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Abstract 

Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties which allow it to adhere 

to mucosal tissues. In this work, we explored chemical modification of chitosan through its reaction 

with methacrylic anhydride to synthesise methacrylated derivative with the aim to improve its 

mucoadhesive properties. The reaction products were characterised using 1H NMR, FTIR and UV-Vis 

spectroscopy. 1H NMR and ninhydrin test were used to quantify the degree of methacrylation of 

chitosan. Turbidimetric analysis of the effect of pH on aqueous solubility of the polymers revealed that 

the highly methacrylated derivative remained turbid and its turbidity did not change from pH 3 to 9. 

However, solutions of native chitosan and its derivative with low methacrylation remained 

transparent at pH 6.5 and exhibited a rapid increase in turbidity at pH > 6.5. The mucoadhesive 

properties of chitosan and its methacrylated derivatives were evaluated using flow-through method 

combined with fluorescent microscopy with fluorescein sodium as a model drug. The retention of 

these polymers was evaluated on porcine bladder mucosa in vitro. The methacrylated derivatives 

exhibited greater ability to retain fluorescein sodium on the bladder mucosa compared to the parent 

chitosan. Toxicological studies using MTT assay with UMUC3 bladder cells show no significant 

differences in toxicity between chitosan and its methacrylated derivatives suggesting good 

biocompatibility of these novel mucoadhesive polymers. 
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1. Introduction 

Ability of water-soluble polymers to adhere to mucosal surfaces, defined as mucoadhesion, has been 

exploited in the design of mucoadhesive drug delivery systems in the last decades. Various studies 

have reported the use of mucoadhesive polymers to improve drug delivery in the eye, the nasal cavity, 

the mouth, the vagina and the urinary bladder (Ludwig 2005; Andrews et al. 2009; Bernkop-Schnürch 

& Dünnhaupt 2012; Casettari & Illum 2014; Khutoryanskiy 2014; Sosnik et al. 2014; Kolawole et al. 

2017; Morales & Brayden 2017). Advantages of mucoadhesive delivery systems include improved drug 

bioavailability, non-invasive nature of dosage form administration and ease of their application, and 

the possibility of targeting specific organs, etc.  

Chitosan is a cationic polysaccharide that has been widely used in the design of dosage forms for 

transmucosal drug delivery due to its non-toxic nature and excellent mucoadhesive properties 

(Bernkop-Schnürch & Dünnhaupt 2012; Casettari & Illum 2014). Chitosan often exhibits superior 

mucoadhesive properties compared to many other water-soluble polymers; however, there is still a 

strong interest to improve its properties through chemical modification (Ways et al., 2018). Various 

dosage forms were developed using chitosan derivatives such as glycol chitosan, trimethyl chitosan, 

carboxymethyl chitosans, thiolated chitosans, half-acetylated chitosan, glycol chitosan-catechol, 

methylpyrrolidinone chitosan, and acrylated chitosan and they have all displayed improved retention 

on mucosal surfaces, thereby extending the duration of action of loaded therapeutics (Ways et al., 

2018). 

Over the last few years, acrylate- and maleimide-functionalised materials have been explored for 

transmucosal drug delivery due to their enhanced mucoadhesiveness compared to their parent 

polymers (Davidovich-Pinhas and Bianco-Peled, 2011; Tonglairoum et al., 2016; Eshel-Green and 

Bianco-Peled, 2016; Brannigan and Khutoryanskiy, 2017; Shitrit and Bianco-Peled, 2017; Shtenberg et 

al., 2017; Kaldybekov et al., 2018; Eliyahu, et al., 2018). This is achieved through the quick formation 

of covalent bonds between acrylate- or maleimide- groups of a mucoadhesive polymer and thiol-

groups present in cysteine-rich domains on mucosal surfaces.  

Methacrylate groups are also capable of forming covalent bonds with thiols under physiological 

conditions, similarly to acrylate groups and maleimide. A few studies exist where methacrylate groups 

have been conjugated to pharmaceutical materials for drug delivery and tissue engineering. For 
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example, Yu et al (2007) reported the development of methacrylated chitosan that was subsequently 

cross-linked by radical polymerisation to prepare biodegradable macroporous scaffolds for cell culture 

applications. Lin et al. (2013) reported the synthesis of methacrylated gelatin that was then used in 

mixtures with human endothelial colony-forming cells / mesenchymal stem cells for in vivo injection 

and transdermal photo-crosslinking. However, to our knowledge, the potential of methacrylated 

polymers as mucoadhesive materials has not been explored yet.  

In this study, we developed methacrylated derivatives by reacting chitosan with methacrylic anhydride 

and evaluated their physicochemical properties, in vitro adhesion to porcine urinary bladder mucosa 

and cytotoxicity in UMUC3 bladder cells to establish their suitability as materials for transmucosal 

delivery.  

2. Materials and methods 

2.1. Materials 

High molecular weight chitosan (CHI, 370 kDa; deacetylation degree 70.9 ± 2.2%), methacrylic 

anhydride (MA), ninhydrin, trifluoroacetic acid, citric acid, fluorescein sodium, FITC-Dextran (3-5 kDa), 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), foetal bovine serum (FBS) and 

UMUC3 malignant urothelial cells (Sigma-Aldrich UK); modified Eagle’s medium with Earle salts & non-

essential amino acids and trypsin-EDTA (Lonza UK); dialysis membrane with molecular weight cut off 

12-14 kDa (Medicell International UK); and most chemical reagents (Fischer Scientific UK) were used 

as received without further purification. Freshly excised porcine urinary bladders were received from 

PC Turner Abattoir (Farnborough, Hampshire, UK). 

 

2.2. Synthesis of methacrylated chitosan 

2.2.1. Synthesis of LMeCHI and HMeCHI 

Methacrylated chitosan was synthesised by reacting chitosan with methacrylic anhydride at various 

molar ratios (Table 1) to generate two types of products using the method developed in-house with 

slight modification (Sogias et al. 2010). 
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Fig. 1. Reaction scheme for the synthesis of methacrylated chitosan: CHI is a parent chitosan and LMeCHI and 

HMeCHI are chitosans with low and high degrees of methacrylation, respectively.  

 

Briefly, 1.5 % w/v chitosan solution (100 mL) was prepared by dissolving predetermined amount of 

chitosan in 4% v/v acetic acid at 25oC for 12 h. Various amounts of methacrylic anhydride were added 

slowly to chitosan solution and the mixture was maintained at 40oC, shaken at 60 rpm for 12 h, 

protected from light. The products were redispersed in deionised water, purified by dialysis (MWCO 

12-14 kDa membrane) against 4.5L deionised water with six water changes over 72 h. The final 

products were freeze-dried using Heto PowerDry LL3000 Freeze Dryer (Thermo Scientific, UK). 

 

Table 1: Feed ratios for the synthesis of LMeCHI and HMeCHI 

Parameters LMeCHI HMeCHI 

Concentration, chitosan  1.5 % (w/v) 1.5 % (w/v) 

Weight/volume of methacrylic anhydride 1.035g (1 mL) 6.21g (6mL) 

Moles of MA per unit mole CHI 0.79 4.65 

 

2.3. Characterisation of methacrylated chitosan 

2.3.1. 1 H Nuclear magnetic resonance spectroscopy (1 H NMR) 

Solutions of CHI, LMeCHI & HMeCHI (0.6% w/v) were prepared in D2O acidified with 30 µL 

trifluoroacetic acid and allowed to be dissolved overnight at room temperature. The 1H NMR spectra 

were recorded using 400 MHz ULTRASHIELD PLUS™ B-ACS 60 spectrometer (Bruker, UK). 
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2.3.2. Fourier Transform-Infrared Spectroscopy (FT-IR) 

Solid samples of modified and unmodified chitosan were scanned from 4000 to 400 cm-1, resolution 

of 4 cm-1. Data was processed based on the average of six scans per spectrum generated by the Nicolet 

iS5-iD5 ATR FT-IR spectrometer (Thermo Scientific, UK). 

2.3.3. Turbidimetric measurements 

The influence of pH on the turbidity of polymer samples was studied according to Sogias et al (2010) 

with slight modification. Briefly, polymer solutions were prepared in 0.1M acetic acid at room 

temperature with initial pH 3. NaOH solution (0.1 molL-1) was added to increase the pH stepwise and 

turbidity values of polymer dispersions were measured at 400 nm with Jenway 7315 UV-Vis 

spectrophotometer (Bibby Scientific, UK).  

     2.3.4. Zeta potential measurements 

Zeta potential values of CHI, LMeCHI and HMeCHI solutions/dispersions were determined in folded 

DTS-1070 capillary cell using Zetasizer Nano-ZS (Malvern Instruments, UK) at 25C. 

Solutions/dispersions of chitosan and derivatives (0.4 % w/v) were diluted 1: 20 with ultrapure water  

prior to analysis. The machine was operated at a refractive index of 1.59 and an absorbance of 0.01. 

Triplicate readings were recorded with 30 sub-runs per measurement. 

2.3.5. X-ray Diffractometry 

The influence of methacrylation on the crystallinity of chitosan was evaluated using wide-angle 

powder D8 Advance diffractometer/LYNXEYE XE detector (Bruker, UK). Solid samples of CHI, LMeCHI 

and HMeCHI were loaded into a capillary tube, sealed with wax to prevent loss and placed onto the 

goniometer and aligned under a microscope for diffraction analysis, scanning at diffraction ranges 

from 5 to 50o with a scan step of 0.02o, generating characteristic diffractograms at the rate of 2.5 scans 

min -1.  

2.3.6. Ninhydrin test to quantify methacrylate groups 

The amount of methacrylate groups conjugated to chitosan was quantified using previously published 

method with slight modification (Shitrit & Bianco-Peled 2017). Briefly, 2 % w/v solution of ninhydrin 

in DMSO was prepared by stirring for 12 h at room temperature in the dark. Unmodified and modified 

chitosan solutions (0.05 – 0.5% w/v) were prepared by dissolving in 0.1 M acetic acid, stirred for 18 h 

in the dark at 25oC. 5mL of ninhydrin solution and 1.25 mL of 4M phosphate buffer (pH 5.4±0.2) were 
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mixed with 0.5 mL polymer solution. The resultant mixtures were incubated in  a water bath at 85oC 

(OLS 200, Grant, UK) shaken at 60 rpm for 30 min. 1 mL of each mixture was analysed using Jenway 

7315 UV-Vis spectrophotometer (Bibby Scientific, UK) at 500 nm. 

2.4. Ex vivo Porcine mucoadhesion studies 

2.4.5. Preparation of polymer / fluorescein sodium mixture and artificial urine solution 

The polymeric solutions/dispersions of CHI, LMeCHI and HMeCHI were prepared by dissolving 

polymers in 0.1 M acetic acid and stirred overnight. Resultant polymer solutions/dispersions were 

mixed with 0.1% w/v fluorescein sodium to yield final polymer concentration of 0.4 % w/v (FS/CHI, 

FS/LMeCHI and FS/HMeCHI, respectively). FITC-dextran 0.4 % (w/v) was dissolved in deionised water 

overnight under dark conditions at room temperature to serve as negative control. 

A protocol developed by Chutipongtanate et al (2010) was used to prepare artificial urine. Briefly, the 

compounds (Table S1, Supplementary information) were stirred in deionised water for 3 h at room 

temperature, pH adjusted to 6.2 and made up to a final volume of 2L. 

2.4.6. Retention on porcine urinary bladder mucosa 

Fluorescence microscopy (MZ10F microscope (Leica Microsystems, UK), fitted with an “ET GFP” filter, 

a Zeiss Imager A1/AxioCam MRm camera; 1296 x 966 pixels; 0.8 x magnification) was used to evaluate 

the mucosal retention of fluorescein  sodium in the presence of the polymeric carriers based on a 

slightly modified protocol developed in-house (Mun et al. 2016). Freshly excised porcine urinary 

bladders stored on ice were used in this study within 24 h of procurement. The mucosal side of the 

bladder tissue was preserved during excision of the required section (about 1.5 x 2.5 cm) and rinsed 

with artificial urine solution (~ 3 mL) prior to blank tissue imaging. The bladder tissue was placed on a 

75 mm x 25 mm glass slide and maintained in an incubator at 37oC during urine wash-out. The 

following exposure times were used: FITC-dextran (80 ms), FS/CHI (211 ms), FS/LMeCHI and 

FS/HMeCHI (279 ms). Microscopic images were recorded for each tissue sections before and after 

applying 100 µL of the polymer sample as well as after each of the five washing cycles with 10 mL 

artificial urine / cycle at 2 mL/min. The studies were carried out in triplicates. Image J software  

(National Institute of Health, USA) was used to analyse the microscopic images, generating average 

fluorescence values as a function of urine volume used for the wash-out. In order to normalise the 

mean fluorescence values, fluorescence values obtained based on blank tissues were deducted from 

fluorescence values obtained after each wash-out cycle while the value “1” was used to depict the 

fluorescence intensity from the tissue prior to wash. From the wash-out trends of the polymers, the 
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WO50 values were determined using exponential or polynomial fit of the graphs (Figure S1, 

Supplementary information), which depicts the volume of artificial urine needed to wash out 50% of 

the polymer dispersion. 

2.5. Cell culture and viability experiment 

Human urothelial carcinoma cell line, UMUC3 cells (Sigma-Aldrich, UK)), were cultured in MEM 

supplemented with 10% FBS. The cells were cultured in an incubator maintained at 37oC containing 

5% CO2 atmosphere. MTT assay was used to evaluate cell viability with previously reported method 

with slight modification (Lau et al. 2011). Briefly, UMUC3 cells were seeded in 96-well plate at a density 

of 1 x 104 cells/well. After 24 hours, the cells were treated with polymer solution in growth medium 

(6.25 – 200 µg mL-1) for 4 h. The cells were allowed to grow for further 72 hours. After incubation 

period, 20 μL of MTT solution (5 mg mL-1) was added to each well. After 4 h, the supernatant was 

removed and 100 µL DMSO was added where absorbance was read using the microplate reader 

(Benchmark-BIO-RAD) at 570 nm. Untreated cells were used as positive control and culture medium 

was used as background control. Each concentration had three replicates in each experiment and all 

experiments were done in triplicate. The cell viability was evaluated as a function of viable cells post 

treatment and total untreated cells. The polymer concentration that yields half-maximum inhibitory 

response (IC50 value) was determined based on the best linear fit of the cell viability versus polymer 

concentration graph. 

2.6. Statistical analysis 

All experimental data were collected in triplicates and data expressed as average ± standard deviation. 

Data were compared using a one-way ANOVA with post-Bonferroni test using GraphPad Prism 5.04 

(GraphPad Software Inc., San Diego, California), with p < 0.05 depicting significant difference between 

data sets. 

3. Results and discussion 

Over the last decade, chitosan has been progressively explored for mucosal delivery of drugs and 

biotherapeutics due to its  biocompatibility, biodegradability, mucoadhesiveness and cell permeation 

enhancing features (Jayakumar et al. 2010). Recently, acrylated chitosan has been shown to have 

superior intestinal mucoadhesiveness relative to the thiolated analogue (Shitrit & Bianco-Peled 2017). 

The aim of this study was to synthesise methacrylated chitosan using an efficient single step chemical 

modification. Two types of methacrylated chitosan derivatives with different degrees of substitution 
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were synthesised and evaluated on their solubility at various pH, mucoadhesiveness and 

biocompatibility. These derivatives were prepared by the reaction of chitosan with methacrylic 

anhydride.  

3.3. Methacrylated chitosan derivatives synthesis 

The two methacrylated chitosan derivatives LMeCHI and HMeCHI were synthesised with a yield of 62 

% and 24 %, respectively (Table 2). There was no significant difference in their appearance being both 

off-white colour in nature. 

 

Table 2. Synthetic yield, physical properties and degree of methacrylation (using 1H NMR spectroscopy 

and ninhydrin test) of LMeCHI and HMeCHI 

Parameter 
LMeCHI HMeCHI 

Synthetic yield 62% (w/w) 24 % (w/w) 

Physical appearance 

 

off-white solid off-white solid 

Degree of 

Methacrylation  

1H NMR 

 

11.2 ± 3.4 % 38.5 ± 3.9 % 

Ninhydrin 

test 

34.3 ± 2.0 % 55.4 ± 1.0% 

 

The 1H NMR spectra (Figure 2) show the distinctive peaks for chitosan at δ 2.0 ppm (-CH3 from 

acetylated part of chitosan) as well as 3.09 - 3.8 ppm representing protons from the glucosamine ring. 

With the methacrylated derivatives, additional peaks are evident at 5.6 and 6.2 ppm depicting the 

alkenyl double bond from the methacrylate moiety conjugated to chitosan. Also the additional peak 

at 1.84 ppm appeared in the spectra of methacrylated chitosan is due to CH3- of methacrylic groups. 

These spectral data are in good agreement with the report by Yu et al. (2007). 

 

The ratio of mean intensity of the proton peaks of the methacrylate groups (δ = 5.6 – 6.2 ppm) relative 

to that of the chitosan glucosamine protons δ = 3.0 – 3.8 ppm) provides their extent of methacrylation:  
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𝑀𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 (%) =
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑒 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑎𝑡 5.6 & 6.2 𝑝𝑝𝑚 /2

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝐻2−𝐻6  𝑝𝑟𝑜𝑡𝑜𝑛𝑠 /6
100%            (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 1H NMR spectra of CHI (1), LMeCHI (2) and HMeCHI (3) recorded in D2O acidified with 1% trifluoroacetic 

acid. H2-H6 protons of CHI were detected at 3.0-3.8 ppm (i) and vinyl groups of methacrylate segment evident 

around 5.6-6.2 ppm (ii). 

FT-IR shows characteristic absorption bands for chitosan (Fig. 3) at 1026-1151 cm-1 (amine C-N 

stretch). Since both chitosan and methacrylate groups display alkyl C-H stretch (2850 and 2930 cm-1), 

the increase in the intensity of the absorption bands is evident of the methacrylated products. The 

appearance of a new double bond signal  at  1537-1653 cm-1 depicted alkenyl C=C stretch, while  amide 

C=O stretch evident at 1635 cm-1 in LMeCHI and HMeCHI confirms the methacrylation of chitosan. The 

FT-IR spectrum of LMeCHI is similar to that of HMeCHI, but differs in terms of the intensity, which is 

related to their extent of methacrylation. 
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Fig.3. FT-IR spectra of CHI , HMeCHI and LMeCHI with characteristic peak at 1537-1635 cm-1 as well as 

1653 cm-1 for LMeCHI and HMeCHI depicting alkenyl C=C and amide C=O linkage between chitosan 

and methacrylate groups, respectively. 

 

3.4. Turbidimetric measurements  

The effects of pH on turbidity of polymers were analysed where unmodified chitosan shows a 

turbidity-pH profile (Figure 4) in good agreement with our previous report (Sogias et al, 2010): the 

solution remains transparent until the pH reaches 6.5; then a further increase in solution pH results in 

a dramatic increase in turbidity. LMeCHI sample exhibits a pH-dependent solubility similar to 

unmodified chitosan, with a sharp increase in turbidity observed at pH>6.5. On the other hand, the 

turbidity profile of HMeCHI is distinctly different, where a slightly turbid colloidal solution was formed 

at first and maintained in the studied pH range. This is likely to be due to the relatively hydrophobic 

nature of methacrylate groups that cause aggregation of chitosan macromolecules and formation of 

micellar structures. The solution of LMeCHI did not show any signs of turbidity at pH<6.5 possibly 

because its degree of methacrylation did not reach a certain threshold to become sufficiently 

hydrophobic to undergo aggregation. The relatively unchanged turbidity possibly relates to the 

disruption of semi-crystalline nature of chitosan caused by introduction of bulky methacrylate groups; 

similar effect was reported for half-acetylated chitosan (Sogias et al, 2010).  
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Fig.4. Effect of pH on solution turbidity of unmodified chitosan, LMeCHI and HMeCHI. Lines are used as guide to 

eye. 

  

3.5. X-ray Diffractometry 

The X-ray diffractogram (Figure 5) shows the unmodified chitosan exhibited two major peaks at 

diffraction angles (2θ) of 10.1 and 20.8o, which correlate with the peaks displayed by chitosan reported 

in our earlier publications (Yin et al. 2006; Luo et al. 2008; Sogias et al. 2010). X-ray diffractograms of 

LMeCHI and HMeCHI (Fig. 4) reveal a decrease in crystallinity upon methacrylation of chitosan with 

disappearance of the peak at 8.3 and broadening of the peak at 22.4o. This suggests that  chitosan 

has been successfully modified and the modification reduced the ability of chitosan macromolecules 

to form crystalline domains. This is in good agreement with our previous report on reduction of 

chitosan’s crystallinity upon its re-acetylation (Sogias et al. 2010).  

 

Fig. 5. X-ray diffractograms of CHI, LMeCHI and HMeCHI generated at 2.5 scansmin-1, scan angle 5-65o, scan step 

size of 0.02o, spectra offset for improved clarity. 
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3.6. Quantification of acrylate groups  

In addition to  1H NMR, the ninhydrin test was also used to confirm the degree of methacrylation, 

where ninhydrin reacts with the unmodified amine groups of chitosan to form a coloured product 

detectable by UV (Gohel et al. 2006). The slope of the adsorption versus concentration curve of 

unconjugated chitosan is represented as ɑCHI, while that of LMeCHI and HMeCHI are denoted as ɑMeCHI. 

Methacrylation percentage can be defined as (1 - ɑMeCHI/ ɑCHI) * 100 % (Shitrit & Bianco-Peled 2017).                                             

Table 2 provided data on the extent of methacrylation for LMeCHI and HMeCHI. The degrees of 

methacrylation for LMeCHI and HMeCHI, calculated from the ninhydrin test (34.3% vs. 55.4%, 

respectively), were greater than the values calculated using 1H NMR spectra (11.2% vs. 38.5%). This 

may be due to the differences in experimental design as the 1H NMR spectra of polymers were 

recorded in D2O, acidified with 1 % trifluoroacetic acid, whereas analysis with ninhydrin was 

performed with the samples dissolved in 0.1 M acetic acid. Different solvents used in these methods 

could affect the conformation of polymers and availability of functional groups. Potentially, 1H NMR 

technique could underestimate the degree of methacrylation because methacrylate groups could not 

be on the surface. Nevertheless, the data from both techniques reveal that HMeCHI had a greater 

degree of methacrylation than LMeCHI. 

3.7. Mucoadhesion studies 

In order to evaluate the mucosal retention, fluorescein sodium was added to the unmodified and 

methacrylated chitosan solutions prior to the experiment.  In the study, the unmodified chitosan, 

cationic in nature with proven mucoadhesive potential (Sogias et al. 2008), was chosen as the positive 

control, while dextran with limited mucoadhesiveness (Štorha et al. 2013) served as the negative 

control.  

The mucosal retention of CHI, LMeCHI and HMeCHI on ex vivo bladder tissue was quantified using 

numerical WO50 values (Mun et al. 2016). WO50 is defined as the volume of artificial urine required to 

remove 50 % of fluorescein sodium from the bladder mucosal surface. 
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Fig. 6 (a) Exemplar microphotographs showing FITC-Dextran, FS/CHI, FS/LMeCHI, and FS/HMeCHI wash-out from 

porcine urinary bladder with artificial urine solution over 5 washing cycles, scale bar is 2 mm; (b) Mucosal 

retention of fluorescein sodium (FS) from CHI, LMeCHI and HMeCHI on porcine urinary bladder tissue; FITC 

dextran served as negative control and FS/CHI (unmodified chitosan) as positive control. Result presented as 

mean ± standard deviation, n = 3, *depicts significant statistical differences between samples (p < 0.05). 

 

WO50 values for FS/CHI, FS/LMeCHI and FS/HMeCHI were 15 mL, 24 mL and 48 mL, respectively, 

suggesting that increased methacrylation confers greater mucoadhesive potential on chitosan. FITC-

dextran, serving as the negative control was the least retained on the porcine bladder mucosa, 

displays WO50 of 7 mL based on extrapolation as 10 mL of artificial urine was used for each wash-out 

cycle (Fig. 6) similar to that reported previously (Mun et al. 2016). The superior mucoadhesive 
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behaviour of HMeCHI as shown in Fig. 6 is likely due to the presence of higher percentage of 

unsaturated methacrylate groups that formed covalent bonds with thiols  of mucin present on the 

mucosal surface (Shitrit & Bianco-Peled 2017).  

The zeta potential of 13.3 ± 3.2, 41.4 ± 7.0 and 54.4 ± 1.9 mV were recorded for 0.02% w/v polymer 

solutions/dispersions of CHI, LMeCHI and HMeCHI, respectively. The degree of positive charge of these 

polymers supports their favourable interaction with the negatively charged mucosal surface 

(Khutoryanskiy, 2014). Moreover, the methacrylated chitosan may also facilitate loosening of tight 

junctions between cells which promotes cellular internalisation of the drug carrier (Smith et al. 2004). 

There was statistical difference in the mucoadhesive profile of parent chitosan and the highly 

methacrylated derivative (HMeCHI) after five washing cycles (p <0.05).  

Interestingly, HMeCHI displayed a similar WO50 value (48 mL) to PEGylated maleimide functionalised 

liposomes (WO50 value 48 mL) evaluated for bladder delivery (Kaldybekov et al. 2018), suggesting that 

functionalisation of chitosan with methacrylate moieties may facilitate comparable covalent 

interactions with mucosal glycoproteins, achievable with maleimide derivatisation of liposomes. 

3.8. Cell viability studies 

Distressing symptoms like painful sensation during urination are common in bladder cancer. So, drug 

carriers intended for bladder cancer therapy should not aggravate the discomfort experienced by 

patients. UMUC3   human bladder carcinoma cells have been used as in vitro model for studying the 

cytotoxic and irritation effect of drug delivery systems intended for bladder cancer treatment (Zhang 

et al. 2014; Lu et al. 2015; Lu et al. 2016). The selected duration of cell incubation with polymer 

solution (4 h) was clinically relevant as most drug carriers required such contact time with diseased 

tissues for effective therapy (Mugabe et al. 2011). The safety of methacrylated gellan gum has been 

previously reported (Coutinho et al. 2010), but there was no data available for methacrylated chitosan. 
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Fig.7. UMUC3 cell viability studies using CHI, LMeCHI and HMeCHI. Polymer treatment for 4 h and cell viability 

studied at 72 h post exposure to polymers. The untreated cells served as the control. Cell viability is normalised 

against the control; n=3. Lines are used as guide to eye. Error bars are not shown on this figure to avoid 

overcrowding. 

The UMUC3 cell growth inhibitory effect of the polymers was studied over 72 h (Fig. 7). CHI, LMeCHI 

and HMeCHI displayed IC50 values of 108.40 ± 5.81, 96.17 ± 5.27 and 104.16 ± 4.81µg mL-1, 

respectively. One-way ANOVA statistical analysis shows that there is no statistically significant 

differences in the IC50 values between all three polymers (p>0.05). This suggests the methacrylated 

chitosan is as safe as the unmodified chitosan and thus could be exploited further for intravesical drug 

delivery due to its superior mucoadhesive features. 

4. Conclusion 

To our knowledge, this is the first report where the pH-dependent solubility, mucoadhesive properties 

and safety profile of unmodified and methacrylated chitosan have been compared. Methacrylate 

groups were grafted onto chitosan through the reaction of its amino-groups with methacrylic 

anhydride in order to synthesise novel mucoadhesive polymers. The volume ratio of high molecular 

weight chitosan to methacrylic anhydride was varied to generate two types of methacrylated chitosan 

that differed in terms of their degree of methacrylation. 1H NMR and ninhydrin test analysis confirmed 

the successful synthesis of the methacrylated products.  

Methacrylation of chitosan has been identified as a simple and viable synthetic strategy to generate 

drug carriers with greater mucoadhesive properties. This novel drug carrier can be used to formulate 
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dosage forms that allows prolonging drug residence time in the bladder thereby improving extent of 

drug absorption thus therapeutic outcomes for bladder cancer treatment. Methacrylated chitosan 

with enhanced mucoadhesive properties could also be of interest for application in other areas of 

transmucosal drug delivery. Future research using these mucoadhesive chitosan derivatives may 

include preparation of formulations with various active pharmaceutical ingredients, studies of their 

physicochemical characteristics and drug release studies.  
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