
Verifying Quantitative Temporal Properties of
Procedural Programs
Mohamed Faouzi Atig
Uppsala University, Sweden

Ahmed Bouajjani1

IRIF, Paris Diderot University, France

K. Narayan Kumar2

Chennai Mathematical Institute and UMI RELAX, India

Prakash Saivasan
TU Braunschweig, Germany

Abstract
We address the problem of specifying and verifying quantitative properties of procedural pro-
grams. These properties typically involve constraints on the relative cumulated costs of executing
various tasks (by invoking for instance some particular procedures) within the scope of the execu-
tion of some particular procedure. An example of such properties is “within the execution of each
invocation of procedure P , the time spent in executing invocations of procedure Q is less than
20% of the total execution time”. We introduce specification formalisms, both automata-based
and logic-based, for expressing such properties, and we study the links between these formalisms
and their application in model-checking. On one side, we define Constrained Pushdown Systems
(CPDS), an extension of pushdown systems with constraints, expressed in Presburger arithmetics,
on the numbers of occurrences of each symbol in the alphabet within invocation intervals (sub-
computations between matching pushes and pops), and on the other side, we introduce a higher
level specification language that is a quantitative extension of CaRet (the Call-Return temporal
logic) called QCaRet where nested quantitative constraints over procedure invocation intervals
are expressible using Presburger arithmetics. Then, we investigate (1) the decidability of the
reachability and repeated reachability problems for CPDS, and (2) the effective reduction of the
model-checking problem of procedural programs (modeled as visibly pushdown systems) against
QCaRet formulas to these problems on CPDS.

2012 ACM Subject Classification Theory of computation → Logic and verification, Software
and its engineering → Model checking, Software and its engineering → Software verification

Keywords and phrases Verification, Formal Methods, Pushdown systems, Visibly pushdown,
Quantitative Temporal Properties

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.15

1 Introduction

Reasoning about performances requires checking properties on the cumulated costs of actions
along program computations. Different types of costs can be considered corresponding to
consumption of resources such as time, memory, energy, etc. To be able to reason about the
action costs, amounts to the ability to count numbers of occurrences of different actions in

1 Partially supported by Indo-French project AVeCSo
2 Partially supported by Indo-French project AVeCSo, Infosys Foundation, DST-VR Project P-02/2014

© Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Verifying Quantitative Temporal Properties of Procedural Programs

computations (since weights can be associated to actions representing their various costs).
Therefore, it is important to develop formal program models and specification languages (1)
that allow the expression of counting constraints in different computation segments, and
(2) that are useful for algorithmic verification of programs against quantitative properties
involving these counting constraints. The goal of this paper is to propose such formalisms,
both automata and logic based, for reasoning about the behaviors of procedural programs,
i.e., sequential programs with (potentially recursive) procedure calls.

Quantitative properties of procedural programs are typically temporal properties including
cost constraints on execution intervals corresponding to procedure invocations. An example of
such a property is the invariant “within the execution of every terminating call to procedure
P , the cumulated cost of executing all the calls by P to the procedure Q is less that 20% of
the total cost of executing P”. Then, formalisms for expressing such properties must have
mechanisms allowing to express counting constraints in the scope of computation intervals
between procedure calls and returns.

In the framework of automata-based formalisms, it is well know that pushdown systems
(PDS) are natural models for procedural programs. Our first contribution is to introduce
Constrained Pushdown Systems (CPDS), an extension of PDS by counting constraints on
execution intervals between two matching push and pop operations (i.e., the push of an
element to the stack, and the corresponding pop of that element from the stack). The counting
constraints, expressed in Presburger arithmetics, concern the numbers of occurrences of the
input alphabet symbols in the computation segment between these two matching operations.
In order to impose these constraints, we consider an extended stack alphabet, where, in
addition to plain stack symbols, push operations can push to the stack a pair of stack symbol
γ and a counting constraint f . When a pair (γ, f) is popped from the stack, the automaton
checks the satisfaction of the constraint f by the word read since it was pushed to the stack.

In the framework of logic-based formalisms, the temporal logic CaRet [6] has been
introduced as a suitable specification formalisms for procedural programs. The second
contribution is to introduce Quantitative CaRet (QCaRet), and extension of CaRet by
counting constraints over procedure call-return intervals. Counting constraints within a
call-return interval concern the cumulated lengths of the outer-most call-return intervals
of each procedure. So, basically, QCaRet is the extension of CaRet with an operator Wf

parametrized by a Presburger formula f . A QCaRet formula Wf (ϕ) is satisfied at a point of
a computation if that point corresponds to the call of a procedure, say P , and if both f and
the QCaRet subformula ϕ are satisfied in the call-return interval of the procedure P . Notice
that this allows nesting of temporal properties with counting constraints.

Then, we investigate the decision problems for these two formalisms. First, we prove
that the reachability problem of CPDS is undecidable in general. However, we prove that
under the assumption that the number of constraints in the stack is bounded – we call
constraint height-bounded CPDS the class of CPDS corresponding to this assumption, the
reachability problem becomes decidable and the same holds for the repeated reachability
problem. Constraint height-bounded CPDS is a powerful class of automata allowing to
express interesting non context-free languages. Interestingly, this class allows also to prove
that QCaRet is decidable. Indeed, we show that the satisfiability problem of QCaRet can be
reduced to solving repeated reachability in CPDS. The same reduction allows to show that
the model-checking problem of procedural program, modeled as visibly PDS, against QCaRet
formulas is decidable. A crucial point that leads to the decidability of the satisfiability
and model-checking problems for QCaRet is the fact that counting constraints are about
outermost calls of procedures in a call-return interval. This is necessary for the reduction

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:3

to constraint height-bounded CPDS decision problems. Another important and nontrivial
contribution is that the complexity is shown to be elementary. Indeed, a more direct way of
doing the reduction would use nested computations of Parikh images that would lead to a
tower of exponentials depending on the size of the formula.

Related work. Extensions of word automata with counting constraints (such as Parikh
automata and CQDDs) have been studied in the literature [21, 20, 12, 13, 19, 11]. These
works cannot be used for reasoning about nested words (except [19] which extends visibly
pushdown automata with reversal bounded counters). There are also works allowing to
reason about unbounded-width trees using counting constraints (e.g., [22, 21, 23]), however,
these constraints concerning the immediate successors of a node in a tree, cannot encode
the type of constraints imposed by CPDS on nested words (that would correspond to global
constraints on a whole subtree). CaRet is the first logic that was tailored to the specification
of procedural programs. Extensions and variants of this logic have been proposed [7, 5], but
none of them allow reasoning about quantitative properties. Extensions of temporal logics
with counting constraints have been studied, e.g., in [21, 22], but again they are interpreted
on words or on trees but without allowing to express (nested) constraints on nested words.

Several extensions of pushdown systems with either data or time have been studied in the
literature (see e.g., [3, 2, 16, 4, 9, 14, 17, 1, 10, 15]). However, all these works are orthogonal
to ours since they do not allow counting constraints on execution intervals between two
matching push and pop operations.

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σ+ to denote the set of all finite words and
non-empty finite words respectively over Σ; and use ε to denote the empty word. We also
write Σε for Σ ∪ {ε}. A language is a (possibly infinite) set of words. We let |w| denote the
length of the word w. Let w = a1a2 . . . an. We write w(i) for ai and w[i..j] for w(i) · · ·w(j).
For w ∈ Σ∗, Γ ⊆ Σ, we use w↓Γ∈ Γ∗ for the projection of w on the Γ. We will also consider
infinite words and languages of infinite words over Σ.

The set of linear constraints over a set V (written C(V)) is the set of expressions of
the form c1x1 + c2x2 . . . ckxk # 0, where xi ∈ V , # ∈ {<,>,=} and ci ∈ Z. The size of
such a constraint ϕ, written |ϕ|, is sum of k and the number of bits needed to describe the
sequence c1, c2, ...ck. That is, we assume that the values ci are provided in binary notation.
A valuation v is a map that assigns a value from N to each element of V . We write v |= ϕ to
mean that ϕ is satisfied by the valuation v (and whose meaning is evident). We shall write
BC(V) to denote formulas over C(V) constructed using ∧ and ∨. The satisfaction relation |=
is extended to BC(V) in the obvious manner.

Given a word w over an alphabet Σ, we write π(w) to denote the Parikh map defined
by π(w)(a) is the number of occurrences of a in w for all a ∈ Σ. Let L be a language over
Σ] Σ′ and let σ be a function from Σ′ to languages over Σ. We write σ(L) for the language
{x1y1x2y2 . . . ykxk+1 | ∀i. xi ∈ Σ∗,∃a1, . . . , ak ∈ Σ′. x1a1x2a2 . . . akxk+1 ∈ L,∀i. yi ∈ σ(ai)}.

3 Constrained Pushdown Systems

A constrained pushdown system (CPDS) A is a tuple (Q,Γ,Σ, δ, s) where Q is the set of
states, Γ is the stack alphabet, Σ is the tape alphabet, s ∈ Q is the initial state and δ is the
transition relation. We use ⊥ 6∈ Γ to denote the stack bottom symbol. Let ΓC = Γ× BC(Σ)

CONCUR 2018

15:4 Verifying Quantitative Temporal Properties of Procedural Programs

and Γe = Γ∪ ΓC . The transition set δ is a subset of Q×SO×Σ×Q where SO is the set of
stack operations given by {push(X), pop(X), Y ?, int | X ∈ Γe, Y ∈ Γ∪ {⊥}}. The operation
push(X) pushes X, with X ∈ Γe, on to the stack. The operation pop(X) removes such an
X from the stack. The Y ? operation checks if the current top of stack is either Y or in
{Y } × BC(Σ). Finally, the operation int is an internal action (i.e., independent of the stack).
Thus, CPDS are PDS enriched with the ability to add constraints to stack symbols.

A configuration of the CPDS A is a pair (q, γ) with q ∈ Q and γ ∈ Γ∗e⊥. The initial
configuration is the pair (s,⊥). The transition relation τ−→A, with τ ∈ δ, on the set of config-
urations is defined as follows: (1) if τ = (q, a, int, q′) then (q, γ) τ−→A(q′, γ) (Internal move),
(2) if τ = (q, a, push(X), q′) then (q, γ) τ−→A(q′, Xγ) (Push), (3) if τ = (q, a, pop(X), q′) then
(q,Xγ) τ−→A(q′, γ) (Pop), and (4) if τ = (q, a, Y ?, q′) then (q,Xγ) τ−→A(q′, Xγ) if X = Y or
X ∈ {Y } × BC(Σ) (Test). We often write −→ for −→A when A is clear from the context.

The transition relation extends naturally to sequences of transitions: (q, γ) ε−→(q, γ) and
(q, γ) σ.τ−−−→(q′, γ′) if there is (q′′, γ′′) such that (q, γ) σ−→(q′′, γ′′) and (q′′, γ′′) τ−→(q′, γ′). We
call this an unconstrained run on the sequence of transitions σ. Given two unconstrained
runs ρ1 = (q, γ) σ1−−→(q′, γ′) and ρ2 = (q′, γ′) σ2−−→(q′′, γ′′), the concatenation ρ1ρ2 denotes the
unique run (q, γ) σ1.σ2−−−−→(q′′, γ′′).

Let ρ := (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn) be an uncon-
strained run. We define a binary relation y on positions in ρ as follows: i y j then
the ith transition is a push and the symbol pushed in this transition is popped by the
jth transition. Formally i y j if 0 < i < j ≤ n and further τi = (qi−1, ai, push(X), qi),
τj = (qj−1, aj , pop(X), qj), for each i ≤ k < j, γi = Xγi−1 is a suffix of γk and γj = γi−1.

Clearly, if iy j and i′ y j then i = i′ and if iy j and iy j′ then j = j′. We note that
that if γ0 is a suffix of γk for each 0 ≤ k ≤ n then for any pop transition, say j, there is a
unique i such that iy j. In particular, this is true whenever γ0 = ⊥.

We are now in a position to define the constrained runs (or simply runs) of the CPDS
A. An unconstrained run ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qk−1, γk−1) τk−−→(qk, γk) . . . τn−−→(qn, γn)
with τk = (qk−1, ak, opk, qk) is a constrained run if for every transition of the form τj =
(qj−1, aj , pop(Y, ϕ), qj) and iy j, we have π(ai . . . aj) |= ϕ. Pushing a stack symbol of the
form (Y, ϕ) enforces the requirement that the sequence of letters read from this transition
upto the transition that pops this symbol from the stack satisfies the constraint ϕ. However,
observe that constraints that are pushed on to the stack but not popped along the run do
not place any requirements. In what follows, we shall write run to mean constrained run.

We also write (q, γ) a,op−−−→(q′, γ′) if there is a transition τ = (q, a, op, q′) and (q, γ) τ−→(q′, γ′)
as this simplifies notation at many places. We write (q, γ) w−−→(q′, γ′) if either w = ε,
q = q′ and γ = γ′ or w = a1a2 . . . ak, k ≥ 1, with ai ∈ Σε for 1 ≤ i ≤ k, and
further we can find configurations (qi, γi) and operations opi, 0 ≤ i < k, such that
(q, γ) = (q0, γ0) a1,op1−−−−−→(q1, γ1) · · · (qk−1, γk−1) ak,opk−−−−−→(qk, γk) = (q′, γ′) is a run. We write
(q, γ) ∗−→(q′, γ′) to mean that there is some w with (q, γ) w−−→(q′, γ′).

Our aim is to study the reachability problem for CPDS. That is, given a CPDS A and
a state q ∈ Q, determine whether there is a run (s,⊥) ∗−→(q, γ). We will also consider
the repeated reachability problem, where the aim is to determine if there is an infinite run
(s,⊥) ∗−→(q, γ1) ∗−→(q, γ2) . . . that visits the state q infinitely often.

We may equip a CPDS A = (Q,Γ,Σ, δ, s) with a set of accepting states F ⊆ Q to
obtain a constrained pushdown automaton (CPDA) A′ = (Q,Γ,Σ, δ, s, F). The language,
L(A), accepted by A′ is defined naturally as {w ∈ Σ∗ | (s,⊥) w−−→(q, γ), q ∈ F}. Clearly, the
language emptiness problem for CPDAs is equivalent to the reachability problem for CPDS.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:5

The CPDA model is quite expressive as indicated by the following examples.
L1 = {anbmcndm | n,m ≥ 0}. Not a CFL, but recognized by Parikh Automata [20, 12].
L2 = {w#wR | w ∈ {a, b}∗, |π(w)(a) = π(w)(b)}. Not a CFL, not recognized by Parikh
Automata, recognized by Parikh Pushdown Automata [20, 21]
L∗1, L

∗
2. Unlikely to be recognizable by Parikh Pushdown Automata.

L0 = {w ∈ {a0, b0}∗ | π(w)(a0) = π(w)(b0)}
Li+1 = {w ∈ (ai+1L

i + bi+1L
i)∗ | π(w)(ai+1) = π(w)(bi+1)}.

The automaton for Li stores upto i+ 1 constraints at any point in the stack. Automata
for L1, L2, L

∗
1 and L∗2 store at most one.

4 Visibly Pushdown Systems

Visibly Pushdown Systems (VPDS) [7] are natural formal model of procedural programs.
Formally, a VPDS is a PDS whose alphabet Σ = Σ↓ ∪ Σ↑ ∪ ΣL and any transition on

a letter from Σ↓ must push a value on the stack, any transition on Σ↑ must pop a value
from the stack and any transition on a letter from ΣL must be an internal move or a test.
Transitions on ε must also be internal or test moves and hence leave the stack unchanged.
VPDSs have been extensively studied in literature and have several advantages over PDSs
[7]. They enjoy a host of other algorithmic and language theoretic properties: the class of
languages definable in the model is effectively closed under boolean operations, emptiness
and universality are decidable.

We shall work with a specific variety of visible alphabets which makes explicit the set
of procedures involved. Let ∆ be a set of letters and Π be a set of procedures. The visible
alphabet Σ(∆,Π) is given by Σ↓ = ∆×{call(P) : P ∈ Π}, Σ↑ = ∆×{ret(P) : P ∈ Π} and
ΣL = ∆×{int}. The words over such an alphabet that constitute behaviours of VPDSs have
a particular form and we describe that now. A word σ over Σ↓ ∪Σ↑ ∪ΣL is well-nested if (1)
for each prefix σ′ of σ, |σ′ ↓Σ↓| ≥ |σ′ ↓Σ↑|, and (2) if σ(i) = (c, call(P)), σ(j) = (c′, ret(P ′))
with |σ[i..j] ↓Σ↓| = |σ[i..j] ↓Σ↑| then P = P ′. In addition if σ is finite and has the same
number of letters from Σ↓ and Σ↑ then we say it is a complete well-nested word.

We shall overload the symbol y and write iy j for positions i, j in a well-nested word
σ if σ(i) = (c, call(P)), σ(j) = (c′, ret(P)) with |σ[i..j]↓Σ↓| = |σ[i..j]↓Σ↑|. It captures the
call-return relationship. We shall also write i yP j to explicitly indicate the associated
procedure. Clearly if iy j and i′ y j′ then either the intervals [i, j] and [i′, j′] are completely
disjoint or one is contained in the other. If iyP j and [i, j] is not contained in any interval
[i′, j′] with i′ yP j

′ then we say that [i, j] is an outermost call to P in σ.
For any well-nested word σ, we define the map πPr(σ) from Π ∪ {⊥} to N as follows: (1)

πPr(σ)(⊥) = |σ|, (2) πPr(σ)(P) =
∑
{j − i+ 1 | [i, j] is an outermost call of P in σ}. The

function πPr(σ)(P) computes the total length of all the outermost calls to the procedure P
while πPr(σ)(⊥) reports the length of σ. Notice that any word read by a VPDS along a run
will be a well-nested word.

5 A Quantitative Extension of CaReT

We introduce in this section an extension of CaRet [6] which permits us to reason about
quantitative properties of VPDSs using constraint formulas.

Let AP be a set of atomic propositions, and let Π be a finite set of procedure names.
Then, we let Prop = 2AP ∪ {call(P), ret(P) : P ∈ Π}. We use p, p1, p2, . . . to refer to

CONCUR 2018

15:6 Verifying Quantitative Temporal Properties of Procedural Programs

elements of Prop and P, P ′, . . . to refer to procedures in Π. We use f, f1, f2, . . . to refer to
constraint formulas in BC(Π ∪ {⊥}). Formulas of QCaRet are given by the following syntax.

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | ©g ϕ | ©a ϕ | ©c ϕ |ϕUgϕ |ϕUaϕ |ϕUcϕ |Wf (ϕ)

The logic CaReT is the sub-logic without the Wf operator. As with CaReT, the formulas
are interpreted over well-nested words, both finite and infinite, over a visible alphabet, in
this case Σ(AP,Π) where Σ↓ = 2AP × {call(P) : P ∈ Π}, Σ↑ = 2AP × {ret(P) : P ∈ Π}
and ΣL = 2AP × {int}. For any well-nested word σ and position i, we define three different
notions of successors as follows: (1) sucg(i) is i+ 1 if |σ| > i and ⊥ (to denote undefined)
otherwise. (2) suca(i) = sucg(i) if σ(i) 6∈ Σ↓, suca(i) = j if σ(i) ∈ Σ↓ and i y j, and
suca(i) = ⊥ otherwise. (3) succ(i) = j if j is the largest number less than i for which there
is a k with j y k and i ≤ k. succ(i) = ⊥ if no such j exists. With all this we can define the
semantics of the formulas w.r.t any well-nested word σ and any position i in σ:

(σ, i) |= p iff σ(i) = (c, C), p ∈ c ∪ {C}
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ

(σ, i) |= ϕ1 ∨ ϕ2 iff (σ, i) |= ϕ1 or (σ, i) |= ϕ2

(σ, i) |=©xϕ iff sucx(i) 6= ⊥ and (σ, sucx(i)) |= ϕ for x ∈ {a, c, g}
(σ, i) |= ϕ1 Uxϕ2 iff ∃n. ∃i0, i1, · · · , in. i0 = i and

∀k. 0 ≤ k < n implies
(
sucx(ik) = ik+1 and (σ, ik) |= ϕ1

)
and (σ, in) |= ϕ2

(σ, i) |= Wf (ϕ) iff ∃j. iy j and [i, j] is an outermost call in σ and
πPr(σ[i+ 1, j − 1]) |= f and (σ[i+ 1, j − 1], 1) |= ϕ

We say that σ |= ϕ if (σ, 1) |= ϕ. We define the finite and infinite word languages defined by
ϕ: L(ϕ) = {σ | σ |= ϕ, |σ| <∞} and Lω(ϕ) = {σ | σ |= ϕ, |σ| =∞}.

In addition to properties expressible in CaRet, QCaRet allows to express (nested) quantita-
tive constraints. Below are few examples of such QCaRet formulas (here ♦x(Ψ) = True Ux Ψ
and �x(Ψ) = ¬♦x(¬Ψ)):

For every outermost invocation of P , the time spent in executing outermost invocations
to Q is less than 20% of the total execution time.

�g(call(P) ∧WTrue ⇒W(5Q≤⊥)True)

For every outermost procedure execution interval where the cumulated time of executing
Q is lower than half of the total execution time, the execution time of Q is less than the
cumulated execution time of P in that same procedure interval execution, and there must
be one invocation to Q in that interval that takes more that 5 time units

�g
(
W2Q≤⊥True⇒

(
WQ≤P (♦g(call(Q) ∧W⊥>5True))

))
For the logic CaReT obtained by omitting the Wf operator, it is known from [6, 5] that

these languages are languages of Visibly Pushdown Automata (VPA) and Büchi Visibly
Pushdown Automata (BVPA) respectively.

We investigate in the next sections the translation of QCaRet to (a visible version of)
CPDSs. In [5], “qualitative” extensions of CaRet have been defined. We can extend them
to quantitative versions in the same way as we did above by adding the operator Wf . The
approach we will present in the rest of the paper can be applied in the same way to these
extensions, and the results concerning decidability of the satisfiability and model checking
problems and their complexity can be obtained for them in a similar way.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:7

6 Reachability/Emptiness for CPDAs

In this section we shall examine the reachability problem for CPDSs (equivalently, the
language emptiness problem for CPDAs). While the general problem is undecidable, we
identify an interesting decidable under-approximation which provides an important tool in
proving the decidability of QCaReT.

6.1 Undecidability of Reachability
In this section, we show that the reachability problem for CPDSs is undecidable, infact it
is possible to simulate the runs of a 2 Counter Machine (2CM) using a CPDA over the
alphabet Σ = {inc1, inc2, dec1, dec2, z1, z2}. Σ also also serves as its stack alphabet. The
simulation proceeds in two phases. In the first, the CPDA guesses the sequence of transitions
used in an accepting run of the 2CM, in reverse order, and pushes corresponding counter
operations on the stack. While doing so, it also conjoins constraints with the decrements
and test for zeros as follows: to simulating a decrement transition by counter i it pushes
(deci, (inci >= deci)) and to simulate a test for zero on counter i it pushes (zi, (inci = deci))
where i ∈ {1, 2}. This entire phase is executed without reading any input. For the guessed
sequence of transitions (in reverse) to constitute an accepting run, we need to verify that
the counters remained positive throughout the run and that all zero tests were successful.
This is done in the second phase, where it repeatedly pops its stack and reads the same
letter from the input tape till it reaches the empty stack and accepts if it does. The second
phase processes operations of guessed accepting run in the correct order, and it is easy to see
that the constraints inserted into the stack ensure that every zero test was indeed successful
and none of the decrements resulted in a negative value for the counter, thus verifying the
validity of the guessed run. This gives us the following theorem.

I Theorem 1. The language emptiness problem for CPDAs (reachability problem for CPDS)
is undecidable.

6.2 Technical Preliminaries
Before we proceed to the under-approximation we introduce some notations and prove
an useful technical lemma. Let A = (Q,Γ,Σ, δ, s) be an CPDS. We say that a run
(q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn) is a weak X-run, X ∈ Γe ∪{⊥},
if there is a γ such that γ0 = Xγ and for each 0 ≤ i ≤ n, γi = γ′iXγ, that is, Xγ is a
suffix of the stack contents of each configuration. In this case, for any γ′, the following
run (q0, Xγ

′) τ1−−→(q1, γ
′
1Xγ

′) . . . , (qi−1, γ
′
i−1Xγ

′) τi−−→(qi, γ′iXγ′) . . .
τn−−→(qn, γ′nXγ′) is also a

weak X-run, where γ′iXγ = γi, 1 ≤ i ≤ n. Thus, we may say there is a weak X run from
(q0, X) to (qn, X) to mean that there is such a run, without being specific about γ. We call
such a run a weak X-run from q0 to qn. Further, if γn = Xγ = γ0 we say call it an X-run.

We let LXq,q′(A), q, q′ ∈ Q, be the set of words w such that there is a weak X-run from q

to q′ on w. A CPDA for LXq,q′(A) can be constructed easily from A. The desired automaton
AXq,q′ is (Q,Σ,Γ, δXq,q′ , q, {q′}) where δXq,q′ = δ \ {(r, c, O, r′) | O = (?⊥)} ∪ {(r, c, (?⊥), r′) |
(r, c, (?X), r′) ∈ δ}. It treats ⊥ as the symbol X for tests, never pops this “X” and never
succeeds on a test for ⊥. The size of the new automaton is linear in the size of A.

Another language of particular interest is the following: Suppose X = (Y, ϕ) and further
that τ = (p, a, push(X), q) and τ ′ = (p′, b, pop(X), q′) are transitions involving the push and
pop of the same symbol. Then, we let LXτ,τ ′(A) be {w = a.y.b | there is an X-run on y from q

to p′}. This identifies the languages of words recognized by runs consisting of τ , followed by

CONCUR 2018

15:8 Verifying Quantitative Temporal Properties of Procedural Programs

an X-run from q to p′, followed by τ ′. Please note that we use X-runs and not weak X-runs
here. Finally, observe that this definition does not require that ϕ is satisfied by π(ayb) (while
the constraints along the run on y are enforced). This language is accepted by the CPDA
AXτ,τ ′ = (Q ∪ {sa, tb},Σ,Γ, δXτ,τ ′ , sa, {tb}) where δXτ,τ ′ = {(sa, a, int, q), (q′, b,⊥?, tb)} ∪ δ \
{(r, c, O, r′) | O = (?⊥)} ∪ {(r, c, (?⊥), r′) | (r, c, (?X), r′) ∈ δ}. The size of this automaton
is linear in the size of A. To summarize,

I Lemma 2. Let A = be a CPDS and let X ∈ Γe. Then for any q, q′ ∈ Q, the language
LXq,q′(A) is recognized by a CPDA AXq,q′ whose size is linear in A. Further, for any X =
(Y, ϕ) ∈ ΓC and τ = (p, a, push(X), q), τ ′ = (p′, b, pop(X), q′) ∈ δ, the language LXτ,τ ′(A) is
recognized by a CPDA AXτ,τ ′ whose size is linear in A.

6.3 Constraint height Bounded CPDAs
The constraint height of a configuration (q, γ) is defined by |γ ↓Γ×C(Σ) | (i.e., the number of
constraint symbols in the stack). The constraint height of a finite run ρ is the maximum
of the constraint heights of the configurations visited along ρ. The constraint height of an
infinite run is defined similarly, with ∞ acting as the upper bound of the set of all integers.

For any CPDS A, we say that a state q is K constraint height reachable (or K-reachable for
the sake of succinctness) if there is a run (s,⊥) ∗−→(q, γ) whose constraint height is bounded
by K. The K-reachability problem is to determine if there is such a run. Similarly, for any
CPDA A, LK(A) is the set of all words accepted by runs with constraint height bounded by
K. Note that all the example languages listed at the end of Section 3 are constraint height
bounded.

When K = 0 we are effectively left with the pushdown system obtained by removing all
the transitions involving constraints. Thus, 0-reachability is clearly decidable. Our main
technical result is that the K-reachability problem for CPDS (or equivalently, the emptiness
of LK(A) for CPDAs) is decidable for any K ≥ 0. Our proof of decidability establishes a
stronger property as stated in the following theorem:

I Theorem 3. Let A be a CPDA and let K ∈ N. Then, π(LK(A)) is effectively semilinear
and a finite-state automaton M with the same Parikh image can be computed in 2-EXPTIME.

The rest of this section is devoted to the proof of this theorem. As a first step, we recall
the Parikh’s Theorem which states that the language of a pushdown automaton A can be
simulated by a Nondeterministic Finite Automaton (NFA) upto Parikh-image equivalence.

I Lemma 4 ([18]). Let A be a pushdown automaton. We can construct an NFA M such that
π(L(M)) = {π(w) | w ∈ L(A)} and the size of M is bounded by 2p(|A|) for a polynomial p.

We now make use of a result from [8] to extend this to CPDAs.

I Lemma 5. Let M be an NFA over Σ and ϕ be a formula in BC(Σ). Then we can
construct an NFA M ′ with size bounded by 2|ϕ|.(|M |.2|ϕ|)|Σ|d.k for some constant d, such
that π(L(M ′)) = π({w | w ∈ L(M) & π(w) |= ϕ}), and where k is the depth of the formula
and hence bounded by |ϕ|.

The next lemma lists a couple of simple results about substitutions and Parikh-images.

I Lemma 6. Let L be a language over Σ] Σ′ and let σ assign a language σ(a) over Σ for
each a ∈ Σ′.
1. If L′ is Parikh-equivalent to L and L′a is Parikh-equivalent to σ(a) for each a ∈ Σ′ then,

σ′(L′), with σ′(a) = L′a, is Parikh equivalent to σ(L).

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:9

2. If M is an NFA for L and Ma is an NFA for σ(a), a ∈ Σ′, then we can obtain an NFA
for σ(L) by replacing each transition on any letter a ∈ Σ′ by a copy of Ma. Thus, there
is an NFA for σ(L) whose size is bounded by |M |(Maxa∈Σ′ |Ma|).

We now have the technical ingredients in place to address the proof of Theorem 3. We begin
by observing that, given a CPDA A = (Q,Σ,Γ, δ, s, F) and a number K we can construct
an CPDA A[K] such that LK(A) = LK(A[K]) = L(A[K]). Further, A[K] faithfully records
information regarding the constraint height of the configuration in its control state. This
automaton is defined as follows: A[K] = (Q×{0, 1, . . . ,K},Σ,Γ, δK , (s,K), F×{0, 1, . . . ,K}).
The transition relation δK is defined as follows:

((q, i), a, push((Y, ϕ)), (q′, i−1)) ∈ δK whenever (q, a, push((Y, ϕ)), q′) ∈ δ and 1 ≤ i ≤ K
((q, i), a, pop((Y, ϕ)), (q′, i+ 1)) ∈ δK whenever (q, a, pop((Y, ϕ)), q′) ∈ δ and 0 ≤ i < K

((q, i), a, O, (q′, i)) ∈ δK whenever (q, a,O, q′) ∈ δ and O does not involve constraints.
The transition relation δK faithfully simulates δ, moves from copy i to copy i − 1 while
pushing a constraint and moves from copy i to copy i + 1 on popping a constraint. The
constraint height of any reachable configuration with control state (q, i) is therefore K − i.
A state of the form (q, 0) does not permit pushing any constraint symbol. Also note that, for
any 0 ≤ j ≤ K, δj is just δK restricted to the state space of A[j] (Q× {0, 1, . . . , j}).

Our strategy for the proof of Theorem 3 is the following: We will argue by induction on j,
0 ≤ j ≤ K that for any symbol X = (Y, ϕ) ∈ ΓC and any pair of transitions τ, τ ′ ∈ δj \ δj−1

which push and pop X respectively, we can construct an NFA Parikh-equivalent to LXτ,τ ′(A[j])
whose size is bounded by a function f(j). We shall then derive an expression bounding f(j),
j ≤ K. This will form a key ingredient in the proof of Theorem 3.

We observe that if j = 0 then there no transitions that push (or pop) symbols ΓC and
hence nothing is to be proved. We take f(0) = 1 (since LXτ,τ ′(A[0]) = ∅).

We proceed inductively as follows: We write B for A[j]Xτ,τ ′ to simplify the notation. We
construct a simple pushdown automaton P from B. This automaton simulates B on all tran-
sitions other than those that push/pop elements of ΓC . From any state (p, j − 1), instead of
executing a push transition of the form µ = ((p, j− 1), c, push((Z,ψ)), (p′, j− 2)) it nondeter-
ministically guesses a corresponding pop transition µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1))
(which must exist along any accepting run of B = A[j]Xτ,τ ′ – as the run must return to level j
before acceptance) and simply outputs (i.e. reads from the input tape) a symbol (µ, (Z,ψ), µ′)
to indicate this guess and changes state to (q′, j − 1). Thus, this automaton does not need
states of the form (p, i) for p ∈ Q and i < j − 1 and it never leaves “level j-1” (except when
executing the transitions τ andτ ′).

Let ΣC [j] = {(µ, (Z,ψ), µ′) | ∃p, p′, q, q′. µ = ((p, j − 1), c, push((Z,ψ)), (p′, j − 2)) and
µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1))}. The alphabet of P is Σ ∪ ΣC [j] and its stack
alphabet Γ. Let sa and tb be the initial and final states of B (recall the definition of
A[j]Xτ,τ ′ from Section 3), with a the letter read by τ and b the letter read by τ ′. Then,
P = ({sa, tb} ∪ (Q× {j}),Σ ∪ ΣC [j],Γ, sa,∆, {tb}) and ∆ is given by

δ[j]Xτ,τ ′ \ {(p, c,O, p′) | ∃(Z,ψ).O = push((Z,ψ)) or O = pop((Z,ψ))}
⋃

{((p, j − 1), (µ, (Z,ψ), µ′), (q′, j − 1)) | µ = ((p, j − 1), c, push((Z,ψ)), (p′, j − 2)),
µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1)), µ, µ′ ∈ δ[j]Xτ,τ ′}

Fact 1. With σ((µ, (Z,ψ), µ′)) = L(Z,ψ)
µ,µ′ (A[j − 1]), ∀(µ, (Z,ψ), µ′) ∈ ΣC [j], L(B) =

σ(L(P)).
We now construct an NFA MP Parikh-equivalent to P using Lemma 4. Then using

the inductive hypothesis we construct, for each pair of transitions µ,µ′ that push and pop,

CONCUR 2018

15:10 Verifying Quantitative Temporal Properties of Procedural Programs

respectively, the same symbol (Z,ψ) ∈ ΓC , an NFA M ′µ,µ′ Parikh-equivalent to L
(Z,ψ)
µ,µ′ (A[j −

1]). Then, we apply Lemma 5 to obtain an NFA Mµ,µ′ a language Parikh-equivalent to
{w ∈ L(M ′µ,µ′) | π(w) |= ψ}. We let σ′ be the map assigning L(Mµ,µ′) to (µ, (Z,ψ), µ′).
Then, by Lemma 6, σ(L(P)) is Parikh-equivalent to σ′(L(MP)). Thus, by Fact 1, σ′(L(MP))
is Parikh-equivalent to L(B).

The state size of MP is bounded by 2p(|B|) for some polynomial p. But the state space of
B is linear in the state space of A, its alphabet is polynomial in the size of A and its number
of transitions also polynomial in the size of A. Thus, the size of the state space of MP is
bounded by 2r(|A|) for some polynomial r. The number of transitions is bounded by the
product of the size of the alphabet and the number of pairs of states. The number of new
letters is quadratic in the number of transitions of A (in (µ, (Z,ψ), µ′), the value of (Z,ψ) is
determined by µ and µ′). Thus the number of transitions is also bounded by 2r(|A|) for some
polynomial r. Equivalently it is bounded by 2|A|c for some fixed constant c.

The size of each automaton of the from M ′µ,µ′ , by the induction hypthesis, is bounded by
f(j − 1). Then, by Lemma 5, the size of Mµ,µ′ is bounded by 2|ϕ|.(f(j − 1).2|ϕ|)|Σ|d|ϕ| for
some constant d. Thus, by Lemma 6, we have an NFA Parikh-equilvalent to L(B) whose size
is bounded by 2|A|c .2|ϕ|.(f(j − 1).2|ϕ|)|Σ|d|ϕ| . Simplifing, we get the following recurrences for
f(j): (1) f(0) = 1, and (2) f(j) = 2|A|c .2|ϕ||Σ|d|ϕ|+1.f(j − 1)|Σ|d|ϕ| .

This gives f(j) an upperbound of the form O(2O(|A|c.|Σ|d|ϕ|.j).2O(|ϕ||Σ|d|ϕ|.j). Thus, we
have the following Lemma.

I Lemma 7. There is an NFA Parikh-equivalent to LXτ,τ ′(A[j]), 0 ≤ j ≤ K, whose size is
bounded by O(2O(|A|c.|Σ|d|ϕ|.j).2O(|ϕ||Σ|d|ϕ|.j)).

Next we observe that to compute the Parikh-image of LX(q,j),(q′,j)(A[j]) for any X ∈ Γe,
q ∈ Q and 0 ≤ j ≤ K, we may proceed as follows: Any weak X run from (q, j) to (q′, j) can
be broken up as, a segment involving no pushing or popping of letters from ΓC , followed by
a segment from the push of a symbol from ΓC all the way till corresponding pop, followed
by another segment involving no push or pop of letters from ΓC , followed by one beginning
with a push of a constraint and ending with the corresponding pop, and so on. (Recall that
(q, j) and (q′, j) are at the same level j). In particular, any symbol from ΓC that is pushed
must also be popped along such a run. We can use the same idea as in the proof of Lemma 7
and summarize the segments between push and the corresponding pop of (Z,ψ) ∈ ΓC with a
letter of the form (p, j), (µ, (Z,ψ), µ′), (p′, j)) and construct a simple pushdown system with
no constraints. We then compute the Parikh-image of this system. Finally, we substitute
these letters with the language of the corresponding NFAs computed in Lemma 7, and use
Lemma 6 to obtain the desired NFA. This gives us the following Lemma.

I Lemma 8. For any X ∈ Γe and any pair of states (q, j), (q′, j) in A[j], there is an
NFA Parikh-equivalent to LX(q,j),(q′,j)(A[j]), whose size is bounded by O(2O(|A|c.|Σ|d|ϕ|.j).

2O(|ϕ||Σ|d|ϕ|.j)).

Now, we are in a position to complete the proof of Theorem 3. Suppose an accepting run
of A reaches an accepting configuration (f, γ) where the constraint-height of γ is 0. Then,
the corresponding run in A[K] is a weak ⊥-run from (s,K) to (f,K). Its emptiness can be
checked using Lemma 8 by checking the emptiness of a double exponential sized NFA.

If the constraint-height of γ is j with 1 ≤ j ≤ K then, the corresponding run in A[K] is
a run from the state (s,K) to the state (f,K − j).

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:11

We break up this run as follows (we let τ` = ((q`, `), a`, push((Y`, ϕ`)), (p`−1, `− 1))):

((s,K),⊥) w1−−→((qK ,K), γK) τK−−→((pK−1,K−1), (YK , ϕK)γK) w2−−→((qK−1,K−1), γK−1)
τK−1−−−−→ . . . ((qj+1, j + 1), γj+1) τj−−→((pj , j), (Yj+1, ϕj+1)γj+1) wj−−→((fj , j), γj)

Here, we have identified that transitions that transfer a run from a state from at k to a state
at level k−1 for the last time along the run, for eachK ≥ k ≥ j+1. The existence of such a run
is equivalent to firstly the existence of transitions ((qk, k), ak, push((Yk, ϕk)), (pk−1, k−1)) for
K ≥ k > j and secondly, the existence of a weak ⊥-run from (s,K) to (qK ,K), (Yk+1, ϕk+1)-
run from (pk, k) to (qk, k) for K > k > j, and a weak (Yj+1, ϕj+1)-run from (pj , j) to (fj , j).
Once the transition sequence in the first part is fixed (and we cycle through there at most
|A|j such sequences one by one), the existence of each of the weak runs in the second part
can be determined using Lemma 8. Thus, we make at the most |A|j .j calls to the emptiness
of NFAs of double exponential size and this can also be done in double exponential space.
This completes the proof of Theorem 3. The following theorem provides a lower bound.

I Theorem 9. The K-reachability problem for CPDS is PSPACE-hard.

We end the section with the following theorem about decidability of repeated reachability.

I Theorem 10. Let A = (Q,Γ,Σ, δ, s, F) be a CPDA let K ∈ N. The problem of deciding if
A has a K constraint height bounded infinite run that visits F infinitely often is decidable in
2-EXPTIME.

7 Visible CPDS with procedural constraints

In this section, we develop a variant of our CPDS model with a view to establish the
decidability of the logic QCaReT. The model by itself is interesting in its ability to model
visible behaviours of recursive programs equipped with constraints. This model is a natural
extension of the VPA model to our setting.

A procedural CPDS (or PCPDS) A is tuple (Q,∆,Π,Γ, δ, s). Its input tape alphabet is
the visible alphabet Σ(∆,Π). It is very similar to a CPDS over this alphabet, except for
the language of constraints it uses (and their interpretation). The set of symbols that are
pushed/popped is ΓP = Π× (ΓPC ∪ Γ) where ΓPC = Γ× BC(Π ∪ ⊥). In particular, a push
transition on an input letter (c, call(P)) must necessarily push a letter of the form (P,Z) for
some Z ∈ ΓPC ∪ Γ. Similarly for pop transitions. Also note that the constraints only refer
to the procedure in the input (and not to elements of the tape alphabet ∆).

The notions of configurations and unconstrained runs are defined as in the case of a
CPDS. The key difference is in the interpretation of the constraints and thus in the definition
of constrained runs. We note that any word (or prefix of a word) read by a PCPDS is
necessarily well-nested.

An unconstrained run ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn)
with τk = (qk−1, (ck, Pk), ok, qk), 1 ≤ k ≤ n, is a constrained run if for every transition τj
with oj = pop((P, (Y, ϕ))) and iy j (so that Pi = call(P) and Pj = ret(P) for some P ∈ Π)
we have πPr((ci+1, Ci+1) . . . (cj−1, Cj−1)) |= ϕ. Observe here that the enclosing call and
return points are omitted when checking the constraints, unlike CPDAs.

The reachability problem (as well as the associated language emptiness problem) for this
model are defined as usual. These problems remain undecidable in general. We define the
constraint height of configurations and runs of PCPDS analogous to those for CPDS. A
configuration (or control state) is K constraint height reachable or K-reachable, if it can be

CONCUR 2018

15:12 Verifying Quantitative Temporal Properties of Procedural Programs

reached (from the initial configuration) through a run where the constraint height is bounded
by K. The main result of this section is the following:

I Theorem 11. The K-reachability for PCPDS is decidable and is in 2-EXPTIME.

Proof-outline. Our main idea is the following: reduce the K-reachability in a PCPDS to
K-reachability in a CPDS and use Theorem 3. Let A = (Q,∆,Π,Γ, δ, s) be the given PCPDS.
The main difficulty is that, unlike in a CPDS, a constraint ϕ in a PCPDS is not expressed
in terms of the tape letters read along the run, but instead it is expressed in terms of the
number of transitions executed inside various procedures. We plan to handle this by using a
more elaborate tape alphabet.

Consider a segment of a run of A of the form

ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn)

where 1 y(P,(Y,ϕ)) n. We shall focus our attention on verifying the constraint ϕ on this run
(and ignore the verification of the other constraints pushed and popped along the run). Let
a1 . . . an, ai ∈ Σ(∆,Π), be the word read on the tape in this run. Suppose, ϕ refers to R ∈ Π.
We need to “determine” the value of πPr(a2a3 . . . an−1)(R). Our idea is to replace each letter
ai by an enriched version bi (from an extended alphabet Σ′) so that we may determine the
value of πPr(a2a3 . . . an−1)(R), for each R, from π(b1b2b3 . . . bn−1bn) and also replace the
formula ϕ over Π with an equivalent formula over Σ′. Once we perform this transformation,
the satisfaction of the constraint depends on the (enriched) letters read along the run and
thus we have a obtained a CPDS instead of a PCPDS.

Observe that the contents of the stack at each configuration along ρ can be written as:
γi = γ′i(P, (Y, ϕ))γ0, for all 1 ≤ i ≤ n− 1 and γ0 = γn. The value of πPr(a2a3 . . . an−1)(R),
for any R, is exactly the number of transitions taken from configurations where γ′k includes
an occurrence of an element of {R} × (Γ ∪ ΓC).

The automaton A′ that we construct will simulate A and maintain additional information
in its state and stack. Using this information, it outputs, in addition to ai, the set Si ⊆ Π of
the set of procedure symbols that appear in γ′i−1. Thus, taking bi = (ai, Si), the value of
πPr(a2a3 . . . an−1)(R) is the same as∑

a∈Σ(∆,Π),R∈S⊆Π

π(b1b2b3 . . . bn−1bn)(a, S)

Using this equivalence we transform ϕ into a formula over the letters of the form (a, S).
This idea can easily be generalized to handle all constraints that are pushed/popped

along a run by using the fact that the run is constraint height bounded. J

Furthermore, we can extend this result to the repeated reachability problem as follows:
The CPDS A′ constructed from the PCPDS A in Theorem-11 simulates A and in doing so
maintains the current state of A as part of its state in each step of the simulation. The
automaton A has a K constraint height bounded run visiting q infinite often if and only if
A′ has a K constraint height bounded run visiting some state in which q appears, infinitely
often. By Theorem 10, this is decidable. Thus we have the following theorem.

I Theorem 12. The K constraint bounded repeated reachability problem for PCPDS is
decidable and is in 2-EXPTIME.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:13

8 Decidability of QCaReT

In the following, we show the decidability of the model-checking of our logic QCaReT. To
that aim, we will need first to recall come algorithmic properties of the logic CaReT.

I Theorem 13 ([6, 5]). For any CaReT formula ϕ there is a VPA Aϕ and a BVPA Bϕ such
that L(ϕ) = L(Aϕ) and Lω(ϕ) = L(Bϕ). Further, Aϕ and Bϕ are only exponentially larger
than ϕ.

VPAs and BVPAs are closed under intersection and have decidable emptiness problem [7].
This immediately gives decision procedures for checking the satisfiability of CaReT formulas
as well as for model-checking VPAs/BVPAs w.r.t. CaReT formulas. Our aim is to lift these
results to QCaReT and PCPDAs. We now utilize the theory of PCPDAs developed in the
previous section to provide algorithms for deciding the satisfiability of QCaReT formulas as
well their model checking w.r.t. PCPDAs (and hence VPAs as well).

For any formula ϕ in QCaReT, we may define its depth, denoting the maximum nesting of
the operator Wf in it, as follows: d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ1 ∨ϕ2) = max(d(ϕ1),d(ϕ2)),
d(©xϕ) = d(ϕ), d(ϕ1 Uxϕ2) = max(d(ϕ1),d(ϕ2)) and d(Wfϕ) = 1 + d(ϕ).

We shall construct a PCPDS Aϕ with L(ϕ) = L(Aϕ) as well as a Büchi PCPDS Bϕ with
Lω(ϕ) = L(Bϕ). We do so by proceeding inductively on the depth of formula ϕ.

If d(ϕ) = 0, then ϕ is in CaReT and the associated automata are given by Theorem 13.
Otherwise, we first turn ϕ into a CaReT formula as follows: LetW = {Wf1(ψ1), . . . ,Wfk

(ψk)}
be the set of outer-most Wf formulas (that is, not within the scope of another Wf operator)
in ϕ. We obtain ϕ′ by replacing Wfi(ψi) by a new propositional variable p(fi, ψi). Let
AP ′ = {p(fi, ψi) | 1 ≤ i ≤ k}. Clearly, ϕ′ is a CaReT formula over the set of propositions
AP ∪AP ′ and the set of procedures Π.

Let σ⇑, for any well-nested word σ over Σ(AP,Π), be the well-nested word over Σ(AP ∪
AP ′,Π) given by σ⇑ (i) = (P ′, Y) where σ(i) = (P, Y), P ′ = P ∪ {p(f, ψ) ∈ AP ′ | (σ, i) |=
Wf (ψ)}. It extends the labelling, interpreting p(f, ψ) as the formula Wf (ψ). Similarly σ′⇓,
for any well-nested word σ′ over Σ(AP ∪ AP ′,Π), is the well-nested word over Σ(AP,Π)
given by σ′ ⇓ (i) = (P, Y) where σ′(i) = (P ′, Y) with P = P ′ ∩ AP . It restricts the labels
to the propositions in AP . Observe that σ = σ ⇑⇓. The following lemma, whose proof is
omitted, is an easy consequence of our construction:

I Lemma 14. For any well-nested word σ over Σ(AP,Π) σ |= ϕ iff σ⇑|= ϕ′.

Now, with this Lemma in place, we proceed by constructing the VPA Aϕ′ using Theorem
13 and use this in the construction of Aϕ. The automaton Aϕ does the following: It simulates
Aϕ′ by guessing a set of propositions from AP ′ at each step and verifies that its guess at each
step is correct. That is, while reading a well-nested word σ over Σ(AP,Π), (i) it simulates
Aϕ′ on a word σ′ with σ′ ⇓= σ (ii) it verifies that σ′ = σ ⇑. This would then mean, by
Lemma 14, that Aϕ accepts the language L(ϕ). We now describe the details of how to build
an automaton satisfying (i) and (ii).

Clearly, (i) can be achieved by nondeterministically guessing a set of propositions from
AP ′ at each step. The difficulty is in ensuring (ii), that is, for each i, 1 ≤ i ≤ |σ|, if C ′i ⊆ AP ′
is the set of propositions guessed in the ith step verify that σ, i |= Wf (ψ) for each p(f, ψ) ∈ C ′i
and that σ, i 6|= Wf (ψ) for each p(f, ψ) ∈ AP ′ \ C ′i. Let us examine the conditions under
which σ, i |= Wf (ψ). This requires the following properties:
1. σ(i) must be in Σ↓. Say σ(i) = (c, call(P)).
2. This must be an outer-most call to P in σ.

CONCUR 2018

15:14 Verifying Quantitative Temporal Properties of Procedural Programs

3. There is a j with iyP j in σ.
4. σ[i+ 1, j − 1] |= ψ

5. πPr(σ[i+ 1, j − 1]) |= f .

Truth of item 1 is determined from the letter σ(i) and so is easy to check. For item 2, we
shall add a component to the state space of Aϕ′ that keeps track of the list of procedures from
Π that are currently active. To maintain this set correctly, we expand the stack alphabet of
Aϕ′ to tag the bottom-most occurrence of each procedure. With this modification we can
determine, while reading an input letter (c, call(P)) whether it is an outer most call to P or
not. Thus, w.l.o.g. we may assume this information is available with the simulation of Aϕ′
and hence the truth of item 2 can be determined.

This leaves us with items 3,4 and 5. The truth of these items depends not only on the
letter at i (and information about outer most calls stored in the state), but on the existence
of a suitable j (as required by item 3) and the word read between positions i and j (to
determine items 4 and 5). The automaton guesses whether such a j exists (and then ensures
that along any accepting run, the guess is indeed correct).

If it guesses that such a j does not exist (it does so only if it also guessed C ′i = ∅, as
implied by the semantics of the Wf operator) then instead of pushing the symbol, say Z,
pushed by Aϕ′ , it pushes a symbol Z⊥. This new symbol feels like Z (in that we allow a test
for Z⊥ to succeed whenever a test for Z succeeds) but there are no transitions that pop this
symbol. This guarantees that we cannot read a return corresponding to the call at position i
using any transition.

If it guesses that a j does exist (and in this case, it must ensure that a return corresponding
to the call at position i is encountered along any accepting run in which such a guess is
made. We shall return shortly to how this can be arranged.) then, for each p(f, ψ) ∈ C ′i,
we must verify that (a) πPr(σ[i+ 1, j − 1]) |= f and (b) σ[i+ 1, j − 1] |= ϕ. The former is
dealt with the power of PCPDS to impose constraints. We simply push the constraint f
onto the stack and the semantics of PCPDS ensures (a). We may have to push several such
f , corresponding to different formulas in C ′i, but then it suffices to push the conjunction of
these constraints. For (b), the idea is to start a copy of the automaton Aψ to read the word
until the position j where the matching return is encountered. Notice that d(ψ) < d(ϕ)
and by the induction hypothesis the existence of Aψ is guaranteed. Observe that copies
are started only at positions i that correspond to outer most calls and the copies terminate
when the corresponding call returns. Thus, there are at most |Π|.|AP ′| such automata under
simulation at any point.

We are not done yet. If the guess is that such a j exists, we are also obliged to show
that for each p(f, ψ) 6∈ C ′i, either (a’) πPr(σ[i + 1, j − 1]) 6|= f or (b’) σ[i + 1, j − 1] 6|= ψ.
Again the automaton guesses which one to verify. To verify , πPr(σ[i+ 1, j − 1]) 6|= f observe
that this is equivalent to πPr(σ[i+ 1, j − 1]) |= ¬f . Thus, we simply do what we did in the
previous paragraph. It suffices to push ¬f as a constraint and let the semantics of PCPDS
take care of the verification of πPr(σ[i+ 1, j − 1]) |= ¬f . If we guess that σ[i+ 1, j − 1] 6|= ψ

then we start a copy of the automaton for A¬ψ (note that d(ϕ) > d(¬ψ)), and verify that
this automaton is in an accepting state when position j is reached.

Thus, the only thing left to explain is how we validate a guess that a j with iy j exists.
The visibility restriction prevents popping of the stack at the end to verify that there are
no pending returns (also such a technique will not work in the construction of Bϕ to deal
with infinite words). The point is that, the number of constraints on the stack at any point
during the run, due to the construction described here (and not counting those due to the
automata Aψ being simulated) is bounded by Π, one per outer most call that is currently

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:15

active. Let us call this height outer constraint height. Thus, we can keep track of the outer
constraint height of the stack as part of the control state. Then, at step i, to ensure that the
call at σ(i) returns, we simply record the outer constraint height as a target in the control
state. Whenever the current level falls to a target level we drop that from the target set. An
accepting state verifies in addition that there are no pending targets to be reached. Actually
it suffices to maintain the lowest target at any point and discharge it when it is visited.

In summary, we construct a PCPDS whose state has several components: a global
component that tracks the state of Aϕ′ , records information to recover outer most calls,
tracks the current outer constraint height and tracks the current target for the outer constraint
height. It has also has one component for each pair P ∈ Π and Wf (ψ) ∈ W . This component
maintains the state of the automaton Aψ if a copy of this automaton has been started at the
currently active outermost call to P , or else its value is ⊥. Such a component gets reset to ⊥
whenever the outer most call of P returns (after verifying that it had reached the accepting
state). Finally, the accepting states verify that the simulation of Aϕ′ is accepting, no target
levels are pending and that all the additional components are in the ⊥ state.

The changes needed to handle the Büchi automata construction in the case of Bϕ are
minor. The simulations still use Aψ (since the calls are obliged to terminate at some j). The
only issue is with tracking visits to accepting states of Aϕ′ while ensuring that target levels
are reached. This can be ensured as follows: we do not indicate visits to accepting states
of Aϕ′ when some target is pending. We simply record it in the local state and whenever
we find that all targets have been attained we flag any visits to the accepting state in the
intervening run. Since the setting and unsetting of target levels happens in a well-nested
manner, we are guaranteed to indicate visits to accepting configurations infinitely often as
long as the run met all its obligations (i.e. contains all the necessary returns) and visits
accepting states infinitely often. This gives us the following theorem.

I Theorem 15. For any QCaReT formula ϕ, we can construct a PCPDS Aϕ and Büchi
PCPDS Bϕ such that L(ϕ) = L(Aϕ) and Lω(ϕ) = L(Bϕ). The resulting automata have
O((2|ϕ| × |Π|2)(|Π|.|ϕ|)O(|ϕ|)) states and they are O((|Π|.|ϕ|)O(|ϕ|)) constraint height bounded.

Closure under intersections and emptiness checking (via reachability/repeated reachability)
of PCPDSs means that we may also model check VPAs (as well as constraint height bounded
PCPDAs) against QCaReT specifications.

9 Conclusion

In this work, we provide a method to specify and verify the quantitative properties of
procedural programs. For this purpose, we introduced an automaton model called the
constrained pushdown system (CPDS). We showed that reachability on such systems in
general is undecidable. We then showed that reachability and repeated reachability are
decidable in 2-EXPTIME when the number of constraints in the stack remains bounded.

We also introduced the high level specification language called the QCaReT and an
extension of visibly pushdown system called the procedural CPDS (PCPDS). Finally we
provided an algorithm for satisfiability and model-checking QCaReT formulas against PCPDS
(and hence a VPA) by a reduction to reachability/ repeated reachability on a CPDS.

One question that is left unanswered is whether the decision procedure for decidability of
reachability in CPDS is optimal. While we provide a 2-EXPTIME procedure, we only have a
PSPACE lower bound. As a future work, the language theoretic properties of the constraint
height bounded CPDS is an interesting topic that can be explored.

CONCUR 2018

15:16 Verifying Quantitative Temporal Properties of Procedural Programs

References
1 P. A. Abdulla, M. F. Atig, and J. Stenman. The minimal cost reachability problem in

priced timed pushdown systems. In LATA, volume 7183 of LNCS, 2012.
2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Giorgio Delzanno, and Andreas Podelski.

Push-down automata with gap-order constraints. In Fundamentals of Software Engineer-
ing - 5th International Conference, FSEN 2013, Tehran, Iran, April 24-26, 2013, Revised
Selected Papers, volume 8161 of Lecture Notes in Computer Science. Springer, 2013.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-timed pushdown
automata. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 35–44. IEEE Computer
Society, 2012.

4 S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed Systems Using
Tree Automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th International
Conference on Concurrency Theory (CONCUR 2016), volume 59 of Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016.

5 Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and
Leonid Libkin. First-order and temporal logics for nested words. Logical Methods in Com-
puter Science, 4(4), 2008. doi:10.2168/LMCS-4(4:11)2008.

6 Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested calls
and returns. In Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings, 2004. doi:10.1007/978-3-540-24730-2_35.

7 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
2004. doi:10.1145/1007352.1007390.

8 Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash
Saivasan, and Georg Zetzsche. The complexity of regular abstractions of one-counter lan-
guages. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016. doi:10.1145/2933575.2934561.

9 Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. Model checking
languages of data words. In Foundations of Software Science and Computational Struc-
tures - 15th International Conference, FOSSACS 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24
- April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science. Springer,
2012.

10 A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems with
continuous variables and unbounded discrete data structures. In Hybrid Systems II, volume
999 of LNCS. Springer, 1994.

11 Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of fifo-channel
systems with nonregular sets of configurations. Theor. Comput. Sci., 221(1-2):211–250,
1999.

12 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of parikh
automata and related models. In Third Workshop on Non-Classical Models for Automata
and Applications - NCMA 2011, Milan, Italy, July 18 - July 19, 2011. Proceedings, 2011.

13 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh automata. Int. J.
Found. Comput. Sci., 23(8):1691–1710, 2012.

14 X. Cai and M. Ogawa. Well-structured pushdown systems. In CONCUR 2013, volume
8052 of LNCS. Springer, 2013.

http://dx.doi.org/10.2168/LMCS-4(4:11)2008
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/2933575.2934561

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:17

15 Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner. Quantitative interproce-
dural analysis. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

16 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015. IEEE Computer Society, 2015.

17 F. S. de Boer, M. M. Bonsangue, and J. Rot. It is pointless to point in bounded heaps. Sci.
Comput. Program., 112, 2015.

18 Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem:
A simple and direct automaton construction. Inf. Process. Lett., 111(12), 2011. doi:
10.1016/j.ipl.2011.03.019.

19 Oscar H. Ibarra. Visibly pushdown automata and transducers with counters. Fundam.
Inform., 148(3-4):291–308, 2016.

20 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In JosC.M.
Baeten, JanKarel Lenstra, Joachim Parrow, and GerhardJ. Woeginger, editors, Automata,
Languages and Programming, volume 2719 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003.

21 Christof Löding and Karianto Wong. On nondeterministic unranked tree automata with
sibling constraints. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur,
India, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2328.

22 Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Counting in trees. In Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas]., 2008.

23 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in
trees for free. In Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes
in Computer Science. Springer, 2004.

CONCUR 2018

http://dx.doi.org/10.1016/j.ipl.2011.03.019
http://dx.doi.org/10.1016/j.ipl.2011.03.019
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2328

	Introduction
	Preliminaries
	Constrained Pushdown Systems
	Visibly Pushdown Systems
	A Quantitative Extension of CaReT
	Reachability/Emptiness for CPDAs
	Undecidability of Reachability
	 Technical Preliminaries
	Constraint height Bounded CPDAs

	Visible CPDS with procedural constraints
	Decidability of QCaReT
	Conclusion

