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Abstract
We introduce a new class of automata on infinite trees called alternating nonzero automata, which
extends the class of non-deterministic nonzero automata. The emptiness problem for this class
is still open, however we identify a subclass, namely limited choice, for which we reduce the
emptiness problem for alternating nonzero automata to the same problem for non-deterministic
ones, which implies decidability. We obtain, as corollaries, algorithms for the satisfiability of a
probabilistic temporal logic extending both CTL* and the qualitative fragment of pCTL*.
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1 Introduction

The theory of automata on infinite trees is rooted in Rabin’s seminal theorem which estab-
lishes an effective correspondence between the monadic second order logic (MSO) theory
of the infinite binary tree and the non-deterministic automata on this tree [18]. In this
correspondence, the satisfiability of the logic is dual to the emptiness of the algorithm and
both these algorithmic problems are mutually reducible to one another.

This elegant setting has been partially extended to probabilistic logics [13, 6, 14, 15, 2] and
automata with probabilistic winning conditions [18, 17, 1, 7, 2]. In this paper we make another
step in this direction: we show a correspondence between the logic CTL∗[∃,∀,P>0,P=1] and
nonzero alternating automata with limited choice. Moreover we show that the emptiness
problem of the automata is decidable and obtain as a corollary the decidability of the
satisfiability of the logic.

Automata. Alternating nonzero automata are an alternating version of non-deterministic
nonzero automata introduced in [3], which themselves are equivalent to non-deterministic
zero automata introduced in [2].

An alternating nonzero automaton takes as input a binary tree. Some states of the
automaton are controlled by Eve, while other states are controlled by Adam, and the player
controlling the current state chooses the next transition. Some transitions are local transitions,
in which case the automaton stays on the same node of the input tree while other are split
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13:2 Alternating Nonzero Automata

transitions in which case the automaton proceeds to the left son or to the right son of the
current node with equal probability 1

2 .
This interaction between Eve and Adam is seen as a game where Eve and Adam play

according to some strategies. Once the strategies are fixed, one obtains a Markov chain whose
trajectories are all possible plays consistent with the strategies. The winner is determined
with respect to winning conditions introduced in [2, 3], using a total order on the set of
states (used to compute the limsup of a play which is the largest state seen infinitely often
during the play) and three subsets of states, respectively called the sure, almost-sure and
positive states. Eve wins if and only if the three acceptance conditions hold:
sure winning: every play has limsup in sure states; and
almost-sure winning: almost-every play has limsup in almost-sure states; and
positive winning: whenever the play enters a positive state there is positive probability that

the play never exits positive states.
The input tree is accepted by the alternating automaton iff Eve has a winning strategy.

Alternating nonzero automata generalize both classical alternating automata with parity
conditions [8, 16] (when all states are almost-sure and positive) as well as non-deterministic
nonzero automata [3] (in case Eve controls all states).

We do not know whether the emptiness problem for these automata is decidable or not,
however we show that the answer is positive for the subclass of alternating nonzero automata
with limited choice for Adam. In these automata, some choices of Adam are canonical, at
most one in every state, and Adam may perform at most a bounded number of non-canonical
choices during a single play.

First, we show that the emptiness problem for alternating nonzero automata with limited
choice for Adam is in nexptime∩ co-nexptime (Theorem 22). The proof is an exptime
reduction to the emptiness problem for non-deterministic automata. This proof relies on the
positional determinacy of the acceptance games for Eve (Lemma 10) and a characterization
of positional winning strategies for Eve (Lemmas 12, 13 and 17).

Second, we show that in the particular case where the sure winning condition is a Büchi
condition, emptiness of non-deterministic nonzero automata is in ptime (Theorem 3). It
follows that, in case of a trivial sure winning condition, emptiness of alternating nonzero
automata with limited choice for Adam is in exptime (Theorem 22).

Logic. The temporal logic CTL∗ introduced by Emerson and Halpern [9] and its fragments
CTL and LTL are prominent tools to specify properties of discrete event systems.

A variant of CTL∗ is the logic pCTL∗ [11] in which the universal and existential path
quantifiers are replaced by probabilistic path quantifiers which set upper or lower bounds on
the probability of a path property in a Markov chain. For example the formula P≥ 1

2
(FGa)

specify that with probability at least 1
2 eventually all the visited states are labelled with a.

To our knowledge, the satisfiability problem for this logic is an open problem.
However, for the qualitative fragment of pCTL∗, where only two probabilistic quantifiers

P>0 and P=1 are available, the satisfiability is decidable [6]. In a variant of pCTL∗ called
pECTL the path subformula are replaced by deterministic Büchi automaton, and the
satisfiability of the qualitative fragment is 2-exptime complete [6], the same complexity as
for CTL∗ [19].

Remark that neither pCTL∗ nor pECTL includes the path operators ∀ and ∃, thus these
two logics are incomparable in expressivity with CTL∗. For example, on the alphabet {a, b},
the CTL∗ formula φ1 = ∀FG¬b, and the pCTL∗ formula φ2 = P=1(FG¬b) specify, that
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every branch, respectively almost-every branch, of the model has finitely many b. Neither φ1
can be expressed in pCTL∗ nor φ2 can be expressed in CTL∗.

In this paper, we consider the logic CTL∗[∃,∀,P>0,P=1] which is an extension of both
CTL∗ and qualitative pCTL∗and establish several properties of this logic.

The satisfiability by an arbitrary Σ-labelled Markov chain reduces to the satisfiability by
(Σ ∪ {◦})-labelled a binary tree with ◦ a fresh letter (Theorem 24).

The satisfiability of CTL∗[∃,∀,P>0,P=1] reduces to the emptiness of alternating nonzero
automata with finite choice for Adam thus it is decidable in 3-nexptime∩co-3-nexptime.
In the variant ECTL[∃,∀,P>0,P=1], where path formula are deterministic Büchi automata,
this reduction gives a 2-nexptime∩ co-2-nexptime complexity and for the fragment
CTL[∃,∀,P>0,P=1] the complexity is nexptime∩ co-nexptime (Theorem 23).

For the fragments CTL∗[P>0,P=1], ECTL[P>0,P=1] and CTL[P>0,P=1] (i.e. qualitative
pCTL∗, pECTL and pCTL respectively), the F∀ acceptance condition of the automaton is a
Büchi condition, and we retrieve the optimal complexity bounds of [6, 5], i.e. 3-exptime,
2-exptime and exptime, respectively.

A motivation for the study of alternating nonzero automata is the recent research on the
logic tmso+zero. The logic tmso+zero is an extension of Monadic second-order logic on
infinite binary trees with a new probabilistic operator [14, 15, 2]. The satisfiability of this
logic is reducible to the emptiness problem for nonzero non-deterministic automata [2] which
is decidable [3]. Since CTL∗[∃,∀,P>0,P=1] is a fragment of tmso+zero, this result implies
that the satisfiability of CTL∗[∃,∀,P>0,P=1] is decidable with non-elementary complexity.
The reduction to the emptiness of alternating nonzero automata given in the present paper
provides a better complexity bound.

2 Alternating nonzero automata

An alternating nonzero automaton on a finite alphabet Σ is a finite-state machine processing
binary trees, equipped with a game semantics: every tree is either accepted or rejected by
the machine depending on who wins the acceptance game on the tree.

Trees. A Σ-labelled binary tree (or Σ-tree for short) is a function t : {0, 1}∗ → Σ. An
element n ∈ {0, 1}∗ is called a node of the tree and has exactly two sons n0 and n1. We
use the usual notions of ancestors and descendants. A node n′ is (strictly) below n if n is a
(strict) prefix of n′. A path in the tree is a finite or infinite sequence of nodes n0, n1, . . . such
that for every k the node nk+1 is a son of the node nk.

A branch b is an element of {0, 1}ω. If a node n is a prefix of b we say that n belongs to b
or that b visits n. The set of branches is equipped with the uniform probability measure,
denoted µ, corresponding to an infinite random walk taking at each step either direction 0 or
1 with equal probability 1

2 .
A set of nodes T ⊆ {0, 1}∗ is a subtree if it contains a node r, called the root of T , such

that every node n ∈ T is a descendant of r, T contains all nodes on the path from r to n. A
subtree is full if T contains all descendants of r.

Automata. An alternating nonzero automaton on alphabet Σ is presented as a tuple
A = (Q, q0, QE , QA,→, F∀, F1, F>0) where:

Q is a finite set of states, equipped with a total order ≤, containing the initial state q0.
(QE , QA) is a partition of Q into Eve and Adam states.

CONCUR 2018



13:4 Alternating Nonzero Automata

→ is the set of transitions, there are two types of transitions: local transitions which are
tuples (q, a, q′) with q, q′ ∈ Q and a ∈ Σ, denoted q →a q

′; and split transitions which
are tuples (q, a, q0, q1) ∈ Q× Σ×Q2, denoted q →a (q0, q1).
F∀, F1 and F>0 are subsets of Q defining the acceptance condition.

The input of such an automaton is an infinite binary tree t : {0, 1}∗ → Σ. The source
(resp. the target) of a local transition q →a q

′ is q (resp q′). The source (resp. the targets) of
a split transition q →a (q0, q1) is q (resp q0 and q1). A state is said to be controlled by Eve
or Adam whether it belongs to QE or QA. The controller of a transition is the controller of
its source state. We always assume that
(HC) the automaton is complete: for every state q and letter a there is at least one

transition with source q on a.
The (HC) condition makes it easier to define the game semantics of the automaton.

Game semantics. The acceptance of an input binary tree by the automaton is defined by
mean of a stochastic game between Eve and Adam called the acceptance game.

The game of acceptance of a binary tree t : {0, 1}∗ → Σ by A is a two-player stochastic
game with perfect information played by two strategic players Eve and Adam. The vertices
of the game are all pairs (n, q) where n ∈ {0, 1}∗ is a node of the infinite binary tree and q is
a state of the automaton. The game starts in the initial vertex (ε, q0).

Each vertex (n, q) is controlled by either Eve or Adam depending on whether q ∈ QE or
q ∈ QA. The controller of the current state chooses any transition with source q and letter
t(n). Intuitively, depending on whether the transition is a local or a split transition, the
automaton stays on the current node n or move with equal probability 1

2 to either node n0
or n1. If the transition is a local transition q →t(n) q

′, the new vertex of the game is (n, q′).
If the transition is a split transition q →t(n) (r0, r1) then the new vertex is chosen randomly
with equal probability 1

2 between vertices (n0, r0) or (n1, r1).
A play is a finite or infinite sequence of vertices π = (n0, q0)(n1, q1) . . .. We denote

first(π) = (n0, q0) and last(π) = (nk, qn) (for finite plays).
A strategy for Eve associates with every finite play whose last vertex is controlled by

Eve a transition with source qn and letter t(nk) (such a transition always exists since the
automaton is complete). Strategies for Adam are defined in a symmetric way. Strategies of
Eve are usually denoted σ while strategies for Adam are denoted τ .

Measuring probabilities. Once both players Eve and Adam have chosen some strategies σ
and τ , this defines naturally a non-homogenous Markov chain whose states are the vertices
of the game. According to Tulcea theorem, if we equip the set of plays with the σ-field
generated by cylinders, then there is a unique probability measure Pσ,τ such that after a
play π = (n0, q0) . . . (nk, qk), if δ(π) denotes the transition chosen by Eve or Adam after π
(depending on whether qk ∈ QE or qk ∈ QA), the probability to go to vertex (nk+1, qk+1) is:

1 if δ(π) is the local transition qk →t(nk) qk+1 ,

1
2 if δ(π) is the split transition qk →t(nk) (r0, r1) and

{
nk+1 = nk0 and qk+1 = r0 ; or
nk+1 = nk1 and qk+1 = r1 .

0 otherwise .

This way we obtain a probability measure Pσ,τ on the set of infinite plays.
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Consistency and reachability. If a finite play π is the prefix of another finite or infinite play
π′ we say that π′ is a continuation of π. A finite π play is consistent with a strategy σ or, more
simply, is a σ-play if there exists a strategy τ such that π may occur in the non-homogenous
Markov chain induced by σ and τ . In this case, the number N of split transitions which
occurred in π is exactly the depth of the node of last(π) and Pσ,τ ({ continuations of π }) =
2−N . A vertex w is σ-reachable if there exists a finite σ-play from the initial vertex to w.
An infinite play is consistent with σ if all its prefixes are.

Bounded vs. unbounded plays. There are two kinds of infinite plays: bounded plays are
plays whose sequence of nodes is ultimately constant, or equivalently which ultimately use
only local transitions while unbounded plays use infinitely many split transitions.

Bounded plays consistent with σ and τ are the atoms of Pσ,τ : a play π is bounded and
consistent with σ and τ iff Pσ,τ ({π}) > 0.

In this paper we will focus on subclasses of automata whose structural restrictions forbids
the existence of bounded plays (see the (NLL) hypothesis below).

So in practice, every play π = (n0, q0)(n1, q1) . . . we consider will visit a sequence of
nodes n0, n1, n2, . . . which enumerates all finite prefixes of an infinite branch b ∈ {0, 1}ω of
the binary tree, in a weakly increasing order: for every index i either ni+1 = ni (the player
controlling (ni, qi) played a local transition) or ni+1 = nid for some d ∈ {0, 1} (the player
controlling (ni, qi) played a split transition and the play followed direction d).

Winning strategies and language. Whether Eve wins the game is defined as follows. The
limsup of an infinite play (n0, q0)(n1, q1) . . . is lim supi qi i.e. the largest automaton state
visited infinitely often. An infinite play π′ is a positive continuation of π if all states of π′
visited after π belongs to F>0.

Eve wins with σ against τ if the three following conditions are satisfied.
Sure winning. Every play consistent with σ and τ has limsup in F∀.
Almost-sure winning. Almost-every play consistent with σ and τ has limsup in F1.
Positive winning. For every finite play π consistent with σ and τ whose last state belongs

to F>0, the set of positive continuations of π has nonzero probability.

A Büchi condition is a set of states R ⊆ Q which is upper-closed with respect to ≤ .
Then a play has limsup in R iff it visits R infinitely often.

We say that Eve wins the acceptance game if she has a winning strategy i.e. a strategy
which wins the acceptance game against any strategy of Adam.

I Definition 1 (Acception and language). A binary tree is accepted by the automaton if Eve
has a winning strategy in the acceptance game. The language of the automaton is the set of
its accepted trees.

We are interested in the following decision problem:
Emptiness problem: Given an automaton, decide whether its language is empty or not.

Alternation and the use of game semantics makes the following closure properties trivial.

I Lemma 2 (Closure properties). The class of languages recognized by alternating nonzero
automata is closed under union and intersection.

Normalization. We assume all automata to be normalized in the sense where they satisfy:
(N1) every split transition whose source is in F>0 has at least one successor in F>0; and
(N2) every local transition whose source is in F>0 has its target in F>0 as well.

CONCUR 2018



13:6 Alternating Nonzero Automata

We can normalize an arbitrary automaton by removing all transitions violating (N1)
and (N2). This will not change the language because such transitions are never used by
positively winning strategies of Eve. This normalization could lead to a violation of the
completeness hypothesis, (HC). In this case we can also delete the corresponding states
without modifying the language of the automaton.

If one would drop (HC) then the game graph may have dead-ends and the rules of the
game would have to be extended to handle this case, typically the player controlling the
state in the dead-end loses the game. This extension does not bring any extra expressiveness
to our model of automaton, we can always make an automaton complete by adding local
transitions leading to losing absorbing states.

Moreover, we assume:
(N3) F1 ⊆ F∀ .
This is w.l.o.g. since replacing F1 with F1∩F∀ does not modify the language of the automaton.

Non-deterministic nonzero automata Non-deterministic zero automata were introduced
in [2], followed by a variant of equivalent expressiveness, non-deterministic nonzero au-
tomata [4, Lemma 5]. In those automata, Adam is a dummy player, i.e. QA = ∅ and
moreover all transitions are split-transitions.

I Theorem 3. The emptiness problem for non-deterministic nonzero automata is in np∩conp.
If F∀ is a Büchi condition then emptiness can be decided in ptime.

The first statement is established in [3, Theorem 3]. The second statement is proved in
the appendix. The proof idea is as follows. Assume the alphabet to be a singleton, which
is w.l.o.g. for non-deterministic automata. The existence of a winning strategy for Eve
can be witnessed by a subset W ⊆ Q which contains the initial state and two positional
winning strategies σ1, σ2 : W →W ×W . Strategy σ1 should be almost-surely and positively
winning while strategy σ2 should be surely winning. These two strategies can be combined
into a (non-positional) strategy for Eve which satisfies the three objectives, thus witnesses
non-emptiness of the automaton.

3 An example: the language of PUCE trees

A {a, b}-tree is positively ultimately constant everywhere (PUCE) if for every node n,
i) the set of branches visiting n and with finitely many a-nodes has > 0 probability; and
ii) the set of branches visiting n and with finitely many b-nodes has > 0 probability.

No regular tree is PUCE. There are two cases. If the regular tree has a node n which is
the root of a full subtree labelled with a single letter (either a or b) then clearly the tree is
not PUCE. Otherwise, by a standard pumping argument, every node labelled a (resp. b) has
a descendant labelled b (resp. a) at some depth ≤ |S|, where S is the set of states of the
regular tree. But in this second case from every node n there is probability at least 1

2|S| to
reach a descendant with a different label, thus almost-every branch of the regular tree has
infinitely many a and b, and the tree is not PUCE either.

There exists a PUCE tree. However it is possible to build a non-regular tree t whose every
node satisfies both i) and ii). For that, we combine together two partial non-regular trees.
Let H ⊆ {0, 1}∗ be a subset of nodes such that a) the set of branches which visit no node in
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H has probability 1
2 , b) every node in {0, 1}∗ is either a descendant or an ancestor of a node

in H, but not both (H is a cut).
To obtain t, we combine two partial trees ta and tb whose domain is {0, 1}∗ \ (H{0, 1}+)

and ta is fully labeled with a while tb is fully labelled with b. Since H is a cut, the nodes in
H are exactly the leaves of ta and tb. To obtain t, we plug a copy of tb on every leaf of ta
and a copy of ta on every leaf of tb. Then from every node, according to b) there is non-zero
probability to enter either ta or tb and according to a) there is non-zero probability to stay
in there forever.

An automaton recognizing PUCE trees. We can design one automaton for each of the
two conditions and combine them together with an extra state controlled by Adam (cf proof
of Lemma 2). We provide an alternating nonzero automaton checking condition ii), the
automaton for condition i) is symmetric. The state space is: Q = {s < w < g < ]}.

Intuitively, Adam uses states s to search for a node n from which condition ii) does not
hold. Once on node n, Adam switches to state w and challenges Eve to find a path to an
a-node n′ which is the root of an a-labelled subtree Tn of > 0 probability. For that Eve
navigates the tree in state w to node n′, switches to state g on node n′, stays in g as long as
the play stays in Tn and switches definitively to ] whenever leaving Tn.

Formally, the only state controlled by Adam is s, i.e. QA = {s}, from which Adam can
choose, independently of the current letter, between two split transitions s → (s, ]) and
s → (], s) and a local transition s → w. The state ] is absorbing. From state w, Eve can
guess the path to n′ using the split transitions: w → (], w) w → (w, ]) .

Once n′ is reached Eve can switch to state g with a local transition w → g and, whenever
the current node is an a-node, she can choose among three split transitions: g →a (g, g) g →a

(g, ]) g →a (], g) to identify Tn.
The acceptance conditions are: F∀ = F1 = Q \ {w} and F>0 = {g}, so that from w Eve

is forced to eventually switch to g (otherwise lim sup = w 6∈ F∀) and the a-subtree labelled
by g must have positive probability for Eve to win. Adam may never exit the pathfinding
state s, in which case Eve wins.

4 Deciding emptiness of automata with limited choice for Adam

In this section, we introduce the class of automata with limited choice for Adam, and show
that emptiness of these automata is decidable.

For that we rely on a characterization of positional strategies of Eve which satisfy the
surely and almost-surely winning conditions (Lemma 12, Lemma 13) and the positively
winning condition (Lemma 17). Then we represent the positional strategies of Eve as
labelled trees, called strategic trees (Definition 18). Finally, we show that the language of
strategic trees whose corresponding positional strategy is winning can be recognized by a
non-deterministic nonzero automaton (Theorem 19).

4.1 Automata with limited choice for Adam
In the rest of the paper, we focus on the class of automata with limited choice for Adam. Our
motivation is that these automata capture the logic we are interested in and their acceptance
games have good properties. In particular the existence of positional winning strategies for
Eve is one of the key properties used to decide emptiness.

To define the class of automata with limited choice for Adam, we rely on the transition
graph of the automaton.
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13:8 Alternating Nonzero Automata

I Definition 4 (Equivalent and transient states). The transitions of the automaton define
a directed graph called the transition graph and denoted G→. The vertices of G→ are Q
and the edges are labelled with Σ, those are all triplets (q, a, r) such that q →a r is a local
transition or such that q →a (r, q′) or q →a (q′, r) is a split transition for some state q′.

Two states q, r are equivalent, denoted q ≡ r, if they are in the same connected component
of G→. A state is transient if it does not belong to any connected component of G→, or
equivalently if there is no cycle on this state in G→.

I Definition 5. An automaton has limited choice for Adam if for every state q controlled
by Adam, all transitions with source q are local transitions; and for every letter a, at most
one of the (local) transitions q →a q

′ satisfies q ≡ q′. Such a transition is called a canonical
transition.

In a limited choice for Adam automaton, the only freedom of choice of Adam, apart
from playing canonical transitions, is deciding to go to a lower connected component of the
transition graph. This non-canonical decision can be done only finitely many times, hence
the name limited choice.

In the classical (non-probabilistic) theory of alternating automata, similar notions of lim-
ited alternation have already been considered, for example hesitant alternating automata [12].

I Definition 6 (Canonical plays and transient vertices). A canonical play is a play in which
Adam only plays canonical transitions. A vertex (n, q) of an acceptance game is transient if
it has no immediate successor (n′, q′) (by a local or a split transition) such that q ≡ q′.

In the acceptance game of an automaton with limited choice for Adam, every infinite
play visit finitely many transient vertices and has a canonical suffix.

The automaton recognizing PUCE trees described in Section 3 has not limited choice
for Adam, since Adam can play the non-local transitions s→ (s, ]) and s→ (], s). However,
it is an easy exercise to turn this automaton into an automaton with limited choice for
Adam recognizing the same language: add a new state e controlled by Eve from which Eve
has a single split transition e→ (s, s). This new state e belongs to both F∀ and F1. From
s Adam can choose between two local transitions: the canonical transition s → e (keep
navigating in the tree) or the transient transition s→ w (start verification).

The no local loop assumption. We assume that every automata with limited choice for
Adam also satisfies:
(NLL) the automaton has no local loop: there is no letter a and sequence of local transitions

q0 →a q1 →a · · · →a qi such that q0 = qi.
Under the hypothesis (NLL), for every infinite play π there is a unique branch of the binary
tree b ∈ {0, 1}ω whose every prefix is visited by π. We say that π projects to b. It is direct
that, under the hypothesis (NLL), the measures on plays and on branches are linked.

I Lemma 7. Under the hypothesis (NLL), given a tree t, two strategies σ and τ in the
acceptance game and X is a measurable set of plays we have that Pσ,τ (X) = µ(X̃) where µ
is the usual uniform measure on the set of branches of t and X̃ is the set of infinite branches
that X projects to.

Moreover, assuming (NLL) does not reduce expressiveness.

I Lemma 8. Given an automaton A with limited choice for Adam and set of states Q
one can effectively construct another automaton A′ with limited choice for Adam satisfying
(NLL) and recognizing the same language.
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The interest of the (NLL) assumption is to make the acceptance game acyclic, which
in turn guarantees positional determinacy for Eve, as shown in the next section. The
transformation performed in the proof of Lemma 8 creates an exponential blowup of the
state space of the automaton, which is bad for complexity. We could do without this blowup
by dropping the (NLL) assumption, in which case Eve might need one extra bit of memory
in order to implement local loops with priority in F∀ \ F1.

However, we prefer sticking to the (NLL) assumption, which makes the alternating
automata and their accepting games simpler and is anyway not restrictive when it comes
to translating temporal logics into alternating automata: the natural translation produces
automata with no local loop.

4.2 Positional determinacy of the acceptance game
A crucial property of automata with limited choice for Adam is that their acceptance games
are positionally determined for Eve.

I Definition 9 (Positional strategies). A strategy σ of Eve in an acceptance game is positional
if for every finite plays π, π′ whose last vertices are controlled by Eve and coincide, i.e.
last(π) = last(π′) ∈ {0, 1}∗ ×QE , then σ(π) = σ(π′).

I Lemma 10 (Positional determinacy for Eve). Every acceptance game of an automaton
with limited choice for Adam is positionally determined for Eve: if Eve wins then she has a
positional winning strategy.

Sketch of proof. Since the (NLL) hypothesis is assumed, the underlying acceptance game
is acyclic. The construction of a positional winning strategy σ′ from a (non-positional)
winning strategy σ relies on the selection of a canonical way of reaching a σ-reachable vertex
w with a σ-play π(w) and setting σ′(w) = σ(π(w)). J

4.3 On winning positional strategies of Eve
In the next section we show how to use use automata-based techniques to decide the existence
of a (positional) winning strategy for Eve. These techniques rely on characterizing whether a
positional strategy of Eve is surely, almost-surely and positively winning.

4.3.1 Surely and almost-surely winning conditions
We characterize (almost-)surely winning strategies.

I Definition 11 (q-branches). Let q ∈ Q and σ a strategy. An infinite branch of the binary
tree is a q-branch in σ if at least one σ-play which projects to this branch has limsup q.

I Lemma 12. Assume the automaton has limited choice for Adam. Let σ be a positional
strategy for Eve. Then σ is surely winning iff for every q ∈ (Q \ F∀) there is no q-branch in
σ. Moreover σ is almost-surely winning iff for every q ∈ (Q \ F1) the set of q-branches in σ
has measure 0.

Whether a branch is a q-branch can be checked by computing a system of σ-indexes.
Intuitively, all σ-reachable vertices receives a finite index, such that along a σ-play the index
does not change except when Adam performs a non-canonical move or when two plays merge
on the same vertex, in which case the smallest index is kept. After a non-canonical move of
Adam, a new play may start in which case it receives a fresh index not used yet in the current
neither in the parent node. For this less than 2|Q| indices are required. The important
properties of σ-indexes are:
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I Lemma 13 (Characterization of q-branches). Every positional strategy σ of Eve can be
associated with a function σ : {0, 1}∗×Q→ {0, 1, . . . , 2|Q|,∞}Q with the following properties.

First, σ can be computed on-the-fly along a branch. For every node n denote σn the
restriction of σ on {n} × Q. Then σ(ε) only depends on σε. And for every node n and
d ∈ {0, 1}, σ(nd) only depends on σ(n) and σnd.

Second, a vertex (n, q) is reachable from the initial vertex by a σ-play iff σ(n)(q) is finite.
Third, let b ∈ {0, 1}ω be an infinite branch of the binary tree, visiting successively the

nodes n0, n1, n2, . . .. Denote R∞(b) the set of pairs (k, q) ∈ {0, . . . , 2|Q|} × Q such that:
k ∈ σ(ni)(Q) for every i ∈ N except finitely many; and k = σ(ni)(q) for infinitely many
i ∈ N.

Finally, for every state q, the branch b is a q-branch if and only if there exists k ∈
{0, 1, . . . , 2|Q|} such that q = max{r ∈ Q | (k, r) ∈ R∞(b)}.

4.3.2 Checking the positively winning condition
In order to check with a non-deterministic automaton whether a positional strategy is
positively winning, we rely on the notion of positive witnesses. The point of positive witnesses
is to turn the verification of up to |Q| positively-winning conditions - depending on the
decisions of Adam, there may be up to |Q| different σ-reachable vertices on a given node -
into a single one. This single condition can then be checked by a non-deterministic nonzero
automaton equipped with a single positively-winning condition.

Everywhere thick subtrees. We need the notion of everywhere thick subtrees. We measure
sets of infinite branches with the uniform probability measure µ on {0, 1}ω.

I Definition 14 (Everywhere thick sets of nodes). For every set T ⊆ {0, 1}∗ of nodes denote
~T the set of branches in {0, 1}ω whose every prefix belongs to T . Then T is everywhere
thick if starting from every node n ∈ T there is nonzero probability to stay in T , i.e. if
µ
(
~T ∩ n{0, 1}ω

)
> 0.

Everywhere thick subtrees are almost everywhere.

I Lemma 15. Let P ⊆ {0, 1}ω be a measurable set of infinite branches. Assume µ(P ) > 0.
Then there exists an everywhere thick subtree T , with root ε such that ~T ⊆ P .

The proof relies on the inner-regularity of µ, so that P can be assumed to be a closed set,
i.e. a subtree from which we can prune leaves whose subtree has probability 0.

Positive witnesses. Positive witnesses can be used to check whether a strategy is positively
winning:

I Definition 16 (Positive plays and witnesses). Let t be a Σ-labelled binary tree and σ a
positional strategy of Eve in the acceptance game of t. Let Z be the set of σ-reachable
vertices whose state is in F>0.

A play is positive if all vertices it visits belong to {0, 1}∗ × F>0. A positive witness for σ
is a pair (W,E) where: W ⊆ Z are the active vertices, and E ⊆ {0, 1}∗ × {0, 1} is the set of
positive edges, and they have the following properties.
a) From every vertex z ∈ Z there is a positive and canonical finite σ-play starting in z which

reaches a vertex in W or a transient vertex.
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b) Let z = (n, q) ∈W . Then (n, 0) ∈ E or (n, 1) ∈ E, or both. If z → z′ is a local transition
then z′ ∈W as well whenever (q ∈ QE and z → z′ is consistent with σ) or (q ∈ QA and
z → z′ is canonical). If z is controlled by Eve and σ(z) is a split transition q → (q0, q1)
then ((n, 0) ∈ E =⇒ (n0, q0) ∈W ) and ((n, 1) ∈ E =⇒ (n1, q1) ∈W ).

c) The set of nodes {nd ∈ {0, 1}∗ | (n, d) ∈ E} is everywhere thick.

I Lemma 17 (Characterization of positively winning strategies). Assume the automaton has
limited choice for Adam. A positional strategy σ for Eve is positively winning iff there exists
a positive witness for σ.

4.4 Deciding emptiness
A Σ-labelled binary tree t and a positional strategy σ in the corresponding acceptance game
generate a tree Tt,σ : {0, 1}∗ → (Q ∪Q×Q)QE .

For every vertex (n, q) controlled by Eve, if σ(n, q) is a local transition q →t(n) q
′ then

Tt,σ(n)(q) = q′ and if σ(n, q) is a split transition q →t(n) (q0, q1) then Tt,σ(n)(q) = (q0, q1).

I Definition 18 (Strategic tree). A tree T : {0, 1}∗ → (Q ∪ Q × Q)QE is strategic if there
exists a tree t : {0, 1}∗ → Σ and a positional strategy σ for Eve such that T = Tt,σ .

We are interested in the strategic trees associated to winning strategies. The rest of the
section is dedicated to the proof of the following theorem.

I Theorem 19. Fix an alternating nonzero automata with limited choice for Adam. The
language of strategic trees Tt,σ such that σ wins the acceptance game of t can be recognized
by a non-deterministic nonzero automaton of size exponential in |Q|. If F∀ = Q in the
alternating automaton, then the sure condition of the non-deterministic automaton is Büchi.

Proof. The characterizations of surely, almost-surely and positively winning strategies given
in lemmas 12, 13 and 17 can be merged as follows.

I Corollary 20. Let σ be a positional strategy σ for Eve. For every branch b denote
M(b) = {max{q | (k, q) ∈ R∞(b)} | k ∈ 0 . . . 2|Q|}.

Then σ is winning if and only if for every branch b, M(b) ⊆ F∀; for almost-every branch
b, M(b) ⊆ F1; and there exists a positive witness for σ.

First of all, the non-deterministic automaton B checks whether the input tree is a strategic
tree, for that it guesses on the fly the input tree t : {0, 1}∗ → Σ by guessing on node n the
value of t(n) and checking that for every q ∈ QE , q →t(n) T (n)(q) is a transition of the
automaton.

On top of that B checks the three conditions of Corollary 20. For the first two conditions,
it computes (asymptotically) along every branch b the value of R∞(b) and thus of M(b). For
that the automaton relies on a Last Appearance Record memory (LAR) [10] whose essential
properties are:

I Lemma 21 (LAR memory [10]). Let C be a finite set of symbols. There exists a deterministic
automaton on C called the LAR memory on C with the following properties. First, the set
of states, denoted Q, has size ≤ |C||C|+1 and is totally ordered. Second, for every u ∈ Cω
denote L∞(u) the set of letters seen infinitely often in u and LAR(u) the largest state seen
infinitely often during the computation on u. Then L∞(u) can be inferred from LAR(u),
precisely there is a mapping φ : Q→ 2C such that: ∀u ∈ Cω, L∞(u) = φ(LAR(u)) .
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In order to compute R∞(b) along a branch b, the non-deterministic automaton B computes
deterministically on the fly the σ-index of the current node n, as defined in Lemma 13, and
implements a LAR memory on the alphabet C = {0, . . . , 2|Q|} × (Q ∪ {⊥}).

When visiting node n, B injects into the LAR memory all pairs (σ(q), q) such that q ∈ Q
and σ(q) 6=∞ plus all pairs (k,⊥) such that k 6∈ σ(n)(Q). For every branch b, the set R∞(b)
is equal to all pairs (k, q) seen infinitely often such that (k,⊥) is seen only finitely often.
Thus, the LAR memory can be used to check the first two conditions of Corollary 20, more
details are given at the end of the proof.

For now, we describe how the non-deterministic automaton B checks whether there exists
a positive witness (W,E) (Definition 16). Denote by Z the set of σ-reachable vertices whose
state is in F>0. On node n the automaton guesses (resp. computes) the vertices of W (resp.
Z) of the current node and guesses the elements of E by storing three sets of states: Wn =
{q ∈ Q | (n, q) ∈W}; Zn = {q ∈ F>0 | σ(n, q) <∞}; and En = {b ∈ {0, 1} | (n, b) ∈ E}.

Then B checks conditions a), b) and c) in the definition of a positive witness as follows.
B checks condition a) in the definition of a positive witness by guessing on the fly for

every vertex in Z a canonical positive σ-play to a vertex which is either transient or in W ,
in which case we say the canonical positive play terminates.

For that B maintains an ordered list Pn of states. On the root node, Pε is Zε \Wε. When
the automaton performs a transition, it guesses for each state q in Pn and direction bq a
successor sq, such that (nbq, sq) can be reached from (q, n) by a positive canonical σ-play. In
direction b, every state q for which bq 6= b is removed from the list, while every state q for
which bq = b is replaced by the corresponding sq. Then all states in Znb are added at the
end of the list. In case of duplicates copies of the same state in the list, only the first copy is
kept. In case the head of the list is in Wnb or is transient, a Büchi condition is triggered and
the head is moved at the back of the list. Finally, all entries of the list which are in Wnb are
removed.

This way, condition a) holds iff the Büchi condition is triggered infinitely often on every
branch. We discuss below how to integrate this Büchi condition in the sure accepting
condition of the automaton.
B checks condition b) in the definition of a positive witness by entering an absorbing

error state as soon as
1) there is some local transition (n, q) →t(n) (n, q′) such that q ∈ Wn and (q ∈ QE and

z → z′ is consistent with σ) or (q ∈ QA and z → z′ is canonical); or
2) there is some q ∈Wn controlled by Eve and b ∈ En such that σ(n, q) is a split transition

q →t(n) (q0, q1) but qb 6∈Wnb.
The guessed sets Wn are bound to satisfy condition 1) and condition 2) is checked by storing
a subset of Q.
B checks condition c) in the definition of a positive witness by triggering the positive

acceptance condition whenever it moves in direction b on a node n such that b ∈ En.
The sure and almost-sure acceptance condition are defined as follows. The Büchi condition

necessary for checking condition a) in the definition of a positive witness is integrated in
the LAR memory, for that we add to the alphabet C of the LAR memory a new symbol >
which is injected in the LAR memory whenever the Büchi condition is triggered. The order
between states of B is induced by the order of the LAR memory.

This way, according to Lemma 21, the largest state seen infinitely often along a branch b
reveals whether > was seen infinitely often, and reveals the value of R∞(b) (the set of pairs
(k, q) seen infinitely often such that (k,⊥) was seen finitely often) hence of M(b) as well. The
state is surely (resp. almost-surely) accepting iff > was seen infinitely often and M(b) ⊆ F∀
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(resp. M(b) ⊆ F1). In case F∀ = Q in the alternating automaton then the sure condition
boils down to the Büchi condition.

According to Corollary 20, and by construction of B, the computation of B is accepting
iff the input is a strategic tree whose corresponding strategy of Eve is winning. J

I Theorem 22. Emptiness of alternating nonzero automata with limited choice for Adam is
decidable in nexptime∩co-nexptime. If F∀ = Q, emptiness can be decided in exptime.

Proof. Emptiness of an alternating automaton reduces to the emptiness of a non-deterministic
automaton of exponential size. This non-deterministic automaton guesses on-the-fly a tree
{0, 1}∗ → (Q ∪ Q × Q)QE and checks it is a winning strategic tree, using the automaton
given by Theorem 19. In case the alternating automaton is F∀-trivial, the sure condition of
the non-deterministic automaton is Büchi (Theorem 19). We conclude with Theorem 3. J

5 Satisfiability of CTL∗[∃, ∀, P>0, P=1]

Our result on alternating nonzero automata can be applied to decide the satisfiability of the
logic CTL∗[∃,∀,P>0,P=1], a generalization of CTL* which integrates both deterministic and
probabilistic state quantifiers.

Markov chains. The models of CTL∗[∃,∀,P>0,P=1] formulas are Markov chains. A Markov
chain with alphabet Σ is a tuple M = (S, p, t) where S is the (countable) set of states,
p : S → ∆(S) are the transition probabilities and t : S → Σ is the labelling function.

For every state s ∈ S, there is a unique probability measure denoted PM,s on Sω such
that PM,s(sSω) = 1 and for every sequence s0 · · · snsn+1 ∈ S∗, PM,s(s0 · · · snsn+1S

ω) =
p(sn, sn+1) ·PM,s(s0s1 · · · snSω). WhenM is clear from the context this probability measure
is simply denoted Ps. A path inM is a finite or infinite sequence of states s0s1 · · · such that
∀n ∈ N, p(sn, sn+1) > 0 .. We denote PathM(s0) the set of such paths.

A binary tree t : {0, 1}∗ → Σ is seen as a specific type of Markov chain, where from every
node n ∈ {0, 1}∗ there is equal probability 1

2 to perform transitions to n0 or n1.

Syntax. For a fixed alphabet Σ, there are two kinds of formula: state formula (typically
denoted ψ) and path formula (denoted φ), generated by the following grammar:

ψ ::=> | ⊥ | a ∈ Σ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | ∃φ | ∀φ | P>0(φ) | P=1(φ)
φ ::=ψ | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Gφ .

Semantics. LetM = (S, t, p) a Markov chain. We define simultaneously and inductively
the satisfactionM, s |= ψ of a state formula ψ by a state s ∈ S and the satisfactionM, w |= φ

of a path formula φ by a path w ∈ PathM. WhenM is clear from the context, we simply
write s |= ψ and w |= φ.

If a state formula is produced by one of the rules > | ⊥ | p | ψ ∧ ψ | ψ ∨ ψ | ¬ψ, its
satisfaction is defined as usual. If φ is a path formula and ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)} then

s |= ∃φ if ∃w ∈ PathM(s), w |= φ

s |= ∀φ if ∀w ∈ PathM(s), w |= φ

s |= P∼b(φ) if PM,s(w ∈ PathM(s) | w |= φ) ∼ b .

The satisfaction of a path formula φ by an infinite path w = s0s1 · · · ∈ PathM(s0) is
defined as follows. If φ is produced by one of the rules ¬φ | φ ∧ φ | φ ∨ φ then its satisfaction
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Figure 1 A model of (∀(G∃(>Ua))) ∧ (P>0(G¬a)).

is defined as usual. If φ is a state formula (rule φ := ψ) then w |= ψ if s0 |= ψ . Otherwise,
φ ∈ {Xφ′, Gφ′, φ1Uφ2} where φ′, φ1 and φ2 are path formulas. For every integer k, we denote
w[k] the path sksk+1 · · · ∈ PathM(sk). Then:

w |= Xφ′ if w[1] |= φ′

w |= Gφ′ if ∀i ∈ N, w[i] |= φ′

w |= φ1Uφ2 if ∃n ∈ N, (∀0 ≤ i < n,w[i] |= φ1 ∧ w[n] |= φ2).

The Markov chain given in Figure 1 satisfies the formula (∀(G∃(>Ua))) ∧ (P>0(G¬a)).

A formula for PUCE trees. The language of PUCE trees introduced in Section 3 can be
described by the following CTL∗[∃,∀,P>0,P=1] formula:

∀G(P>0(>U(G¬a)) ∧ P>0(>U(G¬b))) .

Variants and fragments. A formula of CTL∗[∃,∀,P>0,P=1] belongs to the fragment CTL
if in each of its state subformula ψ of type ∃φ | ∀φ | P>0(φ) | P=1(φ) the path formula φ has
type Xψ′ | ψ′Uψ′′ | Gψ′ where ψ′ and ψ′′ are state subformulas.

In the variant ECTL, every path formula φ is described as the composition of a determin-
istic Büchi automata on some alphabet {0, 1}k with k state subformulas. A path satisfies φ
if the Büchi automaton accepts the sequence of letters obtained by evaluating the k state
subformulas on every state along the path. This variant augments both the expressivity and
the conciseness of the logic at the cost of a less intuitive syntax. For more details see [6].

We are also interested in the fragments where the operators ∃ and ∀ are not used, i.e.
the qualitative fragments of the logics pCTL∗, pECTL and pCTL.

Satisfiability problem. A Markov chainM satisfies a formula ξ at state s, or equivalently
(M, s) is a model of ξ, ifM, s |= ξ. We are interested in the problem:
MC-SAT: given a formula, does it have a model?

This logic is an extension of monadic second-order logic on infinite binary trees with
a new probabilistic operator [14, 15, 2]. The satisfiability of this logic is reducible to the
emptiness problem for nonzero non-deterministic automata [2] which is decidable [3]. Since
CTL∗[∃,∀,P>0,P=1] is a fragment of tmso+zero, this result implies that the satisfiability
of CTL∗[∃,∀,P>0,P=1] is decidable with non-elementary complexity. The reduction to the
emptiness of alternating nonzero automata given in the present paper provides a better
complexity bound.

I Theorem 23. For CTL∗[∃,∀,P>0,P=1] the satisfiability problem is in 3-nexptime ∩
co-3-nexptime. The following table summarizes complexities of the satisfiability problem for
various fragments and variants of CTL∗[∃,∀,P>0,P=1]:

CTL∗ ECTL CTL
[∃,∀,P>0,P=1] 3-nexptime ∩ co-3-nexptime 2-nexptime ∩ co-2-nexptime nexptime ∩ co-nexptime

[P>0,P=1] 3-exptime [6] (qualitative pCTL∗) 2-exptime [6] (qualitative pECTL) exptime [5] (qualitative pCTL)
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According to [5, 6], the complexities for ECTL[P>0,P=1] and CTL[P>0,P=1] are optimal.
The first step in the proof of Theorem 23 is a linear-time reduction from MC-SAT to:

BIN-SAT: given a formula, does it have a model among binary trees?

I Theorem 24. Any formula ξ of CTL∗[∃,∀,P>0,P=1] on alphabet Σ can be effectively
transformed into a formula ξ′ of linear size on alphabet Σ ∪ {◦} such that ξ is MC-SAT
iff ξ′ is BIN-SAT. As a consequence, MC-SAT linearly reduces to BIN-SAT. This
transformation preserves the fragment CTL∗[P>0,P=1].

The second step is a standard translation from logic to alternating automata [12].

I Lemma 25. For every formula ξ of CTL∗[∃,∀,P>0,P=1] (resp. ECTL[∃,∀,P>0,P=1]),
there is an alternating automaton A with limited choice for Adam whose language is the set
of binary trees satisfying the formula at the root. The automaton is effectively computable,
of size O(22|ξ|) (resp. O(2|ξ|)). If ξ is a CTL formula, the size of A is O(|ξ|). In case the
formula does not use the ∃ and ∀ operators, the F∀ condition is trivial i.e. F∀ = Q.

Proof of Theorem 23. All the complexity results are obtained by reduction of MC-SAT to
the emptiness problem for an alternating nonzero automaton with limited choice for Adam,
which is decidable in nexptime∩co-nexptime (Theorem 22). The size of the automaton
varies from doubly-exponential to linear size depending on whether the formula is in CTL∗,
ECTL or CTL (Lemma 25). In case the formula does not use the deterministic operators ∃
and ∀ (i.e. for qualitative pCTL∗, pECTL and pCTL) the F∀ condition of the alternating
automaton is trivial thus its emptiness is decidable in exptime (Theorem 22). J

Conclusion

We have introduced the class of alternating nonzero automata, proved decidability of the
emptiness problem for the subclass of automata with limited choice for Adam and obtained
as a corollary algorithms for the satisfiability of a temporal logic extending both CTL* and
the qualitative fragment of pCTL*.

A natural direction for future work is to find more general classes of alternating nonzero
automata with a decidable emptiness problem, which requires some more insight on the
properties of the acceptance games, in particular the existence of positional strategies in the
acceptance game.
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