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ABSTRACT 

We synthesized (core@shell)@shell ((Au@Ag)@Au) nanoparticles (NPs) by a 

multistep citrate reduction method for utilizing photosensitizer of TiO2. The 

(Au@Ag)@Au NPs exhibited strong photoabsorption in visible light response due to 

LSPR excitation of Ag shell, and its LSPR characteristics was stable under long-time 

visible light irradiation because oxidation of Ag shell was prevented by outermost Au 

shell. Furthermore, we have successfully loaded (Au@Ag)@Au NPs on rutile TiO2 by 

impregnation method. The (Au@Ag)@Au/TiO2 can oxidize 2-propanol into acetone 

and CO2 under visible light irradiation (λ> 440 nm) and its acetone evolution rate was 

approximately 15 times higher than that of Au/TiO2. From a result of the comparison 

between action spectra for acetone evolution and Kubelka-Munk function, it confirmed 

that photocatalytic activity of (Au@Ag)@Au/TiO2 was induced by photoabsorption 

based on LSPR excitation of Ag shell. In addition, photoelectrochemical measurements 

revealed that electron injection from LSPR excited (Au@Ag)@Au NPs into TiO2 under 

visible light irradiation. We proposed the photocatalytic reaction process of 

(Au@Ag)@Au/TiO2, in conjunction with optical, structural and photoelectrochemical 

properties.   
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1. INTRODUCTION 

    Since the discovery of photoelectrochemical splitting of water on titanium dioxide 

(TiO2) electrodes,1 the TiO2 has been intensively studied for its photocatalytic activity, 

which could be used to convert light energy to storable chemical fuels, or to address 

environmental issues such as the treatment of waste water and cleaning of exterior 

windows by degradation of organic molecules.2-5 The TiO2 displays photocatalytic 

activity only when irradiated by ultraviolet (UV) light because of its large band gap 

(~3.0 eV for rutile and 3.2 eV for anatase).6 Solar irradiance spectrum contains 

approximately 4% UV light, whereas visible light comprises 50% and infrared light 

comprises the remaining 46%. Therefore, the development of visible-light response 

TiO2 is strongly demanded for expanding applications utilized solar light as well as 

fluorescent lamp, incandescent lamp and light-emitting diodes.  

   So far, many approaches to develop the visible-light response TiO2 have been 

proposed, such as chemical doping and photosensitization.7-10 Chemical doping is most 

common approach to narrowing bandgap of TiO2, while doped-ions in the TiO2 act as 

recombination centers for photo-excited electrons and holes, resulting in a decrease of 

photocatalytic activity.11 Photosensitization of TiO2 with organic dyes still presents 

major limitations for applications as photocatalyst because of its the poor stability of the 

dye, which can undergo desorption, photolysis and oxidative degradation, and fast back 

electron transfer, which results in low quantum yield for the photocatalytic reaction.12,13  

As an alternative to organic dyes, metallic nanoparticles (NPs) have been successfully 

used as photosensitizers for the TiO2 due to its stability and strong photoabsorption at 

visible light based on localized surface plasmon resonance (LSPR). Here the LSPR is 

coherent oscillation of electrons at surface of the metallic NPs upon incident light 



irradiation.14 The LSPR-induced photocatalytic activity of TiO2 was first described by 

Tatsuma et al. in 2005 in a study where they found that gold (Au) NPs loaded a TiO2 

(Au/TiO2) films can photocatalytically oxidize ethanol and methanol at the expense of 

oxygen reduction under visible light.15 Kowalska et al. further investigated the 

photocatalytic decomposition of 2-propanol by utilizing Au/TiO2 powders, and they 

proposed the LSPR-induced photocatalytic reaction process: (1) Incident photons are 

absorbed by the Au NPs through its LSPR excitation, (2) electrons in the Au NPs are 

injected into the conduction band of TiO2, and (3) the resultant electron-deficient Au 

NPs could oxidize 2-propanol to be recovered to the original metallic Au NPs state.15 To 

date, there are many reports concerning the photocatalytic activity of Au/TiO2 and its 

mechanism.16-19 

    The silver (Ag) NPs also display strong photoabsorption in the visible range based 

on LSPR, and Ag/TiO2 shows a higher incident-photon-to-current efficiency than that of 

Au/TiO2 under irradiation of visible light.20 However, Ag NPs possess severe 

susceptibility to oxidation; that is, Ag NPs were oxidized at the interface between Ag 

and TiO2, which leads to form silver oxide.21 The oxidation of Ag gives rise to a 

decrease in the photoabsorption intensity and a shift in the LSPR wavelength.22,23 

Therefore, if oxidation of Ag NPs on the TiO2 can be prevented, it is expected to gain 

and keep a high photocatalytic activity under visible light irradiation. The present 

research has carried out from this stand point. Our attention is now toward the 

(core@shell)@shell structure, (Au@Ag)@Au NPs, where core Au and outermost Au 

shell provide electrons to Ag shell for prevent of the Ag oxidation.24 This double shell 

structure (Au@Ag)@Au NPs were first revealed by Maenosono et al. for use as probes 

in sensing and bio-diagnostics applications, and they revealed that (Au@Ag)@Au NPs 



exhibited photoabsorption in the visible range based on LSPR of middle Ag shell.25 

However, the photocatalytic activity of (Au@Ag)@Au double shell NPs loaded on TiO2 

is still not understood. 

    We synthesized (core@shell)@shell (Au@Ag)@Au NPs by a multistep citrate 

reduction method for utilizing as photosensitizer of TiO2, and successfully loaded on 

rutile TiO2 by impregnation method. The (Au@Ag)@Au/TiO2 exhibited photocatalytic 

activity for decomposition of 2-propanol under visible light irradiation (λ >440 nm), and 

its photocatalytic reaction rate was approximately 15 times higher than that of Au/TiO2. 

In this paper, we present the photoctalytic activity of (Au@Ag)@Au/TiO2 and discuss 

its photocatalytic reaction process in conjunction with optical, structural and 

photoelectrochemical properties.  

 

2. EXPERIMENTAL SECTION 

2.1. Preparation of (Au@Ag)@Au NPs and rutile TiO2 

    The (Au@Ag)@Au NPs were synthesized by a multistep citrate reduction method 

as follows (refer Scheme 1). First, Au NPs were prepared which used as seeds for the 

synthesis of (Au@Ag)@Au NPs. The hydrogen tetrachloroaurate (III) tetrahydrate 

(99.0%, Wako Pure Chemical Industries. Ltd.), trisodium citrate (99.0%, Wako Pure 

Chemical Industries. Ltd.) and polyvinylpyrrolidone ((C6H9NO)n; n=27~32 Wako Pure 

Chemical Industries. Ltd.) as starting reagents were mixed together thoroughly in 

distilled water at 70 °C. The mixed solution was stirred for 1 h and cooled to room 

temperature. The obtained Au NPs suspension was a dark reddish colour with a LSPR 

band at 522 nm, and average diameter of Au NPs was 9 nm (Supporting information Fig. 

S1). Next, Ag shell was grown on the Au seeds via seed-mediated growth for 



(core@shell) Au@Ag NPs. The obtained Au NPs suspension was heated to reflux, then 

silver nitrate (99.5%, Wako Pure Chemical Industries. Ltd.) and the trisodium citrate 

were simultaneously added. After refluxing for 30 minutes, outermost Au shell was 

grown on the Au@Ag NPs by adding the hydrogen tetrachloroaurate (III) tetrahydrate 

and the trisodium citrate solution. The mixed solution was reflexed for 30 minutes and 

cooled to room temperature. Then (Au@Ag)@Au NPs were obtained. 

The rutile TiO2 crystals were synthesized by hydrothermal method, which our 

previously reported.26 In the synthesis procedure, a chemical solution was put in a 

sealed Teflon-lined autoclave reactor containing 50 ml aqueous solution of titanium 

trichloride, sodium chloride and poly(vinyl pyrrolidone). The solutions were then put 

into a 180 °C oven for 10 h. The substrate was centrifuged and rinsed with deionized 

water and then dried in a vacuum oven. After hydrothermal treatment, the organic 

compounds that remained or were adsorbed on the surface of TiO2 particles were 

removed by ultraviolet (UV) irradiation with a 500-W super-high-pressure mercury 

lamp (Ushio, SX-UI501UO) for 24 h. The particles were dried under reduced pressure 

at 60 °C for 6 h. Then rutile TiO2 crystals were obtained. 

 

2.2. Loading (Au@Ag)@Au NPs on rutile TiO2 

    The (Au@Ag)@Au NPs were loaded on rutile TiO2 by impregnation method. The 

impregnation was carried out by the following procedures: firstly, UV light (λ=365 nm, 

intensity; 3 mW/cm2) was irradiated to rutile TiO2 for 3 days to remove organic 

compounds that remained or were adsorbed on the surface of TiO2. Next, rutile 

TiO2 powder and colloidal (Au@Ag)@Au NPs were put into an egg-plant shaped flask. 

This mixed-solution was dispersed by sonication for 10 minutes and then dried by using 



a rotary evaporator on a water bath. After evaporation, the residue was washed with 

distilled water several times. Finally, the residual water was completely removed by 

using vacuum freeze drying method. Then (Au@Ag)@Au/ TiO2 were obtained. The 

Au@Ag NPs and Au NPs were also loaded on rutile TiO2 by impregnation method, 

which was same procedure mentioned above. It should be noted that amount of loading 

(Au@Ag)@Au NPs, Au@Ag NPs and Au NPs on TiO2 were optimized at 0.75wt% 

(Supporting information Fig. S2).   

 

2.3. Characterization  

The (Au@Ag)@Au NPs were characterized by field emission high resolution 

transmission electron microscope (HR-TEM; Tecnai G2 F30 S-TWIN, FEI) with a 

high-angle annular dark-field (STEM-HAADF) detector, energy-dispersive X-ray 

spectroscopy (EDS) elemental mapping. Absorption spectrum of colloidal 

(Au@Ag)@Au NPs acquired at room temperature with a UV/VIS spectrometer 

(UV-2600, Shimadzu Co.). The crystalline phase of rutile TiO2 was characterized by 

using a powder X-ray diffraction (XRD) instrument (MiniFlex II, Rigaku Co.) with 

CuKα (λ=1.5418 Å) radiation (cathode voltage: 30 kV, current: 15 mA). The diffuse 

reflectance spectrum acquired at room temperature with a UV/VIS spectrometer 

(UV-2600, Shimadzu Co.) attached to an integral sphere. X-ray photoelectron 

spectroscopy (XPS) measurements were performed using a Kratos AXIS Nova 

spectrometer (Shimazu Co.) with a monochromatic Al Kα X-ray source. The binding 

energy was calibrated by taking the carbon (C) 1s peak of contaminant carbon as a 

reference at 248.7 eV. 

 



2.4. Photocatalytic decomposition of 2-propanol 

Photocatalytic activity of (Au@Ag)@Au/TiO2 was evaluated by photocatalytic 

decomposition of 2-propanol. The sample powders of 0.16 mg were spread on a glass 

dish (4.0 cm2) and placed in a Tedlar bag (AS ONE Co. Ltd.) with a volume of 125 cm3. 

The Tedlar bag was sealed by laminating after the placement of the glass dish, and then 

gaseous 2-propanol with 500 ppm was injected into the Tedlar bag, in which gaseous 

composition in the Tedlar bag was 79% N2, 21% O2, <0.1 ppm of CO2 and 500 ppm of 

2-propanol. After 2-propanol had reached absorption equilibrium (after 2 hours), visible 

light irradiated to sample at room temperature. A 500-W xenon lamp (Ushio, 

SX-UI501XQ) was used as a light source and the wavelength of photoirradiation was 

controlled by Yellow-44 filter (λ > 440 nm, Asahi Techno Glass Co.). The intensity of 

light was adjusted 50 mW/cm2. The concentrations of 2-propanol, acetone and carbon 

dioxide (CO2) were estimated by gas chromatography (Shimadzu, GC-8A, FID 

detector) with a PEG-20 M 20% Celite 545 packed glass column and by gas 

chromatography (Shimadzu, GC-9A, FID detector) with a TCP 20% Uniport R packed 

column and methanizer (GL Sciences, MT-221), respectively.  

 

2.5. Photoelectrochemical measurement  

    Photoelectrochemical measurement was carried out by using electrochemical 

analyzer (604D, ALS Co.) with three–electrode system, where the (Au@Ag)@Au/TiO2 

electrode, the platinum, and silver-silver chloride (Ag/AgCl) electrode were used as 

working electrode, counter electrode, and reference electrode, respectively. The 

electrolyte was non-bubbled 0.1 M NaOH solution and its potential hydrogen (pH) was 

pH=14. The light source was used a Xe lamps equipped with yellow-44 cut off filter 



(λ > 440 nm, Asahi Techno Glass Co.). The light intensity was determined by utilizing a 

thermopile power meter (ORION-TH), and the intensity was 50 mW/cm2. The 

(Au@Ag)@Au/TiO2 electrode was fabricated on the fluorine doped tin oxide (FTO) 

glass as following procedure; firstly, rutile TiO2 crystal was deposited onto FTO glass in 

acetone solution by electrophoretic method. After deposition of rutile TiO2 layer, 

(Au@Ag)@Au NPs was also deposited onto TiO2/FTO glass in distilled water by 

electrophoretic method. 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of (Au@Ag)@Au NPs.    

    Figure 1 shows a TEM photograph and distribution of colloidal (Au@Ag)@Au 

NPs, revealing that (Au@Ag)@Au NPs have an average particle size of 18.0 nm within 

a relatively sharp distribution with standard deviation of 2.8 nm. Figure 2(a) shows a 

STEM-HAADF image of (Au@Ag)@Au NPs. Since the intensity (brightness) is 

approximately proportional to the square of the atomic number (Z2) in STEM-HAADF 

image, heavier Au atoms (atomic number; Z= 79) give rise to a brighter image than 

lighter Ag atoms (Z= 47). This image indicates that core Au was covered by Ag shell in 

(Au@Ag)@Au NPs. To investigate outermost Au shell in (Au@Ag)@Au NPs, EDS 

elemental mapping was performed. The data acquisition with high resolution was 

difficult due to sample drift, thereby, we compared EDS elemental mapping between 

(Au@Ag)@Au NPs and Au@Ag NPs to clarify outermost Au shell. As shown in Fig. 2 

(b), (c), (e) and (f), the distribution of Au M edge of Au@Ag NPs was located at only 

center of particles. On the other hands, the distribution of Au M edge of (Au@Ag)@Au 



NPs was spread around of particles, suggesting that outermost Au shell could be formed 

in (Au@Ag)@Au NPs.  

    For utilize (Au@Ag)@Au NPs as photosensitizers of TiO2, it is required 

visible-light response and stability. We investigated LSPR characteristics of colloidal 

(Au@Ag)@Au NPs before and after exposure in Xe lamp equipped Y-44 cut-off filter 

(λ >440 nm). Figure 3 shows absorption spectrum of colloidal (Au@Ag)@Au NPs, 

together with that of Au@Ag NPs and Au NPs in aqueous solutions. Before exposure in 

Xe lamp, colloidal (Au@Ag)@Au NPs exhibited strong absorption peaks centered at 

420 nm. This peak was considered to be due to the LSPR excitation of Ag. This 

observation is consistent with a previous report by Maenosono et al.23 After exposure in 

Xe lamp for 72 hours, absorption spectrum of (Au@Ag)@Au NPs was barely changed, 

implying that (Au@Ag)@Au NPs was stable at long-time visible light irradiation.  

    On the other hands, absorption spectrum of Au@Ag NPs changed after exposure in 

Xe lamp; a LSPR peak (λmax=407 nm) intensity was decreased and additional LSPR 

peak centered at 650 nm was observed. Similar phenomenon has been reported by 

Mirkin et al. in a study where they found a decrease of LSPR peak intensity of colloidal 

Ag NPs (λmax=400 nm) with a concomitant increased of LSPR peak intensity at 670 nm 

under 40-W fluorescent lamp illumination.27 They revealed that fluorescent lamp 

irradiation for colloidal Ag NPs led to morphology change, resulting in a change of 

LSPR characteristics. As shown in Fig. 3, STEM-HAADF and the EDS elemental 

mapping images indicated that a degradation of absorption spectrum of the Au@Ag 

must be due to morphology change of Ag shell (see Fig. 3(b)). Wu et al. revealed that 

morphological conversions of Ag NPs were caused by coupling the photo-oxidative 

dissolution and the subsequent photoreduction of aqueous Ag+ ions.28 Therefore, it is 

http://ejje.weblio.jp/content/responsiveness


highly possible that Ag shell in Au@Ag NPs were oxidized by visible light irradiation, 

which leads to morphological conversions, resulting in a decrease of absorption 

intensity and a change in the absorption spectrum. In contrast, LSPR characteristics of 

(Au@Ag)@Au NPs was stable under long-time visible light irradiation because 

oxidation of Ag shell may be prevented by outermost Au shell. 

 

3.2. Characterization of (Au@Ag)@Au NPs/TiO2.      

    Figure 4(a) shows a TEM photograph of rutile TiO2. The rod-like morphology was 

confirmed and most of rutile rods consisted of flat side surfaces and triangular-like caps, 

similar to the structure reported for rutile rods with {110} and {111} exposed crystal 

faces and longer length along the [001] direction.26,29 Figure 4(b) shows a TEM 

photograph of rutile TiO2 with (Au@Ag)@Au NPs. Small (Au@Ag)@Au NPs were 

observed and average diameter was determined to be ca. 19 nm, indicating that 

(Au@Ag)@Au NPs were successfully loaded on surface of rutile TiO2 by impregnation 

method.  

    Figure 4(c) shows diffuse reflection spectrum of (Au@Ag)@Au/TiO2, together 

with that of bare rutile TiO2, Au/TiO2, Au@Ag/TiO2. The bare rutile TiO2 exhibited 

only strong photoabsorption at λ< 400 nm, which was ascribed to the band-gap 

excitation. In the case of Au/TiO2, additional absorption peak was observed at around 

560 nm. Kowalska et al. reported that photoabsorption of Au NPs loaded on rutile TiO2 

was observed at around 550 nm due to its LSPR excitation. Therefore, photoabsorption 

observed in Au/TiO2 was attributed to LSPR excitation of the loaded Au NPs. 

(Au@Ag)@Au NPs or Au@Ag NPs loaded on rutile TiO2 exhibited a strong absorption 

peak centered at 484 nm or 486 nm, respectively. These absorption peaks were ascribed 



to LSPR excitation of Ag shell in loaded (Au@Ag)@Au NPs and Au@Ag NPs on the 

basis of absorption spectrum of colloidal (Au@Ag)@Au NPs and Au@Ag NPs (refer to 

Fig. 3).  

 

3.3. Photocatalytic activities of (Au@Ag)@Au NPs/TiO2 for 2-propanol 

oxidation.  

    The photocatalytic activity was evaluated by oxidation of 2-propanol in gas phase. 

Figure 5 shows time course of acetone and CO2 evolution from decomposition of 

2-propanol over (Au@Ag)@Au/TiO2 under irradiation of Xe lamp equipped with Y-44 

cut-off filter (λ> 440 nm, 30 mW/cm2). Acetone evolution was increased almost linearly 

with irradiation time up to 6 h, and followed by a gradually decrease with irradiation 

time due to accumulation of acetone on surface of (Au@Ag)@Au/TiO2. After 

prolonged visible light irradiation, the acetone was finally decomposed into CO2. This 

behavior is plausible as it is known that 2-propanol decomposes into CO2, which is final 

product, via acetone, the intermediary product.30-32 It should be noted that the acetone 

and CO2 were detect neither under dark conditions nor under visible light irradiation in 

absence of (Au@Ag)@Au/TiO2. 

    Action spectrum is strong tool for determining whether a reaction observed in 

(Au@Ag)@Au/TiO2 occurs via a photo-induced process or thermocatalytic process. To 

obtain an action spectrum, acetone evolution from decomposition of 2-propanol over 

(Au@Ag)@Au/TiO2 was measured at room temperature under visible light irradiation 

by using light-emitting diodes peaking at 455 nm, 470 nm, 505 nm, 530 nm, 625 nm 

and 720 nm, respectively. Apparent quantum efficiency (AQE) at each wavelength was 

calculated form the ratio of the amount of the acetone and the amount of incident 



photons, using the following equation; 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 × 2 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜 𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚
  

    As shown in the Fig. 6, the AQE was good agreement with the Kubelka-Munk 

function of (Au@Ag)@Au/TiO2, indicating that photocatalytic activity of 

(Au@Ag)@Au/TiO2 was induced by photoabsorption based on LSPR excitation of Ag 

shell. Figure 7 shows the cycle tests of acetone evolution from decomposition of 

2-propanol over (Au@Ag)@Au/TiO2 under irradiation of Xe lamp equipped with Y-44 

cut-off filter (λ> 440 nm, 30 mW/cm2). In the first cycle, acetone evolution was 

increased almost linearly with irradiation time and followed by gradually decreased 

with irradiation time, which were discussed above. After 24 h and 48 h irradiation, 

residual acetone was removed by evacuation and additional 2-propanol was injected and 

irradiation again. Just the same as with the first cycle, acetone evolution was increased 

with irradiation time indicating that (Au@Ag)@Au/TiO2 continuously decomposed 

2-propanol under visible light irradiation without losing its activity. 

    Thus, (Au@Ag)@Au/TiO2 can oxidize 2-propanol into acetone and CO2 under 

visible light irradiation (λ> 440 nm) and its activity was attributed to LSPR excitation of 

Ag shell. Therefore, we calculated the turnover number of Ag shell in loaded 

(Au@Ag)@Au NPs. The present sample (0.75 wt% (Au@Ag)@Au/TiO2) contained ca. 

8.8 μmol Ag, and CO2 evolution was confirmed to be ca. 2.7 μmol after irradiation for 

24 h (see Fig. 4). Assuming that six photons are required to produce one CO2 molecule, 

as following equations; 

(𝐶𝐶𝐶𝐶3)2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 5𝐶𝐶2𝐶𝐶 + 18ℎ+  → 3𝐶𝐶𝐶𝐶2 + 18𝐶𝐶+ 

    The turnover number of Ag shell in (Au@Ag)@Au NPs was more than ca. 1.84, 



which is enough to prove that a reaction observed was photocatalytic reaction.  

Figure 8 shows the comparison of acetone and CO2 evolution rates of 

(Au@Ag)@Au/TiO2, Au@Ag/TiO2, Au/TiO2 and bare rutile TiO2 under Xe lamp 

irradiation equipped with Y-44 cut-off filter (λ> 440 nm, 30 mW/cm2). As shown in this 

figure, acetone and CO2 evolution rates were increased in the order to bare TiO2 < 

Au/TiO2 << Au@Ag/TiO2 < (Au@Ag)@Au/TiO2, implying that LSPR excitation of Ag 

could produce higher photocatalytic activity than that of Au. Although, acetone 

evolution rate of Au@Ag/TiO2 was same as that of (Au@Ag)@Au/TiO2, the CO2 

evolution rate of Au@Ag/TiO2 was smaller than that of (Au@Ag)@Au/TiO2. To clarify 

this phenomenon, XPS measurement has been done before and after photocatalytic 

activity tests for decomposition of 2-propanol, and the results of the Ag 3d spectra are 

shown in Fig. 9. Before exposure in visible light, both of sample exhibited two sharp 

peaks at 367.9 eV and 374 eV, which were attributed to typical values of Ag 3d5/2 and 

3d3/2, respectively. After photoirradiation, Ag 3d XPS spectrum of Au@Ag/TiO2 shifted 

to lower binding energy, which peaked at 367.4 eV and 373.4 eV, respectively. These 

peaks were identified to be silver oxide AgO,33 indicating that Au@Ag NPs were 

oxidized by irradiation of visible light. Previously Sukhishvili et al. revealed that 

oxidation of Ag NPs surface hinders charge transfer between Ag and organic 

molecules.34 Therefore, we speculated that oxidation of Au@Ag NPs on the TiO2 

suppress photocatalytic oxidation of acetone under long term photoirradiation, resulting 

in a lower CO2 evolution compared with (Au@Ag)@Au/TiO2. 

 

3.4. Photocatalytic reaction process of (Au@Ag)@Au NPs/TiO2. 

   There have been several reports concerning the mechanism of LSPR-induced 



photocatalytic reaction of the Au NPs/TiO2.14-16 As for the reaction mechanism, electron 

injection from LSPR excited Au NPs to TiO2 and subsequent oxidation of 2-propanol at 

Au NPs have been proposed. Actually, Furube et al. observed the electron transfer from 

excited Au NPs to TiO2 particles by means of femtosecond transient absorption 

spectroscopy.16  

To clarify the electron transfer process of (Au@Ag)@Au/TiO2, 

photoelectrochemical measurement has been done. Figure 10 shows linear sweep 

voltammetry of the (Au@Ag)@Au/TiO2 electrode in 0.1 M NaOH solutions with 

irradiation of visible light (λ >440 nm), together with that of rutile TiO2 electrode. As 

clearly in this figure, the (Au@Ag)@Au/TiO2 photoelectrode exhibited an anodic 

photocurrent in response to irradiation of visible light, and the anodic photocurrent 

density reached 0.1 µA/cm2 at 0 V applied potential versus Ag/AgCl. In contrast, bare 

rutile TiO2 electrode did not exhibit an anodic photocurrent under visible light. These 

results supporting that electron transfer from LSPR excited (Au@Ag)@Au NPs to the 

rutile TiO2 has occurred subsequent oxidation of water at (Au@Ag)@Au NPs. 

    On the basis of above results, we proposed the reaction process for the 

photocatalytic decomposition of 2-propanol over (Au@Ag)@Au/TiO2 as follows; (1) 

When visible light was irradiated to the (Au@Ag)@Au/TiO2, the photons are absorbed 

by the middle Ag shell of (Au@Ag)@Au due to LSPR excitation, as was proved by 

action spectrum analysis. (2) The excited electrons in the middle Ag shell may be 

injected to the conduction band of rutile TiO2. Then, electron-deficient Ag shell (Ag+ 

state) received electrons from outermost Au shell to be recovered to original Ag state. 

(3) The resultant electron-deficient Au shell can oxidize organic compounds, such as 

2-propanol and acetic acid.  



 

4. CONCLUSIONS 

Colloidal (core@shell)@shell (Au@Ag)@Au) NPs were synthesized and 

successfully loaded on rutile TiO2 by using an impregnation method. The 

(Au@Ag)@Au NPs loaded on the TiO2 showed a strong photoabsorption at around 420 

nm due to LSPR of Ag shell, and its LSPR characteristics was stable under long-time 

visible light irradiation because oxidation of Ag shell was prevented by outermost Au 

shell. Furthermore, we revealed that (Au@Ag)@Au NPs/TiO2 can oxidize 2-propanol 

into acetone and CO2 under visible light irradiation (λ> 440 nm) and the acetone 

generation rate of (Au@Ag)@Au NPs/TiO2 was approximately 15 times higher than 

that of Au NPs/TiO2. From a result of the comparison between action spectra for 

acetone evolution and Kubelka-Munk function, it confirmed that photocatalytic activity 

of (Au@Ag)@Au/TiO2 was induced by photoabsorption based on LSPR excitation of 

Ag shell. The turnover number of Ag shell in (Au@Ag)@Au/TiO2 more than ca. 1.8, 

which is enough to prove that a reaction observed was photocatalytic 

reaction. Photoelectrochemical measurements revealed that electron injection from 

LSPR excited (Au@Ag)@Au NPs into TiO2 under visible light irradiation. We 

proposed the photocatalytic reaction process for (Au@Ag)@Au/TiO2.  
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Scheme1. Synthesis procedure for (Au@Ag)Au NPs  



 
 

Figure 1. TEM photograph (left) and size distributions (right) of colloidal (Au@Ag)Au 

NPs. 

  



 
Figure 2. STEM-HAADF image (a) and EDS elemental mapping for Ag L map (b), Au 

M map (c) of (Au@Ag)@Au NPs. The below images are for Au@Ag NPs with 

STEM-HAADF image (d) and EDS elemental mapping for Ag L map (e), Au M map 

(f).   



 
 

Figure 3. (a) Absorption spectrum of colloidal (Au@Ag)@Au NPs, Au@Ag NPs and 

Au NPs, where solid lines are as prepared NPs and broken lines indicats after exposure 

in Xe lamp equipped with Y-44 cut-off filter (λ>440 nm, intensity = 30 mW/cm2) for 72 

hours. (b) STEM-HAADF and EDS elemental mapping images between (Au@Ag)@Au 

NPs (top) and Au@Ag NPs (bottom) after exposure in Xe lamp for 72 hours (λ>440 nm, 

intensity = 30 mW/cm2).   



 
 

Figure 4. (a) TEM photograph of rutile TiO2 and (b) (Au@Ag)Au NPs loaded rutile 

TiO2 (bottom). (c) Diffuse reflection spectrum of 0.75 w% (Au@Ag)@Au/TiO2, 0.75 

w% Au@Ag/TiO2, 0.75 w% Au/TiO2, and bare rutile TiO2.  



 
 

Figure 5. Time course of acetone (solid circle) and CO2 (open triangle) evolution of 

2-propanol decomposition over 0.75 wt% (Au@Ag)Au/TiO2 under irradiation of Xe 

lamp equipped with Y-44 cut-off filter (λ>440 nm, intensity = 30 mW/cm2)   



 
 

Figure 6. Action spectrum (solid circle) of acetone evolution of 2-propanol 

decomposition over 0.75 wt% (Au@Ag)Au/TiO2 (left axis) and Kubelka-Munk 

function (solid line) of 0.75 wt% (Au@Ag)Au/TiO2 (right axis). 

  



 
 

Figure 7. Time course of acetone evolution of 2-propanol decomposition over the 0.75 

wt% (Au@Ag)Au/TiO2 (solid circle) under visible light irradiation for 24 h (Xe lamp, 

λ>440 nm) which measured up to 3 cycles. After 24 and 48 h irradiation, residual gas 

was evacuated and additional 2-propanol (500 ppm) was injected and irradiated again.  



 
Figure 8. Acetone and CO2 evolution rates of 2-propanol decomposition over the 0.75 

wt% (Au@Ag)Au/TiO2 under visible light irradiation (Xe lamp, λ>440 nm).  



 
Figure 9. XPS spectra of Ag 3d of (Au@Ag)@Au/TiO2 and Au@Ag/TiO2 before (solid 

lines) and after (broken lines) photocatalytic activity tests for decomposition of 

2-propanol.    



 
 

Figure 10. Linear sweep voltammetry of (Au@Ag)@Au/TiO2 and bare TiO2 electrode 

under “chopped” Xe lamp irradiation (λ>440 nm). The electrolyte is non-bubbled 

aqueous NaOH solution (pH=14). Right figure is expected working mechanism of 

anodic photocurrent from (Au@Ag)Au/TiO2 electrode under visible light irradiation.  
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