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Fluorodeoxyglucose-conjugated magnetic nanoparticles, designed to target cancer cells with high specificity when heated
by an alternating magnetic field, could provide a low-cost, non-toxic treatment for cancer. However, it is essential that
the in vivo impacts of such technologies on both tumour and healthy tissues are characterised fully. Profiling tissue
gene expression by semi-quantitative reverse transcriptase real-time PCR can provide a sensitive measurement of tissue
response to treatment. However, the accuracy of such analyses is dependent on the selection of stable reference genes.
In this study, we determined the impact of fluorodeoxyglucose-conjugated magnetic nanoparticles on tumour and non-
tumour tissue gene expression and morphology in MAC16 adenocarcinoma established male NMRI mice. Mice received
an injection of 8 mg/kg body weight fluorodeoxyglucose-conjugated magnetic nanoparticles either intravenously in to
the tail vein, directly into the tumour or subcutaneously directly overlying the tumour. Tissues from mice were sampled
between 70 minutes and 12 hours post injection. Using the bioinformatic geNorm tool, we established the stability of
six candidate reference genes (Hprt, Pgk1, Ppib, Sdha, Tbp and Tuba); we observed Pgk1 and Ppib to be the most
stable. We then characterised the expression profiles of several apoptosis genes of interest in our adenocarcinoma
samples, observing differential expression in response to mode of administration and exposure duration. Using histological
assessment and fluorescent TUNNEL staining, we observed no detrimental impact on either tumour or non-tumour tissue
morphology or levels of apoptosis. These observations define the underlying efficacy of fluorodeoxyglucose-conjugated
magnetic nanoparticles on tumour and non-tumour tissue morphology and gene expression, setting the basis for future
studies.
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INTRODUCTION

Despite decades of research and significant financial
investment, a definitive treatment or cure for cancer
remains elusive. Current treatments including surgery,
radiotherapy and chemotherapy are associated with
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detrimental side-effects and adverse impacts on patient
appearance, well-being and health.! In addition, can-
cer cells can be inaccessible to treatment options such
as surgery, can develop resistance to chemotherapeu-
tic agents used in the treatment of cancer or remain
incurable with current radiotherapy and chemotherapy
approaches.>? Finally, there are significant limitations for
identifying and targeting individual cancer cells within
patients, thereby limiting the delivery of treatment and

doi:10.1166/jbn.2018.2631 1979


http://www.aspbs.com/jbn

Tissue Morphology and Gene Expression Characterisation of Transplantable Adenocarcinoma Bearing Mice

Watkins et al.

appropriate monitoring of treatment responses. As such,
there is clear potential for the development and implemen-
tation of new approaches for the treatment of cancer.

One such approach is though the synthesis and surface
modification of magnetic nanoparticles (MNPs). Studies
have largely focused on the use of iron oxide contain-
ing MNPs on account of their biocompatibility and low
toxicity.*® However, in recent years, the synthesis of
MNPs has improved substantially, resulting in the devel-
opment of particles with specific surface coatings such as
dextran,” polyethylene glycol,® gold’ and dopamine.'® The
use of MNPs has been shown to result in many thera-
peutic benefits.!'"!3 Moreover, they have low aggregation
properties, enabling then to avoid emboli, are able to be
incorporated easily into drug delivery systems and can be
heated directly within an alternating magnetic field.!*!”
In addition, the use of magnetic field stimulation to induce
tumour cell hyperthermia following intravenous admin-
istration of MNPs has been shown to be beneficial in
controlling tumour growth.!®2! Recently, we tested the
in vitro functionality of fludeoxyglucose-conjugated mag-
netic nanoparticles (FDG-MNPs) with the aim of targeting
MCEF-7 cancer cells in vitro by magnetic field stimula-
tion. As cancer cells are characterised by increased gly-
colysis and elevated lactate production,’”?* a phenomenon
known as the Warburg effect,”* their higher metabolic
status results in preferential uptake of FDG-MNPs over
non-cancerous cells. We observed rapid and sustained
hyperthermia, resulting in the death of 89% of MCF-7
cancer cells in vitro.?

While these studies demonstrate the validity of using
FDG-MNPs to target cancer cells in vitro, it is essen-
tial that their impact on non-cancerous tissue in vivo is
established. Currently, morphological and gene expression
analysis of tissues can be undertaken to understand cellu-
lar responses that may occur prior to observing changes
at the histological level. Central to the measurement of
gene expression profiles is the use of semi-quantitative
reverse transcription real-time PCR (RT-qPCR).> This
technique is both sensitive enough to detect changes in
gene expression at single cell resolution?® and robust
enough to validate genome-wide expression analyses such
as microarray data. However, in order to determine the
expression levels of any gene of interest, its expression
must be normalised against that of a reference gene.”’
Such reference genes must display stable expression pro-
files as they need to account for the multiple processing
steps that take place during tissue isolation, cDNA synthe-
sis, plate set up and PCR as well as for differences in target
gene expression.?® Interestingly, studies have shown that
the expression of commonly used reference genes change
with age,**3! experimental conditions®> and species.®*3*
In addition, studies are now also defining appropriate ref-
erence gene selection within tumour tissue and cancer cell
lines. -7
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Therefore, the aim of the present study was to define
the impact of our FDG-MNPs in their non-magnetic
stimulated state on tumour and non-tumour tissue in mice
bearing MAC16 adenocarcinomas in a non-magnetic field
environment. Here, we establish the expression profile of
commonly used reference genes in a mouse adenocarci-
noma model exposed to FDG-MNPs. Following selection
of the most stable reference genes, we profiled the expres-
sion of several pro-apoptotic (Bad, Bax, Caspl, Fas) and
anti-apoptotic genes (Bcl2, cI211) within the same tumour
tissue samples. Finally, we demonstrate that in vivo admin-
istration of FDG-MNPs, in their non-magnetic stimulated
state, has minimal impact on tumour and non-tumour tis-
sue integrity or levels of cell death. However, we do
observe large variances in reference gene expression pro-
files, highlighting the necessity to select appropriate refer-
ence genes in the analysis of tumour gene expression.

MATERIALS AND METHODS

Synthesis of Magnetic Nanoparticles (MNPs)
MNPs were prepared as previously described.? Briefly,
12 mL of 2 M FeCl, (Fluka, Istanbul, Turkey) solution in
2 M HCI (Merck, Istanbul, Turkey) was added to a 500 mL
three necked glass flask. 50 mL of a freshly prepared
80 mM Na,SO, (Merck) solution followed by 5 ml of
NH; solution (25%) (Merck) added to the flask, both drop-
wise under nitrogen gas. The solution was incubated for
30 minutes at 70 °C and then cooled to below 45 °C. The
black precipitate was recovered using an external magnetic
field and washed with distilled water several times. Par-
ticles were then washed with a water—ethanol (2:1) mix-
ture and the precipitate was re-suspended in 80% ethanol
(Merck) prior to the addition of tetraethyl orthosilicate
(TEOS, Sigma). The resulting solution was incubated for
12 hours at 40 °C. After 12 hours, silica-coated magnetic
nanoparticles were washed with methanol and re-dispersed
in 100 mL methanol. Using the Malvern Zetasizer Nano
7S (Malvern, Herrenberg, Germany), the mean hydrody-
namic radius of the MNPs was 19.43 +2.30 nm.

Modification of Silica Coated Magnetite
Nanoparticles with Amino-Silane

Silica-coated MNPs were mixed with 2.5 mL of
(3-aminopropyl) triethoxysilane (APTES, Sigma) and
placed within an ultrasonic water bath prior to being
incubated for 12 hours at 60 °C with rapid stirring.
The resulting MNPs were washed with ethanol prior
to analysis of hydrodynamic radius (Malvern Zetasizer
Nano ZS (Malvern, Herrenberg, Germany) which was
6.19+1.85 nm.

Synthesis of NaF Substituted Mannose
Triflate-Cysteamine

FDG-MNPs were prepared as described previously.?
Briefly, for the synthesis of mannose triflate-cysteamine,
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19.21 mg of mannose triflate (Fluka) was dissolved in
200 uL of distilled water at 90 °C. Separately, 84.85 mg of
cysteamine (2-aminoetanethiol; Sigma, Istanbul, Turkey)
was dissolved in 70 wL of pure water and adjusted to a
pH of 7.5 prior to the addition of 40 mg of NaCNBH,
(Fluka). Both solutions were mixed and heated for 1 hour
at 90 °C prior to being precipitated, dried overnight at
65 °C and dissolved in dimethyl formamide (Merck). Next,
100 pL of Kryptofix (Merck) solution (2.0 mg/mL in
dimethyl formamide), 200 uL of K,CO, (Fluka) aque-
ous solution (2.0 mg/mL), 100 pL of dimethyl for-
mamide (Merkc) and 200 uL of 16 mM NaF (Merck)
were added to 1 ml of the prepared mannose triflate-
cysteamine (35 mM) and heated for 20 minutes at
90 °C in a water bath. For purification, the product
was passed sequentially through a Dowex 50 cation
exchange resin column (Sigma), Ambersep 900 quaternary
ammonium anion exchange resin (Fluka), Amberlite anion
exchange resin (Sigma) and finally a C18 pre-cartridge
(Sigma).

Synthesis of Fludeoxyglucose (FGD)

Conjugated MNPs

The purified NaF substituted mannose triflate-cysteamine
was mixed with the MNPs at room temperature prior to
the addition of 50 mM of N-Hydroxysuccinimide (Merck)
and mixing for 2 hours in an orbital shaker.

Indocyanine Green (ICG) Labelling of FGD-MNPs

7 mg of carbonyl diimidazole (CDI; ~20 mM) and 50 mM
of NHS (N-Hydroxysuccinimide) were added to 1 mL
(30 mg/mL) of FDG-MNPs and mix for 15 minutes at
room temperature. The solution was adjusted to a pH of
7.0 using a 2-(N-morpholino)ethanesulfonic acid (MES)
buffer (0.040 g) and 0.058 g of NaCl and a volume of 2 ml
PBS prior to the addition of 0.3 mg/ml of ICG solution
(Sigma) and a further 15 minutes mixing at room temper-
ature. Finally, 1.4 ul of mercaptoethanol (20 mM, Sigma)
was added to the reaction mixture to inactivate excess ICG
and the resulting solution was mixed at room temperature
for 2 hours. ICG labelled FDG-MNPs were centrifuged
and washed twice with PBS prior to storage in PBS buffer
at 4 °C.

Characterization of FDG-MNPs

The size distribution and zeta potential measurements
of the ICG labelled FDG-MNPs were performed on
a Malvern Zetasizer Nano ZS (Malvern, Herrenberg,
Germany) after dilution and sonication of the sam-
ples in distilled water. The medium size was 19.43 £
230 nm (n=35) together with their hydrodynamic
radius. The particle size and morphology of the ICG
labelled FDG-MNPs were assessed by scanning elec-
tronic microscopy (Fig. 2(A)) and transmission electron
microscopy (Fig. 2(B)). Briefly, samples were freeze-dried
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prior to coating with iridium at a thickness of 2 nm
(Leica EM ACEG600). Samples were examined by scan-
ning electronic microscopy (LEO 1550; Carl Zeiss) with
a field-emission electron gun and operation/data acquisi-
tion software (Smart SEM version 5). The same samples
were also prepared for negative staining with Nano-van
(Nanoprobe) and analysed at 120 kV in a transmis-
sion electron microscope (JEOL 1400plus) equipped with
Gatan Ultrascan 1000 camera. High performance liquid
chromatography (HPLC) (Schimadzu, Kyoto, Japan) chro-
matograms were obtained to check the purity of nanopar-
ticles using a Schimadzu HPLC system equipped with
a LC-10ATvp quaternary pump, RF10XL fluorescence
detector, and 7.0 um reversed-phase (RP) -C-18 col-
umn (250 x 21 mm internal diameter) (Macherey-Nagel).
ICG labelled FDG-MNPs were checked for excitation and
emission spectra at 780 nm 820 nm respectively and eluted
in 60% acetonitrile (in distilled water).

In Vivo Analysis of ICG-Labelled FDG-MNP
Tissue Distribution

All mice and experimental procedures were conducted
using protocols approved by, and in accordance with,
the UK Home Office Animal (Scientific Procedures) Act
1986 and the local ethics committee at Aston University.
Establishment of sub-cutaneous adenocarcinoma in NMRI
mice was conducted as previously described.’® Briefly,
established MAC16 adenocarcinoma were excised from
donor NMRI mice and cut into small fragments (approx-
imately 2-5 mm?®) in PBS supplemented with strepto-
mycin and penicillin (Fisher Scientific, UK). Fragments
(3-5) were transplanted surgically under isoflurane anaes-
thesia between the skin and abdominal body-wall of eight,
8-week old NMRI male mice. After 10 days, all mice dis-
played visible signs of abdominal sub-cutaneous tumour
growth. At this time, all mice received ICG-labelled FDG-
MNPs at a concentration of 8 mg/kg body weight in 100 ul
PBS either intravenously via intravenous injection into
the tails vein (4 mice), injection directly into the tumour
(3 mice) or injection subcutaneously overlying the tumour
(1 mouse). There was no evidence of any ill-effects of
ICG-labelled FDG-MNP injection on mouse mobility or
general outward behaviour during the experiment. Mice
injected intravenously were culled via cervical disloca-
tion at 70 minutes, 2.5 hours, 5 hours or 12 hours post
injection, respectively. Similarly, mice receiving injections
directly into the tumour were culled at either 70 minutes,
2.5 hours or 5 hours post injection, respectively, while
the one mouse injected subcutaneously was culled at 2.5
hours post injection. From all mice, left kidney, liver, lung
and tumour were removed and either fixed in 10% neu-
tral buffered formalin (Sigma, UK) for 48 hours at 4 °C,
prior to storage in 70% ethanol at 4 °C, or snap frozen and
stored at —80 °C.
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Tissue RNA Extraction and cDNA Synthesis

Total RNA was extracted from stored kidney, liver, lung
and tumour samples using the RNeasy Mini Kit (Qiagen,
UK) according to the manufacturer’s instructions. Addi-
tionally, on column DNase 1 digestion was performed
using the RNase-free DNase kit (Qiagen, UK) accord-
ing to the manufacturer’s instructions. RNA was quan-
tified by Nanodrop (ND-1000). cDNA was prepared
from 2 pg of RNA using the nanoScript 2 Reverse
Transcription kit (Primerdesign, Southampton, UK) with
the random primers, according to the manufacturer’s
instructions. Reverse transcriptase negative (-RT) controls
were prepared for all samples as controls for genomic
DNA contamination. Synthesised cDNA was diluted in
RNase-DNase free water to a concentration equivalent of
5 ng RNA per ul and stored at —20 °C.

Quantitative Real-Time PCR

Intron spanning primers were designed using the Roche
Applied Sciences Universal ProbeLibrary Assay Design
Centre (See Table I). Gene expression analyses were con-
ducted using the 2X PrecisionPlus Mastermix (Primerde-
sign) containing SYBR Green, a final concentration of
300 nM each of forward and reverse primers and 1 ul
(5 ng RNA equivalent) cDNA in a total volume of 20 ul.
Each sample was analysed in triplicate along with respec-
tive -RT, no-template (water in place of cDNA) and pos-
itive controls. Thermal cycling and fluorescence detection
were conducted using a Stratagen Mx3000P qPCR sys-
tem (Agilent Technologies, Santa Clara, CA, USA) with
MxPRO software. Thermal cycling conditions were 95 °C
for 2 minutes (enzyme activation), then 40 cycles of 95 °C
for 15 seconds followed by 60 °C for 1 minute, with a final

extension step of 70 °C for 1 minute. Melting curves were
produced for each sample, measuring fluorescence levels
at 0.5 °C intervals.

Tissue Histology and FDG-MNP Distribution
Samples of fixed kidney, liver, lung and tumour from all
mice were processed into paraffin wax ahead of section-
ing at 5 um. Tissue sections were analysed either for
gross morphology by Haematoxylin and Eosin staining
(using standard staining protocols) or for levels of apopto-
sis using the APO-BrdU TUNNEL Assay Kit (Molecular
Probes, Invitrogen, UK) according to the manufacturer’s
instructions. Haematoxylin and Eosin stained sections
were imaged using a CETI Magnum-T microscope con-
nected to a Jenoptik ProgRes CF camera. APO-BrdU
TUNNEL stained sections were imaged on a Leica
Microstystems DMI 4000B microscope fitted with a Leica
DFC360 FX camera. Fluorescent images were captured
with filters set for nuclear staining with propidium iodide
and for apoptotic nuclei staining with an Alexa Fluor
448 dye-labelled anti BrdU antibody. Relative tissue flu-
orescent staining intensities were measured from four
separate sections of each tissue sample using Volocy
software.

Data Analysis

C, values were converted to relative expression values
using the AC, and reference gene stability was calculated
using the VBA applet for geNorm.* A normalisation fac-
tor was derived from the geNorm output which was then
used to normalise the expression of each individual gene.
See Figure 1 for an outline of the experimental design of
this study.

Table I. Real-time qPCR primer details.
Primer sequences
Gene name Gene symbol  Accession number Forward primer Reverse primer Amplicon length
BCL2-associated agonist Bad NM_007522.3 gccctaggcttgaggaagtc catactctgggctgcetggtc 90
of cell death
BCL2-associated X protein Bax NM_007527.3 agtgtctccggcgaattg ccacgtcagcaatcatcct 69
B cell Bcl2 NM_009741.5 gtacctgaaccggcatctg gctgagcagggtcttcagag 130
leukemia/lymphoma 2
BCL2-like 1 Bel2l1 NM_001012477 gtcctcttgctgtccagete tggtttaccgtcactgatge 121
Caspase 1 Casp1 NM_009807.2 caagtgcaagtgcaaaccag ggcagcaaattctttcacct 114
Fas (TNF receptor Fas NM_007987.2 acgcttctccgaagactgg gggttccatgttcacacga 86
superfamily member 6)
Hypoxanthine guanine Hprt1 NM_013556.2 tcctectcagaccgctttt cctggttcatcatcgcetaate 90
phosphoribosyl
transferase
Phosphoglycerate Pgk1 NM_008828 tacctgcetggcetggatgg cacagcctcggcatatttct 65
kinase 1
Peptidylprolyl isomerase B Ppib NM_011149 ttcttcataaccacagtcaagacc accttccgtaccacatccat 92
Succinate dehydrogenase Sdha NM_023281 tgttcagttccaccccaca tctccacgacacccttctgt 66
complex, subunit A,
TATA box binding protein Tbp NM_013684.3 gggagaatcatggaccagaa gatgggaattccaggagtca 90
Tubulin, alpha 1A Tubat NM_011653 ctggaacccacggtcatc gtggccacgagcatagttatt 114
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Figure 1. Diagram showing the study experimental design.
First, ICG-labelled FDG-MNPs were synthesises and charac-
terised. Second, MAC16 adenocarcinomas were established in
male NMRI mice. Mice were injected with ICG-labelled FDG-
MNPs (8 mg/kg body) either intravenously, directly into the
tumour or subcutaneously directly overlying the tumour. Mice
were left for up to 12 hours prior to analysis of tissue morphol-
ogy, ICG-labelled FDG-MNP tissue distribution and apoptosis
pathway gene expression.

RESULTS

Characterisation of ICG-Labelled FDG-MNPs
Reaction yields were calculated as 92.39 £7.4% (n = 3)
for mannose triflate thiol amide ((3,4,6-tri-O-acetyl-N-(2-
mercaptoethyl)-2-O-[(trifluoromethyl)sulfonyl]-d-erythro-
hexopyranosylamine-3,4,6-tri-O-acetyl-2-O-[ (difluoromethyl)
sulfonyl]-d-erythro-hexopyranose (1:1) and 100% (n = 3)
for the inactive fluorinated derivative of mannose tri-
flate thiol amide (3,4-di-O-acetyl-2-deoxy-2-fluoro-N-
(2-mercaptoethyl)hexopyranuronosylamine) according to
HPLC chromatograms similar to our previous results.> %
Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) images demonstrated that
ICG-labelled FDG-MNP displayed a mean size between
10 to 20 nm. Additionally SEM data showed that the
nanoparticles had a cubic spinel structure. The surface
potential of the MNPs and FDG-MNPs were found to be
—4.77+£0.918 mV and 21.264+0.862 mV respectively.
Conjugating with FDG resulted in a decrease of negative
zeta-potential while also increasing the size of MNPs.
HPLC analyses confirmed that synthesized FDG-MNPs
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were pure. Synthesized FDG-MNP had an iron oxide
concentration of 9.37 mg/mL.

Comparison of Tumour Reference Gene Stability
We observed no detectable impairment in mice well-being
or behaviour in response to FDG-MNP injection for up
to 12 hours. Previously, we observed a cell death rate of
72% in response to exposure to our FDG-MNPs in vitro
without magnetic field stimulation.?® Therefore, in the cur-
rent study we assessed tissue tumour expression of several
genes involved in apoptosis to define the in vivo impact of
our FDG-MNPS on cell death.

As the accurate measurement of gene expression
depends fundamentally on normalisation against stable ref-
erence gene(s), we used the geNorm software® to define
the most stable reference genes within our tumour tissue
samples. The geNorm software calculates the average pair-
wise variation of each reference genes with all the other
genes, generating a gene-stability measure (M) for each
gene (Fig. 2(A)).*> Genes with the lowest M value are
considered the most stable. Using the geNorm software,
systematic exclusion of the least stable genes can be con-
ducted until the remaining two most stable genes are left.
However, in this study, we observed substantial variability
in most of the reference genes analysed, with four (Thp,
Tuba, Hprt and Sdha) out of the six gene having an M
value greater than 1 (Fig. 2(B)). However, the two most
stable genes were Ppib and Pgkl.

In addition, geNorm also calculates the optimal number
of reference genes needed for any analysis of gene expres-
sion, with a value of 0.15 defined as the optimal cut off
for appropriate normalisation. Upon reaching this thresh-
old, no further reference genes need be included. In our
analyses, only when using four to five reference genes did
the stability value drop below 0.15 (Fig. 2(C)), indicat-
ing that the most stable four to five reference gene should
be used to generate the normalisation factor. To determine
the potential impact of using differing numbers of refer-
ence genes, we compared the calculated geNorm normal-
isation factor when using the most stable two, four or all
six genes (Fig. 2(D)). Here, we observed that for tissues
sampled at 2.5 hours post subcutaneous or direct injection,
the number of reference genes used had little impact on
the calculated normalisation factor. However, for tissues
sampled at 70 minutes post direct injection and 2.5 hours
post intra-venous injection, large differences in the calcu-
lated normalisation factor was observed depending on the
number of reference genes used.

Tumour Gene Expression Profile

We also compared the expression profile of several genes
associated with apoptosis using the tumours tissue from
mice that had been exposed to ICG-labelled FDG-MNPs.
Our goal was to define the impact of MNPs in their non-
activated state on tumour tissue. Due to the high level of
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Figure 2. Heat map showing tumour reference gene stability (M value), as calculated by geNorm software, for Hprt, Pgk1, Ppib,
Sdha, Tbp and Tuba in response to FDG-MNP exposure (A). Mean tumour reference gene stability across all tumour samples (B).
Pairwise comparison of gene stability for determination of optimal number of reference genes required for accurate normalisation
for genes of interest (C). geNorm generated normalisation factor for each tumour sample showing the effect of using 2, 4 or 6

reference genes (D).

variability in the calculated normalisation factor, depend-
ing on how many reference genes were used, we compared
gene expression profiles using both the most stable two
genes (Pgkl and Ppib) as well as using all six reference
genes.

Similar to the variability observed in reference gene
expression, we observed large differences in the expres-
sion profiles of our apoptosis genes of interest. For Bad
(Bcl2-associated agonist of cell death), the highest expres-
sion levels were found in tumour tissues at 2.5 hours
post subcutaneous injection, 5 hours post direct injec-
tion or 12 hours post intra-venous injection (Fig. 3(A)),
with Bad expression being low in all other tissue sam-
ples. We also observed that Bad expression profiles were
similar irrespective of whether we normalised against two
or six reference genes. A similar profile was observed
for Bax (BCL2-associated X protein), whereby the high-
est expression was observed in tumour tissue sampled
5 hours post direct tumour injection or 12 hours post
intra-venous injection (Fig. 3(B)). For Bcl2 (suppressor
of apoptosis B cell leukemia/lymphoma 2), we observed

1984

comparatively high expression only in tumour tissues col-
lected 2.5 hours post subcutaneous injection of the ICG-
labelled FDG-MNPs (Fig. 3(C)), with very low expression
detected in all other samples. Comparatively low levels
of expression were also observed for bci2l] (BCL2-like
1), also an inhibitor of apoptosis, with some differences
in expression profile dependent on the number of refer-
ences genes used for normalisation (Fig. 3(D)). Similarly,
differences between the expression profiles of Caspase
1 (caspl) (Fig. 3(E)) and Tumor necrosis factor recep-
tor superfamily member 6 (Fas) (Fig. 3(F)) were seen
depending on whether two or six references were used for
normalisation.

Tissue Morphological Analysis

Histological analysis of kidney, liver, lung and tumour
tissue revealed no identifiable differences between ICG-
labelled FDG-MNP injection routes or times (Fig. 4).
All tissues displayed typical structural organisation with
clearly defined kidney glomerular and tubules, radial cords
of liver cells, lung alveoli and highly-vascularised tumour

J. Biomed. Nanotechnol. 14, 1979-1991, 2018
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the Alexa Fluor 488 anti-BrdU conjugated antibody. How-
ever, we did observe wide distribution of the ICG-labelled

FDG-MNP’s throughout all of the tissues studied (Fig. 5).
In particular we observed diffuse cytoplasmic localisa-

tion (e.g., Fig. 5(A), kidney) as well as strong locali-
sation within areas of high vascularity (e.g., Fig. 5(C),

Figure 3. Relative tumour sample expression of apoptosis associated Bad (A), Bax (B), Bcl2 (C), Bcl2I1 (D), Casp1 (E) and
tumour).

Fas (F). Figures display relative expression levels when normalised using the two most stable reference genes (Pgk1, Ppib) or

all 6 reference genes. Values are mean+S.E.M, n =1 tumour sample per treatment group.

tissues of differing cell morphologies. We observed no
significant signs of tissue damage or cellular destruction
in any of the tissues examined. These results were sup-
ported further by our analysis of apoptosis within the same
tissue samples used for gross morphological assessment.

We observed no detectable levels of cellular apoptosis,
as determined by a lack of nuclear localised signal with

J. Biomed. Nanotechnol. 14, 1979-1991, 2018
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Kidney Liver ~Lung Tumour

Figure 4. Representative Haemotoxylin and Eosin stained sections from mice injected with ICG-labelled FDG-mNPs at a concen-
tration of 8 mg/kg displaying kidney glomeruli (arrow head), liver central vein (asterisk) and radiating cells, lung alveoli (¥) and
highly vascularised tumour tissue (arrow). Sections are shown from mice injected either directly into the tumour and analysed
after (A) 70, (B) 150 or (C) 300 minutes; intravenously and analysed after (D) 70, (E) 150 or (F) 300 minutes or subcutaneously
adjacent to the tumour and analysed after (G) 150 minutes.

Relative Tissue ICG-Labelled FDG-MNP Levels injection (Fig. 6(A)). Here, the signal intensity was more
In kidney tissue, ICG-labelled FDG-MNP signal, normal-  than double that of samples collected at 2.5 and 5 hours
ised to nuclear propidium iodide signal intensity, was high- ~ following either direct or intravenous injection. In all other

est in tissue samples collected 2.5 hours post subcutaneous samples, kidney signal was comparatively similar.
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Kidne Liver

Lung Tumour

Figure 5. Representative fluorescent images of kidney, liver, lung and tumour tissue sections from mice injected with ICG-
labelled FDG-mNPs at a concentration of 8 mg/kg. Sections are stained with propidium iodide to localise nuclei, Alexa fluor
488-conjugated anti-BrdU antibody for apoptotic nuclei. Representative sections are shown from mice injected either directly into
the tumour and analysed after (A) 70, (B) 150 or (C) 300 minutes; intravenously and analysed after (D) 70, (E) 150 or (F) 300 minutes
or subcutaneously adjacent to the tumour and analysed after (G) 150 minutes.

In liver tissue taken from mice injected intra-
venously, directly or subcutaneously, minimal changes
in tissue signal intensity were observed over time
(Fig. 6(B)). However, the highest signal was detected

J. Biomed. Nanotechnol. 14, 1979-1991, 2018

in samples collected at 12 hours post L.V injection

(Fig. 6(B)).
Analysis of lung tissue revealed the signal intensity
varied little between experimental times and methods of
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Figure 6. Tissue intensity (arbitrary units) staining for ICG-
labelled FDG-mNPs normalised to nuclear propidium iodide
signal in (A) kidney, (B) liver, (C) lung and (D) tumour tis-
sues from mice injected either directly into the tumour, intra-
venously or subcutaneously adjacent to the tumour. Values
are mean +S.E.M of four sections per sample, n =1 mouse per
treatment group.

injection (Fig. 6(C)). Finally, analysis of ICG-labelled
FDG-MNP signal within the tumour revealed the high-
est intensity in response to subcutaneously injection, with
samples taken 70 minutes following 1.V injection having

1988

the second highest signal (Fig. 6(D)). For all other sam-
ples, minimal differences were observed in ICG-labelled
FDG-MNP signal intensities.

DISCUSSION

With current Cancer Research UK estimates that 1 in 2
people born after 1960 in the UK will develop cancer
within their lifetime, the development of new approaches
to treating cancer has never been more necessary. We have
demonstrated previously that FDG-MNPs are actively
taken up within MCF-7 cancer cells in vitro.”> Following
magnetic field stimulation, we observed that FDG-MNPs
led to rapid and sustained cellular hyperthermia, inducing
a cell death rate of 89%. However, we also observed a cell
death rate of 72% when exposed to the FDG-MNPs when
not placed within a magnetic field, suggestive of poten-
tial toxicity of the FDG-MNPs. Therefore, in the current
study, we determined the in vivo impact of FDG-MNPs
on tumour and non-tumour tissue without magnetic field
heating. We observed highly variable expression of sev-
eral reference genes used commonly in gene expression
analyses studies. As a result, our analysis of tumour tis-
sue apoptosis regulating genes of interest varied depending
on the number of reference genes used for normalisation.
Secondly, we observed that the duration of exposure and
route of FDG-MNP administration led to specific effects
on the expression of key regulatory genes such as Bad,
Bax, Bcl2l1, Casp and Fas. Finally, although we observed
changes in apoptosis pathway gene expression between
treatment groups, we saw no overt gross impact on tissue
integrity or levels of apoptosis as determined by histology
and TUNNEL staining.

RT-qPCR has become a standard technique for the anal-
ysis of cellular and tissue gene expression profiles. How-
ever, the validity of any such analyses is dependent on the
appropriate selection of reference genes which are suited
to the tissue being analysed and that displaying minimal
variability between treatment groups. The consequence of
using unsuitable and highly variable reference genes is that
inaccurate interpretation of expression profiles for the gene
of interest may occur. Studies have shown that the use of
a single, unstable reference gene alone can affect greatly
the expression of a target gene several fold*>*' and that
differences in expression can be detected when there are
none.*>*? It is now commonly agreed upon that at least
two reference genes should be used for the accurate nor-
malisation of changes in gene expression.

Several software programs are now available for the
accurate determination of reference gene stability. In our
current study, we used the geNorm package to determine
the pairwise variation of six reference genes to each other.
We observed that two (Pgkl and Ppib) of our six reference
genes displayed sufficient stability to be considered as suit-
able reference genes within our study with an M value of
below 0.15.3° However, studies have identified these genes
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to be either highly variable or differentially expressed
in tumour samples.*** In one study, PGKI and PPIA
(Peptidyl-prolyl cis-trans isomerase A) were undetectable
by RNA-Seq in human lung squamous cell carcinoma, and
so were deemed inappropriate for use as reference genes.®
The differences between these observations and ours may
be explained by the analogous comparison to the differ-
ence between human and mouse samples, as well as the
difference between analyses in cell line and primary tis-
sues. Indeed, several studies have shown that the selection
of the most appropriate reference gene in cancer tissue is
dependent on the specific nature of the experiment.*7-46
Therefore, we suggest that for any study exploring gene
expression changes in cancer samples, cell lines or primary
tissue, appropriate reference gene identification should be
conducted prior to the analysis of target gene expression.

Within our mouse adenocarcinoma model, we also anal-
ysed the expression profiles of several genes of interest
that can regulate apoptosis using the abovementioned two
most stable reference genes, as well as all six reference
genes. Apoptosis is the coordinated cellular process of pro-
grammed cell death. Bcl-2 and Bcl2l] regulate the main
step in the apoptotic pathway, thereby acting as inhibitors
of apoptosis.*’ In contrast, Bad, Bax, Caspl and Fas act
as promotors of apoptosis.* We observed that only Bcl2
displayed high expression levels in samples taken follow-
ing subcutaneous injection over the tumour. In all other
samples, expression was almost undetectable. Expression
of Bcl2ll was variable across samples, with no specific
pattern of expression identified. In contrast, we observed
high expression levels of the pro-apoptotic factors Bad
and Bax in tissue sampled at 2.5 hours post subcutaneous
injection, 5 hours post direct injection and 12 hours post
intravenous injection, irrespective of whether we used two
or six reference genes. Finally, Caspl and Fas displayed
similar profiles in that their expression increased over time,
whether in samples from tumours injected directly or intra-
venously. In addition, for Caspl and Fas, high levels were
seen 70 minutes after injection, possibly indicating ini-
tial short term responses to the FDG-MNPs. These ini-
tial responses would be in agreement with our previous
findings in which 72% of cancer cells in vitro died in
response to being exposed to FDG-MNPs.? These results
suggest that the expression of the inhibitors of apopto-
sis (Bcl2, Bcl2l1) remains relatively stable, while expres-
sion of the pro-apoptotic factors varies. Disruption to the
normal balance of pro- and anti-apoptotic regulators can
result in differential patterns of cell death. Overexpres-
sion of Bcl-2 has been shown to protect prostate can-
cer cells,” and neuroblastoma, glioblastoma and breast
carcinoma from apoptosis.® In contrast, leukaemogenesis
is associated with a reduced level of apoptosis involving
increase Bcl2:Bax ratios.>!

Our final observation was that while FDG-MNPs
were taken-up readily into all tissues, we observed

J. Biomed. Nanotechnol. 14, 1979-1991, 2018

no detrimental impact on tissue morphology or levels
of apoptosis as determined by TUNNEL  staining.
In our study, we conjugated our MNPs with the non-
metabolisable analogue of glucose FDG. Cancer cells have
higher metabolic rates than non-tumour tissue, known as
the ‘Warburg Effect,’3 and so have higher levels of glu-
cose uptake and lactate production. Therefore, the prefer-
ential uptake of FDG conjugated MNPs into tumour tissue
affords us the opportunity to target them specifically for
magnetic field-induced hyperthermia. Indeed, recent stud-
ies have shown that targeting of MNPs to tumour tissue
can be an effective way to dramatically reduce tumour
size.’> We observed no overt sign of tissue damage in
response to FDG-MNP administration in histological sam-
ples of kidney, liver, lung or tumour tissue. These find-
ings agree with our analysis of apoptosis, as determine by
TUNNEL staining. Here we observed no detectable sig-
nal for apoptosis in any of our samples. Despite detecting
variable expression profiles for several apoptosis pathway
genes, our analyses may have been conducted too early,
preventing changes detectable at the gene expression level
from being translated in changes at the protein or cell func-
tion level.

As our FDG-MNPs were labelled also with ICG, we
were able to assess their tissue distribution under fluores-
cence. Here, we detected FDG-MNPs in all tissues as soon
as 70 minutes post injection. Interestingly, for all of the
tissues, we observed high levels of FDG-MNPs following
subcutaneous injection. Also, we observed that the kidney
and liver tissue displayed higher levels of FDG-MNPs than
the lung or tumour tissues. These findings might reflect
the comparatively high metabolic status of these tissues.
Finally, we observed also that levels of MNPs were still
detectable at 12 hours post-injection. Studies have also
demonstrated the non-toxic impact of MNPs on tissue sta-
tus. Mice treated with silica coated MNPs for 4 weeks
show distribution in multiple tissues including the brain,
lungs, heart and kidneys, but with no visible toxicity.>* 3

We acknowledge that the findings from our current
our study require further validation. Future studies will
build further on our existing pilot data, involve increased
numbers of mice, kept for longer periods of time post
FDG-MNP administration and involve more detailed tis-
sue biochemical and molecular analyses. Furthermore, a
broader analysis of tissues than those conducted in this
study e.g., spleen and heart, would add further insight
into the bio-compatibility and physiological impact of our
FDG-MNPs. However, our current data indicate the non-
toxic impact of FDG-MNPs on tissue and whole body
well-being. These findings pave the way for more targeted
approached in which we will target FDG-MNP incorpo-
rated tumours with focused magnetic fields. Our data offer
new approaches for the treatment of cancer which are non-
toxic, easily administered and cost-effective and which
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will complement existing chemotherapy and radiotherapy
approaches.
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