variables. A literal is either a variable p or
its negation ¬p, and a 3-clause is a disjunction of three literals (l1∨ l2∨ l3). A 3-CNF formula
is a conjunction of 3-clauses. For a literal l, we write Var(l) for the variable corresponding to
l. For a 3-CNF formula φ, we write Var(φ) for the variables present in φ. An assignment to a
3-CNF formula φ is a function from Var(φ) to {true, false}. For a clause C and an assignment
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28:12 Reachability in Timed Automata with Diagonal Constraints

σ, we write σ |= C if substituting σ(p) for each variable p occurring in C evaluates the clause
to true. For a formula φ and an assignment σ, we write σ |= φ if all clauses of φ evaluate
to true under σ. A formula φ is said to be satisfiable if there exists an assignment such
that σ |= φ. For the rest of the section, fix a 3-CNF formula ϕ := C1 ∧ C2 ∧ · · · ∧ CN . Let
Clauses(ϕ) be the set {Ci | i ∈ {1, . . . , N}}.

We start with the idea for the reduction. We know that ϕ is satisfiable iff there exists
an assignment σ such that for all C ∈ Clauses(ϕ) : σ |= C. Correspondingly, we know that
Z 64d

LU Z ′ iff there exists a v ∈ Z such that for all v′ 'LU v : v′ /∈ Z ′. Given ϕ, we want to
construct two topologically closed zones Z,Z ′ such that ϕ is satisfiable iff Z 64d

LU Z ′. We
want the (potential) v ∈ Z for which every v′ 'LU v satisfies v′ 6∈ Z ′ to encode the (potential)
satisfying assignment for ϕ. In essence: valuations in Z should encode assignments, the
equivalent valuations v′ should encode clauses and the fact that v′ 6∈ Z ′ should correspond
to the chosen clause being true. We now proceed with the details of the construction. Figure
2 illustrates the construction on an example. For each literal lji of ϕ, we add three clocks
xji , y

j
i , z

j
i . There are N + 1 additional clocks r0, r1, . . . , rN , where r0 is assumed to be the

special 0 clock. We will assume that L(x − y) = −M , U(x − y) = M , L(0 − x) = −M ,
U(x − 0) = M for all non-zero clocks x, y and an arbitrary constant M > 3. This gives a
symmetric LU bounds function.

Construction of Z. Zone Z is described by three sets of constraints. The first set of
constraints are between clocks of each literal. For every i ∈ {1, . . . , N} and j ∈ {1, 2, 3}:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (11)

The second set of constraints relates the distance between clocks of different literals. In
addition, we use the ri clocks as separators between clauses. For i ∈ {1, . . . , N}:

x1
i − ri−1 = 2M − 3 and xj+1

i − zji = 2M − 3 for j ∈ {1, 2} and ri − z3
i = 2M (12)

Constraints (11) and (12) ensure that for every valuation in Z we have the following
order of clocks for each i ∈ {1, . . . , N}:

ri−1 < x1
i < y1

i < z1
i < x2

i < y2
i < z2

i < x3
i < y3

i < z3
i < ri (13)

In every valuation of Z, we have xji � yji � zji for every literal lji . This is because we
have assumed that M > 3 and we have restricted the gaps (absolute value of the differences)
between xji , y

j
i and yji , z

j
i to be in the interval [1, 2] (c.f. (11)). We do not want any other

pair of clocks that are consecutive according to the above ordering to be tight. Hence we
choose the rest of the gaps to be strictly more than M (c.f. (12)). Our choice of constraints
ensures that each valuation in Z gives a�∗ division where {xji , y

j
i , z

j
i } forms an equivalence

class (let us call it a block), and each {ri} is an equivalence class. Note that for each v ∈ Z,
we also have v(ri)− v(ri−1) = 8M for i ∈ {1, . . . , N}. We will next enforce that literals in ϕ
involving the same variable have the same y − x and z − y values for their corresponding
clocks. Without loss of generality, we assume that the three literals corresponding to the same
clause have different variables. Therefore this condition is relevant for literals in different
clauses, but with the same variable. For every lji and lj

′

i′ such that Var(lji ) = Var(lj
′

i′ ) and
i′ > i:

yj
′

i′ − y
j
i = (i′ − i) · 8M + (j′ − j) · 2M (14)

Note that from (11) and (12) we can infer that the values of v(xj
′

i′ )− v(xji ) and v(zj
′

i′ )− v(zji )
are already equal to the right hand side of the above equation, as the x and z clocks are
“fixed” and y is “flexible”. Constraint (14) then ensures that v(yji )− v(xji ) = v(yj

′

i′ )− v(xj
′

i′ )
and v(zji )− v(yji ) = v(zj

′

i′ )− v(yj
′

i′ ) whenever lji and lj
′

i′ with i′ > i, have the same variable.



P. Gastin, S. Mukherjee, and B. Srivathsan 28:13

Zone Z

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 32M 2M

= 4M

= 12M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Zone Z′

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 3

4M + 2

2M + 2
2M + 2

2M + 2
4M + 2

2M + 2
2M + 1

−2M

2M + 1

−2M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−(16M + 1)

Figure 2 Illustration of the zone Z and Z′ for the formula (p1 ∨ p2 ∨ ¬p3) ∧ (p3 ∨ ¬p4 ∨ ¬p1).
The separator clocks r0, r1, r2 are shown by the green boxes (leftmost box is r0, middle one is r1

and the rightmost is r2). The intermediate literal clocks are shown by the black dots: between r0

and r1 are x1
1, y1

1 , z1
1 , x2

1, y2
1 , z2

1 , x3
1, y3

1 , z3
1 in the same sequence. Similarly between r1 and r2 are the

clocks x1
2, . . . , z3

2 . An edge of the form x
c−→ y simply denotes the constraint y− x ≤ c, whereas edges

x
= c−−→ y mean that y − x = c. When we write c between two consecutive clocks, we mean that the

difference between them equals c.

Encoding of assignments. By construction of Z, in every valuation v ∈ Z, we have v(ri),
v(xji ) and v(zji ) to be fixed integers. The value of v(yji ) can vary between v(xji ) + 1 and
v(xji ) + 2. When this value is in the extremes, either 1 or 2, we get an integral valuation.
We encode assignments by such integral valuations. An integral valuation v encodes the
assignment σv given by: σv(Var(lji )) = true if v(yji )− v(xji ) = 1 and σv(Var(lji )) = false if
v(yji ) − v(xji ) = 2. By (14), the above assignment is well defined. Moreover, the zone Z
contains an integral valuation for every possible assignment.

An assignment σ satisfies ϕ if every clause evaluates to true under σ. From a valuation
v encoding this assignment σ, we need a mechanism to check whether each clause is true.
This is where we will use the gaps which are not tight (that is the ones > M). Clauses
will be identified by certain kind of shifts to these unbounded gaps in v. We will introduce
some more notation. Let T := {(xji , y

j
i , z

j
i ) | i ∈ {1, . . . , N} and j ∈ {1, 2, 3}} be the triplets

of clocks associated with each literal. A literal is said to be positive if it is a variable p,
and it is negative if it is the negation ¬p of some variable p. We will assume that in every
clause of ϕ, the positive literals are written before the negative literals: for example, we
write p1 ∨ p3 ∨ ¬p2 instead of p1 ∨ ¬p2 ∨ p3. For each clause Ci, let (ei, fi) be the pair of
clocks corresponding to Ci in the border between positive and negative literals:

(ei, fi) :=


(ri−1, x

1
i ) if all literals in Ci are negative

(zji , x
j+1
i ) if for j ∈ {1, 2}, lji is positive and lj+1

i is negative
(z3
i , ri) if all literals in Ci are positive

(15)

Given the formula ϕ, the above border clocks are fixed. For a valuation v ∈ Z and
i ∈ {1, . . . , N}, define vi to be the valuation such that:

vi(y)− vi(x) = v(y)− v(x) and vi(z)− vi(y) = v(z)− v(y) for all (x, y, z) ∈ T
vi(fi)− vi(ei) = 2M + 1 and vi(fi′)− vi(ei′) = 2M for all i′ 6= i,
vi(r0) = 0 and all other differences between consecutive clocks (according to order given
by (13)) is 2M − 3.
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Notice that vi 'LU v. Valuation vi acts as a representative for the clause Ci, through the
choice of the difference 2M + 1 in the border of Ci, and 2M in the other borders. We want
to construct zone Z ′ such that when Ci is true, the valuation vi forms a negative cycle with
the constraints of Z ′, via the literal which is true in Ci.

Construction of Z′. Zone Z ′ is described by five sets of constraints. The first set of
constraints are between the clocks of the same literal, and are identical to that in Z:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (16)

The second set of constraints are for border clocks in each clause. For each i ∈ {1, . . . , N}:

2M ≤ fi − ei ≤ 2M + 1 (17)

where ei and fi are according to the definition in (15). The third set of constraints fix
differences between consecutive blocks not involving border clocks to 2M − 3.

x1
i − ri−1 = 2M − 3 if (ri−1, x

1
i ) 6= (ei, fi) and (18)

xj+1
i − zji = 2M − 3 for j ∈ {1, 2} when (zji , x

j+1
i ) 6= (ei, fi) and

ri − z3
i = 2M − 3 when (z3

i , ri) 6= (ei, fi)

From (16,17,18), we see that for every valuation in Z ′ the difference between separators,
that is ri − ri−1, is between 8M and 8M + 1 with the flexibility coming from fi − ei. The
fourth set of constraints ensures that at least one of the fi − ei should be bigger than 2M .

rN − r0 ≥ (8M ·N) + 1 (19)

So far, the constraints that we have chosen for Z ′ do not talk about clauses being true
or false. Recall that valuation vi where the border vi(fi) − vi(ei) = 2M + 1 represents
the choice of Ci for evaluation. The final set of constraints ensure that for every integral
valuation v′ in Z ′ which has v′(fi)− v′(ei) = 2M + 1, every literal in Ci evaluates to false
under the encoding scheme given in Page 13: that is, if lji is positive then v′(yji ) − v′(x

j
i )

cannot be 1 and when lji is negative, v′(yji )− v′(x
j
i ) cannot be 2. For a positive literal lji let

dji ∈ {0, 1, 2} be the number of (x, y, z) blocks corresponding to positive literals between zji
and fi (does not include j). Similarly, for a negative literal, let dji ∈ {0, 1, 2} be the number
of blocks corresponding to negative literals between ei and xji (again, excludes j). We add
the following constraints:

fi − yji ≤ d
j
i · 2M + (2M + 2) if lji is a positive literal (20)

yji − ei ≤ d
j
i · 2M + (2M + 2) if lji is a negative literal

I Theorem 21. Formula ϕ is satisfiable iff Z 64d
LU Z ′ for the zones Z,Z ′ and LU bounds

function described above.

Proof sketch. Assume ϕ is satisfiable. Consider the valuation v ∈ Z corresponding to the
satisfying assignment. Pick an arbitrary v′ 'LU v. If v′ were to lie in Z ′, by (19), at least
one of the border differences should be > 2M . This forms a contradiction with the literal
that is true in clause Ci due to (20).

Assume Z 64d
LU Z ′. As Z and Z ′ are topologically closed, and the�∗ equivalence classes

are same for every valuation in Z, by Proposition 20 there is an integral valuation v such
that [v]LU ∩Z ′ is empty. This v gives a satisfying assignment. Mainly, each vi corresponding
to v will form a negative cycle with some literal clocks of Ci, and this literal will be made
true by the assignment corresponding to v. J
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Table 1 Experiments to compare forward analysis with diagonal constraints versus forward
analysis on the equivalent diagonal free automaton. “Fischer K” is a model of a communication
protocol with K processes as described in [18]. Cex 1 is the automaton in [5] which revealed the bug
with the explicit abstraction method. Cex 2 is a similar version with more states, given in [18].

Model Diagonal constraints + 4d
LU Diagonal free + a4LU

Name # clocks # zones time (in sec.) # zones time (in sec.)

Cex 1 4 8 0.08 22 0.02

Cex 2 8 273 30.1 2051 0.1

Fischer 4 8 933 18.3 73677 2.1

Fischer 5 10 4181 132.5 1926991 117.1

Theorem 21 leads to the following result.

I Theorem 22. The decision problem Z 64d
LU Z ′ is NP-hard.

6 Conclusion

In this paper, we have proposed a simulation 4d
LU and a simulation test Z 4d

LU Z ′ that
facilitates a forward analysis procedure for timed automata with diagonal constraints. An
abstraction function based on symmetric 4d

LU was already proposed in [5] in the context
of forward analysis using explicit abstractions, but it was not used as no efficient storage
mechanisms for non-convex abstractions are known. Moreover, no simulation test apart
from a brute force check of enumerating over all regions was known either. Here, we
provide a more refined simulation test, which in principle gives a more structured way
of performing this enumeration. In the diagonal free case, this test can be performed in
O(|X|2) [16]. But, as we show here, in the presence of diagonal constraints, Z 64d

LU Z ′ is
NP-complete. Nevertheless, having this forward analysis framework creates the possibility
to incorporate recent optimizations studied for diagonal free automata which crucially
depend on this inclusion test, and have been indispensable in improving the performance
substantially [14, 15]. Moreover, we believe that this framework can be extended to various
other problems involving timed automata with diagonal constraints, for instance liveness
verification and cost optimal reachability in priced timed automata.

We have implemented reachability for timed automata with diagonal constraints using
simulation test Z 4d

LU Z ′ in a prototype tool T-Checker [13] which has been developed for
diagonal free timed automata. The simulation test constructs an SMT formula in linear
arithmetic and invokes the Z3 solver [10]. Preliminary experiments on models from [18] are
reported in Table 1. For each model A (with diagonal constraints), the table compares the
performance of running the forward analysis approach using 4d

LU on A (Columns 3 and 4)
versus the forward analysis using (diagonal free variant) a4LU [2] on the equivalent diagonal
free automaton Adf (Columns 5 and 6). We observe that there is a significant decrease in the
number of nodes explored while using 4d

LU on A. The problem with Adf is that each state q
of A has 2d copies in Adf if d is the number of diagonal constraints (essentially, the states of
Adf maintain the information about whether each diagonal is true or false when reaching
this state). Therefore a simulation of the form Z 4d

LU Z ′ arising from (q, Z) and (q, Z ′)
which occurs in the analysis of A might not be possible while analyzing Adf just because
the corresponding paths reach different copies of q, say (q1, Z) and (q2, Z

′). This prunes
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the search faster in A. Indeed, exploiting the conciseness of diagonal constraints could be a
valuable tool for modeling and verifying real-time systems. We believe that the performance
of our algorithm in terms of time is encouraging: despite the preliminary nature of our
implementation, our naïve SMT encoding and the underlying hardness of the simulation test,
the time taken is comparable to the diagonal free conversion. Investigating efficient methods
for Z 4d

LU Z ′ and comparing our method with other approaches [8] is part of future work.
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