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ABSTRACT 

Antibiotic resistance in bacteria is a serious problem that requires researchers to 

engineer new strategies to tackle this growing threat. The limited intracellular bioavailability 

of antibiotics decreases the efficacy of the treatments and, as a consequence promotes bacterial 

resistance towards antibiotics. Therefore, the development and improvement of drug controlled 

release systems is vital to create new approaches to deliver in the most effective manner the 

drugs or other bioactive compounds to the desired location. Especially if the targeted site is the 

gastrointestinal track, where the environmental conditions are harsh for biomolecules to 

maintain its stability and function. Polymeric microspheres are attractive due to their 

biodegradability and ability to encapsulate drugs or bioactive agents, therefore increasing their 

bioavailability. To address these poor bioavailability or unsustained drug release challenges, 

chitosan microspheres are adequate as drug delivery carriers for the gastrointestinal track due 

to mucoadhesive properties, which allows the drug dosage to be retained in the gastrointestinal 

track for extended periods of time, in addition to the presence of reactive sites in chitosan which 

allow the interaction with biomolecules to be carried to the targeted site.  

Spherical particles were produced using chitosan and γ-glycidoxypropyltrimethoxysilane 

(GPTMS) as an organic-inorganic hybrid compound resorting to two different methods. The 

first method consisted in a microfluidic approach using chitosan–GPTMS–β-glycerophosphate 

(chitosan–GPTMS–β-GP) to produce microspheres with uniform size and spherical shape 

around 650 μm and 285 μm. Whereas, in the second method beads with diameter around 2 mm 

with micropores were synthetized by dropping the hybrid precursor sol into liquid nitrogen 

followed by a freeze drying process. 

The physicochemical characterization of the microspheres from the microfluidic system 

was performed in which the formation of siloxane (Si-O-Si) networks was confirmed in the 

chitosan polymeric matrix, as well as the spheres stability in solutions. The degradation of 
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microspheres with different GPTMS molar ratios was evaluated under simulated gastric fluids 

(SGF) and neutral conditions. The microspheres incubated at pH 7.4 had the lowest weight loss 

(27%–32%), whereas those incubated at pH 1.7 and pH 5.4 showed greater weight losses of 

43–59% and 69–77%, respectively. The inhibition of the degradation at low pH was dependent 

on the siloxane network formed in the chitosan matrix. Additionally, GPTMS was released with 

the chitosan chains via hydrolysis of the chitosan molecules.  

Pelargonidin is a natural antioxidant which was incorporated in the microspheres and the 

releasing behavior was observed under SGF conditions and simulated time of digestion cycle 

in humans. The release profile observed leads to believe that these microspheres are promising 

for gastrointestinal drug delivery applications due to its resistance to low pH conditions present 

in the upper gastrointestinal track, in addition to the controlled and sustained release rate of 

pelargonidin and its ability to retain it in the matrix even after 57 h.  

Cerium compounds have been described to possess antibacterial activity, and new 

strategies of treating pathogenic bacteria are needed due to the rapid increase of bacterial 

resistance towards common antibiotics. The bacterial behavior of Escherichia coli and 

Staphylococcus aureus was observed with the chitosan–GPTMS–β-GP spheres and hydrogels 

containing cerium(III) chloride (CeCl3), and no antibacterial effect was observed due to the 

immediate interaction between β-GP and cerium, via the complex formation of cerium with the 

amino groups of chitosan, making it inaccessible to the bacteria. Furthermore, the bacterial 

viability increased for both gram-negative and gram-positive strains on hydrogels with and 

without cerium.  

To achieve antibacterial applications using the chitosan-siloxane hybrid, beads without 

β-GP were prepared by dropping the chitosan-GPTMS precursor sols into liquid nitrogen. The 

beads were synthetized with and without cerium. The bacterial activity was greatly reduced 

with the highest tested amounts of cerium against both gram-negative (Escherichia coli) and 
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gram-positive (Staphylococcus aureus) strains. This microporous beads have the potential to be 

applied for soft tissue defect fillers materials with antibacterial properties to reduce or eradicate 

in situ bacterial infection. 
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Chapter 1. 

GENERAL INTRODUCTION  

1.1. Drug delivery 

The improvement of controlled release systems of drugs and other bioactive agents, is 

an essential research topic for therapeutic treatments. It is vital to develop new approaches to 

deliver in the most effective manner the drugs or other bioactive compounds to the desired 

location.  

One of the main limitations in the pharmaceutical field is the fact that the current 

approaches for drug delivery (for instance pills, injections, and sprays), may lack on efficiency 

to deliver the bioactive agents, consequently several administrations might be obligatory to 

preserve the drug concentration, in the blood or plasma, with the effecient drug level within the 

therapeutic window for the necessary time period. Figure 1-1 is a schematic representation of 

the conventional drug therapy by multiple dosage versus the ideal controlled and sustained drug 

release overtime within the effective therapeutic range. On figure 1-1a, is represented the tablet 

or injection types of drug administration, in which the drug levels rise to a maximum peak and 

decrease to a lower value until the time for the next dosage is necessary. This approach can 

create problems where the drug concentration has a narrow therapeutic range for the drug to 

work efficiently, and if the drug levels continue to rise reaching into the toxic level, the 

probability of occurring adverse side effects is high, and drop again below the lowest effective 

concentration. Therefore, the necessity for the development of controlled release systems, to 

effectively deliver the drug or bioactive agent at a desired rate and period of time. This is the 

optimal drug release scenario represented on figure 1-1b. In which, in respect to the rate and 

duration, the release pattern happens where the concentration of the drug in the body is 
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maintained within the effective therapeutic window for an extended period of time. The great 

benefit from a controlled drug release approach is the fact that the drug could be administered 

in a single dosage, with improved effectiveness using the same amount of drug and reduce the 

possibility of side effects from sudden drug concentration spikes.  

 
Figure 1-1 Drug concentration levels vs dosage when a) using conventional dosage or b) using 
a system that has a controlled and sustained release inside the therapeutic window (represented 
by the grey rectangle). 

 

Most of the drug controlled release systems consist on dispersing the drug or bioactive 

agent within a polymeric matrix. Polymer based hydrogels are water swelling, structures 

constituted mostly of hydrophilic homopolymers or copolymers [1, 2]. In general, hydrogels 

are insoluble because of the physical or chemical crosslinks. The physical crosslinks can be 
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crystallites, entanglements or weak interactions, like hydrogen bonds or van der Waals forces. 

Physical reinforcement and network structure are provided via crosslinking [2, 3]. 

The different type of controlled release system can be classified according to the 

mechanism regulating the drug release from the system. For instance, using hydrogels as an 

example, the drug delivery systems (DDS) are categorized as (1) swelling controlled systems, 

(2) diffusion controlled systems, (3) environmentally responsive systems and (4) chemically 

controlled systems [3, 4].  

Briefly, in the (1) swelling controlled systems (figure 1-2), the bioactive agent is dispersed 

within a polymer. When it enters in contact with biological fluids the polymer starts to 

physically swell. At first, no drug diffusion occurs. As the fluid enters the polymer, the 

relaxation of the polymer macromolecular chains occurs. Consequently, the drug is capable of 

diffusing out of the swollen polymer.  

 

Figure 1-2 Illustration representing the swelling controlled system. 

 

The (2) diffusion controlled release system is the most general mechanism in a DDS 

(figure 1-3). In this category, there are two main subtypes of diffusion systems: reservoir and 

matrix devices. Reservoir systems involve of a polymeric membrane surrounding a core 

containing the drug (e.g. capsules). The drug release rate by diffusion is limited by the outer 

membrane of the device. However, the drawback of this system is the potential rupture of the 

outer membrane and its contents will be suddenly release. Concerning the matrix systems, the 
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drug is distributed all over the biomaterial structure and the drug release occurs via the water 

filled pores or through the macromolecular network.  

 

Figure 1-3 Illustration representing the diffusion controlled release systems. Subdivided into 
the reservoir and matrix systems.  

 

Regarding the (3) environmentally responsive systems (figure 1-4), the biomaterials 

might exhibit swelling behavior dependent on the external environmental factors, such as 

temperature, pH, ionic strength, composition, presence of enzymes, among others [4].  

 

Figure 1-4 Illustration representing the environmentally responsive systems by external 
stimulus. 
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At last, in the (4) chemically controlled release mechanisms (figure 1-5), there are two 

main subtypes: erodible DDS and pendant chain systems [5]. As the name suggests, in the 

erodible systems, the regulated drug release happens because of the gradual dissolution or 

degradation of the hydrogel. Whereas, in pendant chain systems the bioactive agent is bonded 

to the side groups of the polymer skeleton via degradable linkages, and as those links degrade 

by the influence of enzymes or solvents, the drug is therefore released. 

 

Figure 1-5 Illustration representing the chemically controlled release systems. Subdivided into 
erodible drug delivery or pendant chain systems.  

 

1.1.1. Drug delivery for gastrointestinal track applications and for antibacterial 

strategies 

The intestinal epithelium of humans has a great absorptive capacity with a surface area 

in the gastrointestinal (GI) tract of 300–400 m2 [6]. Nonetheless, oral intake of drugs present 

some complications, especially for bioactive molecules such as proteins and peptides, due to: 

(1) low solubility and/or bioavailability, (2) low stability in the harsh gastric environment (low 

pH, breakdown by enzymes, etc.) and (3) the mucus barrier can hinder the drug penetration and 
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consequent drug absorption. To reduce these complications, biomaterial formulations that 

encapsulate and protect the drugs to release them in a time controlled manner are being 

developed. Another possible strategy, is the modification of the biomaterials surface to increase 

or reduce bioadhesion to target specific tissues [7].  

If the drug delivery is targeted to the gastrointestinal track, proteins, peptides or other 

small molecules, need to be protected from the harsh environments, usually by encapsulation 

utilizing polymeric particles with mucoadhesive properties in order to improve the retention 

time and drug bioavailability. Or, the surface can also be engineered in order to optimize the 

particle mucoadhesion, cell targeting, and cellular uptake.  

Besides the prolonged retention time, increasing the drug bioavailability can be credited 

to the shielding effect towards proteolytic enzymes. The stability of bioactive molecules is 

generally improved when encapsulated in polymeric particles [8, 9]. A study demonstrated that 

a coating of around 160 nm in polylactic acid (PLA) nanoparticles with poly(ethylene glycol) 

(PEG) offered additional protection against enzyme induced degradation and aggregation in in 

vitro simulated gastrointestinal fluids [10]. 

The increasing prevalence of multi drug resistant bacteria is a serious challenge [11-13] 

that requires the researchers to engineer new strategies to overcome this concern. The use of 

biomaterials as DDS with antibacterial agents is one of the strategies adopted by researchers. 

Many of the currently used antibiotics present disadvantages, such as short half-life, systemic 

toxicity, besides the serious concern of higher susceptibility to bacterial resistance. The 

administration of antibiotics is commonly systemic, via intravenous or oral routes, to treat 

bacterial infections. Nonetheless, sometimes the efficiency of the drug is reduced, for instance 

in cases of infections where the bacteria are not responsive to the drug, or in situations in which 

biofilm formation in the implant can cause implant failure. Therefore, the need to come up with 
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more efficient DDS. Taking into consideration this growing threat it is essential the 

development new antimicrobial delivery systems with high bactericidal rates. 

The effective release of antibacterial agents at concentrations above the bacteria’s 

minimum inhibitory concentration (MIC) it’s essential to avoid infection. Localized and 

controlled release of antibiotic agents lowers the need of higher dosages when compared with 

systemic drug intake, and extended time from the release of the drug leads to the reduction of 

systemic toxicity (decreasing the occurrence of side effects), as well as avoidance of systemic 

exposure that can consequently lead to bacterial resistance [14, 15]. The reduction of multiple 

doses becomes easier for the patient to comply. Therefore, DDS that provide a controlled and 

sustained release are highly beneficial and polymeric delivery systems can be utilized to achieve 

that purpose. The chemical conjugation of bioactive molecules to polymeric chains proposes 

several benefits, such as, the tunable release rate based on the bonds that link the drug to the 

polymer (e.g., amide, ester, carboxyl, etc.) [16, 17], and chemical composition of the polymer 

(e.g., use of linker molecule) [18, 19]. Therefore, via chemical modifications, the bioactive 

release rate can be fine-tuned in terms of releasing rate. 

1.1.2. Polymers used for controlled delivery 

In the last decades, several techniques have been utilized in the pharmaceutical industry 

in order to improve polymers function for a controlled delivery of bioactive agents. In the case 

of synthetic polymers, poly(lactic-co-glycolic acid) (PLGA), polyanhydrides, poly(ethylene 

glycol) (PEG), poly(N-vinyl pyrrolidone),  among others, have been applied. But also, natural 

polymers like complex sugars such as chitosan, collagen, alginate and hyaluronan can be 

utilized. 

For the conjugation of polymer-drug to be effective, several parameters must be taken 

into account: (1) nonimmunogenic and not toxic carrier; (2) enough molecular weight to ensure 
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long circulation periods, but still under 40 kDa for nonbiodegradable polymers to guarantee 

renal elimination after drug release (e.g. N-(2-hydroxypropyl)methacrylamide (HPMA) has a 

good molecular weight of ~30 kDa [20]); (3) suitable loading/carrying capability of the drug; 

(4) crosslinker must be stable for the transport but cleaved fairly easy for the release upon arrival 

at target; and (5) the aptitude to target the desired tissue by active and/or passive methods [21]. 

Polymers like PLA, PLGA, poly(sebacic acid) (PSA), and poly(acrylic acid) (PAA) can 

be useful for gastrointestinal applications due to the mucoadhesive features via polymeric 

entanglements with mucins, hydrophobic interactions, hydrogen bonding or a combination of 

the mentioned [22]. For instance, microspheres of 680–850 μm containing fumaric acid and 

sebacic acid displayed prolonged retention in the rat gut, when compared to an alginate particle 

with weaker adhesive features [23].  

Alginate is a natural polymer that has favorable properties, including ease of gelation 

and biocompatibility, and alginate hydrogels have been interesting for drug delivery purposes. 

Nonetheless, besides the mechanical weakness, another critic downside is the limited long-term 

stability in physiological environments due to the ionic cross-linked nature of alginate gels, 

since these gels can be dissolved via the release of divalent ions into the media due to exchange 

with monovalent cations [24].  

 Other more suitable candidates can be considered, such as chitosan, due to its properties 

and versatility in applications. 

1.1.3. Chitosan as drug carrier for controlled delivery 

Chitosan is a natural polymer with great potential and versatility in biomedical and 

pharmaceutical applications due to its biodegradability, biocompatibility, antimicrobial 

activity, mucoadhesive, non-toxic and non-antigenic properties [25-27], among others.  



 
 

Chapter 1 
 

– 9 – 

Chitosan is derived from the partial deacetylation of chitin (figure 1-6), a structural 

polymer that is abundant in the exoskeletons of crustaceans and insects [28]. The degree of 

deacetylation is determined by the proportion of D-glucosamine and N-acetyl-D-glucosamine. 

In terms of structure, chitosan is a straight chain copolymer. Due to its excellent 

biocompatibility and biodegradability, chitosan has been used in many biomedical applications, 

including: wound dressings, kidney dialysis membrane, reabsorbable sutures, contact lenses, 

drug delivery systems and space-filling implants [29]. In Japan (1983) and South Korea (1995) 

chitosan has been approved as a food additive [30]. Equally, the U.S. Food and Drug 

Administration (FDA) has approved chitosan (2012) with Generally Recognized As Safe 

(GRAS) status [31].  

 

Figure 1-6 Chemical structure of chitin and chitosan. 

 

Its solubility, reactivity, and biodegradability depend on the amount of protonated amino 

groups in the polymeric chain, thus depends on the proportion of acetylated and non-acetylated 

D-glucosamine units. The amino groups (pKa from 6.2 to 7.0) are fully protonated in acids with 

pKa smaller than 6.2 making chitosan soluble [28]. The positive charge from the polymer is 

obtained due to the free amino groups, allowing it to precede many electrostatic interactions 

with negatively charged molecules or ions. The amino groups along with the hydroxyl group 
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provide chitosan its performance by converting it into an extremely reactive polysaccharide. 

The cationic nature of chitosan can be strategically used for antibacterial purposes, since it 

inhibits the growth of bacteria [32]. Chitosan has several advantages over other types of 

antibacterial agents due to a broader range of activity against bacteria, and a lower toxicity 

towards mammalian cells [33]. It is known that antimicrobial activity of this polymer is 

influenced by many factors. The chitosan’s polycationic structure is indispensable for 

antibacterial activity. When environmental pH is below the chitosan’s pKa, electrostatic 

interaction occurs between the polycationic polymer and the predominantly anionic 

constituents of the microorganisms' surface (like lipopolysaccharide and cell surface proteins 

present in Gram-negative bacteria) play a major role for antibacterial characteristics. When the 

density of positive charges of chitosan increases, the antibacterial effect will also intensify, as 

observed with quaternized chitosan [34, 35] and with chitosan metal complex [36]. In contrast, 

if the polycationic property is reversed or nullified, the antibacterial ability will be weakened 

or lost.  

Chitosan microspheres are widely studied drug delivery system for the controlled release 

of drugs such as antibiotics, anti-cancer agents, proteins and vaccines. Drug loading in micro/or 

nanoparticles is achieved via the following methods: (I) incorporation of the drug occurs during 

the preparation of the particles and/or (II) after the formation of the particles the drug is 

incubated together with the particles. In both cases, the drug is physically embedded into the 

matrix as well as adsorbed onto the surface of the particles. Water-soluble and water-insoluble 

drugs can be loaded by employing these methods [28]. 

By physically and chemically engineering the properties of the drug carrier to specifically 

regulate their environmental response, permeability, biodegradability, surface functionality, 

and biological recognition sites to produce “intelligent” DDS. Chitosan has been used has 

intelligent DDS. Some examples include the use of chitosan in the preparation of mucoadhesive 
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formulations improving the dissolution rate of the poorly soluble drugs [28] and drug targeting 

[37]. One interesting application of chitosan-based delivery systems is for gastric drug targeting 

because this it protects the therapeutic agents from the hostile conditions of the upper 

gastrointestinal tract and release the entrapped agents through degradation of the glycosidic 

linkages of chitosan by colonic microflora [38, 39]. It was reported that chitosan microspheres 

were successfully optimized for higher acidic resistance via crosslinking with pentasodium 

tripolyphosphate using two different microencapsulation methods. The microspheres were 

more stable in SGF, and also achieved a slower release of ampicillin [40]. 

Degradation is also an important parameter to take into account in all polymers used as 

DDS, since the degradation of the matrix can be closely associated to the drug release 

performance. The rate of chitosan degradation is highly related to its deacetylation degree and 

the molecular weight of the polymer. Chemical degradation is referred to acid-catalyzed 

degradation as occurs in the stomach, and ideally, both chemical and enzymatic degradation 

originates byproducts suitable for renal clearance.  

In summary, chitosan was chosen as the polymeric matrix for drug delivery systems due 

to the following advantages:  

 Biological properties: bioresorbable, biocompatible (minimal foreign body 

reaction), and bioactive biopolymer, 

 Degradation rate can be regulated, 

 The byproducts of degradation are safe, 

 Consequently, is already used as food additive, 

 Availability of reactive sites for attachment to other bioactive agents. 
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1.2. Chitosan-siloxane Hybrids 

Hybrid materials with organic–inorganic character can be defined as interpenetrating 

networks of organic and inorganic moieties. Organic–inorganic hybrids can be generally 

divided into two classes. This division is dependent on the bonding strength amongst the 

components [41]. In class I, the organic and inorganic constituents are weakly bonded with 

dynamic interactions, for instance hydrogen bonding, electrostatic forces, ionic and van der 

Waals’, while in class II, strong ionic–covalent or covalent bonds occur between the organic 

and inorganic constituents. With the increase of interfacial bonding strength, the distribution of 

the components in the organic–inorganic hybrids is more homogeneous, leading to enhanced 

mechanical properties [42]. The present work uses class II approach to synthetize hybrids 

towards the design of biomaterials for biomedical applications. Briefly, class II hybrids can be 

attained from polymers that contain alkoxysilane precursors in their structure. Upon the 

addition of these functional precursors, during the sol–gel process their alkoxysilane moieties 

hydrolyze and condense, forming a covalent bond inorganic network. The resulting structures 

can be classified into two classes: (1) as silanised polyethers and polyesters presenting sol–gel 

functionalities as terminal end-groups; and (2) as silanised polysaccharides, polyacrylates or 

polypeptides manifesting sol–gel functionalities as pendant groups along the backbone of the 

polymers [43].  

In terms of possible applications for organic-inorganic hybrids, these materials show 

promising features that can be applied in diverse fields, including biomedical applications for 

human healthcare purposes. The literature shows a perceptible increase in the development of 

hybrids materials for this intent, for instance, hydrogels for drug delivery systems responsive 

to stimuli and for antimicrobial responses [44], nanocarriers for controlled therapeutic delivery 

of biomolecules [45], among many others.  
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In biomedical sciences, organic-inorganic hybrids that involve natural biodegradable 

polymers such as chitosan, are studied by researchers in the form of scaffolds, films, hydrogels 

and spherical particles. Nonetheless, one of the downsides of chitosan is the lack of mechanical 

endurance, better water-swelling and controlled degradation rate [46]. To solve this 

disadvantage, crosslinking agents are required. Shirosaki et al. prepared organic-inorganic 

hybrids using chitosan as the polymeric skeleton and γ-glycidoxypropyltrimethoxysilane 

(GPTMS) monomer as a covalent crosslinker. GPTMS is a member of the silane-coupling 

agents containing methoxysilane groups and an epoxy ring. Briefly, the methoxysilane groups 

are active and hydrolyze to yield a silanol group −Si−OH, which later undergoes condensation 

forming a siloxane Si–O–Si bridging network [47], whereas the epoxy ring opens and interacts 

with the protonated amino reactive groups of chitosan chains [48, 49]. The grafting of −Si−OH 

groups into the polymer induces bioactive properties [50]. Shirosaki et al. reported that 

chitosan-GPTMS porous bulk hybrids have very good cytocompatibility with various cell types 

[48, 49, 51], in addition to assessing the cytotoxicity of GPTMS together with other crosslinking 

agents for chitosan, in which GPTMS monomer proved to be less cytotoxic than glutaraldehyde 

for human osteosarcoma cells MG63 [52]. Nonetheless, this precursor compels pH 

neutralization if the purpose is to be applied in the human body. β-glycerophosphate (β-GP) is 

a weak base, as well as, one of the osteogenic supplements used when culturing bone marrow 

mesenchymal stem cells of human origin. Injectable hydrogels using chitosan–β-GP reported 

good cartilage tissue regeneration [53], but the long time required for their gelation limits the 

clinical application of these hydrogels. To overcome this, Shirosaki et al. synthetized a 

chitosan-GPTMS hybrid including β-GP, revealing that the time for the gelation of the 

hydrogels could be controlled by the amount added of GPTMS in the precursor sols, as well as 

good in vitro cytocompatibility with MG63 cells [54]. Figure 1-7 summarizes the reactions and 

structure bonding between chitosan, GPTMS and β-GP. 
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Figure 1-7 Representation of the structure of the hybrid chitosan–GPTMS–β-GP. Structural 

analysis, such as ninhydrin assay, 29Si and 13C CP-MAS NMR and FT-IR analysis provided 

information about the structure of chitosan-GPTMS [48, 49] and with β-GP [54]. 

 

1.3. Aims and structure of the thesis 

This thesis explores the preparation and characterization of chitosan-based organic-

inorganic hybrid, focusing mainly in the spherical shape. Additionally, the release profile of 

pelargonidin as a drug model was evaluated, as well as, the biological properties of bacteria 

towards these biodegradable hybrid spheres. Therefore, this thesis is structured in the following 

arrangement:  

Chapter 1 presents a brief background introduction highlighting points about (1) how  

drug delivery systems overcome the limitation of conventional drug intake, and the type of 

releasing methods that commonly occur when using polymeric DDS; (2) address the challenges 

of the drug delivery specifically targeting the gastrointestinal track, as well, as the possible 
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strategies to overcome these challenges by utilizing DDS, similar topics where discussed for 

the creation of novel and more effective antibacterial strategies using DDS, to face the growing 

resistance towards antibiotics. In addition, (3) a brief introduction to the advantages of the use 

of chitosan as a biocompatible and biodegradable controlled DDS. At last, (4) the chitosan-

siloxane hybrid formulation is introduced by crosslinking the chitosan backbone with GPTMS, 

which leads to improve the physicochemical resistance of chitosan and bioactivity. 

Polymeric microspheres are attractive due to their biodegradability and ability to 

encapsulate drugs or bioactive agents, increasing their bioavailability protecting them from 

severe environmental conditions in the human body, such as in the gastrointestinal track. 

Therefore, chapter 2 explores the synthesis of monodisperse and uniform spherical chitosan–

GPTMS–β-GP hybrid microspheres using a microfluidic approach. The structural composition 

of these micro sized spheres was analyzed, as well as the degradation behavior when in contact 

with different pH solutions simulating gastric fluids and neutral conditions. Along with the 

elements release from the microspheres matrix during the degradation test. In addition, it was 

also evaluated the potential of the synthetized chitosan–GPTMS–β-GP hybrid microspheres as 

a drug delivery system, using pelargonidin as a drug model, under gastro intestinal simulated 

fluids and digestion cycle time.  

The growing antibiotic resistance towards in bacteria is a serious health threat that 

requires the researchers to engineer new strategies to overcome it. The use of biomaterials as 

DDS carrying with antibacterial agents is one of the strategies adopted. Taking this into account, 

chapter 3 explores methods of including cerium, an antibacterial agent, in the chitosan–

GPTMS–β-GP microspheres using incorporation and immersion methods. The bacterial growth 

of E. coli (gram-negative) and S. aureus (gram-positive) was evaluated, as well as in chitosan–

GPTMS–β-glycerophosphate hydrogels with cerium incorporated, using a direct and indirect 

culture method.  
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Finally, the chitosan–GPTMS–β-GP microspheres system presented some limitation in 

the incorporation of cerium, therefore the methodology was adapted. Chapter 4 introduces an 

alternative microporous spheres prepared by dropping chitosan-GPTMS precursor sols, without 

β-GP, into liquid nitrogen followed by freeze drying, to overcome the challenges observed 

when including cerium chloride in the system. The morphology and composition of these 

hybrids was assessed, along with the antibacterial properties of the spheres containing cerium 

chloride against both E. coli and S. aureus bacteria. 

And at last, a summary of the main conclusions from each chapter. 
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Chapter 2.  

SYNTHESIS OF CHITOSAN-SILOXANE HYBRID 

MICROSPHERES USING A MICROFLUIDIC APPROACH 

AND RELEASE OF PELARGONIDIN IN 

GASTROINTESTINAL SIMULATED CONDITIONS 

2.1. Introduction 

Biodegradable microspheres present a number of advantages compared to conventional 

drug delivery systems. For example, they permit the release of insoluble allow, and the release 

is done in a more sustained and controlled way over time, as a result reducing the necessity for 

multiple doses [1, 2]. Moreover the polymeric based system, either from natural or synthetic 

source, are normally cleaved into biocompatible byproducts bringing no harm to the human 

body [3]. Even if microspheres are small in size, they possess large surface area to volume 

ratios [1, 2]. Chitosan-mediated systems can significantly improve the bioavailability of drugs 

across the epithelial layer of the oral cavity [4] and gastrointestinal track [5], most likely due to 

its mucoadhesiveness. In Japan (1983) and South Korea (1995) chitosan has been approved as 

a food additive [6]. Equally, the U.S. Food and Drug Administration (FDA) has approved 

chitosan (2012) with Generally Recognized As Safe (GRAS) status [7]. Chitosan is a natural 

polymer that comprises polysaccharide linear chains. The bioresorbable, biocompatible, non-

toxic, mucoadhesive and non-antigenic [8-10] properties of chitosan make it a promising and 

versatile candidate for medical applications. However, chitosan lacks controlled degradation 

rate and mechanical endurance [1]. To overcome these drawbacks, crosslinking agents without 

toxic effects are required. Shirosaki et al. [11] described that MG63 cells from human 

osteosarcoma, exhibited good cytocompatibility on chitosan–GPTMS–β-GP hybrid hydrogels 
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rather than chitosan–β-GP system. Due to its in vitro cytocompatibility, this chitosan–GPTMS–

β-GP hybrid could potentially be applied in other shapes or for alternative purposes besides the 

sole of as an injectable biomaterial. 

Good size uniformity has been reported when using a microfluidic approach for the 

synthesis of microspheres [12]. For drug delivery systems, the uniformity of microparticle size 

is a particular important parameter to take into account. Cruz-Neves et al. [13] reported the 

production of chitosan-siloxane hybrid microspheres using a microfluidic approach that are able 

to withstand harsh pH gastric simulated environments, in addition to fulfilling the size 

uniformity requirement, and the obtained size is adequate for gastrointestinal drug delivery 

because it avoids internalization by gastric cells. In fact, some researchers [14, 15] reported the 

use of microparticles for gastrointestinal drug delivery with size ranging from 400-1000 μm 

presenting good drug entrapment efficiency. Additionally, this microfluidic method is simple 

and generally uses small volumes of solutions. 

The evaluation of the degradation rate of a biomaterial is an essential parameter. The 

human body possesses a different range of pH levels. The neutral pH reference for the arterial 

blood ranges from 7.35 to 7.45 [16-18]. In opposition, the pH of the stomach fluids of healthy 

individuals in the second and third postprandial period ranged from 1.7 to 4.3 [19]. Whereas, 

the pH in the duodenum when a meal is ingested decreased from 6.1 to 5.4 [20]. Then, the pH 

gradually increases again, reaching around pH 6.7 in the rectum [21]. Schwarz et al. reported 

the gastric emptying and gastrointestinal transit times in humans after the ingestion of 19F-filled 

capsule, the capsule remained in the stomach for 2 h. The tracking capsule was eventually 

excreted after 57 h [22]. Pelargonidin (C15H11ClO5) is one of the anthocyanins which possesses 

antioxidant properties and, consequently, plays a role on the protection against a myriad of 

human diseases, such as prevention of cardiovascular and neuronal diseases, diabetes, among 

others [23-25]. Figure 2-1 illustrates the gastrointestinal track in terms of pH and time of 
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digestion cycle, as well as the chitosan–GPTMS–β-GP spheres including pelargonidin with the 

purpose of increasing the delivery of pelargonidin throughout the intestinal villi to protect its 

bioavailability and increase the absorption rate of this antioxidant agent. 

 

 

Figure 2-1 Schematic representation of the simulated gastrointestinal conditions in terms of pH 

and a whole digestion cycle in humans (total time of 57 h) and delivery of pelargonidin for an 

increased absorption by the intestinal villi. 

 

In the present chapter, a microfluidic system was used to synthesize chitosan-GPTMS-β-

GP hybrid microspheres. The structural composition of the microspheres was analyzed and the 

degradation rates were observed under several pH conditions. In addition, their stability and 

elemental release from the microspheres matrix were evaluated. The microspheres also 

incorporated pelargonidin as a drug model and the in vitro releasing behavior was tested in a 

simulated stomach environment pH and human digestion cycle period. 
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2.2. Materials and methods 

2.2.1 Synthesis of chitosan-siloxane hybrid microspheres 

To attain a concentration of 2% (w/v), chitosan (high molecular weight, DA > 75%, 

Sigma-Aldrich®, Saint Louis, USA) was dissolved in 0.1 M hydrochloric acid (HCl). The 

polymeric solution was homogenized in a planetary centrifugal mixer (ARE-310, Thinky, 

Tokyo, Japan) at room temperature, followed by autoclaving for 20 min at 121°C. While still 

hot, the solution was filtered (polyethersulfone, 0.22 μm pore) using a vacuum system to obtain 

a more homogeneous solution. A determined amount of GPTMS (97%, Alfa Aesar, Heysham, 

UK) was inserted drop by drop in the chitosan solution, and the mixture stirred for 2 h at room 

temperature.  To neutralize the precursor sol pH to 7, for 10 mL of chitosan-GPTMS, 3.25 mL 

of 2.5 M β-GP (pH 9.6, Sigma-Aldrich®, Saint Louis, USA) was added drop by drop and stirred 

at 0°C for 10 min. The microfluidic method consisted of two syringe pumps (KeyChem, YMC 

CO. LTD, Kyoto, Japan), one containing the oil solution and the other holding the hybrid 

solution. Both syringes were attached to a Y-shaped microchannel displayed in figure 2-2. The 

precursor sol was the dispersed phase, while the oily solution of 4% (w/v) span/squalene (Fluka, 

Tokyo, Japan / Sigma-Aldrich®, Saint Louis, USA) was the continuous phase. When both 

solutions merged inside the Y microchannel, the microspheres were formed as depicted in 

figure 2-2. Some of the tested, as well as, the optimized conditions used in the microfluidic 

system are listed in table 2-1. Then, the micro sized drops were gelated for 1 h at 60°C in the 

4% (w/v) span/squalene oil solution. The microspheres were washed in a series of graded 

ethanol dilutions of 100, 90, 80, 70, 60, 50 and 25%, and finally kept in distilled water, to 

remove the oil. The microspheres were sterilized by autoclaving at 121°C for 20 min in distilled 

water.  
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Table 2-1 Some of the tested conditions and the optimized parameters used in the microfluidic 
system and its starting compositions. 

Sample 
Molar ratio   Flow rate 

(mL/min) 
 Channel 

(mm) 
 Outlet 

(mm) Shape 

Chitosan GPTMS  Oil Sol  Depth Width    

ChG10 1.0 1.0  0.100 0.005  1.0 0.8  1.0 Sphere 

ChG15 1.0 1.5  0.100 0.005  1.0 0.8  1.0 Sphere 

SChG10 1.0 1.0  0.012 0.001  0.5 0.5  0.5 Sphere 

SChG15 1.0 1.5  0.012 0.001  0.5 0.5  0.5 Sphere 

TChG10 1.0 1.0  0.080 0.010  1.0 0.8  1.0 Tube like 

STChG15 1.0 1.5  0.020 0.003  0.5 0.5  0.5 Tube like 

- 1.0 1.0  0.050 0.010  0.5 0.8  0.3 x 

- 1.0 1.0  0.008 0.001  0.3 0.5  0.3 x 

 

 
Figure 2-2 Schematic representation of the microfluidic system constituents and microspheres 
before the gelation. The shape and dimensions of the microchannel used in the production of 
ChG10 and ChG15 are also represented. 
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2.2.2 Structural characterization of the microspheres 

The produced samples were examined under a bright-field microscope (IX73, Olympus, 

Tokyo, Japan) to determine the size and shapes. To measure the diameter of  > 100 microspheres 

ImageJ v1.48 software (National Institutes of Health, USA) was utilized. The surface 

morphology of the ChG10 and ChG15 microspheres was examined using scanning electron 

microscopy (SEM, JMS-6010 PLUS/LA, JEOL, Tokyo, Japan) equipped with an energy 

dispersive X-ray spectrometry (EDS) to detect the elements existing in the samples at a working 

distance of 10 mm and 15 kV of operating voltage. The microspheres were coated for 30 s 

corresponding to a 15 nm thick layer of Pt/Pd using a magnetron-sputter coater (MSP-1S 

Magnetron Sputter, Vacuum Device Inc., Mito, Japan).  

To determine the internal water content of the samples, weight measurements were 

executed before and after drying at 100°C until the samples were completely dried. The 

subsequent equation was used to determine the water content: 

Water content (%) = (Ww − Wd)/ Ww × 100      (1) 

where, Ww and Wd symbolizes the wet and dry weight, respectively.  

The microspheres surface charge and potential stability in phosphate buffered saline 

(PBS, pH 7.4, Gibco, New York, USA) and in distilled water were measured via Zeta Potential 

(ELS-Z, Photal Otsuka Electronics Co. LTD, Osaka, Japan) using the rectangular cell. 

Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR, FT/IR-

6100, JASCO Co., Tokyo, Japan) was carried out to assess the structure of the samples, using 

an attenuated total reflectance method (ATR PRO0450-S JASCO Co., Tokyo, Japan) with a 

diamond prism. The characterization was done at a spectral resolution of 4 cm-1 on a frequency 

region of 400 to 4000 cm-1 and 200 scans were accumulated per sample. Solid-State 13C, 29Si, 

31P, and 1H NMR measurements were performed to acquire a structural insight of the samples 
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structures, using an Agilent DDS 500 MHz NMR spectrometer (Agilent Technologies, Inc., 

Santa Clara, USA) operating at 11.7 Tesla. A zirconia rotor with 3.2 mm of diameter was used 

with an Agilent HXY T3-MAS probe. For magic angle spinning (MAS) the rotor spinning 

frequency was set at 15 kHz. 1H → 13C cross-polarization (CP)-MAS NMR experiments were 

carried out with contact time of 500 μs and recycle delay of 10 s, in which the signals of 3700 

and 5400 pulses were collected for ChG15 and ChG10 samples, respectively, with adamantane 

(C10H16) as the external reference (38.52 ppm vs. 0 ppm TMS). Additionally, 1H MAS NMR 

spectra was recorded at 499.8 MHz with a 1.15 μs pulse length (pulse angle, π/4) and 5 s recycle 

delays, where the obtained signals of 8 pulses were accumulated with adamantane (C10H16) as 

the external reference (1.91 ppm vs. 0 ppm TMS). Moreover, 1H → 29Si CP-MAS NMR 

measurements were carried out with contact time of 5 ms and recycle delay of 5 s, where the  

acquired signals of 40,580 and 79,460 pulses were accumulated for ChG15 and ChG10 

miscrospheres, respectively, with polydimethylsilane (PDMS) as the external reference (−34.44 

ppm vs. 0 ppm TMS). Direct polarization 31P MAS NMR spectra were measured at 202.3 MHz 

at a 1.4 μs pulse length (π/4-pulse angle) and 120 s recycle delays with NH4H2PO4 as the 

external reference (1.0 ppm vs. 0 ppm 85% H3PO4). The obtained signals of 508 and 718 pulses 

were accumulated for ChG15 and ChG10 samples, respectively. 1H high-power decoupling was 

used during the 31P acquisition. 1H → 31P CPMAS NMR measurements were also carried out 

with a contact time of 1 ms and recycle delay of 5 s, where the measured signals of 1000 and 

2720 pulses were accumulated for ChG15 and ChG10 microspheres, respectively.  

The amount of free amino groups ChG10 and ChG15 microspheres was evaluated using 

the ninhydrin (2,2-dihydroxyindane-1,3-dione) assay [26]. Ninhydrin solution (Ninhydrin 

coloring solution Kit for HITACHI, Wako, Osaka, Japan) was added in a ratio (v/v) of 

buffer:ninhydrin=3:1 into the tubes containing the dried microspheres and control. 

Glucosamine hydrochloride (U. S. Pharmacopeia, Rockville, USA) was used as a reference 
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control. The samples and control (2 mg) were kept at 80°C for 20 min in static conditions. The 

samples cooled down for 1 h. The supernatant was collected and the optical absorbance of the 

solutions was recorded at 570 nm with an ultraviolet–Visible (UV-VIS) spectrophotometer 

(DeNovix DS-11+/W, SCRUM Inc., Wilmington, USA). The free amino groups on the spheres 

were calculated using the following formula: 

Sample (moles/mg) = (Abs570 nm sample / Abs570 nm control) × control (moles/mg) (2) 

where, Abs stands for absorbance.  

2.2.3 Compression test and thermogravimetric analysis 

Compression assays (Rheoner II Creep meter RE2-3305C, Yamaden, Tokyo, Japan) were 

carried out to evaluate the stress-deformation behavior of the micro sized spheres under a 

uniaxial compressive load. A load of 20 N was applied via a cylindrical probe with a diameter 

of 3 mm, and a descending speed of 0.05 mm/s. Individual microspheres were subjected to 

these compression conditions, and replicates were performed for ChG10 and ChG15 samples.  

The samples were subjected to high heat conditions to analyze its thermal decomposition 

with simultaneous recordings of the samples weight loss during the analysis using 

thermogravimetric (TG) and differential thermal analysis (DTA) (TG-DTA 2000S, Mac 

Science, Co., Yokohama, Japan) using a heating rate of 10°C/min, from room temperature to 

800°C in regular atmospheric conditions. 

2.2.4 Degradation assay under several pH conditions 

For the degradation measurements 200 microspheres were soaked in solutions of three 

different pH environments. The gastric juices secreted by parietal cells present in the stomach 

consist of 0.1 M HCl [27, 28]. For that reason, to mimic the acidic gastric environments, the 

micro sized spheres were incubated in 0.1 M HCl solutions of pH 1.7 and 5.4 (adjusted with 
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0.2 M NaOH, Nacalai Tesque, Kyoto, Japan). The flasks (Simport, Québec, Canada) containing 

the samples were submitted to a water bath set at 36.5°C and agitated at 100 rpm for 14 days. 

For the neutral pH condition experiment, n=200 samples were incubated in PBS (pH 7.4) under 

the same experimental parameters. At the designated time points, the microspheres were 

collected and the surrounding excess of soaking solution was thoughtfully pipetted and the 

weight was recorded. The mass percentage in the samples was calculated by comparing the 

remaining weight with the initial weight, by means of the following equation: 

Weight loss (%) = (Wb − Wa)/ Wb × 100    (3) 

where, Wb and Wa stands for the weight before and after soaking, respectively.  

The supernatant from the degradation experiments was reserved to track pH changes (pH 

meter LAQUAtwin B-712, Horiba, Kyoto, Japan) and also to evaluate the elements released 

from the matrix of the microspheres to the supernatant. The detection of the phosphate and 

silicon released into the supernatant during the degradation test was carried out using 

inductively coupled plasma atomic emission spectrometer (ICP-AES; ICPE-9820, Shimadzu, 

Kyoto, Japan). 

After the degradation tests, the surface morphology as well as the elements present at the 

surface of the samples were observed via SEM. To identify changes in the microspheres 

crystallinity after the degradation tests, the samples were scanned using powder X-Ray 

Diffraction (XRD, MXP3V, Mac Science, Co., Yokohama, Japan) with CuKα radiation. The 

analysis were carried out using the following parameters: for the 2θ angle ranging from 5.020° 

to 40.000° with a step size of 0.020°, an operating voltage of 40 kV and current of 30 mA, and 

a counting time of 1 s. 
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2.2.5 Incorporation of pelargonidin in chitosan-siloxane hybrid microspheres 

The incorporation of pelargonidin followed similarly the conditions used as in the 

synthesis of the ChG10 and ChG15 microspheres. Briefly, a fresh 2% (w/v) chitosan solution 

was prepared, autoclaved and filtered. GPTMS was added to chitosan solution in the molar 

ratios to produce ChG10 and ChG15 microspheres, and the mixture was stirred at RT for 2 h.  

Pelargonidin chloride (C15H11ClO5, Sigma-Aldrich®, Saint Louis, USA) was dissolved in a 

50% (v/v) solution of 100% ethanol / 0.1 M HCl to achieve a 1 mg/mL. Afterwards, 0.5 mL of 

pelargonidin were added to 2 mL of ChG10 or ChG15 precursor sols. The solutions were mixed 

for 20 min at RT. A volume of 0.67 mL of 2.5 M β-GP were then added on each composition. 

The solution was applied in a microfluidic system to produce microspheres with pelargonidin 

chloride, using the same production parameters as described in section 2.2.1. The microspheres 

with pelargonidin chloride were denoted as ChG10P and ChG15P, respectively. The gelation 

of the microspheres occurred at 60°C for 1 h. The obtained microspheres were rinsed with 

ethanol dilutions of 100 (3x), 90 (1x), 70 (1x), 50 (1x), 25% (1x), and finally kept in distilled 

water. 

2.2.6 In vitro release of pelargonidin in simulated gastrointestinal conditions 

To simulate gastric fluids conditions microspheres, n=400/replicate of ChG10P and 

ChG15P were incubated in 1.5 mL of 0.1 M HCl [27, 28] solutions of pH 1.7 for 2 h, followed 

by 1.5 mL of solution at a pH 5.4 from 2 h to 24 h, and finally at 1.5 mL of pH 6.7 from 24 h 

to 57 h (pHs previously adjusted with 0.2 M NaOH). The microspheres containing pelargonidin 

were incubated at 37°C and agitated at 700 rpm (Block Bath Shaker MyBL-100S, AsOne, 

Osaka, Japan) during a total time of 57 h. In terms of controls, ChG10 and ChG15 were also 

incubated in SGF. The UV-VIS readings were performed at several time points (1, 2, 4, 6, 8, 

12, 24, 36, 48 and 57 h). The supernatant was collected and the optical absorbance of the 
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solutions was recorded with an UV-VIS spectrophotometer. After each reading, fresh SGF 

solution was inserted and the incubation proceeded.  

The standard curve for pelargonidin was performed in identical situations as in the 

incorporation of pelargonidin in the microspheres. Pelargonidin chloride was completely 

dissolved in a 50% (v/v) solution of 100% ethanol / 0.1 M HCl making a 1 mg/mL (ChG10P1 

and ChG15P1) and 3 mg/mL (ChG10P3 and ChG15P3) stock solution. Afterwards, 1 mL of 

the pelargonidin stock solution was dissolved in 19 mL 0.1 M HCl. Afterwards. 6.5 mL of β-

GP were slowly added to reach a pH 7. The solution was submitted to 60°C for 1 h. 

Subsequently, for each 3 mL of the previously prepared solution, the pH was adjusted to 1.7 

slowly adding 0.74 mL of 1 M HCL. Like the samples, the solution was incubated at 37°C and 

the UV-VIS was measured in the chosen time points. Next, the pH of the solution was slowly 

increased to 5.4 using 1.38 mL of 0.2 M NaOH, and submitted to 37°C and measured the 

absorbance in the respective time points. Finally, the pH was slowly raised to 6.7 using 2.1 mL 

of 0.2 M NaOH and incubated for the last time points at 37°C. The baseline solutions for the 

UV-VIS recording of the standard curve of pelargonidin was performed using the 

corresponding SGF solutions prepared using exactly the same steps, but without pelargonidin. 

To assess the swelling behavior of the microspheres containing pelargonidin, the size of the 

microspheres containing pelargonidin together with the respective controls were evaluated 

under a bright-field microscope at 0, 2 h (pH 1.7), 24 h (pH 5.4) and 57 h (pH 6.7). The diameter 

of more than 50 microspheres was measured using the same software as before. 

2.2.7 Statistical analysis 

The statistical analysis was performed using one-way analysis of variance ANOVA 

followed by Tukey's test and the significance level of p < 0.05. GraphPad Prism (GraphPad 

Prism Software version 6, CA, United States) was used to run the statistical analysis. 
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2.3. Results 

2.3.1 Synthesis of microspheres by microfluidic system and their microstructure 

The production of the chitosan and chitosan-β-GP without GPTMS as controls system 

was attempted on the microfluidic. However, the microspheres were not obtained due to the 

slow gelation time, as a result the samples crumbled when handling. Therefore, GPTMS plays 

a necessary role in the production of the micro sized spheres using this microfluidic approach.  

Using the optimized conditions reported in table 2-1, monodispersed micro sized spheres 

with uniform dimensions were acquired (figure 2-3a,b), namely 638 ± 15 µm for ChG10 and 

661 ± 23 μm for ChG15. Additionally, the produced samples had a spherical morphology 

regardless of the molar ratio composition. Moreover, by varying the microfluidic system 

parameters (table 2-1) such as microchannel dimensions, inlet and outlet tube diameters and 

speed on the syringe pumps, SChG15 smaller spheres with size around 285 ± 34 µm could be 

obtained (figure 2-3b). Furthermore, additional microparticles with other shapes besides 

spherical could also be acquired, like microfibers or tube like particles as STChG15 (figure 2-

3c). Though, the effort of this work was towards producing microspheres. 

Similarly to what was perceived in previous studies [11], a higher content of GPTMS 

caused a decrease on the gelation time of the hybrid solution into hydrogels. As a result, the 

maximum molar ratio applied was chitosan:GPTMS = 1:1.5. When above this ratio, early 

gelation of the solution rapidly occurred inside the syringe, inlet tube and microchannel. 

Leading to a higher viscosity of the solution, which interrupted the normal flow rate of the 

solutions, and as a result it hindered the ability to continue and perform a long-term synthesis 

of samples.  
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Figure 2-3 Brightfield images (obj. 4×) of a) ChG15, b) SChG15 microspheres and c) 
STChG15 tube like shape sample, all after gelation. 

 

ChG10 and ChG15 micro sized spheres confined different water amounts in the matrix 

depending on the GPTMS molar ratio applied. Specifically, ChG10 retained 87.5% of water, 

while ChG15 only held 59.1% of water. Figure 2-4 displays the SEM images of the ChG10 and 

ChG15 surfaces. The samples were of spherical shape, even after drying. Regardless of the 

composition, the samples surface topography was rugged with visible nanosize pores. 

The produced microspheres displayed zeta potential values closer to +30 or −30 mV and 

half of those amounts. When in PBS, ChG10 and ChG15 spheres showed zeta potential values 

of −13.80 ± 1.49 mV and −27.41 ± 0.92 mV, respectively. Whereas, in distilled water ChG10 

and ChG15 samples presented values of 33.68 ± 1.84 mV and 15.59 ± 2.38 mV, respectively.  
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Figure 2-4 SEM images of a) ChG10 and c) ChG15 dried microspheres before degradation 
test. b) and d) are a magnified view of a) and c), respectively.  

 

ATR-FTIR spectra of the samples is displayed in figure 2-5. β-GP presented a band at 

912 cm-1 which is characteristic for PO4
2- group, at 966 cm-1 indicated the presence of HPO4

- 

group, whereas the band at 1050 cm-1 is attributed to aliphatic P–O–C stretching [29, 30]. In 

the monomer form GPTMS has three characteristic peaks at 2840 cm-1 assigned to the methoxy 

group, 1186 and 908 cm-1 corresponding to the epoxy group [31]. In addition to a strong peak 

attributed to C-O-C str at 1073 cm-1. The bands around 1641 cm-1 and 1576 cm-1 corresponded 

to the characteristic peaks of amide I and amide II from chitosan, respectively [31]. Regarding 

ChG10 and ChG15 samples, their curve pattern is similar to chitosan. 
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Figure 2-6 illustrates the 13C CP-MAS-NMR and 31P DDMAS-NMR spectra of the 

ChG10 and ChG15 samples. From a previous study [11], the peaks C-1 to C-6 were assigned 

to N-acetyl C] O, and N-acetyl-methyl CH3 signals attributed to chitosan, while Cb and Ca to 

GPTMS. In addition, two signals from β-GP overlapped with those of C-5, C-3 and C-6. The 

increase of the intensity on the C-6 peak is also attributed to β-GP [11]. On the hybrid 

microspheres the 31P peaks were noticeably identified at 5.0 ppm for ChG10 and sharper for 

ChG15 at 4.7 ppm. The 29Si CP-MAS-NMR spectra for ChG10 and ChG15 microspheres is 

displayed on figure 2-7. The signals obtained were deconvoluted into four near peaks around 

−39, −49, −57 and −66 ppm equivalent to the T0, T1, T2 and T3 species, respectively. The 

quantity of Si−O−Si bridging bonds per Si atom depicts the degree of polymerization of the 

−Si−OR or −Si−OH groups at the end of the GPTMS molecules and can be quantified using 

the equation described below:  

Degree of polymerization = [(fraction of T1)×1] + [(fraction of T2)×2] + [(fraction of T3)×3] (4) 

The number of Si−O−Si bridging bonds per Si atom results from the relative peak area 

of each Tn unit. As shown in table 2-2, it increased from 2.24 for ChG10 to 2.34 for ChG15.  

Figure 2-8 displays the free amino groups present in the ChG10 and ChG15 hybrid 

microspheres. ChG10 holds higher amount of free amino groups than ChG15, precisely 5.49E-

07 ± 4.84E-08 and 2.58E-07 ± 1.28-07 moles, respectively.  
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Figure 2-5 ATR-FTIR spectra of β-GP, GPTMS monomer, chitosan flakes, ChG10 and ChG15 
microspheres. ▲OH str; ◊ CH2 str; | Amide I; || Amide II; ● CH2 def;◄ C-O-C str; + C-N str; 
□ -O-CH3 str; ■ epoxide; ▼ CH3; ○ P-OH; ► P-O-C str; x HPO4

- and ♦ PO4
2-. “Str” stands for 

stretch vibration and “def” for deformation vibration. 
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Figure 2-6 a) Molecular structure of the b) 13C CP-MAS-NMR and c) 31P DD-MAS-NMR 
spectra of ChG10 and ChG15 micro sized spheres. The equivalent signals are labelled with the 
chemical structures.  
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Figure 2-7 29Si CP-MAS-NMR spectra of ChG10 and ChG15 micro sized spheres. The 
equivalent signals are labelled with the chemical structures. 

 

 
Figure 2-8 Amount of free amino groups on ChG10 and ChG15 hybrid microspheres 
determined by ninhydrin assay. * represents a statistically significant difference between 
ChG10 and ChG15 microspheres (p<0.05). 
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2.3.2 Compressive strength and thermal decomposition 

In figure 2-9 are shown the stress-deformation performances of the ChG10 and ChG15 

microspheres. Several measurements were executed, and for each condition, the replicates 

displayed a nearly overlapping curve. At the highest elastic-plastic loading achieved, the 

maximum stress for both ChG10 and ChG15 samples was around 15 MPa (figure 2-9a). Nearly 

20% distortion, the stress values of the ChG10 microspheres were to some extent higher than 

those for ChG15. For that reason, at 50% distortion point (figure 2-9b), the averages of the 

measured replicates were compared, and a statistical difference was perceived among the two 

microspheres compositions.  

 

Figure 2-9 Compression assay of ChG10 and ChG15 samples. a) ChG10 and ChG15 curves 
under uniaxial compression force. b) Stress average of 3 replicates for both ChG10 and ChG15 
microspheres at the same distortion point (50%). * represents a statistically significant 
difference between ChG10 and ChG15 at 50% (p<0.05).  
 

The TG-DTA curves of the raw chitosan flakes, GPTMS monomer, and ChG10 and 

ChG15 hybrid microspheres are displayed in figure 2-10. Commonly, the first stage on TG up 

to 260°C is attributed to the vaporization of moisture, and that was observed for all the samples 

(figure 2-10a).  
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Figure 2-10 a) TG and b) DTA curves of the original chitosan flakes, GPTMS monomer, and 
ChG10 and ChG15 micro sized spheres.  
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All the DTA peaks were exothermic (figure 2-10b). Concerning the chitosan TG curve, 

after the vaporization step the weight loss happened from 251°C to 588°C in two phases. The 

weight loss at each phase was of 32% and 37%. The original chitosan flakes exhibited a round 

and very broad DTA curve. Regarding the GPTMS monomer, the curve had a sudden slope 

starting from 159°C until 215°C with 5% of remaining weight. In the case of the microspheres, 

one additional stage occurred for the weight loss when compared with original chitosan flakes, 

in addition to the existence of a perceptible DTA curvy peak at 560°C and 580°C. Concerning 

the weight loss, ChG10 microspheres lost roughly 13% from 274°C to 316°C, 18% to 554°C 

with a final stage of 19% mass loss. Likewise, the ChG15 spheres experienced mass losses of 

nearly 18% from 261°C to 311°C, 25% to 537°C, and 20% in the final slope. 

2.3.3 Degradation profile of microspheres under several pH conditions 

The weight loss (%) assessment of the hybrid microspheres under 1.7, 5.4 and 7.4 pH 

conditions is shown in figure 2-11a-c. The neutral pH 7.4 series displayed the lowest mass 

losses of 27 ± 9% for ChG10 and 32 ± 6% for ChG15. Though degradation of the micro sized 

spheres was faster in the pH 1.7 and pH 5.4 series, the weight losses of ChG10 of ChG15 

samples were of 43 ± 3% and 59 ± 8%, respectively, for pH 1.7 and 77 ± 9% and 69 ± 7%, 

respectively, on behalf of pH 5.4.  The pH changes during the 14 days are summarized in table 

2-3. When subjected to pH 1.7 and 7.4 environments, both ChG10 and ChG15 microspheres 

were constant with almost no deviation from the initial pH. Concerning pH 5.4 series, a rise in 

the pH was perceived mainly at 7 days with a final pH of 6.4 after 14 days.  

The released amount (mM) of phosphorus and silicon from the microspheres matrix to 

the solutions with different pH values are displayed in figures 2-12a-c and 2-13a-c, respectively. 

In case of phosphorus the released amount increased within 14 days. Afterwards, nearly all the 

samples had released similar amounts, namely around 0.0421 ± 0.0050 mM, regardless of the 
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pH. Concerning the silicon, the released amount of it also increased with the continuing soaking 

time. The microspheres belonging to the ChG15 sequence released more silicon than the ChG10 

sequence. Additionally, higher amounts of silicon were released at pH 1.7. Figure 2-14a-c, 2-

15a-c and Table 2-4 display the information obtained from the linearization of the ICP results 

in order to determine the releasing rate of P and Si elements from the ChG10 and ChG15 matrix 

at pH 1.7, 5.4 and 6.7 solutions. The table 2-4 shows the release rate of P and Si due to the pH 

variation. The pH 1.7 displayed the highest release rate of Si from the matrix. In case of P, a 

release rate trend by pH influence was not identified. 

 

Table 2-3 pH values of the supernatant of each solution in which the microspheres were soaked 
for the degradation test. 

 

Soaking time 
(days) 

 ChG10  ChG15 

 pH 1.7 pH 5.4 pH 7.4  pH 1.7 pH 5.4 pH 7.4 

7  1.7 ± 0.0 6.2 ± 0.0 7.3 ± 0.1  1.8 ± 0.1 6.2 ± 0.0 7.3 ± 0.1 

14  1.7 ± 0.0 6.4 ± 0.1 7.2 ± 0.1  1.7 ± 0.0 6.4 ± 0.1 7.3 ± 0.1 
 

To perceive morphological changes on the samples, SEM observations of the dried 

microspheres after 14 days of degradation at pH 1.7, 5.4 and 7.4 are displayed in Figure 2-16. 

The samples before soaking presented a rugged surface topography with microporosity and a 

spherical shape. With the exemption of ChG10 at pH 1.7, there were no intense signs of harsh 

surface deterioration for most of the pH series after 14 days, nevertheless, the initially rugged 

surface became slightly smoother after 14 days. In case of the pH 5.4 series, both ChG10 and 

ChG15 lost its round shape after 14 days because of the degradation. The elements present on 

the samples at 0 days and 14 days are displayed on table 2-5. In general, it can be observed a 

decrease of the amounts of Si and P on all pH series after 14 days of degradation. The decrease 

supports the observations obtained from ICP. Figure 2-17 displays a replicate from the EDS 

spectra from table 2-5. 
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Figure 2-11 Weight loss (%) of ChG10 and ChG15 microspheres over 14 days at 37°C. pH 
series of: a) pH 1.7, b) pH 5.4, and c) pH 7.4. * represents a statistically significant difference 
between ChG10 and ChG15 microspheres at the same time point (p<0.05).  
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Figure 2-12 Concentration of phosphorus (mM) released from ChG10 and ChG15 spheres over 
14 days at 37°C. pH series: a) pH 1.7, b) pH 5.4, and c) pH 7.4. * represents a statistically 
significant difference between ChG10 and ChG15 microspheres at the same time point 
(p<0.05). 



Synthesis of Chitosan-Siloxane Hybrid Microspheres Using a Microfluidic Approach and Release of 
Pelargonidin in Gastrointestinal Simulated Conditions 

 

– 48 – 

 
Figure 2-13 Concentration of silicon (mM) released from ChG10 and ChG15 spheres over 14 
days at 37°C. pH series: a) pH 1.7, b) pH 5.4, and c) pH 7.4. * represents a statistically 
significant difference between ChG10 and ChG15 microspheres at the same time point 
(p<0.05). 
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Figure 2-14 Release rate of phosphorus (mM) from ChG10 and ChG15 spheres over 14 days 
at 37°C. pH series: a) pH 1.7, b) pH 5.4, and c) pH 7.4. Linearization from ICP data.  
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Figure 2-15 Release rate of silicon (mM) from ChG10 and ChG15 spheres over 14 days at 
37°C. pH series: a) pH 1.7, b) pH 5.4, and c) pH 7.4. Linearization from ICP data. 
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Figure 2-18 shows the XRD spectra, in which was confirmed the chitosan degradation 

with the loss of the peak at 2θ = 20° (corresponding to (022) and (102) planes) for both ChG10 

and ChG15 microspheres after 14 days of degradation under acidic and neutral pH solutions. 

Although, the neutral series of pH 7.4 still exhibited a very weak peak.  

 

 

 

Table 2-4 Release rate of P and Si of the ChG10 and ChG15 microspheres matrix obtained 
from the slope of the linearization of the ICP data. 

 

 

 

 

 

 

 

 

 

Table 2-5 Elements ratio determination by SEM-EDS on sample surface before and after 14 
days of degradation. 

Samples 
Elements ratio (atomic %) 

Si/C P/C 

ChG10 0d 3.0 ± 0.4 2.3 ± 0.3 

ChG15 0d 8.3 ± 2.9 10.8  ± 6.5 

ChG10 1.7 14d 2.8 ± 0.2 0.7 ± 0.1 

ChG15 1.7 14d 4.2 ± 0.3 0.3 ± 0.0 

ChG10 5.4 14d 2.3 ± 0.7 0.5 ± 0.2 

ChG15 5.4 14d 4.0 ± 0.3 0.4 ± 0.0 

ChG10 7.4 14d 2.5 ± 0.9 0.6 ± 0.1 

ChG15 7.4 14d 4.7 ± 1.1 0.7 ± 0.2 

 

Element 

 ChG10  ChG15 

 pH 1.7 pH 5.4 pH 7.4  pH 1.7 pH 5.4 pH 7.4 

P  0.025 0.031 0.030  0.036 0.038 0.026 

Si  0.011 0.006 0.004  0.013 0.008 0.010 
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Figure 2-17 EDS spectra from the ChG10 and ChG15 dried samples before and after 14 days 
of degradation at different pH conditions. 
 

 

 



Synthesis of Chitosan-Siloxane Hybrid Microspheres Using a Microfluidic Approach and Release of 
Pelargonidin in Gastrointestinal Simulated Conditions 

 

– 54 – 

 

 

 

Figure 2-18 XRD patterns of original chitosan flake, a) ChG10 and b) ChG15 micro sized 
spheres before and after 14 days of degradation submitted to different pH conditions. #, 
corresponds to the reference peaks ICDD #39-1894 of chitosan. *, corresponds to the reference 
peaks ICDD # 35-1974 of chitin. 
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2.3.4 Release profile of pelargonidin from microspheres in SGF conditions and full 

digestion cycle 

Figure 2-19 displays the in vitro release of pelargonidin as a drug model from the hybrid 

microspheres in different pHs and incubation periods mimicking the digestive system, 

specifically at pH 1.7 for 2 h, 5.4 for 22 h and 6.7 for 33 h, making a total of 57 h of incubation. 

It can be observed, that at pH 1.7 the pelargonidin released from ChG10P1, ChG15P1, 

ChG10P3 and ChG15P 3 occurred in a burst, releasing around 10 µg/mL within the first 2 h of 

incubation. Similarly to the initial 2 h, a slower burst was observed from 2 h to 8 h on both 

compositions soaked in SGF of pH 5.4, releasing an amount of pelargonidin around 16 µg/mL 

for the P1 series of microspheres containing pelargonidin, whereas in the P3 series it was 

released around 22 µg/mL. When the microspheres were soaked solely in SGF of pH 5.4 a 

slower and more sustained release occurred when compared to pH 1.7, with similar quantities 

of pelargonidin released from the matrix within the same concentration series, namely 23 and 

21 µg/mL for ChG10P1 and ChG15P1 and 29 and 26 µg/mL for ChG10P3 and ChG15P3, 

respectively. In contrast to ChG10P1, ChG15P1 and P3 series of microspheres continued 

releasing in a slower and sustained way until 48 h (in SGF of pH 6.7). But, from 48 h to 57 h a 

spike in the release was observed once again.  After a total of 57 h of incubation, 72 and 32 

µg/mL of pelargonidin were released for ChG10P1 and ChG15P1, respectively, while for 

ChG10P3 and ChG15P3 was released 39 and 34 µg/mL, respectively. 

Figure 2-20 and Table 2-6 display the information obtained from the linearization of the 

results from the cumulative release of pelargonidin in order to determine the releasing rate of 

the anthocyanidin from the ChG10 and ChG15 matrix at pH 1.7, 5.4 and 6.7 solutions. At pH 

1.7 the release rate of pelargonidin from the matrix was high and similar within the series. When 

in pH 5.4 the release rate decreases considerably to around half and ChG10 series have a slightly 
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higher release profile. Finally, at pH 6.7 the antioxidant release rate increase again and the 

sample showing the highest release rate was ChG10P1 samples followed by the ChG15P1 and 

ChG10P3. 

 

 
Figure 2-19 Cumulative release of pelargonidin (µg/mL) from ChG10 and ChG15 spheres with 
different drug loading concentrations throughout the 57 h of incubation at different SGFs, 
specifically at pH 1.7 for 2 h, 5.4 for 22 h and 6.7 for 33 h. *, # represent a statistically 
significant difference when comparing ChG15P1 and ChG15P3, respectively, at the same time 
point (p<0.05). 

 

The weight variation of the microspheres containing pelargonidin was evaluated (figure 

2-21), together with the measurement of the diameter (figure 2-22) during the incubation in 

different SGFs for a total of 57 h. Concerning the weight variation, microspheres with and 

without pelargonidin suffered a weight gain in the first 2 h in pH 1.7. In the pH5.4 and 6.7 

domain, the weight of the samples did not fluctuate much from the observations made at 2 h. 
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The focus goes to ChG10P1 and ChG10P3 samples in which showed the highest weight gain 

with around 70% more, where a statistical difference at 2, 24 and 57 h when compared to the 

other group of samples. In opposition, the samples maintaining a similar initial weight are the 

ChG15 microspheres. 

 

Table 2-6 Release rate of pelargonidin of the microspheres matrix obtained from the slope of 
the linearization of the cumulative release data. 

 pH 1.7 pH 5.4 pH 6.7 

ChG10P1 21.99 13.50 151.90 

ChG15P1 22.27 11.20 37.02 

ChG10P3 29.97 15.66 37.56 

ChG15P3 26.68 13.33 23.92 

 

Visually, the microspheres containing pelargonidin on both P1 and P3 series were 

swollen, semitransparent and less sturdy than the respective controls (figure 2-23). On 

ChG15P1 and ChG15P3 microspheres, very similar observations were made, with the 

difference that, nonetheless, the ChG15P were still slightly more colored even after 57 h of 

incubation, than ChG10P1 and ChG10P3. Due to the swelling the size of the spheres increased 

after 57 h of incubation, as observed in figure 2-21 together with figure 2-23. This behavior 

was more noticeable in the ChG10P1 and ChG10P3 microspheres, in which after 57 h the size 

increased from 647 ± 33 µm to 935 ± 51 µm and to 1037 ± 82 µm, respectively, while the 

ChG10 control was 844 ± 48 µm. Meanwhile, ChG15P1 and ChG15P3 microspheres also 

increased in size from 661 ± 23 to 854 ± 13 µm and to 919 ± 55 µm, respectively, similarly to 

its control. Besides from microspheres swelling effect, figure 2-23 also displays that at 57 h, 

microspheres containing pelargonidin present some loose particle fragments indicating higher 

fragility than the control, especially on ChG10P1 and ChG10P3 microspheres. 
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Figure 2-20 Release rate of pelargonidin from ChG10 and ChG15 spheres with different drug 
loading concentrations during 57 h at 37°C. pH series: a) pH 1.7, b) pH 5.4, and c) pH 6.7. 
Linearization from the cumulative release data. 



 

Chapter 2 
 

– 59 – 

 
Figure 2-21 Weight variation (%) of the microspheres with and without pelargonidin in 
different SGFs during the simulated transit time. *, # represent a statistically significant 
difference when comparing ChG15P1 and ChG15P3, respectively, at the same time point 
(p<0.05). 
 

 
Figure 2-22 Size (µm) variation of the microspheres with and without pelargonidin when 
soaked in different SGFs during the simulated transit time. *, # represent a statistically 
significant difference when comparing ChG15P1 and ChG15P3, respectively, at the same time 
point (p<0.05). 
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Figure 2-23 Brightfield images (obj. 4×) of ChG10 and ChG15 controls, as well as the 
microspheres containing pelargonidin (ChG10P1, ChG10P3, ChG15P1 and ChG15P3) at 0 and 
57 h of incubation at different SGF solutions.  
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2.4. Discussion 

Uniformity of size of microspheres is an essential parameter, especially if 

applied as drug carriers. The produced hybrid micro sized spheres achieved the size uniformity 

requisite, and the obtained size was satisfactory for drug delivery in the gastrointestinal track 

because it avoids internalization by gastric cells. In fact, some researchers [14, 15] stated the 

use of micro sized spheres ranging from 400 to 1000 μm with good drug entrapment efficiency, 

for drug delivery applications targeted for the gastrointestinal track. Using the optimized 

conditions monodispersed micro sized spheres with uniform dimensions were acquired with 

approximate size of 650 μm. 

Regarding the water content, the inferior water amount in the ChG15 spheres was 

predictable due to the increased GPTMS content in its matrix when compared to ChG10. This 

reduced presence of water induced a higher crosslinking with the chitosan skeleton, along with, 

higher condensation of the Si−O−Si network [32], and so affecting the water amount in the 

matrix. Commonly, when microscopic materials enter in contact with a liquid suspension,  they 

are likely to gain an electronic charge on its surface [33]. The zeta potential analysis is useful 

to indicate the potential stability and charge of the colloidal system. In general, a higher zeta 

potential points toward a better stability of the suspension attributable to the repulsion occurring 

between charged particles, this way overcoming the natural predisposition to aggregate that 

generally take place as zeta approaches zero [34]. Preferably, the particles with zeta potential 

values superior to +30 mV or more negative than −30 mV are usually considered more stable. 

Nevertheless, these zeta potential values can be influenced by the pH and ionic strength, 

amongst other causes. Consequently, the zeta potential should not be exclusively considered to 

determine the stability of the system. The produced microspheres displayed zeta potential 

values closer to +30 or −30 mV and half of those amounts. As observed, the surface charge of 
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the synthetized microspheres varied depending on the dispersing solution on which the samples 

were subjected to, implying that the microspheres have a tendency to interact with ions from 

the dispersing solution. Hence, the negative charge could be attributed to the interaction 

between the micro sized spheres with the phosphate ions from PBS. 

The characteristics peaks for chitosan, GPTMS monomer and β-GP were present, but on 

ChG10 and ChG15 samples the presence of the Si−O−Si bands on the microspheres could not 

be clearly observed on FTIR due to chitosan curve overlapping or to lack of sensitivity on the 

detection as a result of the small amount of GPTMS present in each microsphere. In these cases, 

nuclear magnetic resonance spectroscopy is a helpful technique to obtain more precise 

structural information. And so 13C CP-MAS-NMR, 31P DDMAS-NMR and 29Si CP-MAS-

NMR analysis of ChG10 and ChG15 microspheres aided to conclude that chitosan and β-GP 

signals were detected in the samples. Regarding the 29Si CP-MAS-NMR spectra for ChG10 and 

ChG15, the condensation of GPTMS molecules was accelerated by the quantity of GPTMS, as 

similarly observed on a previous study [11]. The epoxy groups from GPTMS effectively 

opened, increasing the reaction quota with the amino groups of the chitosan chains. And, signals 

from both ChG10 and ChG15 similarly displayed T3 species, indicating that condensation 

reactions occurred though not completely, corresponding to the T0, T1, and T2 species. 

Concerning the compression tests among the two microspheres compositions. ChG10 

slightly higher stress value could be attributed to the higher water content and the Si−OH groups 

present in the matrix of ChG10 microspheres. When the test ended, the spheres did not regained 

their original shape, indicating that the samples passed the elastic behavior and entered in the 

plastic domain.  

Regarding the thermal degradation of raw chitosan flakes, the first stage after water 

vaporization was linked with the thermal decomposition of the polymeric chains of chitosan 

with vaporization of volatile compounds [35]. The pyrolysis of the polysaccharides initiates 
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with the disintegration of the glycosidic links and is related with mass loss from the acetylated 

and non-acetylated units of the polymer [36, 37]. The second stage of chitosan degradation was 

associated to the residual decomposition of chitosan [35, 38]. Regarding the GPTMS monomer, 

the abrupt slope was linked with the organic chains degradation of the GPTMS (CH2 and CH), 

since the boiling point of GPTMS is referenced to be 120°C (2 mm Hg). In the case of the 

ChG10 and ChG15 microspheres, one additional stage occurred for the weight loss when 

compared with original chitosan flakes, possibly related to the presence of hydrolyzed GPTMS 

and β-GP. The ChG10 and, especially ChG15, comprise the highest exothermic peak, indicating 

that from 500°C pyrolysis or oxidative decomposition occurred, which is higher when 

compared to other siloxanes (~225°C) [39]. As confirmed by NMR, these microspheres contain 

siloxanes networks, and perhaps the DTA peaks indicate that the microspheres underwent 

thermal rearrangements due to the rupture of the siloxane chain to form products of lower 

molecular mass. 

Taking into account the properties of chitosan together with the previous findings 

regarding the chitosan–GPTMS–β-GP injectable hydrogels [11], it was anticipated that these 

microspheres follow a drug controlled release system by the conjugation of the swelling and 

controlled degradation mechanisms. 

The phosphate release from the microspheres matrix revolved around the composition 

and the surface charge of the samples, due to the weak electrostatic chemical interaction 

between the negatively charged phosphate molecules derived from β-GP (−PO4
2− or –HPO4

−) 

and positively charged chitosan molecules (−NH3
+) [40]. The amino groups of ChG15 were 

further crosslinked with GPTMS than ChG10, inhibiting the interaction between the amino 

groups with the phosphate groups. As a result, when deprived of interaction with amino groups, 

the remaining β-GP was readily released. Concerning the silicon, the released quantity depends 

on the amount crosslinked with the amino groups. The elements present on the samples surface 
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quantified by EDS correlate to the decrease of the amounts of Si and P on all pH series after 14 

days of degradation obtained from ICP analysis. The pH 1.7 displayed the highest release rate 

of Si from the matrix, therefore the Si release is influenced at low pH. In case of P, a release 

rate trend by pH influence was not identified, due to the nature of the weak electrostatic bond 

between phosphate and amino group from chitosan. 

In general, chitosan is able to dissolve adequately in a weak acid of pH near 4.5–6.4. 

Nonetheless, the chitosan-GPTMS hybrid spheres progressively degraded but remained even 

after 14 days at pH 5.4. The obtained weight loss pattern might be advantageous for drug 

delivery purposes (for instance, to transport insoluble drugs, proteins or peptides), since the 

nutrient absorption significantly occurs in the duodenum continuing all the way through the 

small intestines [41]. For these microspheres to be applied as drug carriers for the 

gastrointestinal track, it is essential to consider the effects related to the amount the chitosan, 

phosphorus, and silicon released and the limit tolerated by the body without causing side effects. 

Taking into account that chitosan has been previously permitted as a food additive by regulatory 

entities, like the FDA, it is expected that the uptake of the degradation byproducts from chitosan 

are considered safe for the human body. It’s worth to mention that the digestive tract is a 

complex system in which not only pH variations occur but also the presence of bacterial 

communities and its enzymes, such as chitinase and chitosanase, also can play a role in the 

degradation of the chitosan matrix [42, 43]. 

Regarding phosphorus, this element plays an important biological role in bone health, and 

its concentration in serum fluids diverges with age, i.e. in infants, the standard range is 1.50–

2.65 mM, while in adults, the average range is 0.8–1.5 mM [36]. Van Dyck et al. [37] reported 

that the regular concentration of silicon in sera of healthy Belgians (counting also pregnant 

women) was around 4.24 mM. Consequently, the maximum released amount from the hybrid 
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microspheres of both elements were very low in comparison, suggesting no harmful 

consequences to the human body. 

Pelargonidin was used as a drug model for the in vitro incorporation and release profiling 

using the ChG10 and ChG15 hybrid microspheres in different pHs and incubation periods, 

mimicking the ones from the digestive system. Besides the initial burst behavior observed for 

both P1 and P3 series of concentrations, ChG15P1, ChG10P3 and ChG15P3 samples continued 

releasing pelargonidin in a slower and sustained way than ChG10P1. The higher amounts of 

pelargonidin released could be related to the loosening of the chitosan-siloxane network upon 

the entering of water molecules, forcing the incorporated pelargonidin to leave the matrix. This 

was specially observed on ChG10P1 microspheres. Due to a lower GPTMS molar ratio the 

ChG10 samples were more susceptible to the matrix loosening, especially when containing 

pelargonidin, leading to an increase in the size after 57 h of incubation. Visually, ChG10P1 and 

ChG10P3 microspheres were swollen, more transparent like and less sturdy than the ChG10 

control. On ChG15P1 microspheres, very similar observations were made, with the difference 

that, these were still slightly more colored even after 57 h of incubation, than ChG10P1. 

Suggesting that the pelargonidin is not bound to the matrix, and the release mechanism occurs 

by water diffusion and due to pH influence, as depicted in figure 2-24. The pH-responsive 

release profile by swelling in acidic environment of the gastric fluid [44] is another type of 

release of the incorporated drug into the chitosan microspheres.  

When applying these materials as drug carries, the quantification of the reactive sites on 

the hybrid microspheres is an important parameter to determine, since it’s relevant to expect 

the amount of drug that can bond on the microspheres. From the ninhydrin assay data, ChG10 

possesses higher availability of amino reactive sites than ChG15. Regarding the mechanism of 

interaction between amino groups and anthocyanins, Gao et al. [45] reported that the adsorption 

of anthocyanins was inversely (28%, 26% or 22%) related with the degree of deacetylation of 
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chitosan (76%, 83% or 89%). Therefore, when the degree of deacetylation of chitosan is higher 

than 70%, majority of the amine groups of chitosan can be protonated at around pH 3.9 and, 

consequently attracting negatively charged groups. At a pH ranging from 3 to 4, a significant 

molar fraction of anthocyanins with multiple acyl groups (like radish anthocyanins) changed 

into the flavylium cation form [46], showing repulsive electrostatic interactions with the also 

positively charged chitosan. This correlates to the release mechanism from the microspheres, 

in which the pelargonidin dispersed in the matrix was not bonded to the amino groups, but to 

the entrance of water molecules and the portion between loose matrix/crosslinked matrix and 

siloxane network.  

Currently, no dietary reference intakes exist for anthocyanins, nevertheless a positive 

association was made between anthocyanin intake and risk reduction of certain diseases [47]. 

Studies reporting associations between anthocyanins (berry flavonoids) and cardiovascular 

health from the Kuopio Ischemic Heart Disease Risk Factor Study revealed a significant risk 

decrease of cardiovascular related deaths among 1,950 men with the highest berry intake (>408 

g/day) contrasted with men with the lowest berry intake (<133 g/day), the participants were 

followed-up for 12.8 years [48]. Also, post-menopausal women (n = 34,489) also participated 

in a similar study carried out by the Iowa Women’s Health Study, in which a significant drop 

in cardiovascular mortality was connected with strawberry intake (16 year follow-up), as well 

as a significant decrease in coronary heart disease mortality due to the intake of blueberries, at 

least once per week ingestion. It was also stated that an average intake of 0.2 mg/day of 

anthocyanins was linked to a significant risk reduction of cardiovascular mortality in the 

postmenopausal participants [49]. ChG15P1, ChG10P3 and ChG15P3 microspheres presented 

an adequate drug release profile with a more sustained and controlled release of pelargonidin, 

which can be linked to the higher amount of GPTMS for ChG15P1 and ChG15P3, providing 

the ability to maintain the matrix more intact for longer periods. Since the beneficial daily intake 
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of anthocyanins is rather high, it is less likely to achieve concentration levels that cause adverse 

effects even with the release profile of pelargonidin from ChG10P1. In order to evaluate the 

potential of a polymeric device for drug delivery, the most significant time is from the beginning 

up until the half-life time. Since in most systems the release slows down in the later periods to 

a rate which can be ineffective for therapeutic purposes. Hence, it is favorable to focus on the 

behavior of the initial 50 to 60% of the total drug released. 

Overall, when assembling the obtained results from NMR, ninhydrin, degradation, 

swelling behavior and element release at different SGF conditions (pH 1.7, 5.4 and 6.7), it leads 

to the conclusion that the following phenomena occur: (1) at low pH conditions such as pH 1.7 

or 5.4, the solvent interacts with the microspheres surface facilitating the release of the weak 

electrostatic bond between phosphate and chitosan from the most outer layers of the matrix, (2) 

slowly the matrix starts to loosen up of the chitosan skeleton and therefore steadily exposing 

and reaching the core of the matrix. This was corroborated with the release of P occurring 

mostly in the first 7 days. In addition, it was also determined by ninhydrin and by NMR that 

the chitosan was not fully crosslinked by GPTMS, and even though, 29Si NMR shows some 

degree of condensation and strengthening of the matrix via the Si-O-Si network, the Si(OCH3)3 

did not undergo full condensation, therefore the hybrid matrix contains regions that are easier 

to be attacked. It is also described that at low pH occurs the cleavage of the covalent bound 

established between the amino and the GPTMS. (3) As mentioned, the release of P and Si 

indicates a decrease in the matrix crosslinking, facilitating the exposure of the matrix to the 

hydrolysis of the chitosan backbone and to the entrance of water molecules causing a swelling 

in the microspheres. The decrease of the crystallinity of the chitosan skeleton after the 

degradation test was confirmed by XRD. Consequently, the pH influences the degradation and 

swelling of the microspheres, which is accelerated at lower pH than neutral pH conditions, as 

confirmed by the release rates. This degradation pattern and swelling behavior from the 
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microspheres influenced the release profile of pelargonidin. In pH 1.7 and 5.4, both ChG10 and 

ChG15 have overlapping curves and release the same amounts of pelargonidin. From the 

previous observations, the phosphate crosslinked in the surface is being released together with 

the pelargonidin for both ChG10 and ChG15 at very similar rates. Nonetheless the swelling and 

weight gain was greater in ChG10P1 and ChG10P3 microspheres in lower pH conditions, in 

addition to a different release pattern of pelargonidin when entering the pH 6.7 (from 24 to 57 

h). This difference between samples was affected by the initial low pH in which the matrix of 

the ChG10P1 and ChG10P3 samples was more easily weakened and therefore reaching the 

matrix core earlier, leading to a higher diffusion rate of pelargonidin and to the facilitated 

entrance of water molecules when compared to ChG15P1 and ChG15P3 microspheres. 

Furthermore, the difference between the P1 and P3 series in terms of the release behavio could 

be associated to the more packed environment in the matrix due to the higher concentration of 

pelargonidin in the P3 series microspheres, and thus reducing the available free volume between 

the polymeric chains, as a result reducing the drug release. 

Lastly, it is described that in acidic conditions the protonated amino groups of chitosan 

will interact with sialic acid (N-acetylneuraminic acid) from the gastric mucus by electrostatic 

interaction. Therefore, chitosan microspheres have the potential to improve the residence time 

of a drug in the gastrointestinal track [50]. As well as protect the therapeutic agents from the 

hostile conditions of the upper gastrointestinal tract. Therefore, if these spheres are taken as 

supplements in an empty stomach the absorption of pelargonidin can be considered higher, 

since is also desirable for the releasing of drug to occur throughout the intestines, since the 

nutrients absorption occurs mainly in the small intestines lining of the gastrointestinal track. 
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2.5. Conclusions 

A microfluidic approach was successfully used to synthesize chitosan-siloxane hybrids 

microspheres using via sol–gel process using β-GP as the neutralizing agent. The produced 

microspheres had spherical shapes with uniform sizes of around 650 μm. GPTMS was used as 

a crosslinking agent, and consequently it inhibited the degradation of chitosan even at low pH. 

The microspheres spherical shapes were maintained even after 14 days of the degradation at 

low pHs. The formation of siloxane networks occurred in the chitosan polymeric matrix and 

condensation was assisted by the GPTMS content. In case phosphate, the release easily 

occurred due to its weak electrostatic interaction with chitosan. In case of silicon, it was released 

together with chitosan molecules and was dependent on the initial amount of GPTMS. The 

hybrid microspheres endured for 14 days harsh pH conditions. This time interval is longer than 

the time necessary to complete a digestion cycle. The produced chitosan-siloxane hybrid 

microspheres incorporated pelargonidin as a drug model successfully. Under simulated gastro 

intestinal conditions, such as pH and digestion period, the release occurred via diffusion. On 

both microspheres an initial burst at pH 1.7 was observed, followed by a slower and more 

sustained release in pH 5.4 and 6.7 for ChG15P, whereas for ChG10P the pelargonidin was 

released more easily. These spheres appear to be promising for delivery of therapeutic agents 

for gastro intestinal applications due to its resistance to low pH and ability to retain pelargonidin 

for longer periods of time, since even after 57 h the spheres still present some color indicating 

the presence of residual pelargonidin in the matrix.  Therefore, it appears to be able to protect 

the therapeutic agents from the hostile conditions of the upper gastrointestinal tract. 
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Chapter 3.  

BACTERIAL BEHAVIOR ON CHITOSAN-SILOXANE HYBRID 

MICROSPHERES AND HYDROGELS CONTAINING CERIUM  

 

3.1. Introduction 

The growing resistance towards antibiotics in bacteria is a serious problem that requires 

the researchers to come up with new strategies to overcome this situation. The use of 

biomaterials with antibacterial agents is one of the strategies adopted. 

Biomaterials hold functional groups like –OH, –COOH and –NH2, therefore having the 

potential to stabilize and/or capture ions, such as metal ions [1]. Cerium (Ce) is rare earth 

element of the lanthanide group (or rare earth metals) and received the researcher’s attention 

due to its antimicrobial activity (towards fungi and bacteria). Systematic investigations 

confirmed the bacteriostatic and bactericidal activity of cerium compounds in a wide variety of 

bacteria [2-4]. The biological role of cerium is not yet clearly understood, but it has been noticed 

that cerium salts can have a role in the stimulation of the metabolism [5]. But in the case of 

bacteria, the action mechanism is based on the uptake of cerium ions into the cytoplasm of the 

bacterium cell and cause the following events: inhibit cellular respiration, oxygen uptake, 

glucose metabolism, and also disrupt the cell membrane [6, 7]. Some researchers investigated 

the use of cerium oxide [8] or nitrate (Ce(NO3)3) [9], but very few studies are available using 

cerium (III) chloride (CeCl3) as an antibacterial agent, in drug delivery systems. Chlorides are 

widely present in nature as salts. Chloride in food occurs naturally at levels generally less than 

0.36 mg/g, and during the food processing the mean dietary intake can range 6-12g/day [10]. 

The toxicity of nitrate ion itself is debatable [11], but the anaerobic bacteria present in the 
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gastrointestinal tract and oral cavity converts it to a more toxic nitrite leading to increased risk 

of methaemoglobinaemia and gastrointestinal cancer [12]. 

In the previous chapter the chitosan-siloxane hybrid microspheres were characterized [13] 

and tested as drug carrier, using pelargonidin as a drug model. It was indicated that the 

microspheres have good uniformity of size, stability and resistance towards harsh pH 

environments, and that the spheres hold free amino reactive sites available to interact with 

therapeutic molecules. Taking these microspheres features into account and the advantages 

referred by cerium as an antibacterial agent, the incorporation of cerium in this biomaterial 

formulation was used as a strategy to inhibit bacterial growth (figure 3-1). In this study, two 

different approaches were tested to include cerium. The incorporation and adsorption ability of 

cerium ions on the chitosan–GPTMS–β-GP hybrid microspheres were tested, in addition to the 

incorporation of cerium into the chitosan–GPTMS–β-GP hydrogels. The bacterial behavior of 

both materials was observed with pathogenic gram-negative strain (E. coli) and gram-positive 

strain (S. aureus). 

 
Figure 3-1 Schematic representation of the material design and antibacterial action mechanism 
of cerium.  
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3.2. Materials and methods 

3.2.1. MIC of cerium 

S. aureus 209P (ATCC 6538P) and E. coli NIHJ were streak directly from the stock to 

fresh Luria-Bertani Broth (Liofilchem, Roseto degli Abruzzi, Italy) agar plates and incubated 

at 37°C for 18 h. To perform the inoculum, a single colony from a bacteria strain was removed 

from the plate and inoculated in a glass test tube with 5 mL fresh LB medium and incubated at 

37°C and 120 rpm for 18 h. From the prepared inoculum, 1 mL was removed and transferred 

to an Eppendorf tube and centrifuged at 10,000 rpm for 1 min. The supernatant was discarded 

and the pellet resuspended in 1 mL PBS. This washing with PBS step was repeated twice. The 

same steps were applied to the other bacterial strain. For each bacterial strain dilutions with LB 

to achieve a bacterial concentration of 1×83 CFU/mL were prepared for the experiments. 

For the MIC determination experiment, an appropriate amount of CeCl3 was dissolved in 

0.1 M HCl. The solution was sterilized by filtration. The dilutions were prepared using fresh 

LB and the bacterial inoculum to make the following final concentrations of 1.5, 3, 4.5, 6 and 

7 mM of cerium. The pH of the solutions remained neutral (pH 7.0). The Eppendorf tubes were 

taken to the incubator at 37°C and 300 rpm. After 4 h of incubation, 100 µL of 5 mg/mL of 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was added and taken again 

to the incubator at 37°C for 4 h without shaking. MTT is reduced to a purple formazan reaction 

product by living cells and bacteria [14]. After 4 h, the samples were centrifuged at 10,000 rpm 

for 1 min and the supernatant was removed. Afterwards, 500 µL of dimethyl sulfoxide (DMSO, 

Wako, Osaka, Japan) were added and kept at room temperature for 30 min. The supernatant 

was transferred to a 96 well plate and read at λ=600 nm in a spectrophotometer. 
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3.2.2. Preparation of chitosan-siloxane microspheres with cerium 

To include cerium [cerium (III) chloride heptahydrate (CeCl3 ● 7H2O), Nacalai tesque, 

Kyoto, Japan] in the samples, an incorporation method and immersion method were tested. An 

appropriate amount of cerium was dissolved in 0.1 M HCl. Briefly, chitosan as dissolved in 0.1 

M HCl to achieve a 2% (w/v) concentration. The chitosan solution was mixed in a planetary 

centrifugal mixer at room temperature, followed by autoclaving at 121°C for 20 min and 

filtering to obtain a homogeneous solution. A determined amount of GPTMS was added to the 

chitosan solution, and the mixture was stirred at room temperature for 2 h. For the incorporation 

method, CeCl3 was added into the chitosan-GPTMS precursor sol in a molar ration of 1:1 for 

chitosan:cerium. The mixture was stirred for 30 min at room temperature. And then, 0.68 mL 

of 2.5 M β-GP were added at 0°C stirring for 10 min. The final pH of the hybrid solution 

including cerium was 7.0. The solution including cerium was applied in the microfluidic system 

following the parameters described in chapter 2, section 2.2.1, and table 2-1 for ChG10 

microspheres. In order to decrease the release of cerium, the washing steps were reduced to 

ethanol 100 (3x), 70% (3x) and in PBS (2x). The n=200 spheres/flask in ultrapure water were 

sterilized by autoclaving at 121°C for 20 min.  

The immersion method was performed after the microspheres were produced and washed 

as explained in chapter 2, section 2.2.1. Therefore, ChG10 spheres n=200 spheres/flask were 

immersed in 1 mL of 10, 15 and 20 mM cerium solutions overnight at room temperature and 

130 rpm. After autoclaving, the samples were washed twice with PBS. 

The samples from both methods were dried at 50°C and their surface morphology and 

atomic composition were analyzed by SEM-EDS. The samples were coated with a 15 nm layer 

of Pt/Pd using a magnetron-sputter coater. 
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3.2.3. Preparation of chitosan-siloxane hybrid hydrogels with cerium 

The incorporation of cerium in the chitosan-siloxane hybrid hydrogels followed similarly 

the initial steps, with the exception of the synthesis of the hydrogels always under sterile 

conditions. Briefly, a 2% (w/v) chitosan solution was prepared, autoclaved and filtered. Next, 

GPTMS in the chitosan:GPTMS molar ratio 1:1 proportion. Afterwards, a freshly prepared 

cerium solution dissolved in 0.1 M HCL was added into the chitosan-GPTMS precursor sol 

achieving the final concentrations of 4.5 and 13.5 mM of cerium. At last, β-GP was added for 

neutralization. For the direct method, 200 µL of the solution were inserted into Eppendorf tubes, 

while for the indirect method, the same volume was poured into special cell culture inserts (8.0 

µm pores size, Falcon, New York, USA) for 24 well plates (with low evaporation lid, Falcon, 

New York, USA). The samples were inserted in a humidified chamber at 37°C and 5% CO2 

atmosphere overnight.  

3.2.4. E. coli and S. aureus culture on microspheres and hydrogels containing cerium  

For the culture experiment using the microspheres, a 96 well plate was used for the 

bacterial culture. Microspheres n=200/replicate were incubated with 200 µL of 1×83 CFU/mL 

of bacterial suspensions prepared from both E. coli and S. aureus strains. The plate was taken 

to the incubator at 37°C and 300 rpm. After 4 h of incubation, 20 µL of MTT solution were 

added to each well and taken again to the incubator at 37°C for 4 h. After 4 h, the solutions and 

spheres were transferred to Eppendorf tubes and centrifuged at 10,000 rpm for 2 min and the 

supernatant was removed. The deposited formazan salts were dissolved with 100 µL of DMSO 

and incubated at room temperature for 30 min. The supernatant was transferred to a new plate 

and read at λ=600 nm. Whereas, for the hydrogels, the culture was performed using cell culture 

inserts with 200 µL of the chitosan–GPTMS–Ce-β-GP hydrogels in a 24 well plate for the 
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indirect mode. The same bacterial concentration of 1.8×103 CFU/mL was used in 1 mL of 

bacterial inoculum for each well. The same conditions were applied concerning the incubation 

times and for the MTT test (with the exception of using 100 µL of MTT solution instead). 

Figure 3-2 represents the direct and indirect methods used for the culture of bacteria in the 

chitosan-GPTMS-Ce-β-GP hydrogels. 

 

Figure 3-2 Representation of the direct and indirect methods used for the culture of bacteria in 
the chitosan–GPTMS–Ce–β-GP hydrogels.  

 

To observe E. coli and S. aureus strains behavior when in contact with the chitosan–

GPTMS–Ce-β-GP hydrogels, a direct culture of the bacteria in Eppendorf tubes containing 200 

µL of the hydrogels containing 4.5 and 13.5 mM of cerium was performed. After 24 h of culture 

at 37°C these samples were prepared for SEM observations. The hydrogels were fixed in a 1.5% 

glutaraldehyde (Wako, Osaka, Japan) in 0.14 M sodium cacodylate trihydrate buffer (Sigma-

Aldrich®, St. Louis, USA) at room temperature for 15 min. Samples were gently washed with 

distilled water. Afterwards, the dehydration was performed using a series of graded ethanol 

solutions, specifically 50, 70, 80, 90 and 100%, for 10 min in each. The samples were dried 

overnight at room temperature. At last, the samples were coated with a 15 nm layer of Pt/Pd 

gold film and observed using SEM. 
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3.2.5. Evaluation of the E. coli and S. aureus viability cultured with cerium phosphate 

To understand if the phosphate from β-GP nullifies the antibacterial activity of cerium, 

sterile solutions of cerium and β-GP (containing final concentration of 13.5 mM cerium with 

625 mM β-GP and 6.75 mM cerium with 312.5 mM β-GP), cerium (13.5 and 6.75 mM) and β- 

β-GP (625 and 312.5 mM) were prepared. For each condition 0.2 mL of solution were inserted 

in Eppendorf tubes together with the E. coli and S. aureus bacterial suspensions to make a final 

concentration of 1×102 CFU/mL. The solutions were incubated at 37°C for 24 h at 300 rpm. 

The bacterial viability was measured on both strains using the MTT assay, in which 0.1 mL of 

MTT were added to each tube and taken again to the incubator at 37°C for 4 h. After 4 h, the 

Eppendorf tubes were centrifuged at 10,000 rpm for 5 min and the supernatant was removed. 

The formazan salts were dissolved with 1 mL of DMSO and incubated at room temperature for 

30 min. The supernatant was transferred to a 96 well plate and read at λ=600 nm. 

3.2.6. Statistical analysis 

The statistical analysis was performed using one-way analysis of variance ANOVA 

followed by Tukey's test and the significance level of p < 0.05. GraphPad Prism (GraphPad 

Prism Software version 6, CA, United States) was used to run the statistical analysis. 

3.3. Results 

3.3.1. Viability of E. coli and S. aureus on chitosan-siloxane microspheres with cerium  

The minimum inhibitory concentration (MIC) is as important parameter to determine on 

microorganisms like bacteria. Figure 3-3 shows the MIC of CeCl3 values for both Escherichia 

coli and Staphylococcus aureus. Bacterial inhibition was observed when using a concentration 
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of 3 mM of CeCl3, almost complete eradication was observed in this condition, therefore higher 

concentration that 3 mM is advised to have a complete antibacterial effect.  

Table 3-1 shows the comparison of the atomic ratio of Ce/C via EDS, on the ChG10 

surfaces using the immersion and incorporation method. The immersion method retained the 

cerium on ChG10 microspheres, whereas the incorporation method was not effective to 

maintain the cerium incorporated on the hybrid microspheres. From the SEM images on figure 

3-4, it was possible to observe a clear difference between the microspheres surface. A film like 

matter was covering, partially or completely, the surface of the ChG10Ce microspheres. Despite 

using fewer washing steps, when washing the samples with ethanol to remove the oil, the 

cerium was removed from the microspheres and possibly some of the oil lingered on the 

microspheres surface. In the immersion method the surface of the samples was identical to the 

original ChG10 and cerium was also detected, therefore the immersion method was chosen for 

the bacterial tests. 

Figure 3-5 displays the bacterial viability when with ChG10 with cerium from the 

immersion method. Upon contact with both E. coli and S. aureus suspensions, no antibacterial 

effect was observed. Possibly due to not enough cerium on the ChG10 spheres, even at 20 mM. 
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Figure 3-3 MIC of CeCl3 in E. coli and S. aureus. The viability is presented in ratio towards 
the control (only bacteria). A statistically significant difference (p<0.05) was observed when 
comparing to E. coli (*) control and S. aureus (#) control (no sample). 

 

 

 

Table 3-1 Comparison of the atomic ratio of Ce/C still present on the ChG10 microspheres 
surfaces via EDS analysis, when using the immersion method (25 mM cerium) and 
incorporation method (25 mM cerium). 

Sample Method Ce/C (atomic %) 

ChG10-Ce   Immersion 0.115 ± 0.042 

ChG10Ce Incorporation 0.000 ± 0.000 
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Figure 3-4 SEM images of dried ChG10 samples with cerium using a) immersion method, in 
which the samples were immersed in a cerium solution, and c) respective EDS. b) incorporation 
method, where cerium was incorporated in the hybrid solution (chitosan–GPTMS–Ce–β-GP), 
and d) respective EDS. 
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Figure 3-5 Bacterial viability of a) E. coli and b) S. aureus (using MTT assay) cultured on 
ChG10 microspheres previously immersed in CeCl3 solutions. The viability is presented in ratio 
towards the positive control (only bacteria). 
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3.3.2. Viability of E. coli and S. aureus on chitosan-siloxane hydrogels with cerium 

The SEM micrographs exhibited in figure 3-6, are from the culture of E. coli and S. 

aureus when in direct contact with the hydrogels with and without cerium. The higher the 

loading of cerium in the hydrogel, apparently the more the bacteria was able colonize when 

compared to lower amounts of cerium in the hydrogel. The hydrogel surface of ChG10Ce13.5 

was completely covered with E.coli and S. aureus cells. In terms of cell morphology, the typical 

rod shape of E.coli was observed with a size around 1 x 3µm [15, 16]. As well as, the spherical 

organisms in grape-like clusters with diameter around 1 µm for S. aureus. Both cycles of 

apoptosis and division [17] were observed in the hydrogel samples with and without cerium.  

To increase the loading amount, cerium was incorporated on chitosan-GPTMS-β-GP 

hydrogels instead of the microspheres. During the preparation of the chitosan-GPTMS-β-GP 

hydrogels with cerium, immediately after adding the β-GP it was visually noticeable a change 

in the color of the precursor sol, from a transparent to a more whitish opaque appearance. The 

higher the amount of cerium added, the more whitish opaque it would become. Figure 3-7 

shows this visible change.  

Figure 3-8 displays no antibacterial effect at the highest concentration of cerium on the 

ChG10Ce13.5 hydrogel. On the contrary, the viability of S. aureus increased on ChG10, around 

0.3 fold, and also nearly 0.3 fold on ChG10Ce13.5 hydrogels.  

Cerium phosphate solutions were prepared using the same concentration as the cerium 

and β-GP components as present in the hydrogel from figure 3-8, as well as half of its 

concentration. Figure 3-9 shows these solutions cultured with E.coli and S. aureus. Cerium 

phosphate showed no antibacterial effect since the two concentrations of cerium phosphate were 

equal or higher than the positive control. A similar trend was observed with only β-GP, whereas 

only with cerium an antibacterial activity was observed. 
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Figure 3-7 Visual appearance of the chitosan–GPTMS–β-GP hydrogels (after gelation) without 
cerium (0 mM Ce) and chitosan–GPTMS–Ce–β-GP containing cerium (13.5 mM Ce). 

 

 
 

 
Figure 3-8 S. aureus viability on hydrogels using MTT assay after 24 h of culture (indirect 
method). A statistically significant difference (p<0.05) was observed when comparing to S. 
aureus (#) control (no sample). 
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Figure 3-9 E. coli and S. aureus viability upon contact with Ce–β-GP colloid and CeCl3 (both 
containing 13.5 and 6.75 mM of cerium) and β-GP (625 and 312.5 mM) using MTT assay after 
24 h of culture. A statistically significant difference (p<0.05) was observed when comparing to 
E. coli (*) and S. aureus (#) control (no sample). 
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3.4. Discussion 

Very few studies are available with cerium chloride in biomaterials. The MIC is as 

important factor to take into account, especially when the working target is pathogenic bacteria. 

This feature is dependable on the concentration and action mechanism of the antibacterial agent, 

as well as the bacterial strain. Bacterial inhibition caused by cerium was observed, and above 3 

mM (1118 μg/mL) an antibacterial effect was already detected. An in vitro activity study was 

performed in oxacillin- and mupirocin-resistant S. aureus strains found in hospitals to determine 

the MIC of cerium nitrate, and the MIC for all isolates was 2,048 μg/mL [18]. Whereas, the 

MIC for cerium oxide nanoparticles was around 50 μg/mL [19] for E. coli, even though the 

MIC of cerium oxide nanoparticles is lower than cerium chloride, CeO2 nanoparticles 

internalization has been found to be a problem in human cell lines [20, 21]. A similar behavior 

was observed with silver ions (Ag+) against S. aureus and E. coli, in which the MIC for both 

was 10−7 M, however with the L929 cell proliferation rate in the presence of Ag+ decreased 

with the increase of Ag+ concentrations. In case of zinc ions (Zn2+) the MIC was 10−7 M, but 

only if below 10−4 M of Zn2+ the cell proliferation rate was over 80%. Likewise, the MIC range 

for copper ions (Cu2+) ions were around 10−4–10−5 M [22]. Although these metal ions are well 

known as antibacterial agents, questions regarding clinical effectiveness and mammalian cells 

and tissue damage are still a subject of controversy [23-25]. Therefore, the need to explore other 

sources of ions with antibacterial effect. The antibacterial mechanism of cerium is based on the 

uptake of cerium ions into the cell cytoplasm, leading to a number of biological reactions, such 

as inhibition of cellular respiration, glucose metabolism, oxygen uptake and disruption of the 

cell membrane [6, 7]. 

The ChG10 microspheres immersed in 10, 15 and 20 mM did not show bacterial 

inhibition upon contact with both E. coli and S. aureus suspensions. Possibly due to not enough 
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cerium absorbed on the ChG10 spheres, even at 20 mM. Even the amount of free amino groups 

of ChG10, reported on chapter 2, were not enough to show an antibacterial effect on both 

strains, due to the previous covalent bond establish between amino and GPTMS, as well as 

electrostatic interaction between amino groups and β-GP.  

In case of the hydrogels containing cerium, the surface of ChG10Ce13.5 was extensively 

covered with E. coli and S. aureus cells as observed via SEM. The immediate color change 

imply that Ce3+ and the PO4
3− (from β-GP) have immediate and high affinity for interaction. 

The similar behavior between trivalent cerium and bivalent calcium, since calcium ions form 

complexes, not just with the amino groups of chitosan, but also can absorb a negatively charged 

PO4
3− ion [26]. The quick reaction and ionic bonding between the CeCl3 and β-GP, makes it 

challenging for the cerium to form complexes with the amino groups of chitosan, similarly to 

calcium in terms of bonding preference [26], and also challenging for cerium to interact 

afterwards with the bacteria. This was observed in figure 3-8, in which at the highest 

concentration of cerium on the ChG10Ce13.5 hydrogel had no antibacterial effect on S. aureus. 

On the contrary, the viability of gram-positive S. aureus strain increased on ChG10 and also on 

ChG10Ce13.5. This neutralization of cerium when β-GP was included in the system was clearly 

confirmed in figure 3-9, in which on both concentrations of cerium phosphate the bacterial 

viability was equal or higher than the positive control without sample. This interaction between 

cerium and β-GP also observed in the hydrogel, makes cerium inaccessible to the bacteria 

consequently losing its antibacterial properties. In addition, the β-GP control also displayed 

equal or higher bacterial activity than the positive control. Regarding the effect of phosphorus, 

Miettinen et al. stated that the addition of same amounts of phosphorus to the tested drinking 

water samples greatly increased the growth of heterotrophic bacteria [27]. 
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These hydrogels appear to stimulate the bacteria viability, therefore they can be useful 

for more suitable applications in which the bacterial growth stimulation is desirable, for instance 

the stimulation of probiotic bacteria (nonpathogenic strains). 

3.5. Conclusions 

The bacterial behavior towards Escherichia coli and Staphylococcus aureus was 

observed with the chitosan-GPTMS-β-GP spheres and hydrogels containing cerium chloride 

(CeCl3), and no antibacterial effect was observed due to the immediate interaction between β-

GP and cerium, making it inaccessible to the bacteria. Moreover, the viability increased for 

both strains on ChG10 and on ChG10Ce13.5 hydrogels. Therefore, these hybrid hydrogels 

appear to stimulate the bacteria viability, therefore they can be useful for more suitable 

applications in which the bacterial growth stimulation is desirable, for instance the stimulation 

of probiotic bacteria (nonpathogenic strains). 
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Chapter 4.  

BACTERIAL BEHAVIOR WITH CHITOSAN-SILOXANE 

HYBRID SPHERICAL BEADS CONTAINING CERIUM 

 

4.1. Introduction 

Microporous beads have advantages in a range of applications, e.g., can be injected into 

bone defects through minimally invasive procedures, therefore avoiding unnecessary surgical 

trauma [1]; the size of the spheres allow them to fill different defect shapes with close packing 

[2]; serve as vehicles for transplantation of cultured cells and materials for filling defect in 

human tissues [3, 4]; and can also be used to carry drugs, proteins and genes, which further 

enhances their bioactivity. 

In the previous chapter the antibacterial efficiency of cerium could not be achieved using 

the chitosan–GPTMS–β-GP hybrid formulation either in the microsphere form, by adsorption 

or incorporation methods, or when incorporating cerium chloride into the hydrogels to increase 

the cerium loading. The neutralization of cerium when β-GP was included in the system was 

confirmed, consequently this interaction made cerium inaccessible to the bacteria losing its 

antibacterial properties. In fact, an increase in the bacterial viability of both strains was observed 

in the presence of cerium–β-GP colloid and β-GP. Therefore, β-GP was removed from the 

hybrid structural formulation and the method for the synthesis of the samples was reconsidered, 

since chitosan–GPTMS hybrids without β-GP could not be synthetized in the microfluidic 

systems using the previous tested conditions. As a result, in this chapter, microporous chitosan-

GPTMS hybrid beads were synthetized by using a syringe pump to drop chitosan-GPTMS sols 

droplets into liquid nitrogen and then freeze dry the beads. Cerium chloride was incorporated 
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into the hybrid beads, the surface and porosity was evaluated, as well as the free amino groups 

available. In addition, the antibacterial potential of these beads carrying cerium were 

investigated against E. coli and S. aureus. 

4.2. Materials and methods 

1.3.1. 4.2.1. Preparation of chitosan-siloxane hybrid beads without/with cerium 

A 2 w/v% chitosan solution was prepared by dissolving high molecular weight chitosan 

powder (310,000-375,000 Da, DA > 75%; Sigma-Aldrich®, St. Louis, USA) in 0.25 M aqueous 

acetic acid using a planetary centrifugal mixer (ARE-310, Thinky, Tokyo, Japan). The desired 

amount of GPTMS (97%, Alfa Aesar, Heysham, UK) was hydrolyzed for 1 h in 0.25 M aqueous 

acetic acid at room temperature. Then, the hydrolyzed GPTMS was added to the chitosan 

solution and the solution was stirred for 1 h at room temperature. The proper amount of cerium 

chloride was also dissolved in the same concentration of 0.25 M aqueous acetic acid and the 

solution was added to the previously prepared chitosan-GPTMS precursor sol. This mixture 

was stirred at room temperature for 1 h. The prepared compositions and respective sample codes 

are given in table 4-1. Each solution with the specific composition was placed in a syringe with 

a needle gauge size of 27G (with a sharp 10-12° beveled needle point style), and dropped into 

liquid nitrogen using a syringe pump at a rate of 0.04 mL/min. When finished, the formed ice 

droplets were maintained in liquid nitrogen (-196°C), then transferred directly to the freeze 

dryer (FDU-1200, EYELA, Tokyo, Japan). The beads were lyophilized by freeze drying until 

completely dried. Then, the porous beads were soaked in 0.1 M NaOH aqueous solution to 

neutralize the acetic acid, followed by a washing step with distilled water, and finally, 

lyophilized again in the freeze dryer.  
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Table 4-1 Starting composition of the chitosan-siloxane hybrid beads. 

Sample 
Molar ratio 

Chitosan GPTMS CeCl
3
 

Ch 1.0 0 0 

ChG10 1.0 1.0 0 

ChG10Ce01  1.0 1.0 0.1 

ChG10Ce025 1.0 1.0 0.25 

ChG10Ce05 1.0 1.0 0.5 
 

1.3.2. 4.2.2. Characterization of chitosan-siloxane hybrid beads 

The surface morphology was examined using SEM equipped with EDS. Before the 

observations, the preparation of the beads involved the use of a carbon paint (XC-12, JEOL, 

Tokyo, Japan) to make a conductive “bridge” to reduce the charge effect. Then, the beads were 

coated with a Pt/Pd layer of thickness around 20 nm. The mean pore diameter was obtained 

from the SEM images using ImageJ v1.48 software. Around 20 pores were measured from three 

different areas of the same sample. 

The crosslinking degree was evaluated using the ninhydrin assay, to define the percentage 

of free amino groups in the beads [5]. A single bead was suspended in 0.9 mL of ninhydrin 

buffer solution. Then, 0.3 mL of ninhydrin reagent was added and the Eppendorf tubes 

containing the mixture was kept at 80°C for 20 min. The optical absorbance of the supernatant 

solution was recorded at λ=570 nm using a spectrophotometer. The relative percentages of free 

amino groups in the chitosan-GPTMS-cerium beads were calculated using as a reference the 

beads composed only of chitosan. 
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1.3.3. 4.2.3. E. coli and S. aureus culture on beads containing cerium 

The beads were sterilized using ethylene oxide gas and kept for 1 week at room 

temperature to clear the remaining gas. E. coli NIHJ and S. aureus 209P were suspended in LB 

medium. The optical density of the bacterial suspension was adjusted to 1.0 (1×102 CFU/mL). 

For each condition, 5 sterilized beads were placed in a sterile 96 well plate and 200 μL of the 

bacterial suspension was added. The bacterial viability that was in contact with the beads was 

determined using the MTT assay. After 24 h of incubation at 37°C, 20 μL of MTT reagent was 

added. The beads were incubated for 4 h at 37°C, and then transferred to a new 96 well plate. 

The formazan salts were dissolved with 200 μL of DMSO and the absorbance was measured at 

λ=600 nm to evaluate the bacterial viability. The beads were inserted in PBS to monitor pH 

changes. 

4.3. Results 

1.3.4. 4.3.1. Beads characterization 

Figure 4-1 displays the beads in which shows the beads spherical shape and the diameter 

was determined to be around 2 mm. The beads presented interconnected porous in all 

compositions as observed in figure 4-2. Additionally, the porous structure looks smooth and 

similar on all compositions indicating that the cerium was well dissolved and homogenized 

with the hybrid solution. 

 

Figure 4-1 Digital image of ChG10Ce05 beads. 
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In table 4-2, the results from the ninhydrin assay show the amount of free amino groups 

from each composition. Chitosan was used as the reference since all amino groups are 

protonated. In case of ChG10, approximately 25% of amino groups are still free, similarly to 

ChG10Ce01 beads. With the addition of increasing amounts of cerium in the beads, the quantity 

of free amino groups also increases, specifically 38% on ChG10Ce025 and the highest amount 

of 96% of free amino groups on ChG10Ce05. 

 

Table 4-2 Degree of free amino groups of chitosan-siloxane hybrid beads. 

Sample Free amino groups (%) 

Ch 100 

ChG10 24.6 ± 2.9 

ChG10Ce01 25.5 ± 9.1 

ChG10Ce025 37.8 ± 4.0 

ChG10Ce05 95.8 ± 12.8 
 

 

The EDS data in table 4-3 shows that the cerium present on the surface of the beads 

increased with the increasing molar ratio of cerium chloride added to be incorporated in the 

beads, leading to a higher Ce/C atomic ratio as expected. Additionally, regardless of the 

composition and molar ratio of cerium used, the pore size observed in the beads was very 

similar between the samples. 

 



 
Bacterial Behavior in Hybrid Spherical Beads Containing Cerium 

 

– 104 – 

 Fi
gu

re
 4

-2
 S

EM
 im

ag
es

 o
f C

h 
an

d 
C

hG
10

 c
hi

to
sa

n-
si

lo
xa

ne
 h

yb
rid

 b
ea

ds
 su

rf
ac

es
 w

ith
ou

t a
nd

 w
ith

 d
iff

er
en

t a
m

ou
nt

s o
f c

er
iu

m
 c

hl
or

id
e 

in
co

rp
or

at
ed

. 



 
Chapter 4 

 

– 105 – 

Table 4-3 Pore size determined from SEM images and atomic ratio of Ce/C on the beads 
surfaces from EDS analysis. 

Sample Pore size (μm) Ce/C (atomic %) 

Ch   5.6 ± 13.6 0 

ChG10 5.9 ± 5.2 0 

ChG10Ce01  6.2 ± 5.1 0.007 

ChG10Ce025 5.6 ± 2.2 0.019 

ChG10Ce05 6.6 ± 3.7 0.032 
 

1.3.5. 4.3.2. Antibacterial properties of the beads with cerium 

The pH values after soaking the beads on PBS are listed in table 4-4 below. Regardless 

of the composition, the pH of the supernatant of all beads slightly increases from 2 h to 24 h of 

incubation on PBS buffer. In terms of changes on the appearance of the beads it was observed 

that the Ch and ChG10Ce05 beads were the samples which presented visible physical 

modifications such as color change, from white to transparent with loss of spherical shape and 

a swelling behavior, respectively.  

 

Table 4-4 pH changes after the beads were soaked on PBS and their macroscopical 
appearances. 

Sample 2 h 24 h Appearance after 24 h 

Ch 6.6 6.8 Transparent 

ChG10 6.5 6.6 No change 

ChG10Ce01  5.9 6.1 No change 

ChG10Ce025 5.7 5.8 No change 

ChG10Ce05 5.3 5.9 Swelling 
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Figure 4-3 shows the viabilities of both E. coli and S. aureus cultured with the beads for 

24 h. In general, the bacterial viabilities with the beads was lower than the positive control 

without beads. Non-crosslinked chitosan (Ch) beads had an antibacterial effect on both strains, 

but more effective towards E. coli. The ChG10 and ChG10Ce01 beads had a very similar 

bacterial viability displaying the highest values on both strains among the beads. Meanwhile, 

ChG10Ce025 and ChG10Ce05 beads presented a bacterial viability close to zero, indicating to 

be the most effective compositions of all tested beads for bacterial inhibition on both E. coli 

and S. aureus strains. 

 

Figure 4-3 Viability of E. coli and S. aureus cultured after 24h with the hybrid beads containing 
several molar ratios of cerium chloride. A statistically significant difference (p<0.05) was 
observed when comparing to chitosan beads, * for E. coli and # for S. aureus strain. 
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4.4. Discussion 

Regardless of the composition and molar ratio of cerium used, the pore size observed in 

the beads was very similar between the samples. When using the freeze drying method, the pore 

size  is determined by the size of the ice crystals formed along the samples [6].  

The ninhydrin assay data, was useful to determine quantitatively the amount of free amino 

groups on each beads composition. Ch beads had 100% of free amino groups, whereas on 

ChG10 the GPTMS crosslinked with 75% of the chitosan amino groups, leaving only 25% of 

reactive amino groups. A similar percentage was observed for ChG10Ce01 since the amount of 

cerium present was very low to cause an impact. While, the amount of free amino groups 

increased significantly on ChG10Ce05 beads. This apparently divergent behavior can be 

explained by the physicochemical properties of cerium. Trivalent cerium of ionic radius: 1.01 

Å, is similar to bivalent calcium of ionic radius: 1.00 Å in terms of size, bonding, and 

preferences for donor atoms [7]. Consequently, the chemical behavior of trivalent cerium is 

identical to bivalent calcium. It is known that, the amino groups from chitosan form complexes 

with calcium ions [8]. In this case, cerium formed complexes with the reactive amino groups 

and inhibited the crosslinking reaction between the amino groups and the epoxide groups of 

GPTMS.  

The viabilities of E. coli and S. aureus upon contact with the beads was lower than 

without the samples. Non-crosslinked chitosan beads had an antibacterial effect, similarly to 

previous research statements [9-12]. When protonated, the amino groups are positively charged 

(below pH 6) and interact with the negatively charged bacterial cell membranes, inducing the 

leakage of proteins [9, 10, 13] via hydrolysis of peptidoglycans present in the bacterial cell 

walls and causing alterations in the properties of the cell membrane permeability of the bacteria. 
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The pH of the medium was close to neutral after 24 h at pH 6.8, however the free amino 

groups of Ch were sufficiently protonated to induce bacterial death. However, crosslinking with 

GPTMS lowered the antibacterial effect of chitosan caused by the drop on the amount of free 

amino groups. The quantity of free amino groups on the ChG10Ce01 surfaces was identical as 

on ChG10. This indicates that a small amount of cerium, such as the one used on ChG10Ce01, 

cannot inhibit crosslinking between amino groups and epoxide groups, in addition to being 

insufficient to inhibit bacterial growth. Whereas, the cerium added on ChG10Ce025 and 

ChG10Ce05 beads greatly reduced the bacterial viability. On ChG10Ce05 beads, the 

percentage of free amino groups was around 96% due to the inhibition of the GPTMS 

crosslinking towards the amino groups by the cerium ions, thereby causing the inhibition of 

both bacterial growth. On the other hand, ChG10Ce025 had only 38% free amino groups but 

then showed the best antibacterial properties because of the synergies acquired by the cerium 

ion, or released from the beads surface. The obtained results suggested that the 0.25-0.5 molar 

ratio of cerium is the most favorable amount for these antibacterial beads. The MIC of cerium 

chloride for both bacteria was 3 mM (data shown in chapter 3 section 3.3.1). On ChG10Ce025 

samples, the concentration of cerium chloride in the cell suspension was 1.7 mM, if all the 

cerium chloride is released from the beads. This concentration is below the MIC. Indicating 

that the antibacterial properties of the chitosan-siloxane beads depended on the coaction of both 

cerium and free amino groups derived from chitosan. Cerium is not a foreigner compound in 

the human body. In the literature it was described that cerium can perform a similar role in 

physiological functions of the organisms, therefore cerium can accumulate in small portions in 

the bones [14, 15]. Concerning the amount of cerium present in the human body, it was reported 

that the blood comprises around 0.001 ppm, the tissues about 0.3 ppm, and in the bones nearly 

3 ppm of cerium. Therefore, in an average 70 kg human, a total of 40 mg of cerium is comprised 

in the body. Very few cerium is stored in the food chain, and so humans usually intake less than 



 
Chapter 4 

 

– 109 – 

1 mg/per day [15, 16]. This value corresponds to 20 mM if using the tested experimental settings 

(for the 0.2 mL of the bacterial suspension), therefore the use of cerium can be considered fairly 

safe since a good MIC of 1.7 mM was observed when using ChG10Ce025. 

This cationic polymer normally shows a stronger activity against gram-positive bacteria, 

such as S. aureus, than against gram-negative bacteria, like E. coli, because of their 

hydrophilicities [10, 11, 13]. The outer membrane that surrounds the cell wall of gram-negative 

bacteria, restricts drugs from interacting with the peptidoglycans that constitute the cell wall 

[17]. Nonetheless, gram-positive bacteria do not have this outer membrane and their cell walls 

are more vulnerable. Although the chitosan-siloxane beads had greater antibacterial activity 

against S. aureus than against E. coli, they showed antibacterial activity even against E. coli. 

The biological role of cerium is not yet clearly understood, but it has been noticed that cerium 

salts can have a role in the stimulation of the metabolism [18]. In this case, the 

lipopolysaccharides (LPS) present in the outer membrane are linked electrostatically via 

divalent cations, in particular Mg2+ and Ca2+, and these cations contribute to resistance against 

hydrophobic antimicrobial agents [19]. Therefore, leading to assume that the LPS mixed up 

Ce3+ with Ca2+ and transported Ce3+ into the outer membrane, resulting in antibacterial effects 

from the free amino groups of chitosan or by uptaking it into the cytoplasm to inhibit the cellular 

respiration, glucose metabolism and triggering membrane disruption of the bacterial cells [20]. 

4.5. Conclusions 

Hybrid microporous beads of chitosan-GPTMS were prepared using liquid nitrogen and 

freeze-drying method. Incorporation of an antibacterial agent such as cerium chloride was 

successfully achieved, in which the beads with cerium showed antibacterial effects against both 

E. coli and S. aureus, a gram-negative and gram-positive strain, respectively. The antibacterial 

properties were instigated by the (1) positively charged free amino groups on chitosan and (2) 
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the adsorption and uptake of cerium ions instead of calcium ions by the bacteria. These 

chitosan-siloxane hybrid beads containing cerium have promising applications as tissue 

engineering scaffolds and as antibacterial materials. 
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SUMMARY 

The main results of each chapters were summarized as follows:  

Chapter 2: Hybrids microspheres containing chitosan–GPTMS–β-GP were successfully 

produced using a microfluidic system via sol–gel process. The synthetized microspheres had 

sizes of approximately 650 μm with uniform spherical shapes. When the microspheres were 

submitted to pH 1.7 and 5.4, simulating the fluids of gastric conditions, the GPTMS 

crosslinking inhibited the chitosan degradation even at the lowest pH. In addition, the formation 

of siloxane networks occurred in the chitosan polymeric matrix and condensation was promoted 

by the GPTMS content. The release of phosphate was facilitated because of its weak 

electrostatic interaction with chitosan. Concerning silicon, it was released together with 

chitosan degradation and it was dependent on the composition of GPTMS present. The hybrid 

micro sized spheres endured harsh pH conditions for 14 days. The drug delivery ability of the 

produced chitosan-siloxane hybrid microspheres was tested. The incorporation of antioxidant 

pelargonidin was successful.  Under simulated gastro intestinal conditions, such as pH and 

digestion period, an initial burst at pH 1.7 was observed, followed by a slower and more 

sustained release in pH 5.4 and 6.7. The release of pelargonidin from the spheres matrix 

occurred via diffusion. These spheres appear to be promising for delivery of therapeutic agents 

for gastro intestinal applications due to its resistance to low pH and ability to retain pelargonidin 

for longer periods of time, since even after 57 h the presence of residual pelargonidin in the 

matrix was seen.  Therefore, it appears to be able to protect the therapeutic agents from the 

hostile conditions of the upper gastrointestinal tract. Therefore, these results propose that the 

synthesized hybrid microspheres are a good candidate to be used as drug carriers for the 

gastrointestinal track via oral administration. 
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Chapter 3: The bacterial behavior towards Escherichia coli (gram-negative) and 

Staphylococcus aureus (gram-positive) was observed with the chitosan-GPTMS-β-GP spheres 

and hydrogels containing cerium chloride, an antibacterial agent. No antibacterial effect was 

observed due to the immediate interaction between β-GP and cerium, making cerium 

inaccessible to the bacteria. Interestingly, the viability increased for both strains on ChG10 and 

also on ChG10Ce13.5. Therefore, these hydrogels appear to stimulate the bacteria viability, 

consequently they can be useful for more suitable applications in which the bacterial growth 

stimulation is desirable, for instance the stimulation of probiotic bacteria (nonpathogenic 

strains). 

Chapter 4: Microporous chitosan-GPTMS hybrid spheres were successfully prepared 

using liquid nitrogen and a freeze-drying system. The spheres with higher amounts of cerium 

chloride showed antibacterial effects against both E. coli and S. aureus. The antibacterial 

properties were caused by the free amino groups on chitosan and the adsorption and uptake of 

cerium ions instead of calcium ions into the bacteria. Due to its 3D structure these microporous 

spheres have the potential to be used as scaffolds to fill soft tissue defects with antibacterial 

properties. 

In conclusion, this study explores the potential of chitosan-siloxane hybrids for (1) 

increasing the uptake of drugs in the gastrointestinal using track using microspheres as carriers, 

via oral administration; and (2) develop strategy to fight bacterial resistance to common 

antibiotics using chitosan-siloxane spheres for the targeted delivery of antibacterial agents. 

Hopefully, these findings will help in the improvement of medical approaches to treat 

individuals. 
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