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Abstract
We present the first study of non-deterministic weighted automata under probabilistic semantics.
In this semantics words are random events, generated by a Markov chain, and functions computed
by weighted automata are random variables. We consider the probabilistic questions of computing
the expected value and the cumulative distribution for such random variables.

The exact answers to the probabilistic questions for non-deterministic automata can be irra-
tional and are uncomputable in general. To overcome this limitation, we propose an approxima-
tion algorithm for the probabilistic questions, which works in exponential time in the automaton
and polynomial time in the Markov chain. We apply this result to show that non-deterministic
automata can be effectively determinised with respect to the standard deviation metric.
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1 Introduction

Weighted automata are finite automata in which transitions carry weights [13]. We study
here weighted automata (on finite and infinite words) whose semantics is given by value
functions (such as sum or average) [8]. In such a weighted automaton transitions are labeled
with rational numbers and hence every run yields a sequence of rationals, which the value
function aggregates into a single (real) number. This number is the value of the run, and the
value of a word is the infimum over values of all accepting runs on that word.

The value function approach has been introduced to express quantitative system proper-
ties (performance, energy consumption, etc.) and it serves as a foundation for quantitative
verification [8, 18]. Basic decision questions for weighted automata are quantitative counter-
parts of the emptiness and universality questions obtained by imposing a threshold on the
values of words.

Probabilistic semantics. The emptiness and the universality problems correspond to the
best-case and the worst-case analysis. For the average-case analysis, weighted automata are
considered under probabilistic semantics, in which words are random events generated by a
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10:2 Non-deterministic Weighted Automata on Random Words

Markov chain [7, 9]. In this setting, functions from words to reals computed by deterministic
weighted automata are measurable and hence can be considered as random variables. The
fundamental probabilistic questions are to compute the expected value and the cumulative
distribution for a given automaton and a Markov chain.

The deterministic case. Weighted automata under probabilistic semantics have been
studied only in the deterministic case. In [7], a close relationship between weighted automata
under probabilistic semantics and weighted Markov chains has been established. For a
weighted automaton A and a Markov chainM representing the distribution over words, the
probabilistic problems for A andM coincide with the probabilistic problem of the weighted
Markov chain A×M. Weighted Markov chains have been intensively studied with single
and multiple quantitative objectives [3, 15, 24, 10]. The above reduction does not extend to
non-deterministic weighted automata [9, Example 30].

Significance of nondeterminism. Non-deterministic weighted automata are provably more
expressive than their deterministic counterpart [8]. Many important system properties can
be expressed with weighted automata only in the nondeterministic setting. This includes
minimal response time, minimal number of errors and the edit distance problem [18], which
serves as the foundation for the specification repair framework from [5].

Non-determinism can also arise as a result of abstraction. The exact systems are
often too large and complex to operate on and hence they are approximated with smaller
non-deterministic models [11]. The abstraction is especially important for multi-threaded
programs, where the explicit model grows exponentially with the number of threads [17].

Our contributions

We study non-deterministic weighted automata under probabilistic semantics. We work with
weighted automata as defined in [8], where a value function f is used to aggregate weights
along a run, and the value of the word is the infimum over values of all runs. (The infimum
can be changed to supremum as both definitions are dual). We primarily focus on the two
most interesting value functions: the sum of weights over finite runs, and the limit average
over infinite runs. The main results presented in this paper are as follows.

We show that the answers to the probabilistic questions for weighted automata with
the sum and limit-average value functions can be irrational (Theorem 5) and cannot be
computed by any effective representation (Theorem 6).
We establish approximation algorithms for the probabilistic questions for weighted
automata with the sum and limit-average value functions. The approximation is #P-
complete for (total) weighted automata with the sum value function (Theorem 10), and
it is PSpace-hard and solvable in exponential time for weighted automata with the
limit-average value function (Theorem 16).
We show that weighted automata with the limit-average value function can be approxim-
ately determinised (Theorem 18). Given an automaton A and ε > 0, we show how to
compute a deterministic automaton AD such that the expected difference between the
values returned by both automata is at most ε.

Applications

We briefly discuss applications of our contributions in quantitative verification.
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The expected-value question corresponds to the average-case analysis in quantitative
verification [7, 9]. Using results from this paper, we can perform the average-case analysis
with respect to quantitative specifications given by non-deterministic weighted automata.
The universality problem for non-deterministic automata, which asks whether all words
have the value below a given threshold, forms a basis for some quantitative-model-
checking frameworks [8]. Unfortunately, the universality problem is undecidable for
weighted automata with the sum or the limit average values functions. The distribution
question can be considered as a computationally-attractive variant of universality, i.e., we
ask whether almost-all words have value below some given threshold. We show that if the
threshold can be approximated, the distribution question can be computed effectively.
Weighted automata have been used to formally study online algorithms [2]. Online
algorithms have been modeled by deterministic weighted automata, which make choices
based solely on the past, while offline algorithms have been modeled by non-deterministic
weighted automata. Relating deterministic and non-deterministic models allowed for
formal verification of the worst-case competitiveness ratio of online algorithms. Using
the result from our paper, we can extend the analysis from [2] to the average-case
competitiveness.

Related work

Probabilistic verification of qualitative properties. Probabilistic verification asks for the
probability of the sets of traces satisfying a given property. For non-weighted automata, it
has been extensively studied [26, 12, 3] and implemented [22, 19]. The prevalent approach in
this area is to work with deterministic automata, and apply determinisation as needed. To
obtain better complexity bounds, the probabilistic verification problem has been directly
studied for unambiguous Büchi automata in [4]; the authors explain there the potential
pitfalls in the probabilistic analysis of non-deterministic automata.

Weighted automata under probabilistic semantics. Probabilistic verification of weighted
automata and their extensions has been studied in [9]. All automata considered there are
deterministic.

Markov Decision Processes (MDPs). MDPs are a classical extension of Markov chains,
which allow to model control in a stochastic environment [3, 15]. In MDPs probabilistic and
non-deterministic transitions are interleaved. Intuitively, the non-determinism in MDPs is
resolved based on the past, i.e., already generated events. In our setting, non-deterministic
weighted automata work over completely generated words and hence non-determinism may
be resolved based on following letters, considered as future events.

Approximation determinisation. As weighted automata are not determinisable, Boker and
Henzinger [6] studied approximate determinisation defined as follows. The distance dsup
between weighted automata A1,A2 is defined as dsup(A1,A2) = supw |A1(w)−A2(w)|. A
nondeterministic weighted automaton A can be approximately determinised if for every
ε > 0 there exists a deterministic automaton AD such that dsup(A,AD) ≤ ε. Unfortunately,
weighted automata with the limit average value function cannot be approximately determ-
inised [6]. In this work we show that the approximate determinisation is possible for the
standard deviation metric dstd defined as dstd(A1,A2) = E(|A1(w)−A2(w)|).

CONCUR 2018
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2 Preliminaries

Given a finite alphabet Σ of letters, a word w is a finite or infinite sequence of letters. We
denote the set of all finite words over Σ by Σ∗, and the set of all infinite words over Σ by
Σω. For a word w, we define w[i] as the i-th letter of w, and we define w[i, j] as the subword
w[i]w[i+ 1] . . . w[j] of w. We use the same notation for other sequences defined later on. By
|w| we denote the length of w.

A (non-deterministic) finite automaton (NFA) is a tuple (Σ, Q,Q0, F, δ) consisting of an
input alphabet Σ , a finite set of states Q, a set of initial states Q0 ⊆ Q, a set of final states
F , and a finite transition relation δ ⊆ Q× Σ×Q.

We denote by δ(q, a) the set of states {q′ | δ(q, a, q′)} and by δ(S, a) the set of states⋃
q∈S δ(q, a). We extend this to δ̂ : 2Q × Σ∗ → 2Q in the following way: δ̂(S, ε) = S (where ε

is the empty word) and δ̂(S, aw) = δ̂(δ(S, a), w), i.e., δ̂(S,w) is the set of states reachable
from S via δ over the word w.

Weighted automata. A weighted automaton is a finite automaton whose transitions are
labeled by rational numbers called weights. Formally, a weighted automaton is a tuple
(Σ, Q,Q0, F, δ, C), where the first five elements are as in the finite automata, and C : δ → Q
is a function that defines weights of transitions. An example of a weighted automaton is
depicted in Figure 1.

The size of a weighted automaton A, denoted by |A|, is |Q|+ |δ|+
∑
q,q′,a len(C(q, a, q′)),

where len is the sum of the lengths of the binary representations of the numerator and the
denominator of a given rational number.

A run π of an automaton A on a word w is a sequence of states π[0]π[1] . . . such that π[0]
is an initial state and for each i we have (π[i− 1], w[i], π[i]) ∈ δ. A finite run π of length k is
accepting if and only if the last state π[k] belongs to the set of accepting states F . As in [8],
we do not consider ω-accepting conditions and assume that all infinite runs are accepting.
Every run π of an automaton A on a (finite or infinite) word w defines a sequence of weights
of successive transitions of A as follows. Let (C(π))[i] be the weight of the i-th transition,
i.e., C(π[i− 1], w[i], π[i]). Then, C(π) = (C(π)[i])1≤i≤|w|. A value functions f is a function
that assigns real numbers to sequences of rational numbers. The value f(π) of the run π is
defined as f(C(π)).

The value of a (non-empty) word w assigned by the automaton A, denoted by LA(w), is
the infimum of the set of values of all accepting runs on w. The value of a word that has
no (accepting) runs is infinite. To indicate a particular value function f that defines the
semantics, we will call a weighted automaton A an f -automaton.

Value functions. We consider the following value functions. For finite runs, functions Min
and Max are defined in the usual manner, and the function Sum is defined as

Sum(π) =
∑|C(π)|

i=1
(C(π))[i]

For infinite runs we consider the supremum Sup and infimum Inf functions (defined like
Max and Min but on infinite runs) and the limit average function LimAvg defined as

LimAvg(π) = lim sup
k→∞

Avg(π[0, k])

where for finite runs π we have Avg(π) = Sum(π)/|C(π)|.
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2.1 Probabilistic semantics
A (finite-state discrete-time) Markov chain is a tuple 〈Σ, S, s0, E〉, where Σ is the alphabet
of letters, S is a finite set of states, s0 is an initial state, E : S × Σ× S 7→ [0, 1] is an edge
probability function, which for every s ∈ S satisfies that

∑
a∈Σ,s′∈S E(s, a, s′) = 1. By

|M| = |S| + |E| +
∑
q,q′,a len(E(q, a, q′)) we denote the size of the Markov chain M. An

example of a single-state Markov chain is depicted in Figure 1.
The probability of a finite word u w.r.t. a Markov chain M, denoted PM(u), is the

sum of probabilities of paths from s0 labeled by u, where the probability of a path is the
product of probabilities of its edges. For basic open sets u · Σω = {uw | w ∈ Σω}, we have
PM(u · Σω) = PM(u), and then the probability measure over infinite words defined byM
is the unique extension of the above measure (by Carathéodory’s extension theorem [14]).
We will denote the unique probability measure defined by M as PM, and the associated
expectation measure as EM. For example, for the Markov chainM presented in Figure 1, we
have that PM(ab) = 1

4 , and so PM({w ∈ {a, b}ω | w[0, 1] = ab}) = 1
4 , whereas PM(X) = 0

for any finite set of infinite words X.
A terminating Markov chain MT is a tuple 〈Σ, S, s0, E, T 〉, where Σ, S and s0 are as

usual, E : S × (Σ ∪ {ε})× S 7→ [0, 1] is the edge probability function, such that if E(s, a, t),
then a = ε if and only if t ∈ T , and for every s ∈ S we have

∑
a∈Σ∪{ε},s′∈S E(s, a, s′) = 1,

and T is a set of terminating states such that the probability of reaching a terminating state
from any state s is positive. Notice that the only ε-transitions in a terminating Markov chain
are those that lead to a terminating state.

The probability of a finite word u w.r.t. M, denoted PMT (u), is the sum of probabilities
of paths from s0 labeled by u such that the only terminating state on this path is the last one.
Notice that PMT is a probability distribution on finite words whereas PM is not (because
the sum of probabilities may exceed 1).

Automata as random variables. A weighted automaton defines the function LA(w) : Σω 7→
R that assigns values to words. This function is measurable for all the automata types we
consider in this paper (see Remark 2 below). Thus, this function can be interpreted as
random variables w.r.t. the probabilistic space we consider. Hence, for a given automaton A
and a Markov chainM, we consider the following quantities:
EM(A) – the expected value of the random variable defined by A w.r.t. the probability
measure defined byM.
DM,A(λ) = PM({w | LA(w) ≤ λ}) – the (cumulative) distribution function of the random
variable defined by A w.r.t. the probability measure defined byM.
In the finite words case, the expected value EMT and the distribution DMT ,A are defined

in the same manner.

I Remark 1 (Bounds on the expected value and the distribution). Both quantities can be
easily bounded: the value of the distribution function is always between 0 and 1. For a
LimAvg-automaton A, we have EM(A) ∈ [minA,maxA] ∪ {∞}, where minA and maxA
denote the minimal and the maximal weight of A. For a Sum-automaton A, we have
EM(A) ∈ [LM · minA, LM · maxA] ∪ {∞}, where LM is the expected length of a word
generated by M (it can be computed in a standard way [16, Section 11.2]). In both cases,
EM(A) =∞ if and only if the probability of the set of words with no accepting runs in A is
positive. Note that we consider no ω-accepting conditions, and hence all infinite runs of Sum-
automata are accepting. Still there can be infinite words, on which a given Sum-automaton
has no infinite runs. We show in Section 3.2 that the distribution and expected value may
be irrational, even for integer weights and uniform distributions.

CONCUR 2018
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qb qx qa s0
a : 0a : 1

b : 1b : 0
a : 0, b : 1a : 1, b : 0

a : 0.5, b : 0.5

Figure 1 The automaton A = {{a, b}, {qx, qa, qb}, {qa, qb}, ∅, δ, C}, where δ =
{(qa, a, qa), (qa, b, qa), (qa, b, qx), (qx, a, qa), (qx, a, qb), (qb, a, qx), (qb, a, qb), (qb, b, qb)} and C such that
C(qa, b, qa) = C(qb, a, qb) = C(qa, b, qx) = C(qx, a, qb) = 1 and for all other inputs the value of C is
0 (left) and the Markov chain M = {{a, b}, {s0}, {s0}, E} where E always returns 0.5 (right).

I Remark 2 (Measurability of functions represented by automata). For automata on finite
words, Inf-automata and Sup-automata, measurability of LA is straightforward. To show
that LA(w) : Σω 7→ R is measurable for any non-deterministic LimAvg-automaton A, it
suffices to show that for every x ∈ R, the preimage L−1

A (−∞, x] is measurable. Let Q be the
set of states of A. Consider the set Σω × Qω. We can define a subset Ax ⊆ Σω × Qω of
the pairs, the word and the run on it, where the value of the run is less than or equal to x.
The set Ax can be presented as a countable intersection of open sets, and hence it is Borel.
Observe that L−1

A (−∞, x] is the projection of Ax on the first component Σω. The projection
of a Borel set is analytic, which is measurable [20]. Thus, LA defined by a non-deterministic
LimAvg-automaton is measurable.

The above proof of measurability requires some knowledge of descriptive set theory. We
will give a direct proof of measurability of LA in the paper (Theorem 16).

2.2 Computational questions
We consider the following basic computational questions:

The expected value question: Given an f -automaton A and a (terminating) Markov chain
M, compute EM(A).
The distribution question: Given an f -automaton A, a (terminating) Markov chainM
and a threshold λ, compute DM,A(λ).

Each of the above questions have its decision variant (useful for lower bounds), where
instead of computing the value we ask whether the value is less than a given threshold t.

The above questions have their approximate variants:

The approximate expected value question: Given an f -automaton A, a (terminating)
Markov chainM, ε > 0, compute a number η such that |η − EM(A)| ≤ ε.
The approximate distribution question: Given an f -automaton A, a (terminating) Markov
chainM, a threshold λ and ε > 0 compute a number η ∈ [DM,A(λ− ε),DM,A(λ+ ε)].

In the later case, we use the Skorokhod’s notion. One could expect there “η ∈ [DM,A(λ)−
ε,DM,A(λ) + ε]” instead. However, this would lead to undecidable approximation in the
LimAvg case (cf. Theorem 6).

3 Basic properties

Consider an f -automaton A, a Markov chain M and a set of words X. We denote by
EM(A | X) the expected value of A w.r.t. M restricted only to words in the set X (see [14]).

The following says that we can disregard a set of words with probability 0 (e.g. containing
only some of the letters under uniform distribution) while computing the expected value.
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I Fact 3. If P(X) = 1 then EM(A) = EM(A | X).

The proof is rather straightforward; the only interesting case is when there are some
words not in X with infinite values. But for all the functions we consider, one can show that
in this case there is a set of words with infinite value that has a non-zero probability, and
therefore EM(A) = EM(A | X) =∞.

One important corollary of Fact 3 is that ifM is, for example, uniform, then because the
set Y of ultimately-periodic words (i.e., words of the form vwω) has probability 0, we have
EM(A) = EM(A | Σω \ Y ). This suggests a possibility that the expected value may not be
realised by any ultimately periodic word. We exemplify this in Remark 13.

3.1 Example of computing expected value by hand
Consider a LimAvg-automaton A and a Markov chainM depicted in Figure 1. We encourage
the reader to take a moment to study this automaton and try to figure out its expected
value.

The idea behind A is as follows. Assume that A is in a state ql for some l ∈ {a, b}. Then,
it reads a word up to the first occurrence a subword ba, where it has a possibility to go to qx
and then to non-deterministically choose qa or qb as the next state. Since going to qx and
back to ql costs the same as staying in ql, we will assume that the automaton always goes to
qx in such a case. When an automaton is in the state qx and has to read a word w = ajbk,
then average cost of a run on w is j

j+k if the run goes to qb and k
j+k otherwise. So the run

with the lowest value is the one that goes to qa if j > k and qb otherwise.
To compute the expected value of the automaton, we focus on the set X of words w

such that for each positive n ∈ N there are only finitely many prefixes of w of the form
w′ajbk such that j+k

|w′|+j+k ≥
1
n . Notice that this means that w contains infinitely many a

and infinitely many b. It can be proved in a standard manner that PM(X) = 1.
Let w ∈ X be a random event, which is a word generated by M. Since w contains

infinitely many letters a and b, it can be partitioned in the following way. Let w = w1w2w3 . . .

be a partition of w such that each wi for i > 0 is of the form ajbk for j ≥ 0, k > 0, and for
i > 1 we also have j > 0. For example, the partition of w = baaabbbaabbbaba . . . is such that
w1 = b, w2 = aaabbb, w3 = aabbb, w4 = ab, . . . . Let si = |w1w2 . . . wi|.

We now define a run πw on w as follows:

qw1 . . . q
w
1 qxq

w
2 . . . q

w
2 qxq

w
3 . . . q

w
3 qxq

w
4 . . .

where the length of each block of qi is |wi| − 1, qw0 = qa and qwi = qa if wi = ajbk for some
j > k and qwi =qb otherwise. It can be shown by a careful consideration of all possible runs
that this run’s value is the infimum of values of all the runs on this word.

I Lemma 4. LA(w) = LimAvg(πw).

By Fact 3 and Lemma 4, it remains to compute the expected value of LimAvg({πw | w ∈
X}). As the expected value of the sum is the sum of expected values, we can state that

EM(LimAvg({πw | w ∈ X})) = lim sup
s→∞

1
s
·
s∑
i=1

EM ({(C(πw))[i] | w ∈ X})

It remains to compute EM((C(πw)[i]). If i is large enough (and since the expected value
does not depend on a finite number of values, we assume that it is), the letter πw[i] is in
some block ws = ajbk. There are j + k possible letters in this block, and the probability that

CONCUR 2018
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the letter πw[i] is an ith letter in such a block is 2−(j+k+2) (”+2”, because the block has to
be maximal, so we need to include the letters before the block and after the block). So the
probability that a letter is in a block ajbk is j+k

2j+k+2 . The average cost of a such a letter is
min(j,k)
j+k , as there are j + k letters in this block and the block contributes min(j, k) to the

sum.
It can be analytically checked that

∞∑
j=1

∞∑
k=1

j + k

2j+k+2 ·
min(j, k)
j + k

=
∞∑
j=1

∞∑
k=1

min(j, k)
2j+k+2 = 1

3

We can conclude that EM(LimAvg(πw)) = 1
3 and, by Lemma 4, EM(A) = 1

3 .
The bottom line is that even for such a simple automaton with only one strongly connected

component consisting of three states (and two of them being symmetrical), the analysis is
complicated. On the other hand, we conducted a simple Monte Carlo experiment in which we
computed the value of this automaton on 10000 random words of length 222 generated byM,
and observed that the obtained values are in the interval [0.3283, 0.3382], with the average of
0.33336, which is a good approximation of the expected value 0.(3). This foreshadows our
results for LimAvg-automata: we show that computing the expected value is, in general,
impossible, but it is possible to approximate it with arbitrary precision. Furthermore,
the small variation of the results is not accidental – we show that for strongly-connected
LimAvg-automata, almost all words have the same value (which is equal to the expected
value).

3.2 Irrationality of the distribution and the expected value

We argue that the exact values of EM(A) and DM,A(λ) for Sum-automata and LimAvg-
automata may be irrational.

For the rest of this section we assume that the distribution of words is uniform. In the
infinite case, this means that the Markov chain contains a single state where it loops over
any letter with probability 1

|Σ| , where Σ is the alphabet. In the finite case, this amounts to a
terminating Markov chain with one regular state and one terminating state; it loops over
any letter in the non-terminating state with probability 1

|Σ|+1 or go to the terminating state
over ε with probability 1

|Σ|+1 . Below we omit the Markov chain as it is fixed (for a given
alphabet).

We define a Sum-automaton A (Figure 2) over the alphabet Σ = {a,#} such that
A(w) = 0 if w = a#a2# . . .#a2n and A(w) ≤ −1 otherwise. Such an automaton basically
picks a block with an inconsistency and verifies it. For example, if w contains a block
#ai#aj#, the automaton A first assigns −2 to each letter a and upon # it switches to the
mode in which it assigns 1 to each letter a. Then, A returns the value j − 2 · i. Similarly, we
can encode the run that returns the value 2 · i− j. Therefore, all the runs return 0 if and
only if each block of a’s is twice as long as the previous block. Finally, A checks whether the
first block of a’s has length 1 and returns −1 otherwise.

A word of the form a#a2# . . .#a2n has length 2n+1 + n − 1 and its probability is
3−(2n+1+n) (as the probability of any given word with n letters over a two-letters alphabet is
3−(n+1)). Therefore, the probability γ that a word is of the form a#a2# . . .#a2n is equal
to

∑∞
n=0 3−(2n+1+n). Observe that γ written in base 3 has arbitrary long sequences of 0’s

and hence its representation is acyclic. Thus, γ is irrational. Observe that γ = 1− DA(−1).
Therefore, DA(−1) is irrational.
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qI

q′I

q

a : 0

# : −1

a : −1
a,# : 0

a,# : 0

# : 0

a : 0

a : −2

a : −2

# : 0

a : +1

# : 0

#, a : 0
a : +2

a : +2

# : 0

a : −1

# : 0

Figure 2 The automaton A from Section 3.2. States qI and q′
I are initial and states but q are

accepting. Any word that starts with # or aa has the value at most −1 because of a run that starts
in qI . For all other words, the runs starting in qI have value −1. The accepting runs starting in q′

I

have negative value only if the input word contains a (maximal) subword ai#aj such that j 6= 2i.

For the expected value, we construct A′ such that for every word w we have LA′(w) =
min(LA(w),−1). This can be done by adding to A an additional initial state q0, which
starts an automaton that assigns to all words value −1. Observe that A and A′ differ only
on words w of the form a#a2# . . .#a2n , where A(w) = 0 and A′(w) = −1. On all other
words, both automata return the same values. Therefore, E(A)− E(A′) = γ. It follows that
at least one of the values E(A), E(A′) is irrational.

The same construction works for LimAvg. We take A (resp., A′) and we convert it
to a LimAvg-automaton A∞ (resp., A′∞) over Σ′ = Σ ∪ {$}. The new letter $ resets the
automaton, i.e., A∞ (resp., A′∞) has transitions from the final states of A (resp., A′) to its
initial states labeled with $. We can show that 1− DA∞(−1) and E(A∞)− E(A′∞) over the
uniform distribution are equal to γ and hence DA∞(−1) is irrational and one of the values
E(A∞), E(A′∞) is irrational.

I Theorem 5. There exist a Sum-automaton and a LimAvg-automaton whose distributions
and expected values w.r.t. the uniform distribution are irrational.

4 The exact value problems

In this section we consider the probabilistic questions for non-deterministic Sum-automata
and LimAvg-automata, i.e., the problems of computing the exact values of the expected
value EM(A) and the distribution DM,A(λ) w.r.t. a Markov chainM and an f -automaton
A. We showed that these values may be irrational. But one can perhaps argue that there
might be some representation of irrational numbers that can be employed to avoid this
problem. We prove that this is not the case by showing that computing the exact value to
any representation with decidable equality of two numbers is not possible. The proof is by a
(Turing) reduction from the quantitative universality problem for Sum-automata:

The quantitative universality problem for Sum-automata: Given a Sum-automaton with
weights −1, 0 and 1, decide whether for all words w we have LA(w) ≤ 0.

The quantitative universality problem for Sum-automata is undecidable [21, 1].
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We first discuss reductions to the probabilistic problems for Sum-automata. Consider an
instance of the quantitative universality problem, which is a Sum-automaton A. If there is a
word w with the value greater than 0, then P(w) > 0, and thus DA(0) < 1. Otherwise, clearly
DA(0) = 1. Therefore, solving the universality problem amounts to computing whether the
DA(0) = 1, and thus the latter problem is undecidable. For the expected value, we construct
a Sum-automaton A′ such that for every word w we have LA′(w) = min(LA(w), 0). Observe
that E(A) = E(A′) if and only if for every word w we have LA(w) ≤ 0, i.e., the answer
to the universality problem is YES. Therefore, there is no Turing machine, which given a
Sum-automaton A computes E(A).

For LimAvg case, we construct a LimAvg-automaton A∞ from the Sum-automaton A,
by connecting all accepting states (of A) with all initial states by transitions of weight 0
labeled by an auxiliary letter #. For the expected value we construct A′∞ from A′ in the
same way. Again, the distribution DA∞(0) = 1 if and only if for all words we have LA(w) ≤ 0.
Then, observe that E(A∞) = E(A′∞) if and only if for every word w we have LA(w) ≤ 0.
Therefore, there is no Turing machine computing the expected value or the distribution of a
given LimAvg-automaton.

I Theorem 6. The expected value and the distribution of (non-deterministic) Sum-automata
(resp., LimAvg-automata) are uncomputable even for the uniform distribution.

4.1 Extrema automata
We discuss the distribution problem for Min-, Max-, Inf- and Sup-automata, where Min
and Max return the minimal and the maximal (resp.) element of a finite sequence, and
Inf and Sup return the minimal and the maximal (resp.) element of an infinite sequence.
The expected value of an automaton can be easily computed based on the distribution as
there are only finitely many possible values of a run (each possible value is a label of some
transition).

I Theorem 7. For Min-, Max-, Inf- and Sup-automata A and a Markov chain M, the
distribution problem can be solved in exponential time in |A| and polynomial time in |M|.

Proof. We discuss the case of f = Inf as the other cases are similar. Consider an Inf-
automaton A. For each weight x of A, we can construct a (non-deterministic) ω-automaton
Ax that accepts only words of value greater than x – we take A, remove the transitions of
weight at most x, and drop all the weights. Therefore, the set of words with the value greater
than x is regular, and hence it is measurable. We can compute its probability px w.r.t. M
in exponential time in |A| and polynomial in |M| [3]. Note that px = 1− DM,A(x). J

5 The approximation problems

We start the discussion on the approximation problems by showing a hardness result that
holds for a wide range of value functions. We say that a function is 0-preserving if its value
is 0 whenever the input consists only of 0s. Notice that functions such as Sum, LimAvg,
Min, Max, Inf, Sup and virtually all the functions from the literature [8] are 0-preserving.
The hardness results follow from the fact that accepted words have finite values, which we
can force to be 0, while words without accepting runs have infinite values.

The answers in the approximation problems are numbers and to study the lower bounds,
we consider their decision variants, called the separation problems. In these variants, the
input is enriched with numbers a, b such that b − a > 2ε and the instance is such that
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EM(A) 6∈ [a, b] (resp. DM(A) 6∈ [a, b]), and the question is whether EM(A) < a (resp.
DM(A) < a). Note that having an algorithm computing one of the approximate problems
(for the distribution or the expected value), we can use it to decide the separation question.
Conversely, using the separation problem as an oracle, we can perform binary search on the
domain to compute solve the corresponding approximation problem in polynomial time.

I Theorem 8. For a 0-preserving function f , the separation problems for non-deterministic
f -automata are PSpace-hard.

Total automata. Theorem 8 gives us a general hardness result, which is due to accepting
conditions rather than values returned by weighted automata. In the following, we focus
on weights and we assume that weighted automata are total, i.e., they accept all the words
(resp., almost all the words in the infinite-word case). For Sum-automata under the totality
assumption, the approximate probabilistic questions become #P-complete.

I Theorem 9. The approximate expected value and the approximate distribution questions
for non-deterministic total Sum-automata are #P-complete.

The lower bound can be obtained by a reduction from the problem of counting the number
of satisfying assignment of a given propositional formula ϕ in Conjunctive Normal Form
(CNF) [25, 23], which is #P-complete. We construct an automaton that, for a formula with
n variables, accepts only words of length n that encode valuations that make the formula
satisfied. It follows that the expected value of the automaton equals 3−(n+1) · C, where
3−(n+1) is the probability of generating a word of length n under uniform distribution and C
is the number of variable assignments satisfying ϕ.

The upper bound follows the idea that the probability thatMT emits a word of length
greater than n decreases exponentially with n. This means that there is N of polynomial
size such that the distribution (resp., the expected value) of A and the distribution (resp.,
the expected value) of A over words up to length N differ by less than ε. Based on this, we
can build a Turing machine that imitates the distribution ofMT over words up to length N
with its non-deterministic computations.

We show that the approximation problem for LimAvg-automata is PSpace-hard over
the class of total automata.

I Theorem 10. The separation problems for non-deterministic total LimAvg-automata are
PSpace-hard.

Proof. Given a non-deterministic finite-word automaton A, we construct an infinite-word
LimAvg-automaton A∞ from A in the following way. We introduce an auxiliary symbol #
and we add transitions labeled by # between any final state of A and any initial state of A.
Then, we label all transitions of A∞ with 0. Finally, we connect all non-accepting states of
A with an auxiliary state qsink, which is a sink state with all transitions of weight 1. The
automaton A∞ is total.

Observe that if A is universal, then A∞ has a run of value 0 on every word. Otherwise,
if A rejects a word w, then upon reading a subword #w#, the automaton A∞ reaches qsink,
i.e., the value of the whole word is 1. Almost all words contain an infix #w# and hence
almost all words have value 1. J
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6 Approximating LimAvg-automata in exponential time

The case of LimAvg is significantly more complex than the other cases. First, we restrict our
attention to recurrent LimAvg-automata and the uniform distribution over infinite words.
Then, we comment on the extension to all distributions given by Markov chains. Finally, we
show the proof for all LimAvg-automata over probability measures given by Markov chains.

6.1 Recurrent automata
A non-deterministic LimAvg-automaton A = (Σ, Q,Q0, δ) is recurrent if and only if for every
set S ⊆ Q such that |S| = 1 or δ̂(Q0, w) = S for some word w, there is a finite word u such
that δ̂(S, u) = Q0.

For every A, which is strongly connected as a graph, there exists a set of initial states T
with which it becomes recurrent. Moreover, the probability of words accepted by A is either
0 or 1. Indeed, consider A as an unweighted ω-automaton and construct a deterministic
ω-automaton AD through the power-set construction applied to A. Note that AD has a
single bottom strongly-connected component (BSCC) and Q0 belongs to that component.
Conversely, for any strongly connected automaton A, if Q0 belongs to the BSCC of AD,
then A is recurrent. Moreover, since AD has a single BSCC, for almost all words, all runs
end up in that BSCC and hence the probability of the set of words having any infinite run in
A is either 0 or 1.

6.2 Nearly-deterministic approximations
While words are generated by a Markov chain letter by letter, the run on that word can be
defined only when the complete word is generated. This precludes application of standard
techniques for probabilistic verification, which relies on the fact that the word and the run
on it are generated simultaneously [26, 12, 3].

Key ideas. Our main idea is to change the non-determinism to bounded look-ahead. This
must be inaccurate, as the expected value of a deterministic automaton with bounded
look-ahead is always rational, whereas Theorem 5 shows that the values of non-deterministic
automata may be irrational. Nevertheless, we show that bounded look-ahead is sufficient to
approximate the probabilistic questions for recurrent automata (Lemma 11). Furthermore, the
approximation can be done effectively (Lemma 14), which in turn gives us an exponential-time
approximation algorithm for recurrent automata (Lemma 15).

Jumping runs. Let k > 0. A k-jumping run ξ of A on a word w is an infinite sequence
of states such that for every i there is a run π of A on w such that ξ[ki, k(i + 1) − 1] =
π[ki, k(i+ 1)− 1].

A block of a k-jumping run is a sequence ξ[ki, k(i+ 1)− 1] for some i; positions k, 2k, . . .
are jumps, where the sequence ξ need not obey the transition relation of A.

The cost C of a transition of a k-jumping run ξ within a block is defined as usual, while
the cost of a jump is defined as the minimal weight of A. The value of a k-jumping run ξ is
defined as the limit average computed for such costs.

Optimal and block-deterministic jumping runs. We say that a k-jumping run ξ on a word
w is optimal if its value is the infimum over values of all k-jumping runs on w. We show that
optimal k-jumping runs can be constructed nearly deterministically, i.e., only looking ahead
to see the whole current block.
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For every S ⊆ Q and u ∈ Σk we fix a run ξS,u on u starting in one of states of S, which
has the minimal average weight. Then, given a word w ∈ Σω, we define a k-jumping run ξ
as follows. We divide w into k-letter blocks u1, u2, . . . and we put ξ = ξS0,u1ξS1,u2 . . ., where
S0 = {q0} and for i > 0, Si is the set of states reachable from q0 on the word u1 . . . ui. The
run ξo is a k-jumping run and it is indeed optimal. We call such runs block-deterministic
– they can be constructed based on finite memory – the set of reachable states Si and the
current block of the input word.

Since all runs of A are in particular k-jumping runs, the value of (any) optimal k-jumping
run on w is less or equal to A(w). We show that for recurrent LimAvg-automata, the values
of k-jumping runs on w converge to A(w) as k tends to infinity. To achieve this, we construct
a run of A which tries to “follow” a given jumping run, i.e., after most all of the jumps it is
able to synchronize with the jumping run quickly.

I Lemma 11. Let A be a recurrent LimAvg-automaton. For every ε > 0, there exists k
such that for almost all words w, the value A(w) and the value an optimal k-jumping run on
w differ by at most ε. The value k is doubly-exponential in |A| and polynomial in 1

ε .

6.3 Random variables
Given a recurrent LimAvg-automaton A and k > 0, we define a function g[k] : Σω → R
such that g[k](w) is the value of some optimal k-jumping run ξo on w. We can pick ξo to
be block-deterministic and hence g[k] corresponds to a Markov chain M [k]. More precisely,
we define M [k] labeled by Σk such that for every word w, the limit average of the path in
M [k] labeled by blocks of w (i.e., blocks w[1, k]w[k+ 1, 2k] . . .) equals g[k](w). Moreover, the
distribution of blocks Σk is uniform and hence M [k] corresponds to g[k] over the uniform
distribution over Σ. The Markov chain M [k] is a labeled weighted Markov chain [15], such
that its states are all subsets of Q, the set of states of A. For each state S ⊆ Q and u ∈ Σk,
the Markov chain M has an edge (S, δ̂(S, u)) of probability 1

|Σ|k . The weight of an edge
(S, S′) labeled by u is the minimal average of weights of any run from some state of S to
some state of S′ over the word w.

We have the following:

I Lemma 12. Let A be a recurrent LimAvg-automaton and k > 0. (1) The functions g[k]
and LA are random variables. (2) For almost all words w we have g[k](w) = E(g[k]) and
LA(w) = E(LA).

Proof. Since A is recurrent, M [k] has a single BSCC and hence M [k] and g[k] return the
same value for almost all words [15]. This implies that the preimage through g[k] of each set
has measure 0 or 1, and hence g[k] is measurable [14]. Lemma 11 implies that (measurable
functions) g[k] converge to LA with probability 1, and hence LA is measurable [14]. As the
limit of g[k], LA also has the same value for almost all words. J

I Remark 13. The automaton A from the proof of Theorem 5 is recurrent (it resets after
each $), so the value of A on almost all words is irrational. Yet, for every ultimately periodic
word vwω, the value of A is rational. This means that while the expected value is realised by
almost all words, it is not realised by any ultimately periodic word.

6.4 Approximation algorithms
We show that the expected value of g[k] can be efficiently approximated. The approximation
is exponential in the size of A, but only logarithmic in k (which is doubly-exponential due to
Lemma 11).

CONCUR 2018



10:14 Non-deterministic Weighted Automata on Random Words

I Lemma 14. Given a recurrent LimAvg-automaton A, k = 2l and ε > 0, the expected
value E(g[k]) can be approximated up to ε in exponential time in |A|, logarithmic time in k
and polynomial time in 1

ε .

Lemma 11 and Lemma 14 imply the following:

I Lemma 15. Given a recurrent LimAvg-automaton A, Markov chainM, ε > 0 and λ ∈ Q,
we can compute ε-approximations of the distribution DM,A(λ) and the expected value EM(A)
in exponential time in |A| and polynomial time in |M| and 1

ε .

Proof. For uniform distributions, by Lemma 11, for every ε > 0, there exists k such that
|E(A)− E(g[k])| ≤ ε

2 . The value k is doubly-exponential in |A| and polynomial in 1
ε . Then,

Lemma 14, we can compute γ such that |γ − E(g[k])| ≤ ε
2 in exponential time in |A| and

polynomial in 1
ε . Thus, γ differs from E(A) by at most ε. Since almost all words have the

same value, we can approximate DA(λ) by comparing λ with γ, i.e., 1 is an ε-approximation
of DA(λ) if λ ≤ γ, and otherwise 0 is an ε-approximation of DA(λ).

The case of the nonuniform distributions can be solved similarly, by encoding the Markov
chain in the automaton. J

We lift Lemma 15 from recurrent to all LimAvg-automata and formally show that
LA : Σω → R is measurable. To do so, we take the product of a given automaton and Markov
chain and observe that its BSCC correspond to recurrent automata. A careful analysis allows
to compute the values for the whole automata based on the values for the BSCC.

I Theorem 16. (1) For a non-deterministic LimAvg-automaton A the function LA : Σω →
R is measurable. (2) Given a non-deterministic LimAvg-automaton A, Markov chainM,
ε > 0, and λ ∈ Q, we can ε-approximate the distribution DM,A(λ) and the expected value
E(A) in exponential time in |A| and polynomial time in |M| and 1

ε .

7 Determinising and approximating LimAvg-automata

For technical simplicity, we assume that the distribution of words is uniform. However, the
results presented here extend to all distributions given by Markov chains.

Recall that for the LimAvg automata, the value of almost all words, whose optimal runs
end up in the same SSC, is the same. This means that there is a finite set of values (not
greater than the number of SSCs of the automaton) such that almost all the words have
their values in this set.

LimAvg-automata are not determinisable [8]. We say that a non-deterministic LimAvg-
automaton A is weakly determinisable if there is a deterministic LimAvg-automaton B

such that A and B have the same value over almost all the words. From [9] we know
that deterministic automata return rational values for almost all the words, so not all
LimAvg-automata are weakly determinisable. However, we can show the following.

I Theorem 17. A LimAvg-automaton A is weakly determinisable if and only if it returns
rational values for almost all words.

Proof sketch. Assume an automaton A with SSCs C1, . . . , Cm. For each i let vi be defined
as the expected value of A when its set of initial states is Ci and the run is bounded to stay
in Ci. If A has no such runs for some Ci, then vi =∞.

We now construct a deterministic automaton B with rational weights using the standard
power-set construction. We define the cost function such that the cost of any transition from
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a state Y is the minimal value vi such that vi is rational and Y contains a state from Ci. If
there are no such vi, then we set the cost to the maximal cost of A. Roughly speaking, B
tracks in which SSCs A can be and the weight corresponds to the SSC with the lowest value.

To see that B weakly determinises A observe that for almost all words w, a run with the
lowest value over w ends in some SSC and its value then equals the expected value of this
component, which is rational as the value of this word is rational. J

A straightforward corollary is that every non-deterministic LimAvg-automaton can be
weakly determinised by an LimAvg-automaton with real weights.

Theorem 17 does not provide an implementable algorithm for weakly-determinisation,
because of the hardness of computing the values vi. It is possible, however, to approximate
this automaton. We say that a deterministic LimAvg-automaton B ε-approximates A if for
almost every word w we have that LB(w) ∈ [LA(w)− ε,LA(w) + ε].

I Theorem 18. For every ε > 0 and a non-deterministic LimAvg-automaton A, one can
compute in exponential time a deterministic LimAvg-automaton that ε-approximates A.

The proof of this theorem is similar to the proof of Theorem 17, except now it is enough
to approximate the values vi, which can be done in exponential time.
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