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Physiological signalling is often oscillatory and shows nonlinearity due to complex inter-

actions of underlying processes or signal propagation delays. This is particularly evident
in case of brain activity which is subject to various feedback loop interactions between

different brain structures, that coordinate their activity to support normal function. In
order to understand such signalling in health and disease, methods are needed that can

deal with such complex oscillatory phenomena. In this paper, a data-driven method

for analysing anharmonic oscillations is introduced. The KurSL model incorporates two
well-studied components, which in the past have been used separately to analyse oscilla-

tory behaviour. The Sturm-Liouville equations describe a form of a general oscillation,

and the Kuramoto coupling model represents a set of oscillators interacting in the phase
domain. Integration of these components provides a flexible framework for capturing

complex interactions of oscillatory processes of more general form than the most com-

monly used harmonic oscillators. The paper introduces a mathematical framework of
the KurSL model and analyses its behaviour for a variety of parameter ranges. The

significance of the model follows from its ability to provide information about coupled

oscillators’ phase dynamics directly from the time series. KurSL offers a novel frame-
work for analysing a wide range of complex oscillatory behaviours, such as encountered

in physiological signals.
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1. Introduction

Modelling and analysis of oscillations are of prime interest in the natural sciences

due to the abundance of such phenomena in nature [Winfree, 1967] Examples of

physiological oscillatory processes range from the circadian rhythm, through syn-

chronisation of fireflies flashing to the behaviour of the main constituents of the

cardiovascular system [Strogatz, 2000; Acebrón et al., 2005]. Moreover, technolo-

gies used for recording of physiological signals, such as magnetic resonance imaging

(MRI), also utilise various oscillatory effects [Acebrón et al., 2005]. A common

assumption when analysing such systems is that they are isolated from their sur-

roundings and that their behaviour can be described in terms of harmonic oscillators

or their linear combinations. For this reason, Fourier series has been a popular and

powerful tool for describing oscillatory phenomena. In case of relatively simple sys-

tems conforming to such assumptions, the method’s usage has been sufficient to

provide a meaningful description of systems’ behaviour and has underpinned many

advances in applied mathematics, physics and engineering. Other popular methods,

e.g. wavelet transform, try to describe a more general form of oscillations; however,

they again assume the independence and linearity of the underlying components.

However, not all oscillations found in nature are sinusoidal, or equivalently, it is

not always the case that harmonic oscillators can adequately describe the mecha-

nism of generating oscillations. More complex systems require a different approach,

as the periodicity of a system does not necessarily imply that it will repeat the same

behaviour over time. The perturbation to its state may be due to outside influences,

and their effect will vary depending on the scale, at which they are analysed. Even a

relatively simple system, such as a pendulum, may be described as harmonic oscilla-

tor only up to a first approximation. Its movement is subject to perturbations such

as friction, air drag or the fact that the force causing the movement around equi-

librium is not linearly proportional to displacement for large displacement angles.

Such cases are called anharmonic, which signifies that their potential energy cannot

be locally described as a quadratic function and thus the resulting movement is not

harmonic.

Several methods commonly used to extract information from anharmonic oscil-

latory systems can only be meaningfully applied under restrictive and simplified

assumptions [Cohen, 1995; Cohen and Gulbinaite, 2013]. Many natural systems

are non-linear and non-stationary, with all component properties, such as instanta-

neous frequency varying in time [Boashash, 1992]. These properties are not merely

analytic inconveniences, but potential carriers of meaningful information about sys-

tems’ behaviour or function, manifesting in subtle interactions within them, as well

as between the systems and their surroundings [Galka, 2000]. Methods mentioned

above have not been designed to capture such phenomena and may miss essential

characteristics necessary to understand system’s operation.

Increasing appreciation of such shortcomings has led to attempts by several re-

searchers to mitigate them by proposing data-driven methods [Huang et al., 1998;
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Duggento et al., 2012]. An example of such a method is the empirical mode decom-

position (EMD) [Huang et al., 1998]. EMD iteratively decomposes a signal into a

set of oscillations of a general form. EMD has been proven to provide useful infor-

mation about systems containing oscillations. For example, in biomedical studies,

it has shown great promise in characterising the synchronisation patterns correlates

of mild cognitive decline in electroencephalograms [Sweeney et al., 2013; Sweeney-

Reed and Nasuto, 2007, 2009], non-linear filtering of the electromyograms [Andrade

et al., 2006, 2008], analysis of tremor [de Lima et al., 2006], or detecting eye move-

ments [Rutkowski et al., 2010; Molla et al., 2010]. However, due to its empirical

behaviour, it is difficult to understand the operation of the method and the conse-

quences of choices made during the intermediate steps of the iterative decomposition

process and their effects on the resulting components. Given increasing interest in

understanding the complex oscillatory phenomena, there is a great need for the

development of techniques aimed at general anharmonic oscillations analysis that

share the flexibility of data-driven techniques such as EMD, yet are proposed within

a more principled mathematical framework, thus enabling their better understand-

ing and analysis [Sharpley and Vatchev, 2006; Chu et al., 2013; Laszuk et al., 2016].

The paper proposes a forward model that can be used as a mathematical frame-

work for decomposition method, which would fill the gap mentioned above. The

model assumes that complex oscillations arise in systems with many interacting

oscillatory components. Such interactions can result in oscillations which have non-

harmonic behaviour concomitant to amplitude- and phase-modulations. Thus, the

proposed approach is based on a synthesis of two ubiquitous models of oscillatory

phenomena: the Sturm-Liouville eigenproblem and the Kuramoto coupling model.

The former is an ordinary differential equation describing a general form of oscilla-

tions, which has been widely utilised in modelling of physical phenomena, including

biomedical areas such as modelling circulatory system [Pontrelli and de Monte, 2009;

Gou and Chen, 2015], biophysical signal separation [Singer, 2006] and propagation

of electromagnetic waves [Moran et al., 2007; Carvalhaes and de Barros, 2015]. The

second component of the proposed method, the Kuramoto model, provides means

of capturing how a set of oscillations could interact with each other [Acebrón et al.,

2005]. This model has been successfully applied in a variety of fields describing cou-

pled oscillatory systems [Brown et al., 2003; Acebrón et al., 2005; Rodrigues et al.,

2016], including biological systems, such as cortical activity [Breakspear et al., 2010;

Tauro et al., 2014; Sadilek and Thurner, 2015].

The outline of this paper is as follows. The second section introduces aforemen-

tioned models of oscillatory phenomena. Then, Section 3 presents how an integration

of the models defined in the previous section produces the KurSL model and its

components. In Section 4, a number of experiments have been performed that anal-

yse properties of the method’s mapping from parameter space onto time series, and

phase dynamics spaces. The document finishes with a conclusion Section 5 about

the model and its potential applications.
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2. Theoretical background

Sturm-Liouville equation

The mathematical definition of an oscillation can be formulated in terms of a solu-

tion of a second order differential equation (ODE). Its particular form was named

after Jacques Charles François Sturm [Sturm, 1836] and Joseph Liouville [Freiling

and Yurko, 2001]. Their research focused on ODEs of the form

− d

dt

(
p(t)

dy(t)

dt

)
+ q(t)y(t) = λw(t)y(t), (1)

where coefficient functions p(t), q(t) and derivative p′(t) belong to Hilbert space

L2. Equation (1) is in fact an eigenvalue problem with λ and w(t) being an eigen-

value and weighting function, respectively. Specific forms of the general definition

above have been widely used to represent different oscillatory phenomena. Often,

in practice, a simplified form of the equation is used [Freiling and Yurko, 2001], i.e.

y′′(t) +Q(t)y(t) = λy(t), (2)

where Q(t) is a potential function governing the behaviour of the system. Such

representation is especially popular when analysing inverse Sturm-Liouville (SL)

problem [Freiling and Yurko, 2001]. Examples of where the SL is used include wave

propagation in materials like strings or drums [Halliday et al., 2000], or dynamics

of particles in quantum mechanics [Schrödinger, 1926].

Properties and solutions for some particular coefficient functions, i.e. Q(t) or

{p(t), q(t)}, have already been intensively studied. Two of the most popular equa-

tions are Bessel type with (p(t) = −t, q(t) = (t2 − ν2)) and Airy (p(t) = −1,

q(t) = −t) [Teschl, 2012]. Solutions to such equations are special functions, which

often appear in quantum mechanics [Landau and Lifshitz, 1965]. Another special

case of SL equations with published in-depth analysis is one with a constant po-

tential function, Q(t) = 0. In this case, often called Fourier type, equation (2) is

transformed into

y′′(t) = λy(t), (3)

which for λ < 0 is solved by sinusoids with period of T = 2π/
√
|λ|, i.e. y(t) =

A sin(
√
|λ|t+ φ).

Kuramoto coupling

Complex systems can be defined as those comprised of many mutually interacting

components. These interactions are the crucial characteristic of system’s complexity

and different approaches can be taken to describe them. For example, a large system

comprising of many uncoupled components can be studied in a reductive manner

with each component analysed separately. However, in case when they are coupled,

such approach might not be suitable since a strong and persistent coupling between

a few components can mimic a behaviour of a single large uncoupled system. The
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complex behaviour emerges from a more subtle network of waxing and waning in-

teractions which in turn can affect dynamics of all components. In case of oscillators

these changes could be manifested as periodic perturbations [Strogatz, 2000]. Such

interactions between objects have been observed [Strogatz, 1994] in many physi-

cal systems, including a cardiorespiratory system [Michaels et al., 1987; Rosenblum

et al., 2002] and neural-networks [Galán et al., 2005; Herzog, 2007]. Even in case

of the brain, studies of EEG signals [Schnitzler and Gross, 2005; Osterhage et al.,

2008; Wagner et al., 2010] suggest that the brain’s behaviour could be a result

of complex interactions between its regions. A common approach when analysing

periodic systems is to consider their dynamics in the phase space, Φ, as

φ̇i = ωi + C
(
~φ, t
)
, (4)

where each oscillator can be coupled with others by a coupling function C
(
~φ, t
)

that is dependent on the whole system ~φ. The most popular model describing such

collective dependencies was proposed by Kuramoto [Kuramoto, 1975]. It represents

components of a complex system by identical coupled oscillators, where the coupling

function C
(
~φ, t
)

between all pairs of oscillators has a form of a scaled sine of a

relative phase between each pair, i.e.

φ̇i = ωi +
K

N

N∑
j=1

sin (φj − φi) , (5)

where φi is a phase of the ith oscillator and ωi is its natural frequency often called

intrinsic frequency. This particular structure of the coupling function was inferred

from expected interactions between a set of oscillators. Since individual oscillators

have periodic behaviour, it is possible to characterise their trajectories using only

phase information. The assumption is that with perfectly synchronised oscillators,

i.e. no difference between phases, there would be very little additional interaction;

the interaction would increase with an increase in phase gap. Moreover, since the

phase functions are only affected by the coupling function, for the former to be

periodic, the latter also needs to have a periodic structure. The simplest model

that fulfils these constraints is the Kuramoto model. Its popularity is both due to it

being simple enough to be analytically solvable for a large number of oscillators, yet

powerful enough to explain many of physical phenomena with coupled oscillators.

The coupling function C
(
~φ, t
)

, however, may be reflecting more complex inter-

actions between the oscillators which are not necessarily in a periodic form. In such

cases, the coupling function can be represented in the form of Fourier series. In the

case of a series consisting of M components, one can define a coupling function as

follows

KM (φi, φj , t) =

M∑
m=1

km sin (m(φj(t)− φi(t))) , (6)
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where km indicates the strength of the mth harmonic component. The case for

m = 0 is omitted as it refers to no coupling between oscillators, i.e. K0 = 0.

Parameter M is referred to as the model’s order as it specifies the number of terms

used in the coupling function. Since the order enumerates sinusoids, a model of

the M th order includes all models with lower orders. This inclusion means that

larger M corresponds to more flexible models. However, in practice, adding extra

dimensions to search space may result in a computationally difficult problem or a

model overfitting to noise. Selecting appropriate order is essential as it should be

large enough to explain the phenomenon in question, but also small enough to be

computable and to avoid overfitting.

3. KurSL

One of the fundamental aims in defining models is to provide meaning to data.

SL equation (sec. 2) focuses on individual oscillators and tries to capture their

overall behaviour. It represents a broad range of oscillations, explaining how their

amplitudes may change over time. The Kuramoto model, however, is focusing on

the idealised view of oscillators represented solely by their phases. It provides a

possibility of the quantitative analysis of their dynamics under mutual coupling.

Despite being very valuable and used in the literature to explain many phenomena,

the importance of both models is mainly theoretical, as it is impossible to observe an

isolated oscillator or to measure only phases. Integrating both modelling approaches

may offer a natural extension building on their respective strengths. Sturm-Liouville

eigenvalue problem introduces all possible forms of functions that have oscillatory

property. Unfortunately, the family of solutions is too big to be analysed collectively.

Addition of Kuramoto synchronisation model not only gives meaning to solutions

but also restricts the number of possible solutions. A combination of both models

can decompose multicomponent signals and provide their individual fundamental

properties and instantaneous characteristics.

Figure 1 contains a visual representation of a possible complex system of in-

teracting oscillators. It illustrates how despite a complex configuration of mutually

interacting oscillators within the system, a single probe can measure only a collec-

tive response. To learn about all individual oscillators, one has to construct and fit

an appropriate model. We argue that KurSL model is very well suited for describing

systems with general oscillators, as it naturally captures scenarios such as the one

depicted in Figure 1. In this section, we introduce and discuss the KurSL model.

3.1. Definition

One can describe oscillation as a behaviour which repeats itself over time regardless

of the actual path that has been covered. Mathematically, this can be defined by

a condition z(t) = z(t + T ) for all time t and certain period T . A general form

that fulfils such criterion, expressed in polar coordinates, is z(t) = r(t) exp(iφ(t)),
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O1

O2

O3

O4 O5

Fig. 1: A graphical example of how oscillators can be connected. Through the direc-

tion and the thickness, each arrow represents directionality and magnitude of the

interaction between selected oscillators.

which is a product of two periodic functions: an amplitude r(t) and phase-related

cosφ(t) component. Considering only signals real part, which is measurable, the

mathematical definition for oscillation can be written as

y(t) = r(t) cos(φ(t)), (7)

which implicitly assumes that the point of reference is within the covered path. The

amplitude r and phase φ can be considered as actual distance from the point of

reference and the phase of a cycle. Substituting such a form into the SL equation (2),

one obtains

cos(φ)
(
r̈ + (Q− λ− φ̇2)r

)
− sin(φ)

(
2ṙφ̇+ rφ̈

)
= 0, (8)

which, due to the mutual instantaneous orthogonality of sine and cosine functions

leads to two coupled equations{
2ṙφ̇+ rφ̈ = 0,

r̈ +
(
Q− φ̇2

)
r = 0.

(9)

These equations describe a relation between amplitude and phase for given function

Q. For simplicity of notation, in the equation (9) λ value was omitted since it can

be treated as an offset for the function Q.

SL describes a single oscillation which is affected by its environment. In the case

when the surroundings consist of other oscillators these interactions can be explicitly

modelled. The KurSL model assumes that these interactions are described by the

Kuramoto coupling which quantifies how all oscillators within a system affect each

other. In its simplest form, where the coupling weights are all equal to K/N , the
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relation between phases is introduced as

φ̇i = ωi +
K

N

N∑
j=1

sin (φj − φi) , (10)

where indices refer to different oscillators from a set of (i, j ∈ {1..N}). The equa-

tion (10) also describes instantaneous frequency of the ith oscillator, which is defined

as a derivative of a phase. Such a system is described by a set of N coupled ODEs

and can be fully evaluated knowing 2N + 1 parameters, i.e. coupling strength K, N

intrinsic frequencies ωi and N initial phases φ0. However, such model assumes mu-

tual, symmetric interaction between all oscillators, which for most physical models

might not be true. Introduction of a more general approach to KurSL is done by

proposing a flexible form of coupling function C(~φ, t) (4), i.e.

C
(
~φ, t
)

=

M∑
m=1

N∑
j=1

kmi,j sin (m (φj − φi)) , (11)

which highlights a possibility of asymmetric interactions of arbitrary form and ad-

mits scenarios, in which some distant oscillators may not affect each other directly.

Harmonic components make sure that any type of interaction is included, as per

Fourier series theorem any periodic function can be expressed in such a way. How-

ever, introducing presented flexibility in coupling model has a significant impact

on its complexity. With the generalised form of coupling, the number of parame-

ters increases depending on the order M by M · N(N − 1), resulting in a total of

2N +M ·N(N − 1) parameters for phase coupling model.

Combination of both SL and Kuramoto models leads to the KurSL system that

is defined by 3N equations: N for amplitudes ri, phases φi and potentials Qi,

respectively,

(1) φ̇i = ωi + C
(
~φ, t
)
, (12)

(2) 2ṙiφ̇i + riφ̈i = 0, (13)

(3) r̈i +
(
Qi − φ̇2i

)
ri = 0, (14)

where index i indicates that each set is for a single ith oscillator. In order to explicitly

define the KurSL model one needs to assume a type of coupling function C
(
~φ, t
)

acting within the coupled system. Due to the mutual interactions encapsulated in

the Kuramoto model, when considering more than two oscillators, the KurSL model

needs to be solved numerically. Simplification of representation and improvement

in computation can be obtained by decreasing number of dependent variables by

rearranging equations. It can be shown that (13) and (14) can be transformed into
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simpler forms either dependent on the amplitude r(t)

φ̇i(t) =
r2i0φ̇i0
r2i (t)

, (15)

Qi(t) = − r̈(t)
r(t)

+
r40φ̇

2
0

r4(t)
, (16)

or on the instantaneous frequency v = φ̇,

r2i (t) =
r2i0vi0
vi(t)

, (17)

Qi(t) = − v̈i
vi

+
3

4

v̇2i
v2i

+ v2i , (18)

wherein both cases ri0 and φ̇i0 = vi0 are the initial values of the amplitude and

the instantaneous frequency, respectively. Since synchronisation in phase cannot be

simplified, the canonical representation of the system is dependant on the phase

function, i.e.

vi = ωi + C
(
~φ, t
)
, (19)

Qi(t) = − v̈i
vi

+
3

4

v̇2i
v2i

+ v2i . (20)

Such a coupled set of ODEs fully describes the KurSL system. Recalling that each

oscillator is composed of an amplitude and a phase-related function (7) one can

present component in a form dependent only on the phase, i.e.

yi(t) = ri0

√
ω̇i0

φ̇i(t)
cos(φ(t)). (21)

This highlights that in the KurSL model amplitude of each oscillator is strictly con-

nected to, and can be expressed in terms of, phase dynamics. With such significant

simplification, one only needs to solve phase dynamics (12) to obtained time series

for a set of oscillators.

In case of most expanded coupling function C
(
~φ, t
)

(11) oscillatory solution

will have a form of

yi(t) =
ri0
√
ω̇i0 cos(φ(t))√

ωi +
∑M

m=1

∑N
j=1 k

m
ij sin (m(φj − φi))

, (22)

which depends on order M , all of the initial values, coupling strengths kmij between

all the oscillators. Such definition means, that the model of an order M , KurSLM ,

incorporates all possible models up to its order. Transition from order M to M ′ <

M is performed by setting all intermediate coupling factors km = 0, where m ∈
(M ′,M ]. It follows that a solution space of M th order model, SM , is a subspace of

solution space of any higher order model, SM ⊂ SM+m∀m ∈ N.
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3.2. Examples

Model’s high complexity makes it difficult to be analysed analytically. In this sec-

tion, a few special cases of the KurSL model evaluation are presented, highlighting

some of its unique properties.

No coupling

The simplest form of the KurSL, yet of vital importance, is a system with non-

interacting oscillators. In such a case oscillators can be treated as if they were

isolated and had couplings factors for all pairs kij = 0. This assumption affects

the model to zero all but the intrinsic frequency terms in the Kuramoto coupling.

With the instantaneous frequency being constant and equal φ̇i = ωi the solutions

for the KurSL are equal to the Sturm-Liouville eigenproblem under Qi(t) = ω2
i .

Solutions to such stated problem are harmonic oscillators with the frequency being

intrinsic frequency yi(t) = r0 sin(ωit+ θ). Such result is expected since when there

is no interaction between harmonic oscillators they should preserve their harmonic

nature.

Complex oscillations

As previously mentioned, the complexity of solution depends heavily on the number

of oscillators and the order of the model. To illustrate the behaviour of the model

representing complex oscillations, we describe a case with four oscillators generated

using KurSL of order 3. The exact parameters used to synthesise components are

presented in Table 1. In this table, intrinsic frequency and both initial phase and

amplitude are denoted as previously in the article. Columns indicated by kmij refer

to the order m of the coupling with indices i and j referring to pairs of oscillators.

Figure 2 contains all generated components presented individually and their sum

is presented in Figure 3. In both figures, the left panel holds representations in the

time domain with the series presented in blue and in case of individual oscillators

the red colour indicates their instantaneous amplitudes. In contrast to harmonic

oscillators, these components display non-constant amplitude with visible changes

in frequency. These characteristics are also visible in the Fourier spectra that are

presented in the right panel of Figure 2. One can see that all components have few

small peaks close to one dominant peak that corresponds to the respective intrin-

sic frequency. These satellite peaks are a result of the coupling, and an underlying

model characterises their properties. Despite the difficulty in describing them ana-

lytically, it has been observed that there are typically two additional peaks for each

pair of oscillators with their positions and amplitudes dependent on the relative

values of intrinsic frequencies and coupling strengths. The order of the model can

significantly influence these properties by increasing absolute coupling strength, al-

though it has a smaller impact on the number of peaks. Further in-depth analysis

through simulations is presented in the following section.
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Table 1: Parameters used to generate an example of the KurSL model. The simu-

lation was performed assuming four oscillators each with coupling up to 3rd order.

Intrinsic frequency, initial phase and amplitude are denoted as ω, θ and r0, re-

spectively. Values kmij indicate coupling strengths between respective oscillators as

indicated by row and column ordinals for mth harmonic.

k1ij k2ij k3ij
i ω/2π θ r0 1 2 3 4 1 2 3 4 1 2 3 4

1 2 1.2 1.0 2.0 0.5 -1.2 1.5 0.2 -0.4 0.5 1.8 0.2

2 5 2.5 1.5 -2.0 3.5 -3.3 -7.0 2.1 4.2 4.1 1.2 1.2

3 10 0.0 1.0 2.2 0.5 1.7 3.2 0.3 0.1 3.8 -2.2 6.0

4 13 2.0 1.0 0.1 1.9 1.9 10.0 -2.1 10.7 0.0 9.1 -1.5

Time [s] Frequency [Hz]
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Fig. 2: Simulation on the KurSL model of order 3 assuming four oscillators and

other parameters according to Table 1. The left column displays all components

(blue) with their amplitudes in red, whereas the right-hand side has respective

component’s normalised Fourier transformation.

4. Parameters mapping

As noted previously, due to the high complexity of the model it is difficult to solve

it analytically, when considering more than two oscillators. Nevertheless, analysis
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Fig. 3: A collective result in time and frequency domains of the generated signal

using a model of order 3 with parameters from Table 1.

can be performed through numerical simulations. In this section, we investigate the

behaviour of the mapping function from parameter space into time series space.

This is done by traversing the parameter space and, for each configuration of the

parameters, observing where these positions are mapped in the space of time series.

By studying such behaviour, one can understand how changes to the parameters

affect the shape of output time series. Knowing how a trajectory in one of the

spaces is projected onto the other can often provide insights on how these spaces

are shaped. Moreover, such traversing with small steps can be considered as an

approximation for a partial derivative, which can be further utilised to analyse how

the general outcome is affected by small changes in parameter space.

In this section, notation of PN and SN are used for parameter and time series

spaces, respectively. The parameter space PN refers to space with all possible in-

put parameters for the KurSL method. For this reason, each position p should be

indexed with the number of oscillators and the order M of the model, i.e. pN ,M .

However, for the brevity, when referring to a particular selection from subspace,

indices will be omitted as their values should be clear from the context. Such con-

traction will be denoted as

px := pN ,M ;x = [ω1, . . . , ωN , r01, . . . , r0N , θ1, . . . , θN , k
1
1,1, . . . , k

1
2,N , . . . , k

M
N ,N ],

(23)

where the parameter p vector has N = N (3 + M(N − 1)) values. Assuming a

Euclidean norm in these spaces means that for two vectors p1 and p2 the distance

between them is given as

MP(px,py) =

√√√√ n∑
i=1

(pxi − pyi)
2
, (24)
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Table 2: Initial parameters used for all experiments in this section. In each experi-

ment, a single parameter was chosen and modified accordingly.

n ω/2π θ r0
kij

1 2 3 4

1 30 π 2 0.1 2.2 4.2

2 25 0 3 1.1 2.0 1.1

3 17 0 5 0.2 2.2 -0.9

4 10 2 1 0.1 0.1 0

with x and y being all corresponding parameters for vectors px and py, respectively.

For example, if two vectors differ only at θi value by ∆θi, the distance will be

MP(px,py) = |∆θi|.
An appropriate mathematical structure for representing time series, in general,

would require defining a space over continuous functions. However, since all signals

are recorded and discretised, this means one can utilise similar metric as in param-

eters space. Each oscillation can be stored in an array of a length TN and since

there are N oscillations in reconstruction, the whole time series vector S can be

described as

s = [s1(t0), . . . , s1(tTN
), s2(t0), . . . s2(tTN

), . . . sN (tTN
)]. (25)

This means that all oscillatory components were concatenated to create a single

vector of length N × TN . It also means that the distance between two vectors s1
and s2 is

MS(s1, s2) =

√√√√ n∑
i=1

(sxi − syi)
2
, (26)

where, again, x and y are values corresponding to vectors s1 and s2.

An illustration of a mapping function G from the parameter space P onto the

time series space S is presented in Figure 4. It highlights that a straight line in

one space may not necessarily map onto a straight line in the other. Not only

the curvature can differ between spaces, but also the distance between consecutive

points can vary. Such behaviour indicates non-linearity of the mapping function.

In order to present how each parameter affects the model and whether the KurSL

is a non-linear model, a series of experiments were performed. In each experiment,

all parameters except for one were kept constant and for each position of the free

parameter, a time series and phase dynamics were generated using the KurSL model.

The core parameters used in all experiments are presented in Table 2. Although the

number of oscillators was chosen to be N = 4, obtained results can be generalised.
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P

G
S

Fig. 4: A graphical representation of a mapping G between the parameter space P
and the time series space S. The function G maps points (dots) in parameter space

P onto respective positions in time series space S.

Amplitude

In the first experiment, the parameter of interest was amplitude. All parameters

were initially set according to the Table 2. Then, the amplitude of the 2nd oscillator

was modified in range of r2 ∈ [1, 10] with step ∆r = 0.2. Obtained results in the

form of time series and phase dynamics are cumulatively presented in Figure 5a

and 5b, respectively. These graphs display changes in the amplitude of time series

or instantaneous frequency depending on the value of the parameter. Each row

represents a different oscillator with the horizontal and vertical axes corresponding

to time and component’s amplitude values, respectively. Both figures are colour-

coded with legends on the side showing their numerical values.

As it can be seen from these graphs, all but one plots have the same dynamics for

each value of the variable. The exception is obtained for the time series in the second

oscillator. Such result is due to the amplitude ri manifesting itself only as a simple

scaling value in the KurSL model (Eq. 21). Such behaviour is additionally expected

to produce monotonous mapping function from P into S space. Indeed, this can

be observed in Figure 6, where the distances in time series space S are presented.

The top graph shows the absolute distance, i.e. ‖sp‖, whereas the bottom shows

relative distance to the previous parameter p, i.e.MS(spi , spi+1). The behaviour of

both functions can be explained by noticing that in this case, the metric function

behaves like

f(r) =
√
ar2 + b, (27)

with respect to the amplitude r. Investigating its changes with a constant step ∆r

one can see from Equation (26) that the result has the form of

MS(spi
, spi+1

) =

√
a(∆r)

2
+ b, (28)

which is due to all other parameters being constant and independent from amplitude

r. This means that in this case expression MS(spi
, spi+1

) is constant.
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Time [s]

Oscillator 4

Oscillator 3

Oscillator 2

Oscillator 1

r2

r2

r2

r2

(a) Time series

Time [s]

Oscillator 4

Oscillator 3

Oscillator 2

Oscillator 1

(b) Instantaneous frequency

Fig. 5: Colour-coded representation of time series obtained when modifying ampli-

tude parameter, r2. Each graph corresponds to a different oscillator (initial values

Tab. 2). Horizontal and vertical axes correspond to time and r2 values, respectively.

MS(si, 0) MS(si, si+1)

Amplitude r2 Amplitude r2

Fig. 6: Distance values of time series as a function of amplitude parameter, r2. The

left plot displays the absolute distance of the vector ‖sp‖, whereas the right one is

a distance to the previous vector p in parameter space, i.e. MS(spi , spi+1).

Initial phase

The second experiment tested the behaviour when changing initial phase. Similarly

to the previous experiment, all parameters have been kept constant except for one.

The parameter has been modified in a range of θ2 ∈ [0, 2π] with a step ∆φ = 0.1.

All obtained signals are presented in Figure 7a and 7b, which displays the same

information as Figure 5a and 5b, respectively, with the difference that vertical axis

now corresponds to the initial phase θ2 values.

In this example, the effects of modulation are much more pronounced. Apparent

effect is a shift in phase of the whole second oscillator, which directly corresponds to

the parameter. The shift is not monotonous; when phase θ2 ≈ 1.5 there is a change

in the progression. Due to the strong coupling between the second and the third
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Time [s]

Oscillator 1

Oscillator 2

Oscillator 3

Oscillator 4

θ2

θ2

θ2

θ2

(a) Time series

Time [s]

Oscillator 1

Oscillator 2

Oscillator 3

Oscillator 4

(b) Instantaneous frequency

Fig. 7: Colour-coded representation of time-series obtained when modifying phase

parameter, φ02. Each graph corresponds to a different oscillator (initial values

Tab. 2). Horizontal and vertical axes correspond to time and φ02 values, respec-

tively.

MS(si, 0) MS(si, si+1)

Phase θ2 Phase θ2

Fig. 8: Distance values of time series as a function of phase parameter, φ02. The

left plot displays the absolute distance of the vector ‖sp‖, whereas the right one is

a distance to the previous vector p in parameter space, i.e. MS(spi , spi+1).

oscillators, this transition is also visible in the third oscillator and indirectly in the

first. Effects in the fourth row are unnoticeable in time series. In the phase dynamics,

however, they seem to introduce a constant shift which repeats itself every 1.2 s. This

effect is more comprehensible when analysing distance graphs presented in Figure 8.

Both distance metrics peaks are close to θ2 ≈ 1.5. This means that while preserving

constant change in phase parameter, there is an increase followed by decrease in

distance values. Observing the crests one can see that these modulations have no

significant affect on frequency, although their widths and shape can differ (Fig. 7a).
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Coupling factor

In another experiment, the coupling strength between the first and the second os-

cillator has been modulated. Again, all values were kept constant (Tab. 2) except

for k21, which modulation range was set to [−6, 6], with step ∆k = 0.1. Collec-

tive results and distance values are presented in Figures 9a, 9b and 10. In this

case, modulations in both frequency and amplitude are visible. On the first sight it

seems that effects of k modulations are symmetrical — the further from k = 0 the

more modulations on all components. This is especially pronounced in dynamics

Figures 9a and 9b, as well as in the relative distance plot 10. It seems that there

are two maxima for approximately k = −5 and k = 5. When coupling value reaches

these points, the frequency of the second oscillator is matching the frequency of

the first one closely. With the increase of coupling strength |k| > 5 the distance is

decaying and stabilising. However, based on the actual shape of the peak in Fig. 10

one can see that there is a different behaviour depending on the sign of the coupling

strength k. The signal for large positive k converges faster to the final frequency.

It has to be pointed out, that although the modulated coupling is present be-

tween the first and the second components, the first component is not visibly af-

fected. In comparison, the third oscillator seems to be affected more significantly.

Such behaviour is explained by the effect of coupling not being normalised to the

intrinsic frequency. From equation (12) it seems clear that the bigger intrinsic fre-

quency, the bigger coupling strength has to be to affect phase modulations. Third

component’s ω3 is about two times smaller than the first component’s. This differ-

ence leads to larger sensitivity in modulations, even if indirect. A similar result can

be observed for the fourth component; despite having little variation in the time

series, it has a relatively big impact on its instantaneous frequency dynamics.

Intrinsic frequency

The parameter that seems to have the most visible impact on both time series

and phase dynamics is the intrinsic frequency, ω. In the fourth experiment, the

frequency of the second component ω2 has been varied in the range [5, 45], with

step ∆ω = 0.1. Such modulations display clear patterns that can be observed in

colour-coded dynamics of time series (Fig. 11a) and phase dynamics (Fig. 11b).

In both figures, all components have been visibly affected. Observed distances in

Figure 12 show a major distortion in areas of ω ≈ 30 for the first, ω ≈ 8 for the

fourth oscillator and range [13, 22] for the second oscillator. These values seem to

correspond directly to the frequency of other components, suggesting that there

is resonance effect between oscillators. Sudden changes can be observed also when

analysing distance plots in Fig. 12. In regions close to the frequency of any other

oscillator there are dynamical changes. However, in regions relatively far, i.e. when

ω ≈ 15 and ω > 33, changes in metric values are more gradual. Interesting pattern

can also be observed in the fourth oscillator’s phase dynamics. Despite having a

relatively constant position of peaks, their amplitudes are modulated in pattern
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Oscillator 4
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(a) Time series

Time [s]
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Oscillator 3
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(b) Instantaneous frequency

Fig. 9: Set of components obtained by varying coupling strength k2,1, i.e. between

the first and the second components. The range of changes is from -6 to 6 with step

∆k = 0.1. Each graph represents the amplitude of the nth oscillator. The horizontal

axis is the time and the vertical axis are the values of the coupling, k2,1.

MS(si, 0) MS(si, si+1)

Coupling k2,1 Coupling k2,1

Fig. 10: Distance values of time series as a function of intrinsic frequency parameter,

k2,1. Left plot displays the absolute distance of the vector, whereas the right one is

distance to the previous vector p in parameter space.

visible for the third oscillator.

Summary of experiments

All these experiments allow for descriptive sensitivity analysis which provides in-

sights into the model’s behaviour. By studying it, one can understand how changes

in parameters affect the form of generated time series. Numerical evaluations on

presented ranges made it possible to show changes in the mapping function. These

can be treated as traversing along a specific path within time series space S and

parameter space P. Traversing along these trajectories allow for observing how the

distance between consecutive points changes. In general, the mapping function be-
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Fig. 11: Colour-coded representation of time-series obtained when modifying intrin-

sic frequency parameter, ω2. Each graph corresponds to a different oscillator (initial

values are in Tab. 2). The horizontal and vertical axes correspond to time and ω2

values, respectively.

MS(si, 0) MS(si, si+1)

Frequency ω2 Frequency ω2

Fig. 12: Distance values of time series as a function of intrinsic frequency parameter,

ω2. The left plot displays the absolute distance of the vector, whereas the right one

is the distance to the previous vector p in parameter space.

tween mentioned spaces is non-linear. Out of presented examples, only traversing

along the amplitude path did not modify the distance metric whereas the rest of

parameters had a significant effect on the whole system. One can see that the di-

rected gradient changes non-monotonically and the level of variation depends on

the position from which the step was made. In some regions, these variations are

substantially different than in others, even when perturbing by the same amount,

but despite occasional sharp changes, there is no reason to suspect that the gradient

is not continuous. It is expected that these sudden changes can depend on relative

values of all parameters, highlighting possible interaction effects between oscillators,

such as frequency alignment.
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5. Conclusions

The paper introduced a novel model, KurSL, which can capture behaviour of com-

plex signals generated by systems of mutually interacting oscillations. The signif-

icance of this model stems from its ability to extract phase dynamics of a set of

coupled oscillators directly from recorded time series. Such analysis is typically ob-

tained by performing bandpass filtering [Andrade et al., 2008; Stankovski et al.,

2015], or by assuming a specific form of the response [Busch et al., 2009], whereas

KurSL uses the general form of oscillations. This generalisation has been achieved

through a combination of the Sturm-Liouville oscillation model and the Kuramoto

coupling model. Integration of the two approaches builds on their strengths. The

former model describes an individual oscillation and its properties, whereas the

latter focuses on capturing interactions between several oscillators. These intend to

reflect interacting behaviour present in most physical systems, where each oscillator

affects and depends on other elements. Such description leads to the production of

components as general oscillations with variable amplitude and frequency. In cases

when there are no interactions between components, KurSL will simply describe

these as composed of harmonic oscillators, as would be done by the Fourier analy-

sis. This encapsulation makes the KurSL model particularly suitable for explaining

a wide range of oscillating phenomena and processes. Thus, the model opens up

possibilities to analyse data that are expected to reflect interacting oscillatory pro-

cesses such as physiological data [de Lima et al., 2006], brain signals [Sweeney-Reed

and Nasuto, 2009], atmospheric data [Huang et al., 1998] or financial events [Lux

and Marchesi, 1999].

Introduction of a new model opens many possible research avenues. In Section 4

we examined the behaviour of the mapping from the KurSL’s parameter space to

the time series and phase dynamics spaces. The investigation has been performed

by manipulating individual parameters within certain ranges, while keeping other

parameters fixed. This procedure approximates calculation of the scaled partial

derivatives along specified axes. This analysis revealed nontrivial dependency of the

obtained decompositions on the parameters. Only the mapping of the amplitude

is monotonically increasing, which was additionally verified analytically. In case of

the other parameters, effects of modulations have been observed in all oscillators

confirming the non-linear behaviour of the model.

The behaviour observed while manipulating the coupling factor was interest-

ing and not intuitive. All effects depend greatly on the strength of the interaction

between investigated component and the others. There was a visible difference in

distance metric when comparing response produced with positive and negative val-

ues k (Fig. 10). The sign in the coupling factor indicates, whether the oscillators

are stabilising the system by pulling towards each other, or destabilising it by push-

ing away in the phase domain. It seems that in the presented example investigated

interaction had little effect on global state, until a particular absolute value of the

coupling k was reached. The mechanisms behind this phenomenon will be a subject
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of future study.

One of the observed effects taking place in the phase domain is likely due to

resonance. When the frequency parameter was modified for some ω2 values, there

was a visible sharp peak in the distance between consecutive points in time series

space. For example, this is visible for ω2 ≈ 30, which is equal to the first oscillator’s

intrinsic frequency ω1. The expectation is that this effect is additionally affected by

the coupling strength k between oscillators under consideration.

The KurSL is capable of representing complex structures that may be present

in the data due to convoluted interactions of the oscillators which generate them.

Future work will focus on introducing an automated KurSL parameters’ estima-

tion method from a given empirical time series that will effectively amount to the

identification of the number of the oscillators and estimation of the resultant model

parameters (parameter estimation). Such task is non-trivial due to high computa-

tional complexity and non-linearity of the model; it is difficult to define efficient cost

function with convex behaviour. This forces search method to use heuristic approach

using some of the domain knowledge. Nevertheless, projecting signal onto the model

results in a decomposition of the input signal into the constituent oscillations most

consistent with the data and the model constraints. Such decomposition allows then

to quantitatively and qualitatively describe oscillatory phenomena within the anal-

ysed system. Implementation of the current KurSL forward model is available to

download from author’s webpage [Laszuk, 2014].

References
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