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1   ABSTRACT 

Nuclear transport receptors (NTRs) mediate the translocation of cargos between the 

cytoplasm and the nucleus. NTRs are classified either as importins or exportins according 

to the directionality of the cargo transport. To identify new interaction partners of so far 

poorly characterized NTRs from S. cerevisiae, we developed a novel protein purification 

approach based on an engineered SUMO-specific protease (SUMOvera protease) and its 

specific SUMO substrate (SUMOvera). SUMOvera can be used as a stable fusion tag in 

virtually all eukaryotic systems since it is not recognized by SUMO-specific proteases 

from yeast, plant, human, amphibian, insect and protozoa. In addition, the SUMOvera 

protease can be over-expressed in S. cerevisiae without causing toxicity unlike yeast and B. 

distachyon SUMO-specific proteases. The SUMOvera system has also an orthogonal 

specificity to the SUMOstar/SUMOstar protease pair to allow the purification of protein 

complexes with a defined stoichiometry in eukaryotic hosts.  

Using the SUMOvera system, we discovered that yeast Lph2 and Pdr6 mediate the nuclear 

export and import of different cargos. Specifically, we showed that Lph2 exports and binds 

to the translation initiation factor eIF4A in a Ran-GTP-dependent manner, and that Pdr6 

recognizes Ubc9 as an import substrate as well as eEF2 and eIF5A as export cargos. Lph2 

and Pdr6 have been only described as importins; however, our data indicate that they act as 

bidirectional NTRs that shuttle distinct sets of cargos in opposite directions through the 

nuclear envelope. 

Overall, we describe two novel bidirectional NTRs in S. cerevisiae in addition to Msn5. 

The reported findings suggest that bidirectionality in NTRs might be more common than 

previously assumed, and that there might be other bidirectional NTRs in different 

organisms that still need to be identified.  
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2   INTRODUCTION 

2.1  Nucleus: the hallmark of eukaryotic cells 

Prokaryotic cells have the simplest cellular ‘architecture’ as they are only defined by a cell 

membrane. Eukaryotic cells evolved from prokaryotes after acquiring defined cellular 

compartments enclosed by different membranes. The nucleus, the most defining and 

prominent of these compartments (Cavalier-Smith 1988), is surrounded by the nuclear 

envelope (NE) that separates the genetic material (genomic DNA) from the cytoplasm of a 

cell. The appearance of the nucleus allowed eukaryotic cells to acquire several advantages. 

First, the nucleus protects the genomic DNA from physical and chemical damage 

originated in the cytoplasm. Second, separation of nuclear transcription from translation in 

the cytoplasm allows eukaryotes to control gene expression in a define time and space 

(Gant & Wilson 1997). Third, the spatial uncoupling of transcription from translation 

allows cells to expand the coding potential of their genome by removing a different 

number of introns from pre-mRNAs by alternative splicing. Last, the nucleus prevents the 

translation of intron-containing mRNAs that might cause the productions of aberrant 

proteins by preventing the free diffusion of specific macromolecules needed for translation 

(i.e. transcription factors, tRNA and ribosomes).  

Despite the fact all benefits provided by the NE in eukaryotic cells, the physical separation 

between the nucleus and the cytoplasm require a fine-tuned communication between the 

two compartments. For instance, transcription in the nucleus requires the input of proteins 

(i.e. transcription factors, RNA polymerase, mRNA biding proteins) that are synthesized in 

the cytoplasm. In contrast, translation relies on the supply of nuclear products such as 

mRNA, tRNA and ribosomal subunits for correct protein synthesis. Therefore, the constant 

and controlled exchange of macromolecules between the cytoplasm and the nucleus is 

needed to achieve complete normal cellular growth. 

 

2.2  Overviews of the nucleocytoplasmic transport 

The nuclear pore complex (NPC) is the sole gate between the nucleus and the cytoplasm, 

and controls the exchange of macromolecules across the NE. NPCs are large protein 

assemblies embedded in the NE (Watson 1959) with a molecular weight of 66 MDa (Rout 

& Blobel 1993) in yeast and around 125 MDa in vertebrates (Reichelt et al. 1990). NPCs 
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are composed of around 30 different proteins named nucleoporins (Nups), which can be 

divided into different classes based on their function within the NPC. On one hand, Nups 

of a complete defined protein structure form the eight-fold symmetric scaffold ring of the 

NPC (von Appen et al. 2015; Eibauer et al. 2015; Kelley et al. 2015). On the other hand, 

Nups containing intrinsically disordered phenylalanine-glycine domains fill the central 

NPC channel and form the selective permeability barrier of the NPC (reviewed in Schmidt 

& Görlich 2016).  

Small molecules (i.e. nucleotides, glycerol, H2O, glucose) and globular protein of less than 

20 kDa easily cross the permeability barrier at the NPC by passive diffusion. As the size 

and shape of the molecules increases (≥ 5 nm in diameter or 20-40 kDa), passive diffusion 

becomes restricted (Bonner 1975; Paine et al. 1975; Mohr et al. 2009). In this case, the 

active transport of large macromolecules relies on specialized proteins known as nuclear 

transport receptors (NTRs) (reviewed in Sloan et al. 2016; Christie et al. 2016; Matsuura 

2016; Güttler & Görlich 2011).  

 

2.3  Transport directionality and nuclear transport receptors (NTRs) 

Macromolecules that do not passively diffuse through the NE due to their large size and 

net charge require to be transported in a facilitated manner by nuclear transport receptors 

(NTRs). NTRs are globular proteins of large size (90-150 kDa) that are able to shuttle 

continuously between the cytoplasm and the nucleus. NTRs bind to their cognate cargo in 

one side of the NE and transport it to the other side by interacting with the multiple FG 

repeats at the central channel of the NPC. The multiple interactions between the NTR and 

the FG meshwork at the NPC allow NTRs to transport cargos by overcoming the size limit 

imposed by the permeability barrier (Ribbeck & Görlich 2002; Frey & Görlich 2007; 

Schmidt & Görlich 2016). The active transport of large molecules is extremely efficient as 

a single NTR can translocate up to 1000 molecules per NPC per second (Ribbeck & 

Görlich 2001).  

Most of the facilitated cargo transport through the NPC is mediated by NTRs of the 

importin b (Imp-b) superfamily (also known as b-karyopherins) which comprises 21 

different members in humans and 14 in yeast (reviewed in Güttler & Görlich 2011). 

Although all NTRs from the importin b-like superfamily share only a modest protein 

sequence similarity (from 10% to 20%) (Quan et al. 2008), they all have a common 
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building secondary structure known as HEAT (reviewed in Güttler & Görlich 2011). As 

determined by different crystallographic studies, Imp-b NTRs have an α-solenoid fold that 

is composed by a tandem of 18-20 HEAT repeats interconnected by short loops (Vetter et 

al. 1999; Monecke et al. 2009; Okada et al. 2009; Aksu et al. 2016). NTRs undergo to 

different protein conformations between the unbound and cargo-bound (reviewed in 

Claustre & Maritorena 2003; Schwartz 2016). In addition, NTRs that form the Imp-b 

family share the ability to bind different NPC domain(s) as well as the capability to bind 

the small Ras-related nuclear protein GTPase (Ran) via the N-terminal region of the NTR 

(Rexach & Blobel 1995; Görlich et al. 1996; Görlich et al. 1997). 

Ran (Gsp1 in S. cerevisiae) is a 25 kDa protein that switches between the GTP-bound 

(Ran-GTP) and GDP-bound (Ran-GDP) states (Bischoff & Ponstingl 1991). Ran is one of 

the key regulators of the nucleocytoplasmic transport and its function is best explained by 

the Ran-GTP gradient model (Görlich et al. 1996; Izaurralde et al. 1997). Ran-GTP (active 

form) is found predominantly in the nucleus, while Ran-GDP (inactive form) is highly 

enriched in the cytoplasm. The predominant subcellular localization of Ran-GTP and Ran-

GDP is maintained due to the strict localization of the Ran activating protein (RanGAP1 in 

vertebrates, Rna1 in yeast) and the Ran guanine nucleotide exchange factor (RCC1 in 

vertebrates, Prp20 in yeast). RanGAP1 is found predominantly in the cytoplasm and 

enhances the GTPase activity of Ran that results in the increment of Ran-GDP levels in the 

cytoplasm (Hopper et al. 1990; Matunis et al. 1996; Mahajan et al. 1997). In contrast, 

RCC1 localizes only in the nucleus and facilities the exchange of GDP to GTP on Ran 

(Bischoff & Ponstingl 1991; Klebe et al. 1995). 

Ran-GTP represents the active form of Ran as it has a higher affinity to NTRs compared to 

Ran-GDP (Nilsson et al. 2002; Görlich et al. 1996). Moreover, Ran-GTP also changes the 

conformation of NTRs upon binding. Therefore, the drastic difference in Ran-GTP 

concentration between the cytoplasm and the nucleus (up to 1000-fold) is known to be the 

main cause of the directionality during transport (Görlich et al. 1997; Görlich et al. 2003; 

Izaurralde et al. 1997; Görlich et al. 1996). Based on the transport directionality, NTRs are 

classified as importins or exportins (Kutay et al. 1997; Fornerod et al. 1997). Exportins 

recognize their cognate cargos in the nucleus where the concentration of Ran-GTP is high, 

and transport them to the cytoplasm. On the other hand, importins form a stable complex 

with their respective cargos in the absence of Ran-GTP in the cytoplasm, and then shuttles 

to the nucleus. Additionally, several NTRs can act as imports as well as exportins, 
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shuttling different set of cargos in both direction (Yoshida & Blobel 2001; Mingot et al. 

2001; Gontan et al. 2009; Kurisaki et al. 2006; Lipowsky et al. 2000). Standard and 

bidirectional NTRs are described in detail in the following sections. 

Table 2.1 Cargos recognized by importins in higher eukaryotes 

Vertebrate 
Importins Cargo(s) Reference(s) 

Importin b 

Import cargos with a cNLS via 
importin α, histone 1 via importin 7, 
m3G-capped U-snRNPs, ribosomal 

proteins, HIV rev, HIV tat 

(Görlich et al. 1995; Jäkel et al. 
1999; Huber et al. 1998; Jäkel & 
Görlich 1998; Truant & Cullen 

1999) 

Transportin 1+2 
(Trn, Importin b2) 

hnRNP, ribosomal proteins, 
TAP/NFX1, histones, c-FOS 

(Pollard et al. 1996; Jäkel & 
Görlich 1998; Truant & Cullen 
1999; Mühlhäusser et al. 2001; 

Arnold et al. 2006) 
Transportin SR1+2 

(TrnSR, Trn3) SR proteins (Kataoka et al. 1999) 

Importin 4 Ribosomal proteins, histones 
(Jäkel et al. 2002; 

Mosammaparast et al. 2001; 
Mühlhäusser et al. 2001) 

Importin 5 Ribosomal proteins, histones (Jäkel & Görlich 1998) 

Importin 7 Ribosomal proteins, ERK2, SMAD3, 
MEK1 

(Jäkel & Görlich 1998; 
Chuderland et al. 2008) 

Importin 8 Argonaute proteins, SRP19 (Weinmann et al. 2009; Dean et 
al. 2001) 

Importin 9 Ribosomal proteins, histones 
(Jäkel et al. 2002; 

Mosammaparast et al. 2001; 
Mühlhäusser et al. 2001) 

Importin 11 UbcM2, rpL12 (Plafker et al. 2000; Plafker & 
Macara 2002) 

cNLS= classical nuclear localization signal 

 

2.4  Nuclear import receptors (importins) 

In vertebrates, there are 21 different NTRs from the Impb superfamily where only 9 

members act as standard importins (Table 2.1). In the case of S. cerevisiae, 10 different 

importins are identified out of 14 members of the Impb superfamily (Table 2.2). Importins 

recognize their cognate cargos in the cytoplasm and translocate to the other side of the NE 

as a single unit (import complex). After translocation, Ran-GTP binds to the importin in 

order to trigger the dissociation of the importin complex in the nucleoplasm. The 

disassembly of the import complex results in the release of the cargo inside of the nucleus 

while the importin remains bound to Ran-GTP. Next, the remaining importin�Ran-GTP 

complex is transported back to the cytoplasm and further dissembled upon GTP hydrolysis 

promoted by the cytosolic protein RanGAP1 (Hopper et al. 1990; Matunis et al. 1996; 
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Mahajan et al. 1997). Finally, free importin is able to start the transport of a new cargo to 

the cytoplasm (Figure 2.1).  

Table 2.2 Cargos recognized by S. cerevisiae importins 

S. cerevisiae 
Importins Cargo(s) Vertebrate NTR 

homologue(s) Reference(s) 

Kap95 Import cargos with a cNLS 
via Kap60 (Srp1) Importin b1 (Enenkel et al. 1995) 

Kap104 Nab2, Hrp1 (mRNA binding 
proteins) Transportin 1+2 (Kessler et al. 1997; 

Aitchison et al. 1996) 

Yrb4 (Kap123) SRP proteins, histones, 
ribosomal proteins Importin 4 

(Schlenstedt et al. 1997; 
Rout et al. 1997; 

Grosshans et al. 2001; 
Greiner et al. 2004) 

Mtr10 
(Kap111) Npl3, tRNAs Transportin SR1, 

Importin 13 
(Kramer & Hopper 2013; 

Senger et al. 1998) 

Pse1 (Kap121) 
Ribosomal proteins, Yra1, 
Spo12, Ste12, Yap1, Pho4, 

histones 

Importin 5, 
Importin 6 

(Rout et al. 1997; Greiner 
et al. 2004; Isoyama et al. 
2001; Leslie et al. 2002; 
Chaves & Blobel 2001; 

Kaffman, Rank & O’Shea 
1998) 

Nmd5 
(Kap119) 

Ribosomal proteins, 
histones, Hog1, Crz1, 

Dst1(Xu et al. 2006) import 
 

Importin 7, 
Importin 8 

(Greiner et al. 2004; 
Straube et al. 2010; 
Ferrigno et al. 1998; 

Albertini et al. 1998; Rout 
et al. 1997) 

Sxm1 
(Kap108) 

Lhp1, ribosomal proteins, 
Pab1 / 

(Brune 2005; Chaves & 
Rosenblum 2011; Rout et 

al. 1997) 

Kap114 TBP, histones, Nap1, Sua7 Importin 9 

(Morehouse et al. 1999; 
Greiner et al. 2004; 

Hodges 2005; Straube et 
al. 2010) 

Pdr6 (Kap122) Toa1 and Toa2, TFIIA / (Titov & Blobel 1999) 

Lph2 (Kap120) 
Rpf1, Ho endonuclease, 

Swi6 Importin 11 
(Caesar et al. 2006; Kim 
et al. 2010; Bakhrat et al. 

2006) 
Kap= Karyopherin, cNLS= classical nuclear localization signal 

Overall, the translocation of a cargo through the NPC does not require energy, but 

recycling the of importins back to the cytoplasm depends on the energy provide by the 

Ran-GTP (Ribbeck et al. 1999; Schwoebel et al. 1998; Englmeier et al. 1999). One 

molecule of Ran-GTP is converted to Ran-GDP per cargo imported into the nucleus. In 

order to prevent complete depletion of Ran-GTP in the nucleus, nuclear transport factor 2 

(NTF2/p10) transports Ran-GDP back to nucleus to allow the conversion of GDP to GTP 

by the nuclear protein RCC1 (Ribbeck et al. 1998). NTF2 does not belong to the Impb-

NTR; instead, it is small homodimer and has distich protein fold (Bullock et al. 1996; 
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Moore & Blobel 1994). However, similar to Impb-NTRs, NTF2 also interacts with the FG-

repeats at the central channel of the NPC to freely shuttle between the nucleus and the 

cytoplasm.  

 

Figure 2.1 Import and export cycles. Picture taken and adapted from (Görlich & Kutay 1999). For details see sections 
2.4 and 2.5 . Exp=Exportin, Imp= Importin, NTF2= Nuclear Transport Factor 2, Ran=Ras-related nuclear protein, 
RCC1= Regulator of Chromosome Condensation 1, RanGAP= Ran GTPase activating protein and RanBP1= Ran binding 
protein 1.  
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2.5  Nuclear export receptors (exportins) 

Exportins mediate the active transport of macromolecules through the NPC from the 

nucleus to the cytoplasm. Eight different standard exportins that belong to the Impβ-NTR 

family are identified in higher eukaryotes (Table 2.3), whereas only 3 exportins are present 

in yeast (Table 2.4). Exportins recognize their cargos only in the nucleus where the 

concentration of Ran-GTP is high. After binding of Ran-GTP to a given exportin, the 

cargo is recognized by the exportin and consequently a trimeric export complex 

(exportin�cargo�Ran-GTP) is formed. Next, the export complex translocates to the 

cytoplasm, where the cargo is released upon hydrolysis of Ran-bound GTP promoted by 

the cytosolic protein RanGAP. Finally, the free exportin returns to the nucleus through the 

NPC in order to start the export of a new cargo (Figure 2.1).  

Exportin 1 (Xpo1, also known as Crm1) is probably the NTR with the widest cargo 

recognition spectrum as it recognizes more than 700 different cargos in S. cerevisiae and 

more than 1000 protein in humans (Kirli et al. 2015). Most of these cargos were thought to 

be exclusively cytoplasmic after export by Crm1. However, the permeability barrier at the 

NPC is not perfect and cargos can diffuse back to the nucleus even if they exceed the 

exclusion size limit at the NPC (Bonner 1975; Mohr et al. 2009). As a result, Crm1 is 

probably the main strategy of a cell to keep a constant protein identity inside the nucleus 

by preventing protein accumulation inside the nucleus due to passive diffusion. For 

instance, Crm1 represses a premature nuclear translation of pre-mRNAs by keeping 

several translation factors outside the nucleus. Crm1 also exports the 60S pre-ribosomal 

subunit through the protein adaptor Nmd3 (West et al. 2007), and the 40S pre-ribosomal 

subunit via the protein factors Ltv1 and Rio2 (Fischer et al. 2015; Seiser et al. 2006). The 

export RanBP1 is another example of an important role of Crm1 to keep constant the 

protein identity in the nucleus since RanBP1 together with RanGAP is strictly required to 

dissemble Ran-GTP�NTR complexes in the cytoplasm (Coutavas et al. 1993; Bischoff & 

Görlich 1997; Kutay et al. 1997). As mentioned before, the strict cytoplasmic localization 

of RanBP1 and RanGAP is one of the key factors to give directionality during cargo 

transport. Therefore, failure to exclude RanBP1 and RanGAP from the nucleus would also 

impair other nuclear transport pathways.  
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Table 2.3 Cargos recognized by standard exportins in vertebrates 

Vertebrate 
Exportins Cargo(s) Reference(s) 

Exportin 1 (Crm1) 

Leu-Rich NES cargos, HIV rev 
(adaptor for the export HIV genomic 
RNA), Snurportin 1, Nmd3 (adaptor 

for the export of 60S subunits), 
PHAX/CBC (adaptor for m7G-capped 

UsnRNAs) 

(Fornerod et al. 1997; Wen et al. 
1995; Fischer et al. 1995; 

Paraskeva et al. 1999; Ho et al. 
2000; Thomas & Kutay 2003; 
Izaurralde et al. 1995; Ohno et 

al. 2000) 
Exportin 2 (CAS) Importin α (Kutay et al. 1997) 

Exportin-t (Xpot) tRNAs (Arts et al. 1998; Kutay et al. 
1998) 

Exportin 5 tRNAs, eEF1A dsRNAs, pre-miRNAs 

(Bohnsack et al. 2002; Calado et 
al. 2002; Brownawell & Macara 
2002; Yi et al. 2003; Mingot et 
al. 2004; Bohnsack et al. 2004; 

Lund et al. 2004) 
Exportin 6 Actin-profilin complex (Stüven et al. 2003) 
Exportin 7 p50RhoGAP, 14-3-3σ (Mingot et al. 2004) 

Crm1= Chromosomal maintenance 1 

Table 2.4 Cargos recognized by standard S. cerevisiae exportins 

S. cerevisiae 
Exportins  Cargo(s) References Vertebrate NTR 

homologue(s) 

Exportin 1 (Crm1) 

Export of cargos with a 
Leu-rich NES, Nmd3 
(adaptor for the export 
of 60S subunits), Ltv1 
(adaptor for the export 

of 40S subunits) 

(Seiser et al. 2006; 
West et al. 2007; Kirli 

et al. 2015) 
Exp1 (Crm1) 

Cse1 (Kap109) Kap60 (Srp1) (Hood & Silver 1998) CAS 

Los1 (Kap127) tRNAs (Sarkar & Hopper 
1998) Exportin-t 

  Kap= Karyopherin, Crm1= Chromosomal maintenance 1 

 

2.6  Bidirectional nuclear transport receptors 

The transport of macromolecules across the NE is performed by NTRs with a defined 

directionality. Standard importins transport their cargos from the cytoplasm to the nucleus, 

whereas typical exportins carry the molecules in exactly the opposite direction. 

Interestingly, some NTRs act as importin as well as exportins, meaning that they can 

mediate the transport in a bidirectional fashion (Table 2.5). So far, two bidirectional NTRs 

have been described in vertebrates, importin 13 and exportin 4 (Mingot et al. 2001; 

Lipowsky et al. 2000; Kurisaki et al. 2006; Gontan et al. 2009), while Msn5 is the only 



 

 10 

identified bidirectional NTR in S. cerevisiae (Kaffman, Rank, O’Neill, et al. 1998; Yoshida 

& Blobel 2001). 

A distinctive feature for a standard exportin or importin is their affinity to Ran-GTP in the 

absence of the cargo. Interaction between exportins and Ran-GTP is known to be rather 

low (Kutay et al. 1997; Fornerod et al. 1997; Hellmuth et al. 1998; Hood & Silver 1998; 

Maurer et al. 2001), whereas importins bind to Ran-GTP with a high affinity (Görlich et al. 

1996; Bischoff & Görlich 1997; Schlenstedt et al. 1997; Hahn & Schlenstedt 2011). 

Consequently, it is well possible that a distinct property of bidirectional NTRs is an 

intermediate affinity to Ran-GTP in the absence of a cargo. For instance, Msn5 has around 

200-fold less affinity to Ran-GTP (52 nM; Hahn & Schlenstedt 2011) as compared to 

Importin β (0.23nM; Hahn & Schlenstedt 2011) and about 50-fold more affinity than Crm1 

(≅3 µM; Paraskeva 1999). Following this criterion, the same holds true for already 

described bidirectional NTRs which the affinity to Ran-GTP is ≈40nM for Exportin 4 

(Lipowsky et al. 2000) and <100nM for importin 13 (Grünwald & Bono 2011). 

Table 2.5 Cargos recognized by human and yeast bidirectional NTRs 

Bidirectional NTR  Cargos References Closest NTR 
homologue 

Human 
Importin 13 

(Imp13) 
eIF1A (e), Ubc9 (i), 

Y14 (i) (Mingot et al. 2001) Mtr10 

Exportin 4 (Exp4) eIF5A (e), SMAD3 
(e), Sox2 (i), SRY (i) 

(Lipowsky et al. 2000; 
Kurisaki et al. 2006; 
Gontan et al. 2009) 

/ 

S. cerevisiae  

Msn5 (Kap142) Pho4 (e), Crz1 (e), 
Cdh1 (e), RPA (i) 

(Kaffman, Rank, O’Neill, 
et al. 1998; Yoshida & 

Blobel 2001) 
Exportin 5 (Exp5) 

Kap= Karyopherin, Imp= Importin, Exp= Exportin, (e)= export cargo, (i)= import cargo 

 

2.6.1  Yeast importin Lph2 (Kap120) 

Lph2 is a non-essential NTRs and has protein orthologs in D. melanogaster, X. tropicalis, 

M. musculus and H. sapiens (Quan et al. 2008). The closest mammalian NTR ortholog for 

Lph2 is importin 11 with a 27% sequence identity (Görlich et al. 1997). There are several 

features that characterize Lph2 (Kap120) as a NTR. First, Lph2 is a member of the Impβ-

NTR super family due to the sequence homology of its N-terminal domain. Second, Lph2 

is able to bind Ran-GTP in vitro and in vivo (Caesar et al. 2006). Last, Lph2 localizes 
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inside the nucleus and interacts with different Nups (Rout et al. 2000; Allen et al. 2001). 

One function of Lph2 as importin in S. cerevisiae was first described after the 

identification of the ribosomal assembly export factor Rpf1 as its import cargo (Caesar et 

al. 2006). Deletion of Lph2 in S. cerevisiae leads to the accumulation of 60S pre-ribosomal 

subunit in the nucleus, perhaps due to an impaired Rpf1 import. Later, it was found that 

Lph2 also mediates the import of Ho endonuclease and Swi6 protein (a subunit of the 

transcription factor SBF) (Bakhrat et al. 2006; Kim et al. 2010). Lph2 has been considered 

only as an importin in S. cerevisiae and nothing is known about Lph2 binding proteins in 

the presence of Ran-GTP. 

 

2.6.2  Yeast Importin Pdr6 (Kap122) 

Pdr6 (Kap122) was initially described as a member of a gene family involved in 

pleiotropic drug resistance in S. cerevisiae (Balzi et al. 1987). Overexpression of Pdr6 in 

yeast caused sensitivity to the antibiotics borrelidin, hygromycin b and cycloheximide 

(Chen et al. 1991). Pdr6 was later redefined as a NTR involved in the import of the large 

subunit (Toa1) and the small subunit of (Toa2) of the transcription factor IIA (TFIIA) 

(Titov & Blobel 1999). However, the relation between pleiotropic drug resistance and the 

function of Pdr6 as a importin still remains to be elucidated. 

Pdr6 is not an essential NTR and was named Kap122 due to its theoretical molecular mass 

(123.5 kDa). Consistent with its function as an NTR, Pdr6 is localized evenly between the 

cytoplasm and the nucleus as it shuttles between these two compartments. Also, 

phylogenetic analysis show that Pdr6 does not have a corresponding ortholog in any 

multicellular organism (Quan et al. 2008). Little is known about the cargo recognition 

specificity of Pdr6, and no other transport cargos for Pdr6 have been identified over the 

last 20 years.  

 

2.7  Tandem affinity purification (TAP) 

Proteins regulate most of the cellular processes by forming macromolecular complexes in a 

specific time and subcellular localization. Every protein within the complex has a specific 

function that might be exhorted only upon protein-protein interaction. In many cases, the 

combination of all different activities within the complex provides the final cellular 
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function. Consequently, protein research is gradually changing the focus of study from the 

functional analysis of individual proteins to the evaluation of the function and composition 

of protein complexes that exist inside the cells (Cusick et al. 2005; Yu et al. 2008).  

Yeast two-hybrid system and protein chip-based methods have been extensively used to 

study protein-protein interactions (Zhu et al. 2001; Uetz et al. 2000). Both methods provide 

information of broad protein-protein interaction networks, but they still have some major 

shortcomings (reviwed in, Xu et al. 2010; Van Criekinge & Beyaert 1999). For instance, 

the yeast two-hybrid system is restricted to be performed in S. cerevisiae that might create 

false positives or false negatives if heterologous proteins are analyzed. As for the chip-

based method, the preparation of proteins needed for the analysis and their respective 

printing on the chip implies a time consuming and extensive task. An alternative method to 

analyze the formation and composition of protein complexes that circumvents these 

disadvantages is tandem affinity purification (TAP).  

TAP, as the name implies, is a technique to purify protein complexes using two different 

affinity chromatography steps. In order to trap specific protein forming a stable complex, a 

recombinant protein tagged with two different affinity tags and a protease cleavage site 

(TAP-tag) is used as bait. First, the TAP-tagged bait is expressed in the host of interest or 

incubated in a cellular lysate in a pre-purified form. Protein complexes containing the 

TAP-tagged bait are purified using two affinity matrices in a sequential manner. Protein 

elution from the first matrix is generally mediated by a site-specific protease, whereas the 

second protein elution step is performed by different means (i.e. pH elution, addition of 

EGTA, competitive elution). Last, eluted proteins are subjected to mass spectrometry 

analysis in order to identify the exact composition of the complexes (Morris et al. 2014) 

(Figure 2.2). 

Although TAP was developed in S. cerevisiae (Rigaut et al. 1999), it has been successfully 

used in many different organisms including mammals, plants, Drosophila, amphibians and 

bacteria (Van Leene et al. 2007; Veraksa et al. 2005; Kumar et al. 2004; Bürckstümmer et 

al. 2006). TAP is a widely used analytic method to study protein-protein interaction due to 

several reasons. First, the protein complexes are purified under native-like conditions. 

Second, TAP allows the rapid identification of protein complexes without previous 

structural knowledge of the bait protein to be used. Third, extensive proteomic analysis can 

be performed to evaluate the complete interactome of the bait of interest after TAP. 

Finally, the background binding caused by protein contaminants can be very low due to the 
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protein elution mediated by the site-specific protease and the use of two highly specific 

affinity matrices. 

 

Figure 2.2 Tandem affinity purification. The tag used for the first developed tandem affinity purification protocol 
consisted of three components: a calmodulin-binding peptide, a TEV protease cleavage site and the IgG-binding 
protein A from Staphylococcus aureus (Rigaut et al. 1999). The TAP-tagged bait is either incubated with a pre-made 
cellular lysate or expressed in the appropriated host to trap specific protein binders. Protein complexes are initially 
purified using IgG-coupled beads. Protein contaminants are removed and immobilized protein complexes are then 
eluted using TEV protease. The second affinity chromatography is performed in a column that consists of 
calmodulin-coupled beads. Final protein elution is achieved by chelating calcium with EGTA. Picture taken and 
adapted from (Huber 2003).  

 

2.8  Diversity of affinity tags and protease cleavage sites used in TAP 

The first TAP-tag developed consisted of two IgG-binding units of protein A from S. 

Staphylococcus aureus (ProtA), the tobacco etch virus (TEV) protease cleavage site and 

the calmodulin-binding peptide (CBP) (Rigaut et al. 1999). ProtA and CBP acted as 

affinity tags, while TEV protease cleavage site was used to allow on-column protein 

elution mediated by the TEV protease. Over the years, numerous N- and C-terminal TAP-

tags with different combinations of affinity tags sand protease cleavages sites have been 

used to improve the yield of purified protein complexes (Table 2.6). A common feature for 

more efficient TAP-tags is the replacement of CBP due its low efficiency as an affinity tag 

(Li 2010). In addition, several mammalian proteins containing a calmodulin-binding 
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domain can potentially co-purified and lead to false positive results. There are several 

options to replace CBP as affinity tag and increase the protein recovery efficiency in TAP 

(i.e. Strep-tag, ProtC, FLAG-tag, His-Tag, Myc-tag, HA-tag, S-tag). A more detailed 

description of about the different affinity tags used for TAP is summarized in table 2.7. 

Table 2.6 Reported TAP-tags used in different cellular hosts 

TAP-tag Cleavage site Organism Reference 
ProtA-CBP TEV S. cerevisiae (Rigaut et al. 1999) 
FLAG-HA / A. thaliana, human 

cells 
(Zenser et al. 2008) 

3x (FLAG-His) / D. melanogaster (Yang et al. 2006) 
ProtA-ProtC TEV T. brucei (Schimanski et al. 

2005) 
ProtG-SBP TEV Human cells (Bürckstümmer et al. 

2006)  
2x (FLAG-ProtA) TEV Human cells (Tsai & Carstens 

2006) 
2x(His)-Strep 2x TEV Human cells (Giannone et al. 2007) 

2x (Strep-FLAG) / Human cells (Gloeckner et al. 2007) 
SBP-HA / Human cells (Glatter et al. 2009) 
SBP-His / Human cells (Li et al. 2011) 

His-biotin / S. cerevisiae (Tagwerker 2006) 

GFP-S/His TEV/HRV3C C. elegans (Cheeseman & Desai 
2005) 

ProtA-Myc-His / N. benthamiana (Liu et al. 2004) 
ProtA-CBP TEV E. coli (Kumar et al. 2004) 

ProtC= Protein C epitope, ProtG=Streptococcus protein G, SBP=Streptavidin-binding protein, HRV3C=Human 

rhinovirus 3C protease. Information taken and adapted from (Li 2011). 

As mentioned before, a protease cleavage site is introduced in between the two affinity 

tags in the TAP-tag to allow on-column protein cleavage mediated by a site-specific 

protease. In contrast to other protein elution methods, on-column protein cleavage releases 

protein complexes bound to the affinity matrix under native-like conditions, and provides a 

purer protein sample (Frey & Görlich 2014b). The TEV protease cleavage site is the most 

used tool for on-column protein cleavage during TAP. Since very few mammalian proteins 

contain the TEV protease cleavage site (ENLYFQ|X; X≠P), protein cleavage of unspecific 

targets by the TEV protease is a rare event. An alternative to TEV protease is the human 

rhinovirus 3C protease cleavage site (HRV3C), which recognizes the amino sequence 

(LEVLFQ|GP) as a cleavage site (Knott et al. 1989; Cordingley et al. 1989; Cordingley et 

al. 1990). Unlike TEV protease, human rhinovirus 3C protease retains its enzymatic 

activity at 4°C, and therefore a shorter incubation time is needed to achieve complete 

protein cleavage (Ullah et al. 2016). So far, TEV and human rhinovirus 3C protease are the 
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only two documented examples of proteases used for TAP. Despite the fact that SUMO-

specific proteases are the most efficient proteases used for protein cleavage in vitro 

(Malakhov et al. 2004; Frey & Görlich 2014a), there is no report of their use in TAP. 

Consequently, the SUMO-specific protease and its cognate cleavage site SUMO protein 

are described in the next sections.  

 

2.9  An overview of SUMO as protein function modulator 

The small ubiquitin-like modifier (SUMO in mammals, Smt3 in yeast) belongs to a small 

group of proteins that share similar protein folding and sequence homology with ubiquitin 

(reviewed in Kerscher et al. 2006; Herrmann et al. 2007). SUMO is covalently attached via 

its very C-terminal glycine residue to a lysine residue on the protein targets. SUMO 

conjugation, also known as SUMOylation, is considered to be a post-translational 

modification as it changes the properties or the localization of the modified substrates. In 

fact, SUMO conjugation was first described as a post-translation modification that 

modulates the partitioning of RanGAP1 between the cytoplasm and the NPC (Matunis et 

al. 1996; Mahajan et al. 1997). SUMOylation plays an essential role in many cellular 

functions like nuclear transport, signal transduction, protein stabilization, genome stability 

and regulation of transcription ( reviewed in Vertegaal et al. 2004; Hendriks & Vertegaal 

2016). 

A single SUMO gene is expressed in unicellular eukaryotes, whereas multicellular 

organisms express three or more paralogs genes (Müller et al. 2001). Despite the fact that 

all SUMO paralogs in a cell have a high sequence identity (50-95%), they are involved in 

the regulation of different cellular processes due to their different cellular localization 

(Saitoh & Hinchey 2000). Nevertheless, all SUMO paralogs require the same enzymatic 

cascade in order to be conjugated to the protein targets. Similar to ubiquitin, SUMO is 

translated as a precursor protein that needs to be cleaved at the C-terminus in order to 

expose the very C-terminal double glycine motif. Next, the heterodimeric E1 enzyme 

(Aos1�Uba2 complex in S. cerevisiae) activates the mature SUMO by forming a high 

energy SUMO�AMP complex. After activation, SUMO is transferred to a reactive cysteine 

residue localized in the E2-conjugating enzyme (Ubc9, in yeast). There are two different 

ways how a protein is modified by SUMO conjugation in eukaryotic cells. In the first 

mechanism, Ubc9 recognizes the SUMO conjugation motif (ϕKXQ/E, where ϕ is an 
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hydrophobic residue and X can be any residue) on the substrate, and attaches SUMO by 

forming an isopeptide bond between the C-terminal glycine of SUMO and the ε-amino 

group of a lysine in the substrate (Johnson & Blobel 1997). For the second mechanism, 

SUMO E3 ligases conjugate SUMO to protein targets that do not have the SUMO 

conjugation motif. There are three different classes of SUMO E3 ligases according to their 

protein structure: the protein inhibitor of activated STAT family (PIAS), polycomb-group 

protein 2 and RanBP2/Nup358 (Kagey et al. 2003; Pichler et al. 2004; Hochstrasser 2001). 

These three classes do not overlap in substrate recognition and localize in different 

subcellular compartments.  

Table 2.7 Affinity tags used for tandem affinity purification 

Affinity tag Binding 
partner Comments 

Calmodulin-binding 
protein (CBP) Calmodulin Calmodilin-binding proteins present in mammalian 

cell lysates might bind unspecifically to the matrix. 

Staphylococcal 
protein A (ProtA) IgG 

A low pH buffer is needed for protein elution. Thus, 
protein elution mediated by protein cleavage site is 

highly recommended. 

S-tag S protein 
S-tag can be used to detect protein expression levels. 
Protein elution is preferably performed using a site-

specific protease. 

FLAG-tag Anti-FLAG 
antibody 

The matrix couple to the anti-FLAG antibody is 
highly unstable and expensive. 

Strep-tag II Strep-Tactin 
Strep-tag II offers a high yield of pure protein. 

Buffer conditions used for protein elution are quite 
flexible. 

Hemagglutinin (HA) Anti-HA 
antibody 

HA tag is used to detected expression level of the 
tagged protein. 

His-tag Ni2+ 
It allows a high yield of pure protein. However, the 

use of a His-tag does not allow the complete 
removal of contaminants from the cellular lysate. 

Protein C epitope 
(ProtC) HPC4 antibody Alternative as an affinity tag when EGTA interferes 

with protein function 
Streptavidin-binding 

peptide (SBP) Streptavidin Strong binding pair that enables a high yield of pure 
protein. 

c-myc-tag 
Anti-myc 
antibody 

Normally, the tag is not for protein purification but 
for measuring protein expression levels. 

Streptococcus protein 
G (ProtG) IgG Higher Ig-biding spectrum than ProtA. Protein 

cleavage is recommended for protein elution. 

Biotinylation tag Avidin The tag has a high affinity to biotin and requires 
biotinylation with BirA enzyme prior to use. 

   Information taken and adapted from (Xu et al. 2010) 
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2.10  SUMO-specific proteases 

Protein cleavage of SUMO is mediated by cysteine SUMO-specific proteases named Ulp 

(Ubiquitin-like protease) in S. cerevisiae and SENP (Sentrin protease) in higher 

eukaryotes. Cleavage at the C-terminus of SUMO serves for two different purposes. First, 

the SUMO precursor is cleaved by a SUMO-specific protease to convert it to the mature 

form prior SUMO conjugation. Second, SUMO-specific proteases also remove attached 

SUMO and poly-SUMO chains from the conjugated substrates in order to revert the post-

translational modification.  

Two different SUMO-specific proteases are identified in S. cerevisiae (Ulp1 and Ulp2). 

Ulp1 is in charge of the maturation of SUMO, localizes in the nuclear pore complex and is 

essential for cell cycle progression (Li & Hochstrasser 1999). In contrast, Ulp2 is not 

essential, resides inside the nucleus and is required for chromosome stability and cell 

recovery after cell cycle checkpoint arrest (Li & Hochstrasser 2000). In humans, six 

different SENP proteases have been described (SENP1, SEN2, SENP3, SENP5, SENP6 

and SENP7). Similar to SUMO-specific proteases in yeast, the different human SENPs 

have preferential SUMO paralogs, differ in their isopeptidase/peptidase activities, and have 

a specific subcellular localization (Table 2.8). Thus, SUMO-specific proteases process a 

different group of SUMOylated substrates and cannot compensate for the absence of each 

other within the same cell. 

Table 2.8 Properties of the different SUMO-specific proteases in yeast and mammals 

Protease Localization SUMO paralog 
preference Protease functions 

S. cerevisiae  

Ulp1 Nuclear pore complex Smt3 SUMO precursor maturation, SUMO 
deconjugation 

Ulp2 Nucleoplasm Smt3 SUMO deconjugation and poly-
SUMO chain remodeling 

Mammals 

SENP1 Nuclear pore complex SUMO-1/-2/-3 SUMO precursor maturation and 
SUMO deconjugation 

SENP2 Nuclear pore complex 
and cytoplasm SUMO-2/-3 >SUMO-1 SUMO precursor maturation and 

SUMO deconjugation 
SENP3 Nucleolus SUMO-2/-3 SUMO deconjugation 

SENP5 Nucleolus and 
mitochondria SUMO-2/-3 SUMO precursor maturation and 

SUMO deconjugation 

SENP6 Nucleoplasm SUMO-2/-3 SUMO deconjugation and poly-
SUMO chain remodeling 

SENP7 Nucleoplasm SUMO-2/-3 SUMO deconjugation and poly-
SUMO chain remodeling 

   Information taken and adapted from (Hickey et al. 2012) 
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2.11  The SUMO system as a tool for protein expression and 

purification 
2.11.1  SUMO as a fusion tag 

Efficient protein expression systems are one of the rate-limiting factors for the rapid 

development of proteomic, genomic and structural studies. The most exploited protein 

expression system is the bacterium E. coli due to its genomic simplicity, low cost of 

biomass production and extensive characterization. However, E. coli is often not able to 

produce large amounts of soluble recombinant proteins, especially eukaryotic proteins. To 

tackle this problem, several fusion protein tags are used to increase protein expression 

levels, improve protein folding and prevent protein degradation (reviewed in Kimple et al. 

2013; Kosobokova et al. 2016). In comparison to many other widely fusion tags (i.e. MBP, 

Trx, NusA, His-tag), SUMO protein enhances higher levels of expression and solubility of 

difficult-to-express eukaryotic proteins in E. coli (Malakhov et al. 2004; Zuo, Li, et al. 

2005; Zuo, Mattern, et al. 2005; Marblestone et al. 2006). Similar to ubiquitin 

(Khorasanizadeh et al. 1996), SUMO protein might act as chaperone to promote proper 

protein folding and solubility of its recombinant fusion partners. SUMO’s fast kinetic 

protein folding (Marblestone et al. 2006), hydrophilic surface and highly hydrophobic 

inner core suggest that SUMO acts as a nucleation site for the proper folding of 

recombinant SUMO-tagged proteins.  

Recombinant SUMO-tagged proteins are generally purified by immobilized metal-affinity 

chromatography using a His-tag fused to the N-terminus of SUMO. In combination with a 

SUMO-specific protease, the His-SUMO-tagged recombinant protein can be purified and 

regenerated with its native N-terminal amino acid composition in a single step (Malakhov 

et al. 2004; Lee et al. 2008). Due to its unique features, the use of the SUMO technology is 

exponentially growing and many different commercial SUMO expression vectors are 

available containing different combinations of affinity tags.  

 

2.11.2  SUMO-specific proteases as tool for tag removal 

The removal of the fusion tag from a protein of interest after or during the purification 

process is often desired. The presence of the fusion tag might interfere with the protein 

function or structure as shown in (Amor-Mahjoub et al. 2006; Woestenenk et al. 2004; 
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Chant et al. 2005; Suh-Lailam & Hevel 2009). Chemical and enzymatic methods are the 

two options available to remove a tag from the protein of interest. Unlike chemical 

methods, the enzyme-based approach can have an extremely high specificity and can be 

used in a wide range of conditions. The enzymatic removal of the fusion tag requires the 

use of a site-specific protease and its cognate cleavage recognition located in between the 

fusion tag and protein of interest. To date, there are several commercially available 

proteases and that have been successfully used for tag removal (i.e. TEV protease, Factor 

Xa, enterokinase, human rhinovirus 3C protease, thrombin, SUMO-specific protease). 

Most of the proteases nowadays used for fusion tag removal present several problems: 

poor efficiency, time-consuming optimization protocols, low cleavage specificity, difficult 

production of the protease, or failure to restore the native N-terminus of the protein of 

interest (reviwed in Yan et al. 2009). SUMO-specific proteases, used to cleavage the 

SUMO protein from the protein of interest, overcome all the difficulties previously 

mentioned.  

SUMO-specific proteases from different organisms are by far the most activate proteases 

for protein cleavage in vitro (Frey & Görlich 2014a). At the same conditions, TEV 

protease is able to cleave only a 5-fold molar excess of substrate, and SUMO-specific 

proteases are able to cleave up to a 10,000-fold molar excess of substrate at 4°C within 1 h, 

(Frey & Görlich 2014a). In addition, SUMO-specific proteases are shown to more tolerate 

a wide range of buffer conditions including acidic or basic pH, high ionic strength (1 M 

NaCl) and the presence of denaturing reagents (2 M urea) (Peroutka III et al. 2011). 

Another advantage of SUMO-specific protease over most of the routinely used proteases is 

the generation of a native N-terminal sequence after the removal of the fusion tag. Site-

specific proteases such as TEV protease, thrombin and human rhinovirus 3C protease leave 

unwanted residual amino acids at the N-terminus of the protein of interest after protein 

cleavage (Table 2.9). For instance, thrombin cleaves the sequence LVPR|G after the 

arginine residue; therefore, the resulting N-terminus of the recombinant protein is 

restricted to glycine. Unlike thrombin, SUMO-specific proteases restore the native N-

terminus of the protein of interest since SUMO is efficiently removed when any amino 

acid (except proline) occupies the +1 position of the cleavage site (Malakhov et al. 2004). 

Therefore, almost any wanted N-terminal sequence can be generated by SUMO-specific 

proteases. A good example for the importance of generating an intact N-terminal sequence 

is the production of functional chemokines since their activity relies on their native N-
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terminus (Lu et al. 2009). Perhaps the most distinct and important feature of SUMO-

specific proteases over other site-specific proteases is that they recognize the tertiary 

structure of a protein (SUMO) as cleavage recognition site, and consequently unspecific 

cleavage of protein within a small linear amino acid sequence is simple not possible.  

Table 2.9 Proteases and protease cleavage sites used for tag removal 

Protease Recognition site Residues after 
cleavage Cost1 (dollar/mg) 

Immobilized 
subtilin BPN C-terminus of propeptide|X / 26.00 

Enterokinase DDDDK|X / 45.00 
Factor Xa IEGR|X / 4.00 
Thrombin LVPR|G G 4.00 

TEV EXXYXQ|(G/S) G/S 45.00 
SUMO protease XGG|X2 / 3.15 

        1Price based on the amount protease needed according to the manufacturers protocol. 
           2XGG represent the extreme C-terminal double glycine motif of SUMO protein.  
           X= any of the 20 amino acid. Information taken and adapted from (Yan et al. 2009) 
           | = hydrolyzed peptide bond 
 

2.12  Protein purification assisted by the SUMO system 

As mentioned before, fusion tags are used to enhance the expression and solubility levels 

of recombinant proteins. Additionally, they can also be used as affinity tags to assist 

protein purification by affinity chromatography. For instance, MBP, Trx and GST are good 

examples of fusion tags with this dual function during expression and purification of 

recombinant proteins (McCoy & La Ville 1997; Harper & Speicher 2011; Pattenden & 

Thomas 2008). Unfortunately, SUMO protein serves only as a solubility enhancer but it 

cannot be used as an affinity tag. To circumvent this problem, different affinity tags (i.e. 

His-tag and ProtA) are coupled to the N-terminus of SUMO to ease the purification of 

SUMO-tagged proteins using affinity chromatography. 

The elution of the SUMO-tagged protein from the affinity column is performed either by 

competitive elution or by on-column protein cleavage. On-column protein cleavage yields 

an untagged and a purer protein sample compared to proteins samples obtained by 

competitive elution (Frey & Görlich 2014b). Additionally, SUMO-specific proteases and 

different ubiquitin-like proteases are used together for the purification of binary protein 

complexes using two consecutive cycles of affinity chromatography and on-column 

protein cleavage (Frey & Görlich 2014b). In short, the purification of the protein complex 

requires the tagging of each subunit with an orthogonal ubiquitin like proteins (i.e. SUMO 
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and NEDD8) and an affinity tag. This purification technology is proved to be a rapid 

method to generate untagged and highly pure protein complexes with a defined 

stoichiometric composition. 

 

2.13  Use of the SUMO system in eukaryotic cells 

Hundreds of different SUMO-tagged proteins have been successfully expressed and 

purified in E. coli (reviewed in Butt et al. 2005). One of the most important aspects for the 

success of the SUMO technology in E. coli is the lack of endogenous SUMO-specific 

proteases. Unlike prokaryotic cells, eukaryotes possess endogenous SUMO-specific 

proteases, and consequently the expression of SUMO-tagged proteins results in the in vivo 

cleavage of SUMO. In order to produce stable SUMO-tagged protein in eukaryotic hosts, a 

SUMO mutant protein from S. cerevisiae (SUMOstar) that is no longer recognized by 

endogenous eukaryotic SUMO-specific proteases was engineered (Peroutka et al. 2008; 

Butt et al. 2010). The design of SUMOstar was based on the structural information of the 

complex between yeast SUMO and scUlp1 protease (Bohnsack et al. 2004). Specifically, 

two mutations (R64T and R17E) were introduced in yeast SUMO to disrupt the interaction 

with the wild type yeast scUlp1 protease. Consequently, SUMOstar-tagged proteins are not 

cleaved either in vivo or in vitro by scUlp1. In addition, SUMOstar preserved the ability to 

enhance protein expression and solubility as wild type yeast SUMO protein (Peroutka et al. 

2008). In fact, expression levels of eGFP, mouse UBP43, Usp4, Usp15 and tryptase were 

significantly higher in insect cells only after fusion of SUMOstar protein at the N-terminus 

of the recombinant proteins (Liu et al. 2008). 

In order to remove the SUMOstar tag from the protein of interest, SUMOstar protease was 

engineered by introducing three mutations (D451S, T452G and E455S) in scUlp1 (Butt et 

al. 2010). As shown by in vitro experiments, SUMOstar protease efficiently cleaves 

SUMOstar-tagged substrates, but wild type yeast SUMO fusion proteins are also cleaved. 

SUMOstar protease and scUlp1 are not orthogonal proteases, thus they cannot be used for 

the purification of dimeric complexes using two consecutive cycles of affinity 

chromatography as shown in (Frey & Görlich 2014b).  
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2.14  Aim of this work 

Tandem affinity purification (TAP) seemed to us as the perfect methodology to identify 

potential novel export and import cargos for yeast NTRs. So far, most of the described 

TAP protocols use the highly inefficient TEV protease for on-column protein elution and 

require laborious preparation steps prior protein identification by LC/MS analysis. Here, 

we sought to create an alternative to conventional TAP methodologies that would generate 

samples ready to be analyzed directly by MS without any previous treatment. Moreover, 

we wanted to optimize on-column protein elution by using a highly active SUMO-specific 

protease and its cognate SUMO protein.  

The presence of endogenous SUMO-specific proteases in eukaryotic cells is the only 

impediment for us to use SUMO protein as fusion tag for the identification of protein 

binders. In addition, we wanted to evolve a SUMO system that could be used for many 

other applications such as protein expression, protein purification and in vivo protein 

cleavage in eukaryotic organisms. We thus aimed to create a mutant SUMO protein and a 

mutant SUMO-specific protease from B. distachyon that could be used in yeast and any 

other eukaryotic host. To generate such mutants, we intended to design an in vivo selection 

system in E. coli that relies on bacterial survival. Moreover, the selection system should 

provide the possibility of selecting SUMO-specific proteases with orthogonal substrate 

specificity. Specifically, we wanted to isolate a mutant SUMO-specific protease with 

orthogonal specificity to the SUMOstar protease to purify binary protein complexes in S. 

cerevisiae.  

Using the SUMOvera system and our improved TAP methodology, we aimed to identify 

protein binders of the poorly described yeast NTRs, Lph2 (Kap120) and Pdr6 (Kap122). 

We speculate that there might be high possibility for identifying more cargos since only 

one has been described for Lph2 (Caesar et al. 2006) and just two for Pdr6 (Titov & Blobel 

1999). 
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3   RESULTS 

3.1  Engineering of SUMO and SUMO-specific protease mutants with 

novel features 

3.1.1  Selection system for SUMO-specific protease mutants with orthogonal 

substrate specificity 

The initial aim of this study was to evolve a new SUMO variant (named here as 

SUMOvera) that is not cleaved by the SUMOstar protease or any other SUMO-specific 

protease, and to evolve the cognate SUMO-specific protease (SUMOvera protease) that 

cleaves SUMOvera, but neither SUMOstar nor any wild type SUMO. Therefore, 

SUMOvera protease and SUMOstar protease would have mutually exclusive specificities. 

In order to evolve a pair of proteases with orthogonal substrate specificity, we required to 

develop a system that can select “for” and “against” the cleavage of two different SUMO 

proteins at the same time. This means that the ideal selection system must couple a positive 

and a negative selection step. For that, we used the ssrA degradation signal (reviewed in 

Keiler 2008; Himeno et al. 2014), an N-end rule degron (degronNER) (Bachmair et al. 

1986), and the hygromycin B phosphotransferase (Hph) that allows E.coli cells to survive 

in the presence of hygromycin B (HygB) (Rao et al. 1983). 

Hph was expressed as a SUMO1-degronNER-Hph-SUMO2-ssrA fusion (Figure 3.1). ssrA is 

a small peptide (AADENYALAA) that triggers rapid degradation of Hph, unless it is 

removed after cleavage of SUMO2 by a co-expressed SUMO-specific protease. 

"DegronNER" is a strong N-end-rule degradation signal (FLFVQ) (Wang et al. 2008) that 

remains silent in the fusion context, but gets only activated if SUMO1 is cleaved by a co-

expressed SUMO-specific protease. Thus, Hph will only be stable and the cells be HygB-

resistant if the co-expressed SUMO-specific protease cleaves SUMO2, but not SUMO1. In 

other words, bacterial are only resistant to HygB when the SUMO-specific protease has 

orthogonal substrate specificity for SUMO1 and SUMO2. 
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Figure 3.1 Schematic overview of the selection system for orthogonal SUMO-specific proteases. The designed in 
vivo selection system is based on the survival of E. coli cells on medium containing Hygromycin B (HygB). Cells co-
express Hygromycin B phosphotransferase (Hph) as a selection marker and a SUMO-specific protease. The expression of 
the SUMO-specific protease is IPTG-inducible while Hph is constitutively expressed. Two different SUMO proteins are 
fused to Hph at both termini. The recognition of SUMO1 and SUMO2 by the SUMO-specific protease is linked to the 
half-life of Hph that is control by two different protein degradation signals (degronNER and ssrA). DegronNER signal that 
is only activated after the SUMO-specific protease cleaves SUMO1. On the other hand, the ssrA signal is inactivated only 
when SUMO2 is cleaved by the co-expressed SUMO-specific protease. Therefore, bacterial growth is only possible when 
the protease recognizes only the SUMO2, but not SUMO1. 

To validate the design of the system, we co-expressed bdSENP1 and a series of different 

bdSUMO-degronNER-Hph-bdSUMO-ssrA fusion proteins in E. coli cells and tested the 

survival of the cells in medium containing HygB and IPTG (Figure 3.2. A). To account for 

the absence of substrate recognition by bdSENP1 during the validation, we engineered a 

non-cleavable bdSUMO mutant (bdSUMO*) (Kuwata & Nakamura 2008). E. coli cells that 

co-expressed bdSENP1 and bdSUMO*-degronNER-Hph-bdSUMO-ssrA showed similar 

HygB resistance as cells expressing a Hph fusion protein lacking both protein degradation 

signals (Figure 3.2. E and F). In contrast, bacterial growth was not observed when wild 

type bdSUMO was placed in the N-terminus of the selection marker (Figure 3.2. B and D). 

Cleavage of the N-terminal bdSUMO by bdSENP1 led to the activation of the degronNER 

signal and thus Hph was degraded. In addition, cells expressing Hph with a C-terminal 

bdSUMO* tag did not grow in medium containing HygB (Figure 3.2. B and D). The 

inability of bdSENP1 to cleave bdSUMO* did not allow the release of the ssrA signal from 

the selection marker. In short, cells only survived when both protein degradation signals 

were inactivated by the cleavage of the C-terminal bdSUMO and the null-recognition of N-

terminal bdSUMO*. These experiments clearly showed that the design of our in vivo 

system was functional and appropriated for the selection of SUMO-specific proteases with 

orthogonal substrate specificity. 
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Figure 3.2 Functional test of the selection system for SUMO-specific proteases with orthogonal specificity. (A) 
SUMO (bdSUMO) and SUMO-specific protease 1 (bdSENP1) from B. distachyon were used as model proteins to test the 
functionality of our designed in vivo selection system in E. coli. A double mutation was introduced in bdSUMO (G96A; 
G97A) to generate a non-cleavable SUMO mutant (bdSUMO*). DegronNER and ssrA protein degradation signals were 
used to control the half-life of Hygromycin B phosphotransferase (Hph). (B, C, D, E, F) Hph was tagged at both termini 
with different combinations of bdSUMO and bdSUMO* (4 possible combinations) in order to test for and against protein 
cleavage by bdSENP1. Bacteria were co-transformed with two different plasmids encoding for bdSENP1 and a Hph 
fusion protein, respectively. Transformed cells were diluted in a 10-fold dilution series and further medium containing 
HygB and IPTG. Cells expressing Hph fused to bdSUMO at the N-terminus led to bacterial death due to the activation of 
the degronNER signal after protein cleavage (see B and D). Moreover, E. coli cells harboring a Hph fusion protein with the 
C-terminal bdSUMO* tag died because of the null inactivation of ssrA signal (see C). Bacteria survived only after the 
permanent inactivation of both protein degradation signals (see E). A Hph construct lacking both protein degradation 
signals was used as positive control for bacterial growth (see F). 

3.1.2  Design of a SUMO/SUMO-specific protease mutant pair with 

orthogonal specificity to SUMOstar/SUMOstar protease 

In practice, the approaches to obtain the bdSUMO/bdSENP1 mutant pair with new 

specificities would be either random or directed mutagenesis. The later method is simpler, 

faster and more convenient, however, it is only possible to apply when structural data of 

the proteins to be mutagenized are available (Packer & Liu 2015). Unfortunately, the 

protein structure for the bdSUMO�bdSENP1 complex is not known. However, several 

crystal structures of different SUMO�SUMO-specific protease complexes from several 

organisms are already determined (Xu et al. 2006; Reverter & Lima 2006; Shen et al. 

2006; Bohnsack et al. 2004; Reverter & Lima 2004). Analysis of these structures revealed 

that the interaction between the different SUMOs and the respective proteases occurs 
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mostly through highly conserved residues in both proteins. We therefore tried to 

investigate whether these interacting residues were also conserved in bdSUMO and 

bdSENP1 in order to use directed mutagenesis for the generation of mutant pair. To do so, 

we performed a structure-based alignment including the catalytic domain of bdSENP1 

(residues 247-481) and several other SUMO-specific proteases with known atomic 

structure (Figure 3.3. A). Similarly, bdSUMO was also aligned to several already 

crystallized SUMO proteins (Figure 3.3. B). We observed clusters of conserved residues 

located within all interacting domains between SUMO and the SUMO-specific protease. In 

contrast, long stretches of non-conversed residues were mainly observed in regions of the 

SUMO-specific proteases that are not involved in the recognition of SUMO. As residues 

involved in the interaction between SUMO and the corresponding protease were also 

conserved in bdSUMO and bdSENP1, we speculated that the interaction between 

bdSUMO and bdSENP1 is likely to happen in a similar fashion as for the rest of the 

SUMO�SUMO-specific protease complexes.  

In order to generate a bdSUMO/bdSENP1 mutant pair with orthogonal specificity to 

SUMOstar/SUMOstar protease, we decided to specifically mutagenize 3 different residues 

in bdSUMO (T60, D67 and Q75) and their four most likely interacting residues in 

bdSENP1 (R269, N280, R346 and K350). These seven chosen residues are in different 

interacting motifs than the mutated amino acids in SUMOstar and SUMOstar protease 

(Butt et al. 2010) (Figure 3.3 A and B). We therefore expected higher probabilities in 

achieving complete orthogonal substrate specificities between a bdSENP1 mutant and 

SUMOstar protease. 

 

3.1.3  SUMOvera and SUMOstar are orthogonal substrates for SUMOstar 

protease 

First, we sought to select a bdSUMO mutant that is not recognized by SUMOstar protease 

using our in vivo selection system described in section 3.1.1 . For that, we created a library 

of bdSUMO mutants (bdSUMOmut) where the codons for the three previously chosen 

residues were randomized (T60X, D67X and Q75X). The library was then cloned at the N-

terminus of the selection marker to screen against substrate cleavage by SUMOstar 

protease. SUMOstar protein was fused to the C-terminus of Hph to account for efficient 
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protein cleavage by SUMOstar protease (Figure 3.4. A). In short, the construct used during 

selection consisted of bdSUMOmut-degronNER-Hph-SUMOstar-ssrA.  

 

Figure 3.3 Structure-based alignment of different SUMO and SUMO-specific proteases orthologs. (A) Multiple 
sequence alignment between SUMO-specific proteases from S. cerevisiae (scUlp1), human (hsSENP2), M. musculus 
(mmSENP1) A. thaliana (atUlp1A) and B. distachyon (bdSENP1). Identical and similar side chain residues are 
highlighted in red and yellow, respectively. The numbering of the amino acids is according to the full-length sequence of 
each protease. Points in between the sequences denote gaps. α-helices and β-strands for hsSENP2 and scUlp1 are 
displayed and numbered above the sequences in blue and black, respectively. Side chain residues involved the in 
interaction between hsSENP2 and scUlp1 with their cognate substrate are marked with blue and black (�), respectively. 
Interactions motifs were indicated according to (Bohnsack et al. 2004). Amino acids to be mutagenized in bdSUMO and 
bdSENP1 are marked with green arrows. Mutagenized residues in scSUMO and scUlp1 to obtain SUMOstar and 
SUMOstar protease are pointed with brown arrows. ESPript 3.0 online software was used to depict the alignment (Robert 
& Gouet 2014). (B) Multiple sequence alignment of SUMO proteins from the same organisms indicated above. The 
numbering of the residues is assigned accordingly to the full-length SUMO sequences. Side chain residues similarities, 
secondary structures, interacting residues and interaction motifs are denoted as in (A). 

The selection of bdSUMO mutants resulted in the isolation of 10 different colonies with a 

strong preference for the D67K mutation and high amino acid variability in the other two 

mutagenized positions (Figure 3.4. B). We tested all clones individually using the in vivo 

selection system to determine to what extent these bdSUMO mutants were recognized by 

SUMOstar protease. Cells were diluted and grown on selective medium containing a 

higher concentration of Hygromycin B than the one used during selection of the mutants 

(Figure 3.4. C). We did not observe cellular growth in any of the tested samples when 

IPTG was not included in the media. The lack of SUMOstar protease expression allowed 

the gradation of Hph due to the permanent presence of the C-terminal ssrA protein 
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degradation signal. When the stringency of selection was increased by addition of IPTG, 

cells expressing bdSUMO mutant 1 (bdSUMOmut1-degronNER-Hph-SUMOstar-ssrA) 

showed the best bacterial survival compared to all other mutants. In fact, cells expressing 

bdSUMO mutant 1 had a similar growth behavior as positive control cells containing the 

non-cleavable bdSUMO* mutant (bdSUMO*-degronNER-Hph-SUMOstar-ssrA). The 

bdSUMO mutant 1 that is not cleaved by SUMOstar protease and comprises the mutations 

T60K, D67K and Q75R will be referred from now on as SUMOvera. 

 

Figure 3.4 Selection of a bdSUMO mutant that is not recognized by SUMOstar protease. (A) Schematic 
representation of the chimeric fusion protein used to isolate bdSUMO mutants (bdSUMOmut) that are not cleaved by 
SUMOstar protease. (B) Three different residues (T60, D67 and Q75) in bdSUMO were randomized to create the 
bdSUMO mutant library. BdSUMO mutants were selected in medium containing Hygromycin. After selection, 10 
different colonies were isolated and their sequences were analyzed by multiple protein sequence alignment. Identical and 
similar residues are highlighted in red and yellow, respectively. The bdSUMO wild type sequence (bdSUMO wt) was 
also included in the analysis. The interaction motif is indicated as in (Reverter & Lima 2004). The mutation D67K was 
extremely dominant in the selected bdSUMO mutants. (C) Cellular growth was tested individually for all 10 isolated 
colonies in the absence and presence of IPTG. Cells expressing the different bdSUMO mutants were diluted in 10-fold 
dilution series and spotted in medium containing Hygromycin B. A non-cleavable bdSUMO mutant (bdSUMO*) was 
used in a control sample to account for complete absence of bdSUMO recognition by SUMOstar protease. Among all 
samples, cells harboring bdSUMOmut 1 showed the highest growth after the overexpression of SUMOstar protease by 
addition of IPTG. bdSUMOmut 1 was named SUMOvera. 

3.1.4  SUMOvera protease efficiently recognizes SUMOvera fusion proteins 

As described in section 3.1 our main aim was to create a bdSUMO/bdSENP1 pair with 

orthogonal specificity to SUMOstar/SUMOstar protease. So far, we have already described 
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SUMOvera as a bdSUMO mutant that is not recognized by SUMOstar protease. To 

complete our aim, we next needed to obtain a bdSENP1 mutant (bdSENP1mut) that 

efficiently cleaves SUMOvera but not SUMOstar. To do so, we used our designed in vivo 

selection method (section 3.1.1 ). The construct used during the screen was SUMOstar-

degronNER-Hph-SUMOvera-ssrA (Figure 3.5. A). SUMOstar was placed at the N-terminus 

of the Hph to select against protease cleavage, whereas SUMOvera was cloned at the C-

terminus to select for efficient protein cleavage by a bdSENP1 mutant. In the presence of 

HygB, survival of bacteria is only possible when a given bdSENP1 mutant does not cleave 

SUMOstar but SUMOvera.  

The bdSENP1 mutant library was created by randomization of the residues R269, N280, 

R346 and K350. These four amino acids are the most likely interacting partners of the 

mutant residues in SUMOvera. The library was then transformed into cells expressing the 

construct SUMOstar-degronNER-Hph-SUMOvera-ssrA and further plated on HygB-

containing medium. After incubation of the plates, twenty different mutants were selected 

and tested individually using our designed selection system. The cellular survival in the 

presence of Hygromycin B was tested before and after induction of all 20 different 

bdSENP1 mutants (Figure 3.5. C). E. coli cells containing bdSENP1mut 5 managed to 

survive in selective medium even in the absence of IPTG. This result suggested that even 

trace amounts of bdSENP1mut 5 were enough to efficiently cleave SUMOvera and 

deactivate the ssrA signal. Moreover, over-expression of bdSENP1mut 5 after the addition 

of IPTG led to the highest survival rate of cells. All other over-expressed bdSENP1 

mutants allowed bacterial growth to lower extent as compared to bdSENP1mut 5.  

The sequences of all 20 different bdSENP1 mutants were analyzed by multiple sequence 

alignment (Figure 3.5. B).  Although we did not observe clear dominant mutations among 

all 20 different colonies, analysis of the amino acid frequency of all bdSENP1 mutants 

showed that proline was the most frequent reside at first mutated position (N269P), small 

hydrophobic residues at second position (N280S, N280G), glutamic acid at third position 

(R346E), and valine, argenine or alanine at the fourth mutated position (K350V, K350R, 

K350A) (Figure 3.6). In fact, bdSENP1mut 5 contains two of the most frequent mutations 

at positions the second and third (N280S and R346E) which might explain its high 

efficiency for the cleavage of SUMOvera. Our experiments showed that bdSENP1mut 5 

has the highest efficiency for the recognition of SUMOvera as a substrate among all 20 
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bdSENP1 mutants analyzed. We therefore decided to characterize bdSUMOmut 5 in more 

detail and named it SUMOvera protease. 

 

Figure 3.5 Selection and characterization of SUMOvera protease. (A) Scheme of the construct used to isolate 
bdSENP1 mutants (bdSENP1mut) that cleave only SUMOvera and not SUMOstar. SUMOvera was cloned at the C-
terminus of Hph to select for its efficient recognition. In contrast, SUMOstar was placed at the N-terminus of Hph to 
select against substrate recognition by the bdSENP1 mutants. (B) The bdSENP1 mutants were created by randomization 
of four different residues (R269X, N280X, R346X and K350X) that are potentially interacting with the residues 
mutagenized in SUMOvera. Twenty different clones were isolated and their sequences were analyzed by multiple protein 
sequence alignment. Identical residues are highlighted in red. bdSENP1 wild type sequence (bdSENP1 wt) was included 
in the analysis. Interaction motifs between the substrate and the protease are designed as in (Reverter & Lima 2004). (C) 
The survival of all 20 isolated mutants was analyzed in plates with and without IPTG in the presence of HygB. Cells 
were diluted into a series of 10-fold dilutions further spotted onto the plates. Mutant bdSENP1mut 5 had the best growth 
behavior among all tested samples and therefore was named SUMOvera protease. A chimeric construct lacking both 
degradation signals was used as positive control. Cells expressing SUMOstar protease were used as a negative control 
sample.  
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Figure 3.6 Amino acid frequencies in the four mutated positions in the bdSENP1 mutants. The x-axis in the 

sequence logo plot shows the four different mutated positions in bdSENP1 (R269X, N280X, R346X and K350X), 

whereas the y-axis represents the frequency of each residue in all 20 analyzed mutants.  

3.2  In-depth characterization and applications of SUMOvera and 

SUMOvera protease 
3.2.1  Two different sets of substrate/protease pairs with orthogonal substrate 

specificity 

We tested the orthogonality of SUMOvera/SUMOvera protease pair and the 

SUMOstar/SUMOstar protease pair using an in vitro protein cleavage assay. We thus 

tagged the E. coli Maltose Binding Protein (MBP) at the N-terminus with either 

SUMOvera or SUMOstar (Figure 3.7. A). Both MBP fusion proteins were incubated for 1h 

at 4°C with increasing amounts of either SUMOvera protease or SUMOstar protease 

(Figure 3.7. B). SUMOvera-MBP was cleaved efficiently (≈95%) by SUMOvera protease 

at a protease concentration of 200nM. In contrast, SUMOstar protease did not recognize 

SUMOvera-MBP as a substrate even at a high concentration (10 µM). SUMOstar protease 

only cleaved SUMOstar-MBP fusion protein (≈95%) at a protease concentration of 

100nM. SUMOstar-MBP was never recognized as a substrate by the SUMOvera protease 

even at the highest protease concentration of 10 µM. Note that 10 µM of SUMOvera 

protease and SUMOstar protease represent up to 1000-fold higher concentrations of 

protease needed for efficient cleavage of the cognate substrate and even so only protein 

cleavage of the cognate substrate took place. Therefore, these two proteases have truly 

orthogonal substrate specificity for SUMOvera and SUMOstar.  
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Figure 3.7 SUMOvera protease and SUMOstar protease have full orthogonal substrate specificities. (A) Graphic 
description of the substrates used to test protease cleavage by SUMOvera protease and SUMOstar protease in (B) (H14: 
His-tag; MBP: maltose binding protein). (B) Samples with 100 µM of H14-SUMOvera-MBP or H14-SUMOstar-MBP 
were incubated with increasing amounts of SUMOvera or SUMOstar protease. Both proteases were titrated from 10 nM 
to 10 µM. A negative control with no protease was included in the analysis. The reactions were stopped by the addition of 
SDS-containing buffer. Samples were resolved by SDS-PAGE to visualize protein cleavage by the SUMO proteases. 
Green asterisks represent the minimal protease concentration where one substrate was ≈95% cleaved, whereas the other 
remained completely intact. Full-length fusion protein (fl) and C-terminal cleavage product (ccp). (C) On-column protein 
cleavage using SUMOvera protease and SUMOstar protease. Equal amounts of H14-SUMOvera-eGFP and H14-
SUMOstar-mcherry fluorescent proteins were pre-loaded onto Ni2+ chelate beads. Samples with the loaded matrix were 
then incubated with increasing amounts of the specified SUMO-specific protease. The concentrations of eGFP and 
mCherry in the eluates were measured by absorption at 488 nm and 585 nm, respectively. Columns and tubes with the 
eluates were imaged while illuminated at 366nm. Protein elution was completely specific between the protease and its 
corresponding substrate. Two different control reactions, one without protease and the second with 400 mM imidazole, 
were included in the experiment.  

We next wanted to investigate whether both proteases were able to cleave their cognate 

substrates even when these were immobilized on a solid support. We therefore performed a 

protein cleavage assay using immobilized SUMO-tagged fluorescent proteins. H14-

SUMOvera-eGFP and H14-SUMOstar-mCherry were immobilized onto Ni2+-chelate beads 

and incubated with different amounts of SUMOvera protease or SUMOstar protease 

(Figure 3.7. C). SUMOvera protease eluted only eGFP while mCherry remained 
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completely bound to the nickel matrix. In contrast, SUMOstar protease specifically eluted 

mCherry from the column whereas eGFP was never detected in the eluate even with a high 

concentration of SUMOstar protease. Therefore, these assays clearly showed that both 

proteases are perfectly suitable to be used for on-column protein cleavage. In addition, this 

experiment reassured that SUMOvera/SUMOvera protease and SUMOstar/SUMOstar 

protease pairs have true orthogonal specificity.  

 

3.2.2  Analysis of the mutations in SUMOvera and SUMOvera protease 

We obtained SUMOvera from a selected group of 10 different bdSUMO mutants that are 

not cleaved by SUMOstar protease (Figure 3.4). Sequence alignment of those mutants 

revealed that the mutation D67K was the only common feature shared between SUMOvera 

and all other 9 isolated mutants. The two other mutated residues in SUMOvera and the 

other bdSUMO mutants were variable. Since we obverse this variability, we sought to 

analyze in more detail the impact of every single mutation present in SUMOvera on the 

protein cleavage resistance by SUMOstar protease. To explore this, we purified 7 different 

bdSUMO-MBP fusion proteins containing one, two or three mutations present in 

SUMOvera. We incubated 100 µM of each MBP fusion protein for 2h at 25°C in the 

absence and presence of SUMOstar protease (Figure 3.8 B). In order to account for true 

protein cleavage resistance, we used a very high concentration of SUMOstar protease (10 

µM) that represents a 2000-fold excess of SUMOstar protease needed to efficiently cleave 

the cognate substrate. Surprisingly, all 3 different MBP fusion proteins containing the 

mutation D67K remained as full-length proteins. In contrast, proteins containing only the 

mutations T60K and Q75R were completely cleaved by the SUMOstar protease. Mutations 

T60K and Q75R resulted in slight improvement on preventing protein cleavage by 

SUMOstar protease, but only when they were combined with the mutation D67K. Thus, 

these data suggest that mutation D67K is the main mutation responsible for preventing 

substrate cleavage by SUMOstar protease. Also, this protein cleavage assay explains why 

the high occurrence of mutation D67K in all 10 selected bdSUMO mutants to prevent 

protein cleavage by SUMOstar protease. 

Subsequently, we decided to characterize the impact of the three mutant residues contained 

in SUMOvera (T60K, D67K and Q75K) on protein cleavage by SUMOvera protease. To 

do this, we incubated SUMOvera protease with the different bdSUMO-MBP fusion 
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proteins mentioned above (Figure 3.8. C). As we were looking for efficient protein 

cleavage of the different bdSUMO-MBP, we chose to use for the test the lowest amount 

the SUMOvera protease (200 nM) that is required for efficient cleavage of 100 µM 

SUMOvera-tagged proteins. The bdSUMO-MBP fusion protein containing all 3 mutations 

as in SUMOvera was the most efficiently cleaved by SUMOvera protease. In contrast, the 

MBP fusion protein containing the wild type bdSUMO sequence was the worst substrate 

for the SUMOvera protease. Also, the protease did not completely cleave fusion proteins 

containing just one or two mutations. We therefore can conclude that all 3 mutagenized 

residues in SUMOvera contribute to its efficient cleavage by the SUMOvera protease.  

 

 

Figure 3.8 Effect of the mutations in SUMOvera during cleavage by SUMOstar protease and SUMOvera protease. 
(A) Schematic representation of the fusion protein used in (B) and (C). (H14: His-tag; substrate: bdSUMO variants having 
different number mutations present in SUMOvera; MBP: maltose binding protein). (B) Different bdSUMO-MBP fusion 
proteins containing one, two or three mutations as the ones located in SUMOvera were used for the protein cleavage 
assay. bdSUMO wild type sequence was also used in the analysis (WT). Samples containing 100 µM of the MBP 
chimeric protein were incubated with a large amount of SUMOstar protease (10 µM) for 2h at 25°C. Reactions were 
stopped by the addition of SDS-containing buffer and analyzed by SDS-PAGE. Mutation D67K had the biggest impact 
for complete protein cleavage resistance by SUMOstar protease. A sample without protease was used as control reaction. 
(C) The same chimeric proteins were incubated with 200nM SUMOvera protease for 1h at 4°C. After incubation, 
samples were treated and analyzed as in (B). SUMOvera protease cleaved the fusion protein with all three different 
mutations with the highest efficiency (≈95%) compared with all other samples. Full-length fusion protein (fl) and C-
terminal cleavage product (ccp). 
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Figure 3.9 SUMOvera is a highly efficient protease compared to other commonly used proteases. The efficiency of 
different specific proteases (bdSENP1, TEV protease, scUlp1, bdNEDP1, SUMOstar protease, xlATG4B and xlSub2) 
was tested in solution for 1h at 4°C. Different amounts of a given protease (from 10nM to 10 µM) were incubated with 
100 µM of its corresponding tagged substrate. After the reaction, the samples were resolved by SDS-PAGE and stained 
by Coomassie blue. Samples highlighted in green indicate the lowest protease concentration needed to cleave completely 
100 µM of the analyzed substrate. The different experiments are ordered in the figure from the most to the least efficient 
protease under the same experimental conditions. Full-length fusion protein (fl) and C-terminal cleavage product (ccp). 

 

3.2.3  SUMOvera protease is a highly efficient protease 

We compared the cleavage efficiencies of SUMOvera protease to those of the commonly 

used proteases (i.e. bdSENP1, TEV protease, scUlp1, bdNEDP1, SUMOstar protease, 

xlATG4B and xlSub2). For each protease, we incubated a defined concentration of the 

substrate (100 µM) in a wide concentration range of the corresponding protease (Figure 

3.9). As reported in a previous study, the two most efficient proteases were bdSENP1 and 

scUlp1 (Frey & Görlich 2014a). Around 15-50 nM of these two proteases were required to 

efficiently cleave 95% of the cognate substrate for 1h at 0°C. In comparison, 100nM of 

SUMOstar protease and 200nM of SUMOvera protease were enough to cleave 95% of the 

cognate substrate at the same conditions of incubation. Therefore, around 5-fold more 

SUMOvera and SUMOstar proteases were needed to cleave the same amount of cognate 
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substrate than bdSENP1 and scUlp1. In addition, SUMOvera protease was from 2.5-fold to 

25-fold more efficient as compared to some other extensively used proteases (xlAtg4, 

xlSub2 and bdNEDP1). Interestingly, TEV-tagged substrate was only partially cleaved 

(≈50%) even at a high concentration of TEV protease (10 µM). Therefore, TEV protease 

proved to be up to 1000-fold less efficient than SUMOvera protease. Moreover, 

experiments carried out at 25°C proved that 10-fold less protease is required to cleaved the 

same amount of substrate as in 4°C (data not shown). Together, these data suggest that 

SUMOvera protease represents a useful tool for tag removal, but also a more efficient 

protease compared to the most extensively used proteases such as TEV protease. 

 

3.2.4  SUMOvera as a stable fusion protein tag in yeast and other eukaryotic 

systems 

The presence of endogenous SUMO-specific proteases in eukaryotic cells hampers the 

possibility of using SUMO protein as a fusion tag. Recombinant SUMO-tagged proteins 

are immediately cleaved if they are expressed in eukaryotic hosts. As previously described, 

SUMOstar is the only known example of a SUMO protein used as a stable tag in 

eukaryotic cells (Liu et al. 2008; Peroutka et al. 2008). We thus decided to test whether 

SUMOvera would also be resistant to proteolytic cleavage by endogenous SUMO 

proteases in different eukaryotic hosts.  

For this purpose, we first tested whether substrates tagged with scSUMO, SUMOstar, 

bdSUMO or SUMOvera could be expressed as full-length proteins in S. cerevisae (Figure 

3.10. A). To this end, substrates were over-expressed in yeast for 6h at 30°C using a 

galactose-inducible expression system. The stability of the tagged substrates expressed in 

yeast was analyzed by western blot (Figure 3.10. B). As expected, scSUMO- and 

bdSUMO-tagged substrates were completely cleaved and no full-length product remained 

in the cells. In contrast, SUMOstar- and SUMOvera-tagged substrates were mostly 

expressed as full-length fusion protein and almost no C-terminal cleavage product was 

detected. Among all tested SUMO tag proteins, SUMOvera represented the most stable 

fusion tag during recombinant protein expression in yeast since up to ≈95% of the over-

expressed SUMOvera-tagged protein remained as full-length. To our surprise, these results 

suggest that SUMOvera represents even a better choice than SUMOstar as a fusion protein 

in S. cerevisiae. 
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Figure 3.10 SUMOvera can be used to produce stable fusion proteins in S. cerevisiae. (A) Schematic representation 
of the substrates analyzed in B (H14: His-tag; ZZ: Two copies of the Z-domain from Staphylococcal protein A; PCS: 
protease cleavage site). (B) scSUMO-, SUMOstar-, bdSUMO- and SUMOvera-tagged substrates were over-expressed for 
6h at 30°C in S. cerevisiae. After expression, cell lysates were generated to analyze the stability of the fusion proteins by 
western blot. Samples were first separated by SDS- PAGE and further blotted. The blotted membrane was incubated with 
an anti-citrine primary antibody. A stably expressed cyan fluorescent protein fused to histone 2B (H2B-CFP) was used to 
confirm even loading of the samples. SUMOvera-tagged substrate was the most stable fusion protein expressed in yeast. 
Cross reactivity between the anti-citrine and the ZZ-tag is indicated by (*). Empty yeast lysate was also blotted as a 
negative control. Full-length fusion protein (fl) and C-terminal cleavage product (ccp). 

We next decided to analyze whether scSUMO-MBP, SUMOstar-MBP, bdSUMO-MBP 

and SUMOvera-MBP fusion proteins were stable in different eukaryotic extracts (Figure 

3.11. A). For this, we incubated separately 1 µM of each tagged MBP into different highly 

concentrated eukaryotic lysates for 2h at 25°C and then analyzed by western blot (Figure 

3.11. B). We included samples containing a “protease mix” (scUlp1, SUMOstar, bdSENP1 

and SUMOvera protease, 1 µM each) in order to control for any SUMO-specific protease 

inhibitory substance present in the extracts. Substrates tagged with scSUMO or bdSUMO 

were cleaved to a different extent in wheat germ extract, X. laevis egg extract, HeLa cell 

extract and Drosophila S2 cell extract. In contrast, substrates tagged with either SUMOstar 

or SUMOvera were highly stable in all cellular extracts tested. Remarkably, all SUMO-

tagged substrates remained as full-length proteins in rabbit reticulocyte extract and LTE 

Lexsy cell extract (Mureev et al. 2009; Kovtun et al. 2010). Samples including the protease 

mix confirmed the absence of any protease inhibitory substance in all analyzed lysates. 

These results confirm that SUMOstar and SUMOvera are excellent choices as stable tag 

proteins to be used in many different eukaryotic extracts. 
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Figure 3.11 SUMOvera is a stable fusion partner in many eukaryotic lysates. (A) Graphic description of the 
substrates used to test fusion protein stability in (B) (H14: His-tag; PCS: protease cleavage site; MBP: maltose binding 
protein). (B) Stability of different SUMO-tagged proteins in several eukaryotic extracts. 1µM of scSUMO-, SUMOstar-, 
bdSUMO- and SUMOvera-tagged MBP were incubated for 2h at 25°C in different highly concentrated eukaryotic 
lysates. The stability of the substrates in the extracts was analyzed by western blot using an anti-MBP primary antibody. 
The presence of a C-terminal cleavage product (ccp) indicated the cleavage of the tagged MBP by endogenous SUMO-
specific proteases in the extracts. Samples with a protease mix (scUlp1, SUMOstar protease, bdSENP1 and SUMOvera 
protease; 1µM each) were used to rule out the present of any SUMO-specific protease inhibitory substance in the lysates. 
Negative controls for each cellular extract without the addition of the tagged MBP were included in the analysis. 
SUMOvera- and SUMOstar-tagged MBP remained as stable full-length (fl) fusion proteins in all analyzed extracts. 
Surprisingly, all fusion proteins were not cleaved in rabbit reticulocyte and LTE Lexsy cell extracts. 

3.2.5  SUMOvera protease and SUMOstar protease can be used to purify 

protein complexes with defined stoichiometry in yeast 

Sets of different proteases with orthogonal substrate specificity have been exploited to 

purify protein complexes with defined subunit stoichiometry. However, this technology 

has been applied only for protein complexes expressed in bacteria (Frey & Görlich 2014b). 

Here, we wanted to provide a proof of principle that SUMOstar protease and SUMOvera 

protease can be used to purify protein complexes over-expressed in S. cerevisiae. To this 

end, we selected the high affinity complex composed of the anti-GFP nanobody known as 

“enhancer” (Kirchhofer et al. 2010) and the GFP-like protein named citrine (Heikal et al. 

2000) (Figure 3.12. A).  
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Figure 3.12 Purification of a stoichiometric protein complex in S. cerevisiae. (A) Graphic description of the proteins 
purified in (B). (H14: His-tag; ZZ: Two copies of the Z-domain from Staphylococcal protein A). (B) A similar 
purification strategy as described in (Frey & Görlich 2014b) was used to purify the binary complex between citrine and 
the anti-GFP nanobody named “enhancer”. H14-SUMOvera-enhancer and ZZ-SUMOstar-citrine were co-expressed in S. 
cerevisiae for 8h at 30°C (soluble material). First, the binary complex was isolated from the yeast extract by using a Ni2+ 
chelate matrix. Elution of the binary complex was achieved by the incubation of the nickel matrix with buffer containing 
SUMOvera protease (elute 1). The elution of the His-tag and many other protein contaminants left in the column was 
done by imidazole elution (elution 2). At this point, we had a binary complex with certain excess of enhancer over 
citrine. For the second chromatographic step, the sub-stoichiometric complex was loaded onto a matrix coupled to anti-Z 
domain affibody. The 1:1 stoichiometric and highly pure complex was finally achieved after incubation of the matrix 
with buffer containing SUMOstar protease (eluate 3). Protein samples corresponding to 35mOD of cells or 1/1000 of the 
total purified protein preparation were analyzed by SDS-PAGE and stained with coomassie blue. 

We co-expressed the binary complex in S. cerevisiae for 6h at 30°C under control of the 

GAL1 promoter. Citrine was expressed with a N-terminal ZZ-SUMOstar tag, whereas 

enhancer contained a N-terminal H14-SUMOvera tag. We used two consecutive capture-

and-realize chromatographic steps, just as described in (Frey & Görlich 2014b). First, the 

excess of citrine, if present, was removed during the first chromatographic step using a 

Ni2+ chelate matrix (non-bound material 1). The complex was then eluted by on-column 

protein cleavage using SUMOvera protease (eluate 1). Notably, untagged citrine was 

present in the eluted complex due to partial cleavage of the ZZ-SUMOstar tag by 

endogenous proteases during protein expression (Figure 3.10). In a second 

chromatographic step, free enhancer and untagged citrine where washed off from the anti-

Z domain matrix (non-bound material 2). Thus, only the critine�enhancer complex 
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remained bound to the matrix. The 1:1 stoichiometric complex was obtained on-column 

protein cleavage with the SUMOstar protease (elute 3). In order to restore the anti-Z 

domain matrix, the ZZ-SUMOstar tag was eluted from beads by the addition of SDS-

containing buffer. Altogether, we described a simple two-step purification protocol to 

obtain an extremely pure and tag-free binary complex. To our knowledge, this represents 

the first practical example of the purification of a protein complex expressed in a 

eukaryotic host by using two different orthogonal SUMO-specific proteases. 

 

3.2.6  SUMOvera protease can be expressed in vivo in S. cerevisiae 

The removal of protein tags by specific proteases is typically performed in vitro at specific 

temperature and ionic conditions. However, site-specific proteolysis of fusion proteins by 

several proteases has been used in living cells for different biochemical assays (Chen et al. 

2010; Harder et al. 2008; Sato & Toda 2007). The cleavage of a fusion protein in vivo 

implies that a specific protease is being ectopically expressed at a given time. Here, we 

decided to test whether over-expression of SUMOvera protease in S. cerevisiae could be 

achieved without interfering with cell viability (Figure 3.13). Yeast cells were transformed 

with a plasmid encoding for scUlp1, bdSENP1, SUMOstar protease or SUMOvera 

protease. As negative control, we used cells containing a plasmid encoding a bdSENP1 

mutant that is completely inactive (C440S). Proteases were over-expressed for 72h at 30°C 

under the control of the galactose-inducible GAL1 promoter. To our surprise, only S. 

cerevisiae cells expressing SUMOvera protease grew after the addition of galactose. In 

contrast, expression of scUlp1, bdSENP1 or SUMOstar protease caused complete cellular 

death. Such lethal phenotype could be easily explained by massive de-sumoylation of 

essential proteins caused by over-expressed proteases.  

We showed here that SUMOvera protease is a SUMO-specific protease suited to perform 

site-directed proteolysis in living yeast cells. In addition, SUMOvera protease represents 

the second example besides TEV protease of a highly specific protease used for in vivo 

protein cleavage in yeast (Gruber et al. 2003; Higuchi & Uhlmann 2005).  
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Figure 3.13 Over-expression of SUMOvera protease is possible in S. cerevisiae. Multicopy plasmids encoding 
SUMOvera protease, SUMOstar protease, scUlp1 and bdSENP1 were transformed in S. cerevisiae. Transformed cells 
were tested for cellular viability after protease over-expression driven by the addition of galactose. Yeast cells were 
subjected to a 10-fold dilution series, from 1:25 to 1:3125 (v/v). Then, 5 µl of the diluted samples were spotted on SD -
URA medium containing either glucose (2%; v/v) to repress protease over-expression or with increasing amounts of 
galactose (0.02% and 0.2%; v/v). Cells transformed with either an empty plasmid or a plasmid encoding for a 
catalytically dead protease mutant (bdSENP1 C440S) were used as controls. Only the over-expression of SUMOvera 
protease was well tolerated by yeast cells. Expression of SUMOstar protease, scUlp1 and bdSENP1 caused cellular 
death. 

3.2.7  Novel tandem affinity purification strategy 

Tandem Affinity Purification (TAP) is a technique employed to isolate protein complexes 

from native cellular sources (Rigaut et al. 1999). TAP comprises two sequential affinity 

chromatographic steps to ensure low binding background. The bait protein is normally 

fused to two different affinity tags with a protease cleavage site in between them. The 

protease cleavage site allows native-like elution conditions from the first affinity column 

by addition of a protease. Then, protein complexes are bound to a second affinity column 

and eluted by competitive elution. The identity of the isolated proteins forming the 

complexes is normally revealed by mass spectrometry (MS) (Kaiser et al. 2008). 

Tap is nowadays a well-established, rather simple and sensitive enough technique. 

However, TAP still has some shortcomings that need to be optimized. For instance, the 

technique relies on using the low efficient TEV protease during the first chromatographic 

step. A second disadvantage is the enormous concentration of bait protein compared to the 

concentration of preys in the final sample could hamper protein identification by MS. Also, 

the dilution of the final sample due to competitive elution might prevent the visualization 

of low-abundant binders during SDS-PAGE analysis. Third, tedious preparative steps are 

needed for the sample to be processed by MS. We thus designed a new TAP strategy to 

overcome all these limitations in order to identify protein-protein interactions in complex 
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biological samples. We therefore decided to tackle these disadvantages and develop a new 

TAP technology. 

 

Figure 3.14 Novel tandem affinity purification technique. (A) Schematic representation of the bait and the prey used 
in the tandem affinity purification (TAP). The bait protein is N-terminally fused to two different affinity tags. The first 
tag consists of the E and D domains from the staphylococcal protein A (ED-domain). The second affinity tag is a 
standard His-tag (H12). SUMOvera is the cleavage site that separates the two affinity tags. Therefore, ED-SUMOvera-H12 
tag represents the TAP-tag module. The TAP-tagged bait is then incubated with cell lysate and it is during this process 
where the bait�prey complexes are being formed. (B) In the first step of the process, the complexes are trapped using an 
anti-Z domain affibody matrix. After washing unspecific binders away, protein complexes are specifically eluted from 
the column by on-column protein cleavage with the SUMOvera protease. (C) Further purification of the protein 
complexes is achieved by a second affinity purification step using a Ni2+ chelate matrix. Note that protein elution in this 
second purification is done with basic guanidinium hydrochloride (Gdn-HCl). This allows that the bait remains bound to 
the nickel matrix whereas the specific binders are eluted. (D) Finally, the bait protein can be recovered from the Ni2+ 
column by imidazole elution. (E) Protein identification can be done immediately by mixing directly the entire eluate with 
trypsin followed by mass spectrometry analysis. Alternatively, the eluted sample can be subjected to protein precipitation 
and further resolved by SDS-PAGE for the identification of specific protein bands.  

For the design of our novel TAP protocol, SUMOvera was considered to show its proper 

functionality as a stable fusion tag when incubated in eukaryotic lysates. We thus decided 

to use the fusion protein ED-SUMOvera-H12 to tag the bait protein (Figure 3.14. A). The E 

and D domains from the staphylococcal protein A (ProtA) allow the immobilization of the 

bait to a matrix coupled with the anti-Z domain affibody (ZpA963). Binding of the ED tag 

to the anti-Z domain affibody is the first highly affinity chromatography step in the process 
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for the initial isolation of preys from the cell extract (Figure 3.14. B). ZpA963 was 

originally evolved to bind the synthetic Z domain derived from ProtA (Nilsson et al. 1987; 

Lindborg et al. 2013). However, we preferred to use the E and D domains from ProtA as 

an affinity tag because they have a higher binding affinity to ZpA963 as compared to the 

synthetic Z domain. Then, SUMOvera is used as the protease cleavage site to perform 

protein elution from the ZpA963-coupled column by addition of SUMOvera protease 

(Figure 3.14. B). The use of SUMOvera and SUMOvera protease brings some advantages 

to our new TAP strategy. First, efficient protein elution can be achieved in less than 1 h at 

4°C with a nanomolar concentration of SUMOvera protease. Second, the SUMOvera-

tagged bait can be incubated virtually in any cellular extract due to its resistance towards 

protein cleavage by endogenous eukaryotic SUMO-specific proteases. Additionally, higher 

purity of the eluted protein is achieved since proteins that bind unspecifically to the matrix 

remain bound after on-column protein elution mediated by SUMOvera protease. 

For the second chromatographic step, a poly-histidine tag (H12-tag) is employed to bind the 

eluted protein complexes to a Ni2+ chelate matrix (Figure 3.14. C). Protein elution is then 

performed suing a buffer containing 3M guanidinium hydrochloride (Gnd-HCl) and basic 

pH (Figure 3.14. C). Gnd-HCl causes protein unfolding and hence elution of the untagged 

binders from the nickel column, while the unfolded H12-tagged bait remains tightly bound 

to the nickel column. In the last step of TAP, the His12-tagged bait protein can be easily 

retrieved by imidazole elution from the Ni2+ chelate column (Figure 3.14. D). 

Protein elution by Gnd-HCl brings some unique and novel aspects to our designed TAP 

methodology in terms of protein identification by MS. First, the complete separation of 

specific binders from the highly concentrated bait protein eases subsequent protein 

identification of low-abundant protein binders by MS. Second, samples containing Gnd-

HCl are fully compatible with different proteolytic methods used in MS (i.e. trypsination). 

Therefore, buffer exchange is no longer needed prior to protein identification by MS 

(Poulsen et al. 2013; Saveliev & Ph 2013). Also, protein elution with Gnd-HCl eliminates 

the need of performing in-gel digestion procedures that might hamper protein identification 

of complex samples (Morris et al. 2014).  

Another important aspect of our TAP system to be mentioned is the incompatibility 

between Gnd-HCl containing samples and SDS-PAGE. SDS precipitates immediately in 

the presence of Gnd-HCl. Thus, the Gnd-HCl must be removed from the protein sample 

before SDS-PAGE is performed. Protein precipitation with isopropanol or other similar 
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compounds represents an easy method to completely remove Gnd-HCl from the samples. 

Including a protein precipitation step in our TAP technique might represent an advantage 

rather than a pitfall. However, protein precipitation allows the concentration of low-

abundant proteins up to several orders of magnitude and only then they can become visible 

after SDS-PAGE. 

Altogether, we offer a rapid, very specific, MS-compatible and highly sensible TAP 

technique, and we assume that our novel TAP strategy represents an attractive alternative 

to conventional protocols. 

 

3.3  Identification and characterization of novel Lph2 transport 

cargos  
3.3.1  Lph2 as a novel bidirectional NTR in S. cerevisiae 

Next, our novel TAP protocol and the SUMOvera/SUMOvera protease system were used 

to search for novel transport cargos of the poorly studied yeast nuclear transport receptor 

Lph2 (Kap120). The 60S ribosomal subunit assembly factor Rpf1 was the first identified 

import cargo for Lph2 (Caesar et al. 2006). This work showed for the first time that 

Kap120 acts as an importin in S. cerevisiae. So far, only two other Lph2 import cargos 

have been identified, the Ho endonuclease and the transcriptional regulator Swi6 (Kim et 

al. 2010; Bakhrat et al. 2006). To our knowledge, all published studies that identified Lph2 

binding partners focused only in finding potential import cargos but not on the discovery 

of possible export cargos. We therefore hypothesized that there was still a high possibility 

of identifying novel export cargos for Lph2. Moreover, Lph2 has a medium affinity to 

Ran-GTP (270 nM) (Hahn & Schlenstedt 2011) that seems to be a distinct feature of 

bidirectional NTR.  

In order to prove our hypothesis, we decided to search for novel export and import cargos 

for Lph2 using S. cerevisiae lysate (Figure 3.15, lane 1). To do so, we tagged full-length 

Lph2 at the N-terminus with the ED-SUMOvera-H12 fusion tag (Figure 3.15, lane 2). 

Gsp1-GTP, the yeast homologue of Ran-GTP, was included in the TAP experiment to 

isolate potential export cargos (Figure 3.15. lane 3). Specifically, we used a His12-tagged 

Gsp1 mutant (H12-Gsp1Q71L-GTP) that is unable to hydrolyze GTP and therefore remains 

trapped in the GTP-bound state (Bischoff et al. 1994; Klebe et al. 1995). 
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For the TAP experiment, samples were first incubated with a anti-Z domain affibody 

matrix in the absence and presence of Gsp1Q71L-GTP for 1h at 4°C. After incubation, 

protein complexes were eluted by on-column protein cleavage with SUMOvera protease 

(Figure 3.15, lanes 4 and 5). 

The eluted samples were incubated with nickel matrix for 1h at 4°C for the second affinity 

chromatography step. After incubation, only protein binders were eluted from the nickel 

matrix by a guanidinium hydrochloride (Gdn-HCl) containing buffer (Figure 3.15, lane 6 

and 7). The His12-tagged Lph2 and Gsp1Q71L-GTP remained bound to the nickel beads 

and were eluted only after the addition of imidazole containing buffer (Figure 3.15, lanes 8 

and 9). All eluted samples were resolved by SDS-PAGE and specific bands were isolated 

from the polyacrylamide gel for subsequent protein identification by MS analysis. MS 

analysis led to the identification of eIF4A, Kre11 and Rvs167 as potential Lph2 export 

cargos. Active transport to the cytoplasm of eIF4A, Kre11 and Rvs167 by Lph2 seems to 

be in accordance with their functions as these export cargos are solely involved in cellular 

processes either at the cytoplasm or the plasma membrane. The eukaryotic translation 

initiation eIF4A is a component of the eIF4E complex that mediates the recruitment of the 

40S ribosomal subunit to the initiation codon at the mRNA (Gingras et al. 1999). 

Specifically, eIF4A is a helicase that uses its ATPase activity to unwind the secondary 

structure of the 5’ leader sequence in the mRNA at promote translation initiation (Rozen et 

al. 1990).  Kre11 is one of the three subunits of the guanine nucleotide exchanger TRAPP, 

a vesicle tethering complex involved in the late Golgi (Sacher et al. 2000; Liang et al. 

2007). Rvs167 forms part of the cytoskeleton structure that is required for the formation of 

vesicles at the plasma membrane level (Friesen et al. 2005). Additionally, we identified the 

60S ribosomal protein L12A (rpL12A) as a potential import cargo for Lph2 as well as the 

already described assembly factor Rpf1 (Caesar et al. 2006).  

Identification of Gsp1-dependent and -sensitive Lph2 protein-binders is a strong indication 

that Lph2 might act not only as an importin but also as a exportin in S. cerevisiae. 

Therefore, Lph2 might represent the second identified bidirectional NTR after Msn5 

(Kaffman, Rank, O’Neill, et al. 1998; Yoshida & Blobel 2001). We chose eIF4A and 

rpL12A for further characterization in order to demonstrate that Lph2 is indeed and 

bidirectional NTR in budding yeast. 
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Figure 3.15 Lph2 is a bidirectional NTR in S. cerevisiae. ED-SUMOvera-H12-Lph2 fusion protein (lane 2) was 
immobilized onto anti Z-domain matrix to isolate transport cargos from yeast extract (lane 1). TAP binding reactions 
were performed in the presence and absence Gsp1Q71L-GTP (lane 3). After incubation of the matrix with the yeast 
lysate, bound proteins were eluted with SUMOvera protease (lanes 4 and 5). Different interacting proteins were clearly 
visible by direct comparison between the samples with and without Gsp1Q71L-GTP. Eluted samples were further 
incubated with Ni2+ chelate matrix for the second chromatographic step. Elution of potential Lph2 cargos was done by 
the addition of 3M guanidinium hydrochloride buffer (lanes 6 and 7). His-tagged Lph2, Gsp1Q71L-GTP and remaining 
contaminants were finally eluted from the nickel beads with 400 mM imidazole (lanes 8 and 9). A control sample lacking 
ED-SUMOvera-H12-Lph2 was used to analyze non-specific binding of yeast proteins from the lysate during the whole 
assay (lanes 10, 11 and 12). Protein samples were separated by SDS-PAGE and stained with colloidal coomassie blue. 
Single protein bands were cut out from the polyacrylamide gel and analyzed by mass spectrometry for protein 
identification. The Lph2 transport cargos identified are; Export cargos: Rvs167 (1), Kre11 (2) and eIF4A (3); Import 
cargos: rpL12A (4) and Rpf1 (5). 

3.3.2  Lph2 mediates the nuclear export of eIF4A  

As seen in Figure 3.15, the yeast translation initiation factor eIF4A was identified as a 

potential Lph2 export cargo. eIF4A was able to bind Lph2 in a Gsp1Q71L-GTP dependent 

manner. However, this experiment still left an open question whether a protein factor 

present in the yeast extract aided in the interaction between Lph2 and eIF4A. We thus 

decided to characterize the formation of the Lph2�eIF4A�GspQ71L export complex using 

purified recombinant components.  

To this end, Lph2 was immobilized onto anti-Z domain affibody matrix via a N-terminal 

ED-SUMOvera tag. The binding of eIF4A to Lph2 was tested with and without the 
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addition of untagged Gsp1Q71L-GTP (Figure 3.16, A. Input). As a negative control, we 

included a sample without Lph2 to test for unspecific binding of eIF4A to the matrix. 

Samples were eluted with a buffer containing 200nM of SUMOvera protease for 1h at 4°C. 

After elution, it was clear that eIF4A formed a stable export complex with Lph2 in the 

presence of Gsp1Q71L-GTP (Figure 3.16, A. Bound fraction). In contrast, eIF4A failed to 

bind Lph2 in the absence of GspQ71L. These experiments clearly show that no extra 

protein factor is needed for Lph2 to form a stable export complex together with eIF4A and 

Gsp1Q71L-GTP, Moreover, we prove again that Lph2 might behave as the true 

corresponding exportin for eIF4A in yeast since cargo binding becomes efficient only upon 

the presence of Gsp1Q71L-GTP. 

We next wanted to analyze the interaction between eIF4A and Lph2 in vivo. Thus, we used 

confocal immunofluorescence confocal microscopy to visualize the subcellular localization 

of GFP-labeled eIF4A in living wild type and Lph2-knockout yeast cells (ΔLph2). Yeast-

codon optimized GFP (yeGFP) was inserted in-frame into wild type and ΔLph2 cells to tag 

eIF4A at the C-terminus (eIF4A-yeGFP). We used tetrameric cherry protein fused to a 

Crm1 nuclear export signal (tcherry-NES) as a nuclear exclusion marker (Xu et al. 2012; 

Güttler et al. 2010). We observed a perfect co-localization of eIF4A-yeGFP with the 

nuclear exclusion marker in wild type cells (Figure 3.16, B). Thus, wild type yeast cells 

expressing eIF4A-yeGFP showed perfect nuclear exclusion of eIF4A. In contrast, the 

single deletion of Lph2 in yeast led to a dramatic nuclear accumulation of eIF4A-yeGFP 

(Figure 3.16, B). These findings unquestionably prove that Lph2 is the export factor for 

eIF4A in S. cerevisiae. Remarkably, the active export of eIF4A is clearly the first evidence 

to confirm that Lph2 acts not only as importin but also as an exportin. Lph2 therefore 

needs to be regarded as a dedicated bidirectional NTR in S. cerevisiae. 
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Figure 3.16 Lph2 exports eIF4A out of the yeast nucleus. (A) Characterization of the Lph2�eIF4A�Gsp1Q71L-
GTPexport complex using recombinant proteins. Purified ED-SUMOvera-H12-Lph2 (1.5 µM) was incubated with eIF4A 
(5 µM) in the presence and absence of Gsp1Q71L-GTP (5 µM) (input fraction). After incubation, ED-SUMOvera-H12-
Lph2 was first bound to anti-Z domain matrix and later eluted with SUMOvera protease in order to analyze protein-
protein interaction (Bound fraction). A control sample was included in the analysis to test unspecific binding of eIF4A to 
the matrix. (*) indicates the SUMOvera protease used for on-column cleavage. Samples corresponding to 1.5µg of Lph2 
were resolved by SDS-PAGE and stained with coomassie brilliant blue. Molecular weights for the bands of the protein 
marker used are labeled accordingly. (B) Localization of eIF4A was analyzed by confocal fluorescent scanning 
microscopy in living wild type and Lph2-knockout (ΔLph2) yeast cells. Yeast-codon optimized GFP (yeGFP) was 
integrated in-frame by homologous recombination at the C-terminus of eIF4A (eIF4A-yeGFP). A tetrameric mutant of 
cherry florescent protein fused to a well-established Crm1 nuclear export signal (tcherry-NES) was used as a nuclear 
exclusion marker. White arrows placed on the merged images are pointing to the yeast nuclei. The deletion of Lph2 led to 
the accumulation of eIF4A inside the nucleus in ΔLph2 cells. Perfect nuclear exclusion of eIF4A was observed in wild 
type cells. 
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3.3.3  Lph2 is the importin for the ribosomal protein L12 A (rpL12A) 

We previously showed that ribosomal protein rpL12A binds to Lph2 in a Gsp1Q71L-GTP-

sensitive manner, suggesting that rpL12A might be an import cargo for yeast NTR Lph2. 

(Figure 3.15). However, we still needed to consider whether Lph2 interacted with rpL12A 

directly or through a yet unidentified protein factor contained in the yeast lysate. Thus, we 

decided to characterize the formation of the Lph2�rpL12A import complex with purified 

recombinant components. 

ED-SUMOvera-H12-Lph2 fusion protein was incubated with rpL12A in the presence and 

absence of Gsp1Q71L-GTP (Figure 3.17, A. Input). ED-tagged Lph2 was immobilized 

onto anti-Z domain affibody matrix and subsequently eluted by on-column protein 

cleavage using SUMOvera protease. After protein elution, interaction between rpL12A and 

Lph2 was visible regardless of the presence of Gsp1Q71L-GTP (Figure 3.17, A. Bound 

fraction). Notably, the binding of rpL12A to Lph2 seemed to be more efficient when 

Gsp1Q71L-GTP was not present, suggesting that Gsp1Q71L-GTP and rpL12A might 

compete for a binding site in Lph2. In other words, Gsp1Q71L-GTP might limit the 

formation of a stable Lph2�rpL12A complex by blocking rpL12A binding site in Lph2. To 

clarify this issue, we used rpL12A as immobilized bait for binding assays instead of Lph2. 

We first incubated H14-ZZ-bdNEDD8-rpL12A with untagged Lph2 in the presence and 

absence of untagged Gsp1Q71L-GTP (Figure 3.17, B. Input). After immobilization of 

rpL12A to anti Z-domain beads and further protein elution with bdNEDP1, we observed 

only the formation of the Lph2�rpL12A import complex in both samples (Figure 3.17, B. 

Bound fraction). Gsp1Q71L-GTP did not form a stable complex together with Lph2 and 

rpL12A. In fact, Lph2 bound more efficiently to rpL12A in the sample lacking Gsp1Q71L-

GTP. It thus appeared that Gsp1Q71L-GTP and rpL12A competed for binding rpL12A.  

Altogether, these binding experiments confirmed that rpL12A might be an import cargo for 

Lph2 in S. cerevisiae as it binds to Lph2 in a Gsp1-sensitive manner. However, more 

experiments to be performed to explain how rpL12A is completely dissociate from Lph2 

when entering the nucleus where the concentration of Gsp1Q71L-GTP is high. Another 

experiment would be to test whether Lph2 is responsible for the nuclear import in vivo. We 

therefore analyzed the distribution of rpL12A-yeGFP in wild type and Lph2-knockout cells 

(ΔLph2) using the same experimental setup as in section 3.3.2 . We observed strict 

cytoplasmic localization of rpL12A-yeGFP in wild type and ΔLph2 cells (Figure 3.17. C). 
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rpL12A seemed to be perfectly excluded from the nucleus as it perfectly co-localized with 

the nuclear exclusion marker tCherry-NES. 

 

Figure 3.17 Yeast rpL12A is an import cargo for Lph2. (A) Purified components were used as starting material for the 
characterization of the Lph2�rpL12A import complex. The binding of ED-tagged Lph2 (1.5 µM) to rpL12A (5 µM) was 
performed in the presence and absence of Gsp1Q71L-GTP (5 µM) (input fraction). Samples were immobilized using an 
anti-Z domain matrix and further eluted with SUMOvera protease (bound fraction). Lph2 bound to rpL12A regardless the 
presence of Gsp1Q71L-GTP. SUMOvera protease used for protein elution is marked by (*). Input and bond fraction 
samples were analyzed by SDS-PAGE. (B) Binding experiments were performed as in (A), except that rpL12A was 
immobilized instead of Lph2. rpL12A recognized Lph2 as an importin without the aid of Gsp1Q71L-GTP. bdNEDP1 
used for on-column protein elution is marked by (*). Control samples were used to test unspecific prey binding to the 
anti-Z domain matrix. (C) Cellular localization of rpL12A-yeGFP was analyzed by confocal fluorescent scanning 
microcopy. rpL12A was C-terminally tagged with yeGFP in wild type and Lph2-knockout (ΔLph2) yeast cells. 
Tetrameric cherry fluorescent protein fused to a nuclear export signal (tCherry-NES) was used as nuclear exclusion 
marker. White arrows show the localization of the yeast nucleus in the merged images. Note that there was not clear 
evidence of nuclear import of rpL12A neither in wild type cells nor in ΔLph2. 

After performing binding assays, rpL12A seemed to be an import cargo for Lph2 as it was 

recognized in a Gsp1Q71L-GTP-sensitive manner. Therefore, it would be expected to 

observe nuclear accumulation of rpL12A in wild type cells and a cytoplasmic 

accumulation in the ΔLph2 cells. Now, the question as why rpL12A was strictly 
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cytoplasmic in wild type yeast cells remains to be answered. Strict cytoplasmic 

accumulation of rpL12A is well explained by the fact that rpL12A is rapidly exported by 

Crm1 after being assembled into 60S pre-ribosomal subunits inside the nucleus (Ho et al. 

2000; Gadal et al. 2001; Lo et al. 2009). Therefore, in steady state, rpL12A would spend 

only a small fraction of time in the nucleus after import. More experiments should be 

performed to confirm that rpL12A is the fourth import cargo identified for Lph2 in S. 

cerevisiae together with Rpf1, Ho endonuclease and protein Swi6 (Kim et al. 2010; Caesar 

et al. 2006; Bakhrat et al. 2006). 

 

3.3.4  eIF4A is exported exclusively by Lph2 whereas rpL12A interacts with 

different NTRs 

Redundancy in cargo recognition by different NTRs is frequently observed in S. cerevisiae 

and mammals (Greiner et al. 2004; Mühlhäusser et al. 2001; Jäkel et al. 2002; Grosshans et 

al. 2001; Rout et al. 1997; Caesar et al. 2006). So far, we have only demonstrated that 

Lph2 recognizes specifically eIF4A and rpL12A (Figure 3.15). Until now, it was still 

completely unknown to us whether other NTRs in yeast could recognize eIF4A and 

rpL12A as transport cargos and form a stable protein complex. In order to test this, we first 

over-expressed in E. coli different NTRs from S. cerevisiae. Then, cleared bacterial lysates 

containing the different NTRs were incubated with either ED-SUMOvera-eIF4A or ED-

SUMOvera-rpL12A to test the formation of export and import complexes, respectively. 

For eIF4A, we decided to use the bacterial lysates containing recombinant Crm1, the major 

exportin in yeast (Stade et al. 1997; Adachi & Yanagida 1989; Kirli et al. 2015), and 7 less 

characterized NTRs that could potentially act as exportins (Figure 3.18. Input). 

Gsp1Q71L-GTP was included in the analysis as we were looking for the formation of 

trimeric export complexes. Samples were incubated with anti-Z domain affibody matrix in 

order to immobilize the ED-SUMOvera-tagged eIF4A. After elution of the samples with 

SUMOvera protease, we confirmed that only Lph2 recognized eIF4A as an export cargo 

(Figure 3.18. Bound fraction). We observed only the formation of a stable 

Lph2�eIF4A�Gsp1Q71L-GTPexport complex whereas all other tested NTRs did not 

bound to eIF4A using the same conditions as for Lph2. eIF4a has been previously reported 

to interact to Crm1 and Yrb4 (Gavin et al. 2006). However, we did not detect any 
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interaction between these two NTRs and eIF4A. This extremely specific interaction 

confirms that Lph2 is the only NTR responsible for the export of eIF4A in yeast cells.  

 

Figure 3.18 Lph2 is the only yeast NTR that recognizes eIF4A. ED-SUMOvera-H12-eIF4A fusion protein (2 µM) was 
used as bait to analyze the binding specificity of different nuclear transport receptors (Crm1, Lph2, Pdr6, Mtr10, Msn5, 
Ndm5, Yrb4 and Kap114) to eIF4A. To form export complexes in vitro, the experiments were performed in the presence 
of Gsp1Q71L-GTP (6 µM). E. coli lysates containing a specific over-expressed yeast nuclear transport receptors were 
used as prey sources (input). ED-tagged eIF4A was immobilized anti-Z domain affibody matrix and incubated together 
with Gsp1Q71L-GTP and the E. coli lysates. A sample incubated with an “empty” E. coli lysate lacking a NTR was used 
as negative control. Elution of the immobilized eIF4A was done through SUMOvera protease elution (bound fraction). 
Lph2 was the only NTR able to form a stable trimeric export complex together with eIF4A and Gsp1Q71L-GTP. 
Samples corresponding to 2 µg of eIF4A were loaded for each sample to be resolved by SDS-PAGE and stained by 
coomassie blue. The (*) stands for SUMOvera protease used during protease elution. Molecular weights of the protein 
from the marker are labeled. 

Next, we tested the binding specificity of rpL12A to different yeast NTRs. To this end, we 

incubated ED-SUMOvera-rpL12A with 10 different E. coli lysates containing one of the 

importins known in yeast (Figure 3.19. Input). ED-SUMOvera-rpL12A was then 

immobilized onto anti-Z domain affibody matrix, and subsequently subjected to on-column 

protein cleavage with SUMOvera protease. After resolving the samples by SDS-PAGE, it 

was clear that Lph2 was the most efficiently bound NTR to rpL12A (Figure 3.19. Bound 

fraction). In addition, other NTRs such as Mtr10, Msn5, Nmd5 and Kap14 also bound to 

rpL12A to different extents. These data indicate that Lph2 is the major importin for 

rpL12A. However, import of rpL12A might be also carried out by different parallel import 

mechanisms driven by different NTRs. In addition, these data also supports previous 

experiments showing that ribosomal proteins are one of the most common examples of 
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protein cargos with a broad redundancy in NTR recognition (Rout et al. 1997; Jäkel et al. 

2002).  

 

Figure 3.19 rpL12A interacts with multiple yeast nuclear transport receptors. Analysis of the interaction between 
rpL12A and different yeast NTRs (Lph2, Pdr6, Mtr10, Msn5, Ndm5, Yrb4, Kap114, Smx1, Pse1, Impβ�Impα dimer and 
Impβ) was performed (input). rpL12A was incubated with the bacterial lysates containing the recombinant importins and 
further immobilized onto anti Z-domain affibody matrix. Several yeast NTR bound to rpL12A (bound fraction). Lph2 
was the most enriched NTR in the bound fraction as Lph2�rpL12A import complex seemed to be most prominent. On the 
other, several other NTRs such as Mtr10, Pdr6, Msn5 and Kap114 bound to some extent to rpL12A. A negative sample 
control was included in the analysis to account for binding of E. coli proteins to rpL12A (empty E. coli lysate). Samples 
corresponding to approximately 1.5 µg of rpL12A were analyzed by SDS-PAGE. bdNEDP1 is marked in the gel by (*).  

3.4  Identification and characterization of novel Pdr6 transport cargos  
3.4.1  Pdr6 is a bidirectional NTR in S. cerevisiae 

There are 14 identified NTRs in S. cerevisiae. So far, only Msn5 was shown to act as a 

bidirectional NTR in yeast. Therefore, it was still completely unclear to us whether another 

yeast NTR would also behave as a bidirectional transporter (Kaffman, Rank, O’Neill, et al. 

1998; Yoshida & Blobel 2001).In this study, we described Lph2 as a second example of a 

bidirectional NTR in S. cerevisiae (Figure 3.15). But whether another yeast NTR could 

also behave as bidirectional NTR was still an open question.  

Pleiotropic drug resistance regulatory protein 6 (Pdr6/Kap122) is a yeast NTR that has 

been shown to import the transcription factor IIA (TFIIA) and the small subunit of the 

ribonucleotide reductase (R2) (Titov & Blobel 1999; Zhang et al. 2006). To the best of our 
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knowledge, there has not been any conclusive study showing whether Pdr6 would also act 

as an exportin in S. cerevisiae. In addition, Pdr6 has a moderate affinity to RanGTP (231 

nM) (Hahn & Schlenstedt 2011) that appears to be an inherent feature of bidirectional 

NTRs (Lipowsky et al. 2000; Grünwald & Bono 2011). We therefore aimed to investigate 

in detail whether Pdr6 could recognize specific yeast proteins as export and import cargos  

 

Figure 3.20 Identification of import and export cargos for Pdr6. Novel putative transport cargos for Pdr6 were 
identified using our designed TAP system. Pdr6 was used as bait protein (lane 2) and yeast extract (lane 1) as source of 
transport cargos for the NTR. ED-SUMOvera-H12-Pdr6 protein (1.5 µM) was immobilized onto anti Z-domain affibody 
matrix and further incubated with the yeast lysate. The experiment was performed in the presence and absence of 
Gsp1Q71L-GTP (5 µM) (lane 3). Samples were then eluted by on-column protein cleavage with SUMOvera protease 
(lane 4 and 5). Next, eluted protein samples were bound to Ni2+ chelate matrix to perform the second affinity 
chromatography step. The specific elution of Pdr6 protein binders from the column was carried out by addition of 
guanidinium hydrochloride containing buffer (lanes 6 and 7). Distinct protein bands between the sample with and without 
Gsp1Q71L-GTP were excised from the polyacrylamide gel to be identified by mass spectrometry analysis. Last, His-
tagged Pdr6, Gsp1Q71L-GTP and residual protein contaminants were eluted by 400 mM imidazole containing buffer 
(lane 8 and 9). A control sample lacking Pdr6 was included to analyze unspecific protein binding during the whole TAP 
procedure (lanes 10, 11 and 12). Samples corresponding to approximately 1.5µg of Pdr6 or to 35mOD of the initial cell 
extract were analyzed by SDS-PAGE followed by colloidal coomassie staining. These are the proteins identified by mass 
spectrometry analysis; Export cargos: eEF2 (1) and eIF5A (2); Import cargos: Ubc9 (3), Wtm1 (4) and Toa1 (5). 

We first expressed and purified ED-SUMOvera-H12-Pdr6 fusion protein in order to 

perform a TAP experiment as described in Figure 3.14. Pdr6 was incubated with yeast 

lysate to search for potential transport cargos in the presence and absence of Gsp1Q71L-

GTP (Figure 3.20. Lanes 1, 2 and 3). Samples were immobilized onto anti-Z domain 

affibody matrix and further eluted with using SUMOvera protease (Figure 3.20. Lanes 4 
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and 5). We then separated specific protein binders from the His-tagged Pdr6 and 

Gsp1Q71L-GTP by Gdn-HCl elution from the Ni2+ chelate matrix (Figure 3.20. Lanes 6 

and 7). Eluted samples were resolved by SDS-PAGE and the most distinct protein bands 

for each sample were excised from the polyacrylamide gel for protein identification by MS 

analysis. The elongation factors eIF5A and eEF2 were identified as the very first two 

export cargos for Pdr6. Nuclear export of eEF2 and eIF5A by Pdr6 is well possible in S. 

cerevisiae, as both elongation factors are known to be involved in cytoplasmic-restricted 

cellular functions (Perentesis et al. 1992; Gregio et al. 2009; Hyun Ah Kang & Hershey 

1994). We also identified the SUMO-conjugating enzyme Ubc9 as a novel import cargo 

for Pdr6. Ubc9 is involved in nuclear architecture maintenance and chromosome 

segregation in different organisms (Nacerddine et al. 2005; Dieckhoff et al. 2004). 

Therefore, import of Ubc9 by Pdr6 is a well reasonable process in S. cerevisiae. Protein 

identification by MS analysis also confirmed previous reports for Toa1 and Wtm1 as 

import cargos for Pdr6 (Titov & Blobel 1999; Zhang et al. 2006). 

The identification of potential import as well as export cargos for Pdr6 clearly shows that 

Pdr6 might be another example of bidirectional NTR in budding yeast. In other to assure 

the fact that Pdr6 is indeed a bidirectional NTR, we decided to characterize further the 

interaction between Pdr6 and three of the identified cargos: eIF5A, eEF2 and Ubc9.  

 

3.4.2  Pdr6 is the export receptor for eIF5A 

The hypusine-containing elongation factor eIF5A was identified as one of the major 

protein binders for Pdr6 (Figure 3.21). The interaction between Pdr6 and eIF5A seemed to 

happen strictly in the presence of Gsp1Q71L-GTP. This observation suggested that Pdr6 is 

the potential exportin for eIF5A in S. cerevisiae. However, we wanted to reconstitute the 

Pdr6�eIF5A�Gsp1Q71L-GTP export complex in a minimal setup by using recombinant 

purified components to test whether an unidentified protein contained in yeast lysate 

mediated the recognition of eIF5A by Pdr6.  

We immobilized ED-SUMOvera tagged Pdr6 onto anti-Z domain affibody matrix in order 

to be used as bait. Immobilized Pdr6 was incubated with an excess of eIF5A in the 

presence and absence of Gsp1Q71L-GTP (Figure 3.21, A. Input). To test unspecific 

protein binding to the matrix, a sample without the immobilized Pdr6 was used. 

SUMOvera protease was used to elute bound Pdr6 and samples were further analyzed by 
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SDS-PAGE. Exportins form a complex of high affinity with their respective cargos only in 

the presence of Ran-GTP (Gsp1, in yeast) (Kutay et al. 1997; Fornerod et al. 1997). 

Likewise, Pdr6 only recognized eIF5A in the presence of Gsp1Q71L-GTP (Figure 3.21, A. 

Bound fraction). We therefore assumed that Pdr6 is the corresponding exportin for this 

elongation factor. In addition, we showed that only Gsp1Q71L-GTP was sufficient for 

Pdr6 to efficiently recognize eIF5A as its export cargo.  

 

Figure 3.21 Pdr6 as a novel exportin for eIF5A. (A) Purified ED-SUMOvera-H12-Pdr6 fusion protein (1.5 µM) was 
used to test the bind of Pdr6 to eIF5A. Tagged Pdr6 was incubated with eIF5A (5 µM) in the presence and absence of 
Gsp1Q71L-GTP (5 µM) (input). Then, ED-tagged Pdr6 was immobilized onto an anti-Z domain affibody matrix and later 
eluted with SUMOvera protease (bound fraction). eIF5A bound to Pdr6 in a Gsp1Q71L-GTP-dependent manner. Input 
and bound fractions were analyzed by SDS-PAGE followed by coomassie staining. SUMOvera protease is indicated in 
the polyacrylamide gel by (*). We included a negative control sample without the addition of Pdr6 to test the unspecific 
binding of eIF5A to the matrix. (B) Localization of fluorescently labeled eIF5A in wild type and Pdr6-knockout (ΔPdr6) 
yeast cells was analyzed by confocal fluorescent scanning microscopy. A GFP tag was introduced at the C-terminus of 
eIF5A by homologues recombination (eIF5A-yeGFP). In order to localize the yeast nucleus, cells were transformed with 
a plasmid encoding a fusion protein between tetrameric cherry protein and a Crm1 nuclear export signal (tcherry-NES). 
The small white arrows are placed to ease the localization of the nucleus in the merged images. Note that deletion of Pdr6 
gene caused a massive nuclear accumulation of eIF5A-yeGFP. In contrast, eIF5A remained perfectly cytoplasmic in 
living wild type cells.  
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Globular proteins of up to 20-40 kDa in size can freely diffuse through the nuclear pore 

complex. Consequently, eIF5A can be expected to freely diffuse into the nucleus given its 

size of 17 kDa. However, a previous study showed that eIF5A is strictly localize in the 

cytoplasm of S. cerevisiae (Valentini et al. 2002). We therefore envisioned that Pdr6 

actively exports eIF5A out of the nucleus in yeast cells. To prove this, we analyzed the 

subcellular localization of eIF5A-yeGFP in wild type and Pdr6-knockout (ΔPdr6) cells by 

confocal immunofluorescence scanning microscopy. We fused tetrameric Cherry 

fluorescent protein to a nuclear export signal to be used as a nuclear exclusion marker. 

When Pdr6 was deleted in yeast cells, eIF5A-yeGFP massively accumulated in the nucleus 

(Figure 3.21. B). In contrast, the accumulation of eIF5A-yeGFP did not occur in wild type 

cells (Figure 3.21.A). Single deletion of Pdr6 certainly proves that Pdr6 is needed the true 

nuclear export factor for eIF5A in vivo. Consequently, the export of eIF5A and the import 

of previously reported cargos (Titov & Blobel 1999; Zhang et al. 2006) by Pdr6 provide 

enough evidence to state that Pdr6 is the third so far know example of a bidirectional NTR 

in S cerevisiae.  

 

3.4.3  Ubc9 is imported by Pdr6 in Saccharomyces cerevisiae 

The nuclear transport receptor Pdr6 is a well-described import factor in S. cerevisiae (Titov 

& Blobel 1999; Zhang et al. 2006). Here, we identified the SUMO-conjugation enzyme 

Ubc9 as a new putative Pdr6 import cargo in a TAP experiment (Figure 3.20). Pdr6�Ubc9 

complex might have been assisted by an unknown protein factor present in the cellular 

lysate during the identification. In order to test this possibility, we decided to characterize 

the complex using recombinant purified components.  

ED-tagged Ubc9 was incubated together with Pdr6 in presence and absence of untagged 

Gsp1Q71L-GTP (Figure 3.22,A. Input). Pdr6 bound similar amounts of Ubc6 in the 

presence and absence of Gsp1Q71L-GTP, suggesting that Gsp1Q71L-GTP did not hinder 

drastically the recognition of Ubc9 by Pdr6 (Figure 3.22, A. bound fraction). This 

experiment led to the question of whether Ubc9 and Gsp1Q71L-GTPbound to Pdr6 at the 

same time or whether they competed for the binding of the NTR. In order to discern 

between these two possibilities, we immobilized Ubc9 to be used as the bait. ED-

SUMOvera-Ubc9 was incubated with untagged Pdr6 in the presence and absence of 

untagged Gsp1Q71L-GTP (Figure 3.22, B. Input). The formation of Pdr6�Ubc9 complex 
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was significantly more efficient in the sample lacking Gsp1Q71L-GTP (Figure 3.22, B. 

Bound fraction). Therefore, it seemed that Gsp1Q71L-GTP competed with Ubc9 in the 

recognition of Pdr6. In addition, we did not observe the formation of a trimetric complex in 

the sample containing Gsp1Q71L-GTP. These experiments suggest that Ubc9 might be act 

as a potential functional import cargo for Pdr6. In order to confirm this, we decided to 

determine the subcellular localization of Ubc9 in wild type and Pdr6-knockout (ΔPdr6) 

cells.  

 

Figure 3.22 Ubc9 is recruited as an import cargo by Pdr6. (A) Interaction of ED-SUMOvera-tagged Pdr6 (1.5 µM) 
and yeast Ubc9 (5 µM) was analyzed in the presence and absence of Gsp1Q71L-GTP (5 µM) (input). The recombinant 
proteins were incubated in the corresponding combinations prior to the immobilization of Pdr6 onto anti-Z domain 
affibody matrix. Samples were eluted from the column by protease cleavage with SUMOvera (bound fraction). 
Unspecific binding of Ubc9 to the matrix was analyzed in a control sample included in the analysis. Pdr6 efficiently 
recognized Ubc9 and Gsp1Q71L-GTP simultaneously. SUMOvera protease is indicated in the gel by (*). (B) A binding 
experiment was performed as in (A), except that ED-tagged Ubc9 was now the immobilized bait to form the protein 
complex. Negative control sample lacking the bait was included in the experiment to analyze the unspecific prey binding 
to the used matrix. bdNEDP1 protease is indicated in the gel by (*). Protein samples for input and bound fractions were 
analyzed by SDS-PAGE. (C) The localization of Ubc9-yeGFP fusion protein was analyzed in wild type yeast and Pdr6-
knockout cells (ΔPdr6). yeGFP-tagged Ubc9 was genomically expressed in both strains. In order to localize the nucleus 
in yeast, tetrameric cherry fused to a Crm1-type nuclear localization signal (tcherry-NES) was used as a nuclear 
exclusion marker. The small white arrows are placed to ease the localization of the nucleus in the merged images. The 
nuclear/cytoplasmic ratio of Ubc9-yeGFP of wild type and Pdr6-knockout cells was calculated using Adobe Illustrator 
CS5. 
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Data from previous studies localized Ubc9 predominantly in the nucleus of S. cerevisiae 

(Seufert et al. 1995; Dieckhoff et al. 2004). Here, we wanted to investigate whether Pdr6 is 

a key modulator in the nuclear export process of Ubc9 in the budding yeast. To do so, we 

determined the subcellular localization of yeGFP tagged Ubc9 using confocal fluorescent 

scanning microcopy microscopy in wild type and ΔPdr6 mutant cells. Both type of cells 

were also transformed with a plasmid encoding for cherry fused to a Crm1-type nuclear 

export signal (tCherry-NES) to be used as nuclear exclusion marker. We observed a 

predominant nuclear localization of Ubc9-yeGFP in wild type and ΔPdr6 mutant cells 

(Figure 3.22. C). However, the nuclear/cytoplasmic signal ratio of Ubc9-yeGFP in wild 

type cells (2.41±0.37) is significantly higher than the one in ΔPdr6 mutant cells 

(1.65±0.21), which suggests that the cytoplasmic levels of Ubc9-yeGFP are lower in yeast 

wild type cells (Figure 3.22. C). Therefore, our results demonstrate that lack of Pdr6 in S. 

cerevisiae hampers the efficient active import of Ubc9 to the nucleus. 

 

3.4.4  Elongation factor 2 (eEF2) is transported from the nucleus by Pdr6  

Exportins bind their substrates strictly in the presence of Ran-GTP (Fornerod et al. 1997; 

Görlich & Kutay 1999). We identified elongation factor 2 (eEF2) as a protein binder for 

Pdr6 only in the presence of Ran-GTP (Figure 3.20). Therefore, eEF2 seemed to be a 

perfect export cargo candidate for Pdr6. In order to confirm this assumption, we decided to 

analyze the in vivo localization of eEF2 by confocal fluorescent scanning microscopy. 

eEF2 was genomically tagged at the C-terminus with yeGFP in wild type and Pdr6-

knockout (ΔPdr6) yeast cells. As used in previous experiments, tCherry-NES fusion 

protein was used as a nuclear exclusion marker to localize the yeast nucleus. We did not 

observe accumulation of eEF2-yeGFP in the nuclei of wild type cells, whereas the single 

deletion of Pdr6 caused the nuclear accumulation of eEF2-yeGFP (Figure 3.23). We thus 

show that Pdr6 is truly the nuclear export that controls the transport of the high molecular 

weight eEF2 in yeast cells. 
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Figure 3.23 Pdr6 exports the eukaryotic elongation factor 2 in S. cerevisiae. In vivo localization of the eukaryotic 
elongation factor 2 (eEF2) in wild type and Pdr6-knockout (ΔPdr6) yeast cells. eEF2 was tagged with yeGFP at the C-
terminus (eEF2-yeGFP). Cells stability expressing eEF2-yeGFP were transformed with a multicopy plasmid encoding for 
the nuclear marker composed of cherry protein and a PKI-type nuclear export signal (tcherry-NES). Transformed cells 
were grown at 30°C in liquid synthetic medium until the exponential growth phase was reached and further imaged by 
confocal fluorescent scanning microscopy. Arrows in the merged images are pointing to the position of the nucleus inside 
the cells. Deletion of Pdr6 caused the nuclear accumulation of eEF2-yeGFP.  

Pdr6 specifically controls the export of two different translation factors, eEF2 and eIF5A. 

We therefore assumed that Pdr6 serves the purpose of suppressing any possible translation 

process in the nucleus by actively exporting essential translation factors. We also 

speculated that the export of eEF2 and eIF5A by Pdr6 might be an active measure to 

prevent the early interaction between these factors and immature ribosomal assemblies in 

the nucleus. In addition, we also proved that Ubc9 is a novel Pdr6 import substrate. Along 

with the TFIIA and Wtm1, Ubc9 is the third characterized import cargo so far for Pdr6. 

We therefore conclude that Pdr6 is not only an importin but also a newly described and 

highly specialized exportin.  

 

3.4.5  Pdr6 is a highly specialized nuclear transport receptor 

As mentioned in section 3.3.4 , recognition of a single transport cargo by different NTRs is 

a recurrent phenomenon in different organisms (Greiner et al. 2004; Mühlhäusser et al. 

2001; Jäkel et al. 2002; Grosshans et al. 2001; Rout et al. 1997; Caesar et al. 2006). 

Therefore, several transport pathways might occur in parallel for the orchestrated transport 



 

 61 

of a given substrate in a single cell. We showed that yeast nuclear transport receptor Pdr6 

regulates the transport of Ubc9 and eIF5A (sections 3.4.2 and 3.4.3 ). Now, we 

investigated to what extent other yeast NTRs might interact with Ubc9 and eIF5A. To do 

so, we overexpressed different yeast NTRs in E. coli and used the bacterial cleared lysates 

as source of NTRs. We first incubated eIF5A together with Gsp1Q71L-GTP and 8 

different bacterial lysates containing a single recombinant yeast NTR (Figure 3.24. Input). 

We included in the analysis the broad-spectrum exportin Crm1 (Adachi & Yanagida 1989; 

Stade et al. 1997; Kirli et al. 2015) and 7 less-characterized NTRs that might act also as 

exportins (Lph2, Pdr6, Mtr10, Msn5, Nmd5, Yrb4 and Kap114). The elongation factor 

eIF5A only formed a complex with Pdr6 and Gsp1Q71L-GTP, whereas the other 7 tested 

NTRs did not recognized eIF5A as an export cargo (Figure 3.24. Bound fraction). Pdr6 

seems to be the only NTR responsible for the nuclear export of eIF5A in budding yeast. In 

fact, we didn’t find in the literature any annotated interaction between eIF5A and a yeast 

NTR.  

 

Figure 3.24 Pdr6 is the only nuclear transport receptor that recognizes eIF5A as export cargo. Different E. coli 
lysates containing different recombinant yeast NTRs (Crm1, Lph2, Pdr6, Mtr10, Msn5, Nmd5, Yrb4 and Kap114) were 
used to test the interaction between the receptors and eIF5A. Gsp1Q71L-GTP was added to the samples in order to form 
potential export complexes between the NTRs and eIF5A (input). All samples were incubated for 1h at 4°C prior to 
immobilization of purified ED-SUMOvera-H12-eIF5A. SUMOvera protease was used to elute the export complexes from 
the anti-Z domain affibody matrix (bound fraction). Pdr6 was the only transport receptor able to recognize eIF5A as an 
export cargo. An empty E. coli lysate lacking the yeast NTR was included as negative control. Samples from the input 
and bound fraction were analyzed by SDS-PAGE and followed by coomassie staining. SUMOvera protease is 
represented by (*) in the figure. 
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Figure 3.25 Ubc9 is exclusively imported to the yeast nucleus by Pdr6. ED-SUMOvera-H12-Pdr6 (2 µM) was 
incubated with several E. coli lysates containing an over-expressed yeast NTR (input). Samples were incubated with anti-
Z domain matrix to immobilize Pdr6. Note that Pdr6 was the only NTR able to form an import complex with yeast Ubc9. 
No interaction was observed between the other tested NTRs and Ubc9. SUMOvera protease used for on-column cleavage 
during the binding assays is marked with (*).  

Next, we analyzed the specificity of Ubc9 recognition as an import cargo by different yeast 

NTRs. For this analysis, we used 9 different yeast NTRs described as importins (Lph2, 

Pdr6, Mtr10, Msn5, Nmd5, Yrb4, Kap114, Smx1 and Pse1). We also included as part of 

the experiment the major importin complex in yeast, Importin β�Importin α complex 

(Görlich et al. 1997; Görlich & Kutay 1999; Lange et al. 2015). ED-SUMOvera-H12-Ubc9 

fusion protein was immobilized onto anti-Z domain affibody matrix and further incubated 

with bacterial lysates containing one of the over-expressed yeast NTR (Figure 3.25. Input). 

After protein elution, we observed that Pdr6 was the only NTR able to recognize Ubc9 as a 

cargo, whereas the remaining 9 tested NTRs completely failed to bind Ubc9 (Figure 3.25. 

Bound fraction). Although Kap114 was reported to interact with Ubc9 to some extent 

(Rothenbusch et al. 2012), we did not detect any significant binding between them at the 

tested conditions. We confirmed with this experiment that Ubc9 is actively transported to 

the nucleus by a single import pathway driven by Pdr6. 
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3.4.6  Export of eIF5A and import of Ubc9 are two interesting cases about the 

evolution of NTR functions in yeast and human cells 

Multiple bioinformatics studies have shown the loss, divergence and multiplication of 

NTR genes during the course of evolution (Malik et al. 1997; Görlich et al. 1997; Quan et 

al. 2008). One interesting example of the diversification of NTR genes during evolution is 

the absence of ortholog genes of yeast Pdr6 in multicellular organisms. Pdr6 does not share 

sequence similarity with any of the 20 different vertebrate NTRs that would go beyond that 

between paralogs. Yet, the cellular functions of Pdr6 are still conserved in humans in two 

different NTRs. First, human exportin 4 (Exp4) (Lipowsky et al. 2000; Aksu et al. 2016) as 

well as yeast Pdr6 (Figure 3.21) efficiently export eIF5A from the nucleus to the 

cytoplasm. Second, it was already proved before that human Importin 13 (Imp13) 

recognizes Ubc9 (Mingot et al. 2004; Grünwald & Bono 2011) as Pdr6 does in S. 

cerevisiae (Figure 3.22). We therefore hypothesized that the export of eIF5A and the 

import of Ubc9 were “invented” at least two times during the course of gene evolution in 

two different organisms. In order to provide some experimental evidence for this 

observation, we performed binding assays to analyze whether Exp4 and Pdr6 were able to 

recognize human and yeast eIF5A as an export cargo. Likewise, we analyzed whether Pdr6 

and Imp13 bind to human and yeast Ubc9. 

First, Pdr6 and Exp4 were incubated with the yeast (sceIF5A) and human (hseIF5A) export 

cargo in the presence of Gsp1Q71L-GTP. Both non-homologous NTRs recognized 

sceIF5A and hseIF5A (Figure 3.26. A and B). Since yeast and human eIF5A have a 

significant sequence similarity (64% sequence identity), we speculated that highly 

conserved residues are the recognition sites for Pdr6 and Exp4 in both cargos. In addition, 

we also consider that the mechanism of cargo recognition of Pdr6 and Exp4 must differ 

drastically as both NTRs are non-homologous proteins. The interaction between Exp4 and 

hseIF5A has been described in detail (Aksu et al. 2016), however, further experiments 

have to be performed in order to map the exact recognition motifs of the sceIF5A by Pdr6.  

Subsequently, we investigated whether Imp13 and Pdr6 would recognize both yeast and 

human Ubc9 as import substrates. To this end, we incubated Pdr6 and Imp13 with both 

Ubc9 homologs in order to let them form a stable import complex. Even though yeast and 

human Ubc9 have a rather high sequence identity (57%), we observed that Imp13 and Pdr6 

were able to recognize only their putative cargo (Figure 3.26. C and D). Residues in human 
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Ubc9 that make contact with Imp13 are perfectly conserved in S. cerevisiae (Grünwald & 

Bono 2011), however, yeast Ubc9 was not able to bind Imp13. We therefore speculate that 

Pdr6 and Imp13 are not ortholog proteins with conserved cargo interactions, but paralogs 

with different evolved Ubc9-binding modes. Several experiments still need to be 

performed in order to identify the interaction site between Pdr6 and yeast Ubc9.  

 

Figure 3.26 Yeast Pdr6 might have evolved into two different non-homologous human NTRs. (A) Analysis of the 
interaction between human exportin 4 (Exp4) and homologues proteins of the translation initiation factor 5A from human 
(hseIF5A) and yeast (sceIF5A). To form export complexes, ZZ-tagged Exp4 (1 µM) was incubated with hseIF5A (3 µM) 
and scIF5A (3 µM) in the presence of Gsp1Q71L-GTP (3 µM). After immobilization of Exp4, protein elution was carried 
out by protease on-column cleavage bdSENP1. Exp4 bound equally to hseIF5A and sceIF5A in the presence Gsp1Q71L-
GTP. (B) Characterization of the interaction between yeast Pdr6 and both eIF5A export cargos homologues was 
performed as described in (A). Note that Pdr6 also formed stable export complexes with hseIF5A and sceIF5A in the 
presence of Gsp1Q71L-GTP. (C) Recognition of human (hsUbc9) and yeast (scUbc9) Ubc9 as import cargos by human 
importin 13 (Imp13). H14-ZZ-SUMOvera-Imp13 fusion protein (1 µM) was incubated with hsUbc9 (3 µM) and scUbc9 
(3 µM) for 1h at 4°C. Import cargo recognition by Imp13 was species-specific as it only bound to hsUbc9 in the 
condition tested. (D) Interaction of Pdr6 with hsUbc9 and scUbc9 was tested as in (C). scUbc9 was only recognized by 
Pdr6 as an import cargo. Interaction of hsUbc9 and Pdr6 was not detected. Samples corresponding to 1-2µg of the tested 
NTRs were resolved by SDS-PAGE followed by coomassie staining. Only bound fraction samples are shown in the 
figure for a better clarity of the experiment.  
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4   DISCUSSION 

4.1  Efficient in vivo selection system for proteases with orthogonal 

specificity.  

Here, we have described an in vivo selection system based on bacterial survival to obtain 

SUMO-specific proteases with orthogonal substrate specificity. In our system, one plasmid 

encodes for a SUMO-specific protease under the control of IPTG, whereas a second 

plasmid constitutively expresses an antibiotic selection marker (Hph) fused to a different 

SUMO protein at the N- and the C-termini. The designed system links the half-life of Hph 

with the cleavage of the different SUMO proteins by a given SUMO-specific protease. To 

do so, Hph was expressed as a SUMO1-degronNER-Hph-SUMO2-ssrA fusion protein under 

the control of the constitutive GADPH promoter from E. coli. After expression of the 

SUMO-specific protease, Hph remains intact only if SUMO2 is cleaved and SUMO1 is not. 

In other words, cells survive in selective medium containing HygB only if the SUMO-

specific protease has orthogonal specificity for both SUMO proteins. Our results prove that 

our designed selection system could successfully be used in E. coli to isolate SUMO-

specific proteases with orthogonal substrate specificity. The main aspects and the 

advantages of our selection system as compared to other methods used for the engineering 

of proteases are discussed in the next paragraphs.  

The bacterium E. coli was selected as a model organism to develop this selection assay for 

different reasons. First, E. coli is cheap to produce in large scale and easy to manipulate by 

standard laboratory techniques. Second, the high transformation efficiency of E. coli cells 

facilitates the screening of libraries with a complexity of up to 1011 members (Dower et al. 

1988) . Last, the absence of the SUMO modification pathway in E. coli allows engineering 

of SUMO proteins and SUMO-specific proteases with new specificities without disturbing 

the bacterial growth.  

Several methods have been developed for the evolution of proteases (reviewed in Turanli-

Yildiz et al. 2012). Among these, methods based on bacterial survival in antibiotic 

selective medium allow higher throughput selection as compared to spatial separation 

based methods where the maximum library size that can be analyzed is limited to 1X104 

(Packer & Liu 2015). Unlike in vitro evolution methods (i.e. ribosome display, phage 

display), in vivo selection methods based on cellular growth offer the possibility to select 

for mutants with an improved or novel enzymatic activity. In addition, our in vivo system 
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ensures that proteases are evolved against non-specific cleavage of E. coli proteins. 

Moreover, our system select for eukaryotic proteases that are efficiently folded by bacterial 

chaperones at 37°C which would provide a high yield of soluble protease for further 

protein purification. 

In order to base our selection system on bacterial survival, we generated an efficient 

protease-sensitive antibiotic selection marker by adding two different protein degradation 

signals that regulate its half-life. Although we employed Hph as a reporter for protein 

cleavage by the protease of interest, other protein reporters that can be tagged at the N- and 

C-terminus without losing significant enzymatic activity could be used. At the beginning 

of this project, we tried to use bleomycin resistance protein (Semon et al. 1987) and 

tetracycline efflux protein as antibiotic selection markers, however, they did not tolerate 

SUMO-tagging at the N-terminus (data not shown). A feasible option to be used as a 

selection marker in our system would be chloramphenicol acetyltransferase (CAT), which 

confers resistance to chloramphenicol. CAT has been proven to be tolerant against tagging 

at both ends without losing activity and confers one of the most important features for any 

in vivo selection system which is a wide dynamic range of selection (Rackham & Chin 

2005). Therefore, CAT remains an excellent choice for further optimizations of our 

selection system.  

Similar to our work, previously reported selection systems showed that protein cleavage by 

a specific protease could be linked to a specific cellular phenotype in E. coli (i.e. 

fluorescence or bacterial growth) (Sandersjöö et al. 2014; Kostallas et al. 2011; Kostallas 

& Samuelson 2010). In contrast to our selection system, these studies did not provide any 

fruitful application of the system and did not offer the possibility to select against protein 

cleavage. Along these lines, the opportunity to select for and against the cleavage of two 

different proteins at the same time by a single protease is by far the most important feature 

of our novel selection system. In fact, the possibility to test for the independent cleavage of 

two different proteins is what offers the opportunity to isolate proteases with orthogonal 

specificities.  

Although we used our system so far only to evolve novel SUMO proteins and SUMO-

specific proteases variants, the design of our novel selection method tolerates the use of 

other specific proteases and their cognate recognition sites. The major restriction of our 

system is that the protease of interest needs to leave a specific amino acid (Arg, Lys, Phe, 

Leu, Trp or Tyr) after the cleavage of the N-terminal recognition site in order to allow 
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selection against protein cleavage. Proteases such as human rhinovirus 3C protease and 

thrombin could not be used in our system since protein cleavage results in a residual amino 

acid that is incompatible with the activation of the N-terminal degradation signal (Petrassi 

et al. 2005; Cordingleys et al. 1990). 

Last, we applied our novel selection system to evolve a SUMO/SUMO-specific protease 

pair with orthogonal specificity to the SUMOstar/SUMOstar protease pair. However, we 

believe that our in vivo selection system would also represent a valuable tool to improve 

enzymatic activity of known site-specific proteases, evolve more efficient protein 

recognition sites, and reveal novel protein sequences that can be recognized by a protease 

of interest. 

 

4.2   SUMOvera system as an efficient protein fusion tool for 

eukaryotic hosts 

In this study, we aimed for the evolution, isolation and characterization of a SUMO-fusion 

system that is fully compatible with different assays using eukaryotic extracts. From the 

beginning of this work, we sought to engineer the eukaryotic-compatible SUMO system 

based on the SUMO protein and SUMO-specific protease from B. distachyon (Frey & 

Görlich 2014a). Also, we pursued to evolve a SUMO system that has complete 

orthogonality to the already described SUMOstar system (Butt et al. 2010; Yan et al. 

2009). With these ideas in mind, we evolved the SUMOvera system that is composed of 

the SUMOvera protein and its cognate protease named SUMOvera protease. Our results 

show that the SUMOvera system is fully functional for protein expression and purification 

using different eukaryotic hosts. Moreover, we proved that SUMOvera protease is the first 

SUMO-specific protease that can be over-expressed in yeast without causing cell death. 

Last, we showed that SUMOvera and SUMOstar systems have fully orthogonal 

specificities that can be exploited for the purification of equimolar protein complexes in S. 

cerevisiae. The main applications of the SUMOvera system as well as the comparison 

between SUMOvera protease and other commonly used site-specific proteases are 

discussed in the next sections.  

 

 



 

 68 

4.2.1  SUMOvera as a tool for the enhancement of protein solubility 

The low solubility of recombinant proteins is one of the most encountered problems during 

protein expression in E. coli. Normally, fusion protein tags (i.e. MBP, the N-terminal 

domain of IF2, TX-tag and GST-tag) are fused to the recombinant protein of interest to 

increase its expression levels and solubility (reviewed in Walls & Loughran 2011). SUMO 

proteins from S. cerevisiae (scSUMO) and B. distachyon (bdSUMO) have also been used 

to increase the solubility of recombinant proteins expressed in E. coli (Marblestone et al. 

2006; Frey & Görlich 2014a). We show here that although bdSUMO was mutated in order 

to create SUMOvera, this did not impair its properties as a solubility enhancer fusion tag. 

Similar to bdSUMO and scSUMO proteins, SUMOvera also enhanced protein expression 

levels and solubility of eGFP in E. coli (data not shown). Despite the fact that SUMOvera 

was designed for being used in eukaryotic hosts, SUMOvera is also a good option as a 

fusion tag for the expression of recombinant proteins in E. coli. In fact, we have purified in 

high yields more than 30 different SUMOvera-tagged eukaryotic proteins expressed in E. 

coli. 

 

4.2.2  SUMOvera protease activity 

The removal of fusion tags from recombinant proteins is often mediated by site-specific 

proteases. In agreement with a previous study (Frey & Görlich 2014a), we showed that 

ubiquitin-like proteases are the most efficient proteases for tag removal. We observed that 

bdSENP1 is the most active ubiquitin-like protease in vitro, being 4-fold more efficient 

than SUMOvera protease. However, we showed that SUMOvera protease is from 3- to 25-

fold more active than bdNEDP1, xlATG4B and xlSub2. Therefore, we believe that 

SUMOvera protease is a highly attractive alternative for efficient tag removal. 

SUMOvera protease also represents a better tool for tag removal compared to 

commercially available proteases, i.e. TEV protease, thrombin, human rhinovirus 3C 

protease and scUlp1. For instance, SUMOvera protease is around 100-fold more active 

than TEV protease under the same in vitro conditions. Although we did not test the 

cleavage efficiency of thrombin and human rhinovirus 3C protease, both proteases would 

require longer incubation times and higher substrate/protease ratios for complete protein 

cleavage (Rubio et al. 2005; McCluskey et al. 2007) as compared to SUMOvera protease. 

Furthermore, SUMOvera protease is able to tolerate 5-fold higher salt concentration in 
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comparison to scUlp1 protease derived from S. cerevisiae (data not shown). During the 

course of this study, we have routinely used SUMOvera protease to cleave SUMOvera-

tagged proteins expressed in E. coli and S. cerevisiae. Therefore, we consider that 

SUMOvera protease is a real alternative for tag removal compared to conventional site-

specific proteases such as TEV protease, human rhinovirus 3C protease and thrombin. 

We believe that bdSENP1 mutants with a higher proteolytic activity than SUMOvera 

protease can be obtained by using our in vivo system with more stringent conditions of 

selection than the one used during the evolution of SUMOvera protease. In addition, 

SUMOvera protease could be subjected to random mutagenesis in order to drastically 

improve its proteolytic activity. Last, a more active bdSENP1 mutant could be achieved by 

creating a protease that contains the 4 most frequent mutations obtained during the 

selection of SUMOvera protease (section 3.1.4 ). 

 

4.2.3  SUMOvera as a fusion tag in S. cerevisiae 

As described in section 2.13 , the use of the SUMO-fusion technology is completely 

hampered in yeast by the presence of endogenous SUMO-specific proteases. So far, the 

only available option to circumvent this problem was the protease-resistant SUMOstar tag 

and its cognate SUMOstar protease (Yan et al. 2009). Here, we offer SUMOvera as the 

second SUMO fusion protein that is completely stable in S. cerevisiae. Our results 

demonstrate that SUMOvera-tagged proteins are not cleaved in vivo by endogenous yeast 

SUMO-specific proteases. In fact, SUMOvera-tagged substrates expressed in yeast turned 

out to be more stable than SUMOstar-tagged proteins. In addition to SUMOvera and 

SUMOstar, other ubiquitin-like proteins (xlLC3B and bdNEDD8) have also been shown to 

work as stable fusion tags in yeast (Frey & Görlich 2015). It is worth mentioning that 

experiments performed in our study showed that proteins tagged with SUMOvera and 

xlLC3B are more stable in yeast compared to SUMOstar- and bdNEDD8-tagged proteins 

(data not shown).  

SUMOvera tag can be exploited as a tool to produce recombinant proteins that require to 

be expressed in a eukaryotic host, such as S. cerevisiae, for proper protein folding or 

posttranslational modification. In combination with an N-terminal His-tag, SUMOvera-

tagged proteins can be over-expressed in yeast and further purified using a nickel chelate 

matrix. During protein purification, SUMOvera fusion proteins can be eluted by on-
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column cleavage using SUMOvera protease in order to achieve a higher degree of purity 

compared to standard elution methods. In fact, we have exploited SUMOvera and 

SUMOvera protease for the successful expression in yeast and further purification of yeast 

eEF2, Xenopus laevis Nup93, citrine, Nmd3, MBP, and human NAP1L1 (data not shown). 

Although SUMOstar protease is also a suitable choice for tag removal of recombinant 

proteins produced in eukaryotic hosts, SUMOvera protease can be produced in higher 

yields with more purity using a single purification step. Unlike SUMOvera protease, 

SUMOstar protease co-purifies with different E. coli proteins and nucleic acids after 

imidazole elution, which results in the need of extra purification steps to obtain a protease 

preparation with decent quality (data not shown).  

In summary, we are confident to say that the SUMOvera system is the most efficient 

technology for protein expression in yeast and purification due to its extremely protease-

resistant feature. Furthermore, the high efficiency of SUMOvera protease (5-fold more 

active than xlLC3B cognate protease) enables the fastest method for on-column or in-

solution tag removal of proteins that needed to be over-expressed in in S. cerevisiae.  

 

4.2.4  SUMOvera tag can be used in multiple eukaryotic systems 

We tested the applicability of the SUMOvera protein in different cellular extracts derived 

from higher eukaryotes. In combination with previous studies for SUMOstar fusion 

proteins (Zuo, Mattern, et al. 2005; Liu et al. 2008), our work shows that SUMOvera- and 

SUMOstar-tagged proteins are highly stable in the following cellular extracts: in Xenopus 

laevis egg extract, rabbit reticulocyte extract, wheat germ extract, HeLa cell extract, 

Leishmania tarentola cell extract and Drosophila S2 cell extract. Therefore, these results 

suggest that SUMOvera and SUMOstar proteins are not recognized by endogenous 

SUMO-specific proteases from amphibians, plants, insect, protozoa and human cells. 

Moreover, SUMOvera, in combination with another fusion tag or any affinity tag, 

represents a powerful technology to improve protein expression, protein purification and 

protein localization in eukaryotic organisms. To sum up, we believe that SUMOvera-

fusion technology can be applied to a countless number of different applications using 

virtually any eukaryotic model system described so far. In fact, we are currently testing 

different applications involving the expression of SUMOvera-tagged proteins in 

eukaryotes.  
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4.2.5  Purification of protein complexes in S. cerevisiae 

Recently, a multi-step affinity chromatography technique was developed to purify dimeric 

protein complexes with a well-defined stoichiometric composition (Frey & Görlich 

2014b). After the co-expression of the tagged subunits, the purification technique relies on 

the use of two different affinity matrices and two proteases with orthogonal substrate 

specificity for on-column protein elution. Although this method represents an elegant and a 

streamlined process, it is restricted to the purification of proteins over-expressed in E. coli. 

Here, we showed that the fully orthogonal and eukaryotic protease-resistant SUMOvera 

and SUMOstar systems are compatible tools to purify dimeric protein complexes in S. 

cerevisiae. Specifically, we co-expressed in yeast and further purified the citrine�enhancer 

(Heikal et al. 2000; Kirchhofer et al. 2010) and the anti-MBP Darpin�MBP complexes 

(Binz et al. 2004) with a high degree of purity and a well-defined subunit stoichiometry. 

Along these lines, we foresee that SUMOvera and SUMOstar tags can be used together 

with other eukaryotic protease-resistant fusion tags (i.e. xlLC3B and bdNEDD8) (Frey & 

Görlich 2015) for the purification of protein complexes with at least 4 different subunits. In 

combination, these four fusion tags would improve existing purification protocols for 

difficult-to-express heterotetrameric or hererotrimeric protein complexes such as the 

endosomal sorting complex (ESCRT-I) and the Protein G complex, respectively 

(Kostelansky et al. 2007; Katzmann et al. 2001; Chan et al. 2011).  

As mentioned before, the purification of protein complexes with defined stoichiometry 

requires two proteases with strict orthogonal substrate specificity. Despite the fact that 

SUMO-specific proteases from different species are the most active site-specific proteases 

described so far (Frey & Görlich 2014a), they could not be considered in the original 

design of the method due the cross-reactivity between them (Frey & Görlich 2014b). 

Instead, the method was developed in E. coli using two orthogonal ubiquitin-like proteases, 

bdSENP1 and bdNEDP1 from B. distachyon. SUMOvera protease and SUMOstar protease 

are completely orthogonal and 3- to 6-fold more active than bdNEDP1, we therefore 

believe that the use of both SUMO-specific proteases is a more efficient alternative for the 

purification of protein complexes not only in yeast but also in E. coli. In fact, we 

successfully used SUMOvera protease and SUMOstar protease for the purification of 

import and export complexes expressed in E. coli.  
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4.2.6  SUMOvera protease can be overexpressed in S. cerevisiae  

Site-specific proteases are typically used for in vitro assays. However, an obvious and 

interesting approach would be to exploit the high specificity of these proteases in vivo. So 

far, this idea has already been implemented, but only for TEV protease (Gruber et al. 2003; 

Higuchi & Uhlmann 2005; Chen et al. 2010; Harder et al. 2008; Sato & Toda 2007). 

Despite its poor catalytic activity (Frey & Görlich 2014a), TEV protease is frequently used 

for protein cleavage in vivo for the simple reason that its short recognition site 

(ENLYFQS) is practically absent in all eukaryotic organisms. In contrast to TEV protease, 

yeast SUMO-specific proteases cannot be used for in vivo protein cleavage as over-

expression of such proteases results in cell death (Bohnsack et al. 2004; Li & Hochstrasser 

2003). Here, we showed that unlike wild type SUMO-specific proteases and SUMOstar 

protease, SUMOvera could be over-expressed in S. cerevisiae without causing cellular 

death. We speculate that the over-expression of SUMOvera protease is tolerated in S. 

cerevisiae because it does not cause massive deSUMOylation of endogenous proteins as 

compared to all other tested SUMO-specific proteases. However, the cause for cell death in 

yeast upon expression of a SUMO-specific protease still needs to be determined.  

We considered that SUMOvera protease is a better choice for in vivo site-specific protein 

cleavage as compared to the TEV protease due to several reasons. First, SUMOvera 

protease is a more active enzyme. Second, SUMO proteases can work efficiently in very 

different conditions (pH, temperature, ionic strength), meaning that SUMOvera could be 

highly active in organelles such as mitochondria or peroxisomes. Last, SUMOvera 

generates cleaved proteins without an exogenous N-terminal amino acid. This last feature 

becomes essential for cases where a specific sequence at the N-terminus of the target 

protein plays a crucial role for the intended in vivo assay (Taxis & Knop 2012).  

To sum up, we showed here the first successful example of the over-expression of a highly 

active SUMO-specific protease in S. cerevisiae. We believe that SUMOvera protease in 

combination with SUMOvera protein represent so far the best option for site-directed 

protein cleavage in eukaryotic living cells. Currently, we are designing experiments to 

target specific SUMOvera-tagged proteins for degradation in the proteasome upon protein 

cleavage by SUMOvera protease. 
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4.3  A new tandem affinity purification approach  

In this study, we present a novel tandem affinity purification (TAP) protocol that uses a 

novel affinity protein tag. This tag is composed of the E and D domains form the 

staphylococcal ProtA as the first affinity tag, SUMOvera as a protease cleavage site and a 

His-tag as the second affinity tag. In the next paragraphs, we discuss the advantages of our 

novel TAP technology over conventional protocols. 

Most of the reported TAP protocols use a single or double copy of the synthetic Z domain 

derived from ProtA (Nilsson et al. 1987) for the initial binding of the tagged bait to a IgG-

coupled matrix. Here, we improved this initial binding step by replacing the low binding 

capacity and expensive IgG-coupled matrix for a solid support coupled to the anti-Z 

domain affibody named ZpA963 (Lindborg et al. 2013). Production and coupling of anti-Z 

domain affibody to sepharose beads is cheaper compared to the commercially available 

IgG-coupled matrices. Also, anti-Z domain affibody sepharose matrix has a higher protein 

binding capacity as compared to IgG-coupled matrices (unpublished data). We also 

improved the initial immobilization of the bait protein by replacing the double copy of the 

synthetic Z domain for the E and D domains from ProtA. The E and D domains represent a 

better affinity tag as they have a higher binding affinity to the ZpA963 affibody than the 

doubled Z domain (Lindborg et al. 2013). Together, the ZpA963 affibody and the ED 

domains from ProtA represent the first advantage of our novel TAP protocol. 

Most reported TAP protocols employ a protease-mediated elution step to recover the 

protein binders from the first affinity matrix used. Although protein elution using a site-

specific protease considerably increases the selectivity by reducing background binding, 

only highly inefficient proteases such as TEV protease and human rhinovirus 3C protease 

have been employed so far (Rigaut et al. 1999; Cheeseman & Desai 2005; Giannone et al. 

2007; Rubio et al. 2005; Bürckstümmer et al. 2006). Therefore, using TEV protease or 

human rhinovirus 3C protease for TAP results in complete elution of the target protein and 

extremely long incubations times (≅16 h). To solve this problem, we envision that a 

SUMO-specific protease would drastically reduce the time needed for efficient and 

complete protein elution. SUMOvera protein in combination with SUMOvera protease 

allowed us to achieve complete protein elution of the SUMOvera-tagged bait from the 

affinity matrix within less than 1 h at 4°C. Also, only nanomolar concentrations of 

SUMOvera protease are needed to completely elute all protein bound to the matrix, 
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whereas protein elution using TEV protease would require high micromolar concentrations 

(Schimanski et al. 2005). Therefore, we believe that the use of SUMO protease is the 

second advantage of our novel TAP system as it represents a cheaper and a faster way to 

achieve complete and highly selective protein elution. 

The use of a His-tag gives the opportunity to elute only the isolated proteins binders and 

keep the His-tagged bait bound to the Ni2+ chelate matrix when using a denaturing elution 

buffer. In our assays, we used as denaturing elution buffer a solution containing Gdn-HCl 

and a basic pH. The separation of binder proteins from the His-tagged bait using a Gdn-

HCl-containing solution offers several advantages for further analysis of the eluted 

samples. First, Gdn-HCl-containing samples are compatible with trypsinization protocols 

prior to MS analysis (Proc et al. 2010). Therefore, there is no need of extra preparation 

steps for protein identification by MS. Second, the absence of the high amount of bait in 

the final sample improves the identification of isolated low abundant protein binders by 

LC/MS. Third, protein elution with Gdn-HCl helps to visualize binders that would co-

migrate on SDS-PAGE with the His-tagged bait. For instance, the separation of the His-

tagged Pdr6 from its protein binders was an extremely useful step for the identification of 

eEF2 as export cargo. The large amount of Pdr6 used as bait masked the visualization of 

eEF2 (Figure 3.20. Lane 5). Thus, eEF2 factor was only visible in the polyacrylamide gel 

only after Gnd-HCl elution (Figure 3.20. Lane 7).  

In summary, we consider that our novel method to identify protein binders of a specific 

bait is a more efficient, highly selective, MS-compatible and a less time consuming 

alternative to most of the available TAP methodologies described so far.  

 

4.4  How many bidirectional NTRs are present in S. cerevisiae? 

Exportins have an rather low affinity to Ran-GTP and their interaction is only detectable in 

the presence of the export cargo (Hellmuth et al. 1998; Maurer et al. 2001). In contrast, 

importins have a high affinity to Ran-GTP and that might explain why the import cargos 

are rapidly released upon translocation into the nucleus (Görlich et al. 2003). In this study, 

we asked the question whether NTRs with a medium affinity to Ran-GTP might work as 

exportins as well as importins.  
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As mentioned earlier, a medium affinity to Ran-GTP seems to be a particular characteristic 

for NTRs that can act as an import as well as an exportin. A previous work found that 7 

yeast NTRs (Kap114, Yrb4, Nmd5, Msn5, Mtr10, Pdr6 and Lph2) have a medium affinity 

Ran-GTP (Hahn & Schlenstedt 2011). However, the authors of this work completely 

ignored the possibility to acknowledge that these 7 NTRs might act as bidirectional NTRs. 

We therefore performed a series of in vitro and in vivo experiments and proved that Lph2 

and Pdr6 act as bidirectional NTRs in budding yeast. Specifically, we found that eIF4A is 

an export cargo for Lph2 whereas Pdr6 exports eIF5A and eEF2.  

Conventional importins or exportins consume one molecule of GTP per every cargo 

transported across the nuclear envelope. In contrast, bidirectional NTRs transport two 

cargos per every GTP molecule consumed. Bidirectionality therefore seems to be an 

improved feature for NTRs as it represents a reduction in the energy consumed for 

nucleocytoplasmic cargo transport. However, it has been proposed that bidirectional 

transport might have the shortcoming of limiting the amount cargo accumulated in the final 

cellular comportment (Mingot et al. 2001). Consequently, it is reasoned that 

bidirectionality in transport might be present in exceptional cases rather than a common 

feature for NTRs. Here, our results support the idea that bidirectional NTRs are more 

recurrent phenomenon that previously believed, and that bidirectionality in cargo transport 

might represent a more common process for cells to consume less metabolic energy to 

transport two different cargos into two distinctive cellular compartments. Our findings 

might open a very important question in the field of nucleocytoplasmic transport: are there 

still other bidirectional NTRs to be characterized in other higher eukaryotes? 

At this point, Msn5 (Kaffman, Rank, O’Neill, et al. 1998; Yoshida & Blobel 2001), Lph2 

(3.3.2 ) and Pdr6 (3.4.2 and 3.4.4 ) are the only described bidirectional NTRs in S. 

cerevisiae. Currently, we are testing whether other poorly characterized yeast importins 

(i.e. Mtr10, Nmd5, Yrb4 or Kap114) might also act as novel exportins.  

 

4.5  Lph2 (Kap120) is a novel bidirectional NTR in yeast 

Here, we described that Lph2 is not only a importin but it also acts an export in S. 

cerevisiae. On one hand, we identified that Lph2 exports and binds in a Ran-GTP 

dependent manner to the yeast initiation factor eIF4A. On the other hand, we found that 

rpL12A is a novel import cargo for Lph2. Although only eIF4A was fully characterized in 
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vivo and in vitro as a new export cargo, our data suggest that several other yeast proteins 

(Kre11-1, Rvs167 and Rvs161) could also be exported by Lph2. Our findings strongly 

suggest that Lph2 is not a NTR highly specialized in the transport of few cargos but an 

NTR with a wider cargo recognition spectrum. 

The yeast translation initiation factor eIF4A binds to the 40S subunit at the beginning of 

translation and unwinds secondary structures of the mRNA (Rogers et al. 1999). eIF4A 

also recognizes, in complex with other translation factors, the 5’ cap region of the mRNA 

in order to promote an efficient translation initiation (Jaramillo et al. 1991; Neff & Sachs 

1999). Therefore, we speculated that Lph2 prevents the interaction between immature 

ribosomal subunits and different initiation factors in complex with eIF4A to prevent 

interference with ribosomal biogenesis. We also envision that Lph2 is actively suppressing 

premature nuclear translation of non-spliced mRNAs by actively excluding eIF4A from the 

nucleus. In fact, the argument that Lph2 as chaperone protein to prevent nuclear translation 

are supported by the fact that nuclear export of several translation factors by different 

NTRs is a highly recurrent process in several organisms (Lipowsky et al. 2000; Bohnsack 

et al. 2002; Calado et al. 2002; Kirli et al. 2015). Last, eIF4A is the first reported export 

cargo for the NTR Lph2. Thus, Lph2 is the third example of an NTR in S. cerevisiae that 

can import and export different sets of proteins across the nuclear envelope.  

Besides new export cargos, we also identified rpL12A as a potential import cargo for Lph2 

(3.3.1 ). While characterizing the Lph2�rpL12A import complex, we observed that 

Gsp1Q71L-GTP did not cause the disassociation of rpL12A from Lph2. One could 

therefore assume that rpL12A might not be a real import cargo but just a Lph2 binding 

protein. However, it is possible that the intrinsic low affinity of Lph2 for Gsp1-GTP (270 

nM, Hahn & Schlenstedt 2011) is insufficient to cause the proper release of rpL12A. If so, 

the binding of an export cargo (i.e. eIF4A) and Gsp1-GTP to Lph2 might be required to 

assist the complete disassociation of rpL12A from Lph2. In fact, import cargo release 

aided by Gsp1-GTP and an extra protein factor have been observed for different importins 

(Greiner et al. 2004; Mingot et al. 2001; Senger et al. 1998; Caesar et al. 2006). This 

situation could be beneficial for the cell as Lph2 might serve as a chaperone and deliver 

rpL12A to the final destination where it is transferred to other binder partners (i.e. other 

nuclear chaperones or eventually the ribosomal 60S subunit). Further experiments have to 

be performed in order to prove this plausible scenario. 
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4.6  Pdr6 (Kap122) acts as a bidirectional NTR in S. cerevisiae 

Pdr6 was first identified as a member of a protein family that causes pleotropic drug 

resistance in S. cerevisiae (Chen et al. 1991; Balzi et al. 1987). Later, completely different 

properties were described for Pdr6 (Titov & Blobel 1999). First, Pdr6 was defined as a 

protein that belongs to the Impβ-like NTR family due to the sequence homology of its N-

terminal domain (Görlich et al. 1997). Second, it was shown that Pdr6 interacts with 

different nucleoporins (Nup1 and Nup2) and is evenly distributed in the cytoplasm and 

nucleus of S. cerevisiae. Last, Pdr6 was described as an importin for the transcription 

factor TFIIA. Despite the fact that Pdr6 might act as a bidirectional NTR due to its medium 

affinity to Ran-GTP (231 nM, Hahn & Schlenstedt 2011), there has not been any reported 

study trying to identify potential export cargos for Pdr6. In this study, we identified that 

translation factors eIF5A and eEF2 are the first two export cargos for Pdr6. In agreement 

with their function, translation elongation factors eEF2 and eIF5A are localized in the 

cytoplasm of S. cerevisiae (Valentini et al. 2002; Perentesis et al. 1992; Gregio et al. 

2009). Therefore, S. cerevisiae counts on Pdr6 to actively export eEF2 and eIF5A out of 

the nucleus. 

Two criteria are met by eIF5A and eEF2 to be considered Pdr6 export cargos. First, both 

translation factors bind to Pdr6 in a Gsp1-GTP dependent manner. Second, export of 

eIF5A and eEF2 in inhibited in vivo by the absence of Pdr6. Additionally, our results also 

indicate that export of eIF5A is mediated specifically by Pdr6 unlike several other cargos 

that are transported by many independent pathways (Caesar et al. 2006; Mühlhäusser et al. 

2001; Greiner et al. 2004; Rout et al. 1997).  

Splicing of pre-mRNAs in the nucleus must be achieved before the mRNA can be 

translated in the cytoplasm. Premature nuclear translation of pre-mRNAs containing 

introns could cause the production of aberrant proteins with a dominant negative mutant 

function. Efficient nuclear translation would require a complete set of translation factors in 

optimal concentrations. Translation factors “leak” into the nucleus even if their size is 

above the passive diffusion limit at the NPC (≈40kDa).  In addition, translation factor can 

be located in the nucleus after the mixing of cytoplasm and nuclear contents during 

mitosis. As a consequence, active export of translation factors is one of the strategies used 

by eukaryotic cells to prevent translation inside the nucleus (Lipowsky et al. 2000; 

Bohnsack et al. 2002; Calado et al. 2002; Kirli et al. 2015). Our results support the idea by 
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showing that Pdr6 suppresses nuclear translation in S. cerevisiae by actively exporting 

essential translation factor (eEF2 and eIF5A). Export of eiF5A is achieved by Exportin 4 in 

humans (Lipowsky et al. 2000), however, the NTR responsible for the export of eEF2 in 

humans has not been identified yet.  

Besides the identification of eEF2 and eIF5A as novel export cargos, we also described the 

discovery of new import cargos for Pdr6. We showed that Pdr6 is a NTR responsible for 

the import of the E2 SUMO-conjugating enzyme Ubc9 in S. cerevisiae. As most of the 

protein SUMOylation takes place in the nucleus (Kamitani et al. 1997; Seeler & Dejean 

2003), the active import of Ubc9 represents an important process for the proper function of 

the cell. In addition, Ubc9 is the only E2-conjugating enzyme present in S. cerevisiae, 

therefore, this essential protein needs to be transported to nucleus as it is the only choice in 

the cell for the SUMOylation of target proteins. Therefore, our results suggest that Pdr6 

plays an important role in the SUMO pathway by actively importing Ubc9 to achieve 

proper SUMOylation in time and space of target proteins. The import of Ubc9 (3.4.3 ) and 

TFIIA (Titov & Blobel 1999) as well as the export eEF2 (3.4.4 ) and eIF5A (3.4.2 ), 

proves that Pdr6 is another bidirectional NTR together with Lph2 and Msn5 (Kaffman, 

Rank, O’Neill, et al. 1998; Yoshida & Blobel 2001) in S. cerevisiae. Moreover, our results 

demonstrate that Pdr6 has broader cargo recognition spectrum than as previously thought 

(Titov & Blobel 1999).  

Even though Pdr6 does not have any ortholog protein in human (Malik et al. 1997; Görlich 

et al. 1997; Quan et al. 2008).It is likely that the common ancestor of yeast and human had 

no Pdr6 and consequently S. cerevisiae had a gene duplication that did not occur in higher 

eukaryotes. Nevertheless, we noticed that the cellular functions of Pdr6 (export of eIF5A 

and import of Ubc9) are conserved and taken over by two different humans NTRs. In 

human cells, exportin 4 (Lipowsky et al. 2000) and importin 13 (Mingot et al. 2001) 

mediate the export of eIF5A and the import of Ubc9, respectively. In addition, human 

exportin 4 and importin 13 evolved further as they mediate the translocation of several 

cargos using transport pathways that have not been yet described in S. cerevisiae (Kurisaki 

et al. 2006; Gontan et al. 2009; Mingot et al. 2001). In the light of these observations, we 

bring two questions to the discussion. Why were export of eIF5A and import of Ubc9 also 

“developed” in human cells after millions of years of evolution? and why did exportin 4 

and importin 13 evolve and acquire extra transport functions that don’t seem to be 

performed by Pdr6? We speculate that the export of eIF5A and import of Ubc9 were kept 
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during evolution since both cargos are involved in fundamental cellular processes, 

translation and SUMOylation, respectively. Therefore, eIF5A and Ubc9 are required to be 

in the right subcellular location at the right time for optimal cellular performance. We also 

believe that acquirement of new functions by exportin 4 and importin 13 as compare to 

Pdr6 offers the advantage of creating new and tighter ways of regulating the subcellular 

localization of specific cargos. Moreover, the further evolution of exportin 4 and importin 

13 allows the opportunity to transport a higher number of different proteins in more 

complex organisms such as humans. 

4.7  Perspectives 

For the last 10 years, it was thought that Lph2 and Pdr6 were highly specialized importins 

since only very few specific cargos were known for each NTR (Titov & Blobel 1999; 

Caesar et al. 2006; Kim et al. 2010). In this study, we found that Lph2 and Pdr6 are in fact 

bidirectional NTRs with wide cargo recognition spectra. Lph2 recognizes Rpf1, rpL12A 

and eIF4A as cargos, whereas Pdr6 transport TFIIA, Ubc9, eIF5A and eEF2. We now aim 

to investigate in detail how these two NTRs are able to recognize their specific cargos. Do 

Lph2 and Pdr6 recognize a similar linear sequence shared by their cargos? Is a 

conformational motif in the cargo that is recognized by Lph2 and Pdr6? Is the recognition 

of each cargo by Lph2 or Pdr6 completely different from each other? In order to answer 

these questions, we are currently trying to crystalize Lph2 and Pdr6 in complex with their 

different cargos and Gsp1Q71L-GTP. In fact, Dr. Metin Aksu has gotten promising 

crystallization conditions with Pdr6�eIF5A�Gsp1Q71L-GTP and Pdr6�Ubc9�Gsp1Q71L-

GTP complexes. We are currently trying to optimize the expression conditions in E. coli of 

recombinant Lph2 in order to crystalize Lph2�eIF4A�Gsp1Q71L-GTP and Lph2�rpL12A 

complexes. Furthermore, we will also try to obtain the protein structure of the “free” Lph2 

and Pdr6 to understand how conformational changes in the NTRs are induced upon cargo 

binding. 

The identification of low abundant cargos for Lph2 and Pdr6 is another import aspect that 

we want to investigate further. We plan to analyze by mass spectrometry the interactome 

of Lph2 and Pdr6. Specifically, we want to identify what are the proteins most enriched in 

the presence and absence of Gsp1Q71L-GTP as compared to protein amount found the 

input material. We believe that the identification of several cargos Lph2 and Pdr6 will give 
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us a great opportunity to understand how these two different NTRs impact and regulate 

specific cellular processes in S. cerevisiae.  

As mentioned before, we strongly consider that there might be other bidirectional NTRs in 

yeast to be identified. Therefore, we are currently performing binding experiments using 

poorly studied yeast NTRs with a medium affinity to Gsp1-GTP as baits to identify novel 

export and import cargos. Overall, we seek to demonstrate that bidirectionality in NTRs is 

more common phenomenon than currently thought.  
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5    MATERIALS 

5.1  Reagents  

All chemical reagents used for this study were purchased from the following companies: 

Calbiochem (San Diego, CA, USA), Qiagene (Hilden, Germany), Roche (Mannheim, 

Germany), Roth (Karlsruhe, Germany), Sigma-Aldrich (St. Louis, MO, USA), AppliChem 

(Germany), New England Biolabs (USA), Serva (Germany), GibcoBRL-Life Technologies 

(Paisley, UK), Merck (Darmstadt, Germany), MoBiTech (Göttingen, Germany), 

Pharmacia (Uppsala, Sweden) and Promega (Madison, WI, USA). 

 

5.2  Buffers and solutions 

Table 5.1 Buffers and solutions used during manipulation of nucleic acids (DNA and RNA) 

Buffer or solution Composition 

Orange G sample buffer 10 mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0), 
50 % (w/v) glycerol and 25 % (w/v) Orange G 

TAE buffer (50x) 242 g Tris base, 57.1 ml acetic acid, and 100 ml 0.5 M 
EDTA (pH 8.0) in 1 l H2O 

Ethidium bromide 20 mg/ml ethidium bromide in water 

T4 DNA Ligase buffer (10x) 500 mM Tris (pH 7.5), 100 mM MgCl2, 100 mM DTT, 
10 mM ATP and 250 µg/ml BSA 

Phusion HF buffer (5x) Thermo Scientific, USA 

PfuS Triple Mix (100x) Self-made mixture containing 100 ng/µl PfuS polymerase, 
15 ng/µl pyrophosphatase, and 6 ng/µl dUTPase 

dNTPs (10x) 2.5 mM of each desoxynucleotide in ddH2O 

Gibson Assembly mix (2x) Self-made mixture containing 5' Exonuclease, DNA 
polymerase and DNA ligase 

DNA ladder GeneRuler 1 kb Plus (Thermo Scientific, USA) 

Tth buffer 
100 mM Tris-HCl (pH 8,9), 15 mM MgCl2, 1M KCl, 500 

µg/mL BSA, 0,5% Tween20 

10× TE (Tris-EDTA) buffer 100 mM Tris/HCl (pH 8.0), 5 mM EDTA 

LiAc/TE Solution 0,1 M LiAc in 1×TE buffer 

PEG/LiAc/TE solution 40% (w/v) PEG6000, 1 M LiAc in 1×TE buffer  

Salmon sperm DNA 10 mg/ml salmon sperm DNA in 1x TE buffer 
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Table 5.2 Buffers or materials used during protein biochemistry work. 

Buffer or material Composition 

SDS sample buffer 3% (w/v) SDS, 125 mM Tris/HCl (pH 6.8), 50 
mM DTT, 1 M sucrose, coomassie brilliant blue G250 

Protein ladder (SDS-PAGE) PageRuler Unstained (Thermo Scientific, USA) 

Protein ladder (Western Blot) PageRuler Plus Prestained (Thermo Scientific, USA) 

SDS-running buffer (10x) 150 g glycine, 30 g Tris base, and ddH2O to 1 l 
volume 

Coomassie staining solution 2 % (w/v) Coomassie brilliant blue G250 in 3% (v/v) 
acetic acid 

Amido Black staining solution 0.2 % (w/v) Amido Black in 2 % acetic acid 

1x PBS 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 
1.76 mM KH2PO4 

Cell resuspension buffer 45 mM Tris/HCl pH (7.5), 150-500 mM NaCl, 2-
20 mM imidazole, 5% (v/v) glycerol, 4.5 mM MgCl2, 

0-5 mM DTT 

Washing buffer 45 mM Tris/HCl pH (7.5), 500-2000 mM NaCl, 
4.5 mM MgCl2, 2-20 mM imidazole, 0-5 mM DTT 

Ni2+-elution buffer 45 mM Tris/HCl pH (7.5), 150-500 mM NaCl, 
400 mM imidazole, 4.5 mM MgCl2, 250 mM sucrose, 

0-5 mM DTT 

Binding buffer 45 mM Tris/HCl pH (7.5), 100 mM NaCl, 2 mM 
MgCl2, 5 mM DTT 

Gdn-HCl elution buffer 3 M guanidinium chloride, 50 mM Tris/HCl pH (8.0) 

GK75 buffer  20 mM HEPES-KOH pH (7.9), 1.5 mM MgCl2, 
75 mM KCl, 5% (v/v) glycerol, 0.01% (v/v) NP40, 

0.5 mM DTT) 

Protein cleavage buffer 45 mM Tris/HCl pH (7.5), 250 mM NaCl, 2 mM 
MgCl2, 250 mM sucrose, 10 mM DTT 

Colloidal Coomassie stock solution 0.08% (w/v) coomassie brilliant blue G250, 1.6% 
(v/v) ortho-Phosphoric acid, 8% (w/v) ammonium 

sulfate, 20% (v/v) methanol 

Blotting buffer 100 ml 10x SDS-PAGE running buffer, 200 ml 
MetOH, 0.03% (w/v) SDS, add to 1L with ddH2O 

Washing and blocking buffer  4% (w/v) powdered milk in 1x PBS 

Protease-inhibitor mix (500x) 5 mg/ml aprotinin, 5 mg/ml leupeptin, 2.5 mg/ml 
elastatinal, 2.5 mg/ml chymostatin, 0.5 mg/ml 

pepstatin A 
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5.3  Laboratory instruments 

Table 5.3 Equipment used during this study 

Instrument Manufacturer 

Analytical scale Sartorius, Germany 

Arium® Pro UV ultrapure water system Sartorius, Germany 

Agilent 2100 Bioanalyzer Agilent Technologies, USA 

Eppendorf 5415R and 5424 tabletop centrifuge Eppendorf, Germany 

MicroPulserTM electroporation apparatus Bio-Rad Laboratories Inc., USA 

NanoDrop 2000c PeqLab, Germany 

Thermomixer comfort Eppendorf, Germany 

Epson Perfection V700 Photo scanner Epson, Japan 

Sonifier 450 Branson Ultrasonics, UK 

Odyssey infrared imaging system LI-COR Biosciences, USA 

Eppendorf Biophotometer Eppendorf, Germany 

Incubator/ Climo-Shaker ISF1-X Adolf Kühner AG, Switzerland 

TCS SP5 confocal laser scanning microscope Leica, Germany 

M165C stereo microscope Leica, Germany 

Thermocycler SensoQuest, Germany 

DNA gel documentation system Vilber Lourmat, Switzerland 

Äkta Purifier + Äkta Explorer Pharmacia, Sweden 

MDF 793 -80 °C freezer Sanyo (Osaka, Japan) 

Perfection V700 photo scanner Epson (Long Beach, California, USA) 

UV table Benda Laborgärate (Wiesloch, Germany) 

Multifuge 3L-R Heraeus, Germany 

Sorval RC6+ centrifuge Sorvall/Thermo Scientific, USA 

Sorval Lynx 6000 Sorvall/Thermo Scientific, USA 

Sorval Wx Ultra ultracentrifuge Sorvall/Thermo Scientific, USA 

Discovery M120 SE ultracentrifuge Sorvall/Thermo Scientific, USA 

Research pro multi channel pipette Eppendorf AG, Hamburg, Germany 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5.4  Software and online tools 

Table 5.4 Software used during this study 

Software Developer 

Adobe Illustrator + Photoshop CS5.1 Adobe Systems Inc., USA 

Microsoft Excel for Mac 2011 Microsoft Corp., USA 

UCSF Chimera 1.10.1 Resource for Biocomputing, Visualization, 
and Informatics, UCSF, USA 

CFX ManagerTM 3.1.1517.0823 Bio-Rad Laboratories Inc., USA 

Odyssey 3.0.30 LI-COR Biosciences, USA 

Oligo 7.58 Molecular Biology Insights Inc., USA 

SeqBuilder; Protean; MegAlign; SeqMan; Gene 
Quest – all version 11.2.1 DNASTAR, USA 

Gene Designer 2.0 DNA2.0, USA 

Scaffold 4 Proteome Software, USA 

LASAF Leica, Germany 

UNICORN 5.0 Amersham Biosciences, Sweden 

Mendeley Mendely Ldt., USA 

Python 2.7.10 Python Software Foundation 

Mac OS X Yosemite Vers.10.10.5 Apple, USA 

Image J National Institute of health (USA) 

 

Table 5.5 Online tools used during this work 

Tool Website 

Biogrid https://thebiogrid.org/ 

BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi 

ClustalW http://ebi.ac.uk/Tools/msa/clustalw2 

Uniprot http://uniprot.org 

PsiPred http://bioinf.cs.ucl.ac.uk/psipred 

Protein Data Bank http://rcsb.org/pdb 

Saccharomyces genome database http://www.yeastgenome.org/ 

Saccharomyces genome deletion project 
http://www-

sequence.stanford.edu/group/yeast_deletion_project
/deletions3.html 

TermiNator http://www.isv.cnrs-gif.fr/terminator3/index.html 

ESPript 3.0 http://espript.ibcp.fr/ESPript/ESPript/ 

NEB tools https://www.neb.com/tools-and-resources 
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5.5  E. coli and S. cerevisiae strains 

Table 5.6 S. cerevisiae strains used in this study. 

Strain Purpose Genotype Supplier 

SFY123 
 

Protein 
expression 

MATα ADE2 his3-11, 15 leu2-3, 112 LYS2 trp1-1 
ura3 can1-100 H2B::CFP 

Provided by S. 
Frey. (Frey & 
Görlich 2015) 

BY4741 

 

Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

Provided by B. 
Schwappach. 

(Brachmann et 
al. 1998) 

AVY01 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔLph2 

Provided by B. 
Schwappach 

(Winzeler et al. 
1999) 

AVY02 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔPdr6 

Provided by B. 
Schwappach 

(Winzeler et al. 
1999) 

AVY04 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔLph2 TIF1::GFP 

This study 

AVY05 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔLph2 TIF1prL12A::GFP 

This study 

AVY06 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔPdr6 Ubc9::GFP 

This study 

AVY07 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔPdr6 EFT2::GFP 

This study 

AVY08 Confocal 
microscopy 

analysis 

MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho 
bio1 bio6 his3-11, 15 leu2-3, 112 LYS2 trp1-1 ura3 

ΔPdr6 HYP2::GFP 

This study 
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Table 5.7 List of E. coli strains used in this study. 

Strain Purpose Genotype Supplier 

5-alpha Cloning 
fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 
Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17 

New England 
Biolabs, USA 

10-beta Cloning 

Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 
galE15 e14-ϕ80dlacZΔM15 recA1 relA1 endA1 

nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-
mcrBC) 

New England 
Biolabs, USA 

Bl21 
(DE3) 

Protein 
expression 

B F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 
[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-

12(λS) 

Stratagene, 
USA 

Rosetta Protein 
expression 

F– ompT gal dcm lon? hsdSB(rB
–mB

–) λ(DE3 
[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-

12(λS) 
pLysSRARE[T7p20 ileX argU thrU tyrU glyT thrT 

argW metT leuW proL orip15A](CmR) 

Novagen, USA 

NEB 
express F’ 

Protein 
expression 

and selection 
method 

fhuA2 [lon] ompT gal sulA11 R(mcr-73::miniTn10-
-TetS)2 [dcm] R(zgb-210::Tn10--TetS) endA1 

Δ(mcrC-mrr)114::IS10 

New England 
Biolabs, USA 

Top10 F’ Protein 
expression  

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 
ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 

galE15 galK16 rpsL(StrR) endA1 λ- 

Invitrogen, 
USA 

 

5.6  Culture media for bacterial and yeast growth 

Table 5.8 Culture media used for bacterial growth 

Media Composition 

SOB liquid medium 20 g tryptone, 5 g yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 
10 mM MgSO4, and H2O to 1 l 

LB liquid medium 10 g tryptone, 5 g yeast extract, 10 g NaCl, and H2O to 1 l 

2YT liquid medium 16 g tryptone, 10 g yeast extract, 5 g NaCl, and H2O to 1 l 

TB liquid medium 12 g tryptone, 24 g yeast extract, 0.4% (v/v) glycerol, 72 mM K2HPO4, 17 
mM KH2PO4 

 

Table 5.9 Culture media used for yeast growth 

Media Composition 

YPD medium 20 g tryptone, 10 g yeast extract, 2.0 % (v/v) glucose and H2O to 1 l 

CSM-URA 1.7 g yeast nitrogen base without (NH4)2SO4, 50 g (NH4)2SO4, 2.0 % (v/v) 
glucose, 770 mg CSM-mix without URA and H2O to 1 l 
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All media were autoclaved before use with the following conditions (15 min, 121°C, 15 

psi). Table 5.10 shows antibiotics working concentration used to select and cultivate 

transformed E. coli and S. cerevisiae cells. In order to prepare culture plates, 2YT, CSM-

URA or YDP media were supplemented with 15 g/l of agar. Media for the cultivation of S. 

cerevisiae was supplemented before use with 2% (w/v) glucose from an autoclaved stock 

solution of 40% (w/v). 

The antibiotics were added right before using the media. For the preparation of selective 

agar plates, the antibiotics were added when the media were approximately at 60°C. All 

antibiotic stock solutions were prepared according to the instructions provided by the 

manufacturer and immediately sterilized by filtration. 

Table 5.10 Antibiotics used for this study 

Antibiotic Working 
concentration Purpose 

Ampicillin (Amp) 100 µg/ml Bacterial growth 

Kanamycin (Kan) 50 µg/ml Bacterial growth 

Spectinomycin 
(Spec) 100 µg/ml Bacterial growth 

Hygromycin B 
(HygB) 600 µg/ml Bacterial growth 

Hygromycin B 
(HygB) 300 µg/ml Yeast growth 

Geneticin (Gen) 100 µg/ml Yeast growth 

 

6   METHODS 

6.1  Standard methods in molecular biology (plasmid preparation) 
6.1.1  Electro-competent E. coli cells 

All E. coli cells used in this study (Table 5.6) were produced by Gabriele Hawlitschek and 

Uwe Hoffmann according to (Sambrook et al. 1989). Bacterial cells were grown overnight 

in SOB medium at 37°C with the respective antibiotic(s). Next day, overgrown bacterial 

cultures were diluted with fresh SOB medium and further incubated at 37°C. Bacterial 

cells were incubated until the exponential growth phase was reached (OD600≈ 0.8). Next, 

bacteria were pelleted by centrifugation at 5,000 rpm for 10 min at 4°C (RC6 plus 

centrifuge, F10 rotor; Sorvall, USA). After centrifugation, the supernatant was removed by 
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decantation and cells were resuspended in 1.4 % (w/v) glycerol. Bacteria were centrifuged 

and washed with glycerol one more time. Finally, cells were resuspended in 14 % (w/v) 

glycerol and aliquoted in 100 µl fractions. Aliquots were frozen in liquid nitrogen and 

incubated at -80°C until further use.  

 

6.1.2  Transformation of electro-competent E. coli cells by electroporation  

Typically, 40 of µl electro-competent cells were transformed with 50 ng of plasmid by 

electroporation. The transformation was performed in an electroporation cuvette using a 

GenePulser device (BioRad, Burlington, USA). Electroporated cells were then 

resuspended in 1ml of 2YT medium supplemented with 0.5 % (w/v) glucose. After 

suspension, cells were incubated for 1h at 37°C with continuous shaking. Next, cells were 

plated on agar containing the appropriated antibiotic(s) and incubated overnight at 37°C in 

order to select transformed cells. Single bacterial colonies were picked and further 

incubated in selective medium for DNA extraction or protein expression as described in 

6.1.5 and 6.3.1 , respectively. 

 

6.1.3  Purification and concentration determination of DNA 

DNA was extracted and purified according to manufacture’s instructions. For small-scale 

purification (mini-prep), DNA was purified using NucleoSpin Plasmid Kit (Marcherey 

Nagel, Germany). NucleoBond PC100 kit was used (Marcherey Nagel, Germany) when 

higher amounts of DNA were required (midi-prep). After purification, the concentration of 

DNA was determined using a NanoDrop 2000C spectrophotometer (PeqLab, Germany) 

according to the manufacturer’s instructions. 

 

6.1.4  Agarose gel electrophoresis  

Agarose gel electrophoresis was performed as described in (Sambrook et al. 1989). Double 

stranded DNA fragments resulting after enzymatic restriction reactions or PCR were 

separated according to their size by agarose gel electrophoresis. The agarose concentration 

in the gel varied from 0.8% (w/v) to 2.0% (w/v) depending on the size of the analyzed 

DNA fragments. For the preparation of the gel, the corresponding amount of agarose was 



 

 89 

dissolved in 1X TAE buffer. Ethidium bromide (3 µl of a 20mg/ml solution stock) was 

added to 100 ml of melted agarose solution. DNA samples were mixed with Orange-G 

sample buffer prior loading into the gel. For reference, a standardized DNA maker (1kb 

DNA ladder, Fermentas, St.Leon-Roth, Germany) was included during the analysis. 

Electrophoresis was carried out at 170V for 30 min in 1X TAE buffer using a Consort 

EV233 power supplier (Sigma-Aldrich, Germany). After the run, the DNA inside the 

agarose gel was visualized with UV light. 

 

6.1.5  DNA extraction from agarose gels  

DNA fragments loaded in agarose gels were extracted and further purified using the 

Zymoclean Gel DNA recovery kit (Zymo Research CA, USA) according to the 

manufacturer's instructions. DNA concentration was determined using a NanoDrop 2000C 

spectrophotometer (PeqLab, Germany). 

 

6.1.6  Enzymatic restriction of DNA 

Enzymatic restriction of DNA was performed for further cloning or analytical purposes. 

All restriction enzymes and the corresponding restrictions buffer used were purchased 

from NEB (New England Biolabs, USA). Typically, the reactions were performed as 

indicated by the manufacturer. For the complete cleavage of double stranded DNA, the 

restriction enzymes were used at least in a 2-fold excess per microgram of DNA during 2h 

at 37°C. Restriction reactions were stopped after the addition of Orange-G sample buffer. 

Finally, samples were analyzed by agarose gel electrophoresis as described in 6.1.4 . 

 

6.1.7   Dephosphorylation of DNA 

Digested DNA samples were treated with fast alkaline phosphatase (Thermo Scientific, 

USA) in order to dephosphorylate the 5’ end of vector backbone. DNA was incubated with 

2 µl of alkaline phosphatase (1 Unit/µl) for 1h at 37°C. The reactions were stopped with 

the addition of Orange-G sample buffer. Samples were analyzed by agarose gel 

electrophoresis and further purify as described in 6.1.5 . 
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6.1.8  Ligation of DNA fragments  

Ligation of DNA fragments with blunt or sticky ends was performed using T4 ligase 

(prepared in the lab, 100ng/µl). For a standard DNA ligation reaction, 30 fmol of DNA 

used as backbone were mixed with 60 fmol of DNA insert. The mixture was then 

supplemented with 1 µl of T4 ligase stock solution and 1 µl of ligation buffer (500 mM 

Tris (pH 7.5), 100 mM MgCl2, 100 mM DTT, 10 mM ATP and 250 µg/ml BSA). The 

ligation reaction was then filled up with ddH2O to a total volume of 10 µl. Reaction was 

incubated for 1h at 37°C for the ligation of fragments with sticky end or overnight at 16°C 

for fragments with blunt ends. A sample lacking the insert was always used as a negative 

control. The ligation reaction was stopped by heat-inactivation of T4 ligase for 10 min at 

70°C. Next, 1 µl of a inactivated reaction was used to transform electro-competent E. coli 

cells by electroporation as in 6.1.2 . 

 

6.1.9  Polymerase chain reaction (PCR) 

A homemade PfuS protein mix (PfuS polymerase, pyrophosphatase and dUTPase) was 

used for PCR. Typically, a 100 µl PCR reaction contained the following components: 

50 ng template DNA, 1 µl PfuS Tripple Mix, 1 µl (100 µM) each of forward and reverse 

primer, 5 µl of 10x dNTPs mix (2.5 mM each), 20 µl of 5x Phusion HF buffer (Thermo 

Scientific, USA) and the corresponding amount of ddH2O to make up to the final volume. 

PCR reactions were performed with a SensoQuest Lab cycler (SensoQuest GmbH, 

Göttingen, Germany). If not specified otherwise, PCR reactions were run using the 

following protocol: (1) initial denaturation at 98.5°C for 2 min, (2) denaturation at 98.5°C 

for 30 sec, (3) annealing at 58-62°C for 30 sec, (4) elongation at 72°C for 30 sec per 1 kb 

of PCR product length and (5) final extension at 72°C for 2 min. Steps (2)-(4) were 

repeated 25-30 times. The annealing temperatures were calculated using the Oligo 7.58 

(Molecular Biology Insights Inc., USA). Restriction sites or Gibson assembly overhangs were 

introduced to both ends of the amplified DNA fragments with the primers for further 

cloning. 
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6.1.10  Gibson assembly reaction  

Gibson assembly is a cloning technique that allows the joining of DNA molecules in a 

single isothermal step (Gibson et al. 2008; Gibson et al. 2009). DNA fragments are 

annealed and ligated in just one single reaction. The specific annealing of the fragments 

was guided through complementary overhangs (10-18 nucleotides long) contained at both 

ends of each fragment. Overhangs were introduced with the primers used during PCR as 

described in 6.1.9 . For optimal cloning efficiency, the overhangs were designed using 

Oligo 7.58 software (Molecular Biology Insights Inc., USA) in order to avoid the 

formation of secondary structures in the primers and achieve an annealing temperature of 

48°C. After PCR, the samples were treated with 1µl of DpnI for 1h at 37°C to remove the 

DNA template. Amplified fragments were purified via MSB Spin PCRapace Kit (Stratec, 

Germany). For a standard Gibson assembly reaction, equimolar (30 fmol) amounts of each 

DNA fragment were mixed with ddH2O to a final volume of 2.5 µl. Next, 2.5 µl of a 2X 

Gibson assembly protein mix (prepared in the lab) were added to the previously mixed 

DNA fragments. A reaction without the addition of one fragment was included as a 

negative control. Samples were incubated at 46°C for 30 min. After the reaction, electro-

competent cells were transformed with 1 µl of the Gibson assembly reaction and 

resuspended with 1 ml of 2YT medium supplemented with 0.5% (w/v) glucose. Cells were 

then inoculated on selective agar plates overnight at 37°C to select for cells containing the 

DNA construct of interest.  

 

6.1.11  Blunt end mutagenesis PCR 

If not mentioned otherwise, mutagenesis of a specific DNA plasmid was perfumed by PCR 

and followed by blunt end ligation (Sambrook et al. 1989). PCR primers were designed so 

they introduced the desired mutation to the target DNA vector. Mutations were introduced 

by amplifying the whole vector using PCR. Oligonucleotides were synthesized with a 5’ 

phosphoryl group to be able to perform blunt end ligation by the T4 ligase as described in 

6.1.8 . PCR reaction was carried out just as described in 6.1.9 . The amplified plasmid was 

on-column purified using the MSB spin PCRapace kit (Stratatec, Germany). The purified 

DNA product was measured as described in 6.1.3 and further treated with DpnI for 2h at 

37°C. 250 ng of amplified product was ligated overnight at 37°C. After incubation, the 
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reaction was diluted to a final DNA concentration of 10ng/µl. Last, 1µl of the diluted 

reaction was transformed into 50 µl electro-competent cells as described in 6.1.2 . 

 

6.1.12  Protein test expression  

Protein expression in small-scale was used as a quick test to screen for bacterial colonies 

containing the plasmid of interest after Gibson assembly reaction or restriction enzyme 

based cloning. Colonies with the desired plasmid would express a given protein of known 

molecular weight. To do this rapid test, individual colonies were picked from the plate and 

resuspended into 200 µl of 2YT medium containing appropriated antibiotic(s). 

Resuspended cells were grown for 3-4h at 37°C with continuous agitation. Next, 100µl of 

the bacterial culture were mixed with 100µl of fresh 2YT supplemented with antibiotic(s) 

and 0.4 mM IPTG in order to induce protein expression. Bacterial cells were incubated 

again for 2h at 37°C while shaking. After protein expression, cells were centrifuged at 

13,000 rpm for 3 min using a tabletop centrifuge. Bacterial pellets were resuspended in 

100µl of SDS sample buffer and analyzed by SDS-PAGE as described in 6.3.9 . Positive 

colonies were inoculated using the remaining non-induce culture for DNA extraction (6.1.3 

) or for protein expression in large scale (6.3.1 ). 

 

6.1.13  PCR colony 

The insertion of the DNA sequence of interest into a given vector after Gibson assembly 

reaction or restriction enzyme based cloning was confirmed by colony PCR. Colony PCR 

consisted in using a resuspended bacterial colony as source of DNA template for PCR. A 

specific DNA product is amplified by PCR only in positive samples. For colony PCR, 

primers were designed so they aligned up- and downstream of the inserted DNA fragment. 

Before starting the PCR reaction, cells were picked from the agar plate and resuspended in 

30µl of ddH2O. Then, PCR reactions were performed in a total volume of 20 µl using 1 µl 

of the bacterial suspension as DNA template. After PCR, the reaction was mixed with 1/10 

volume Orange G sample buffer. Samples were finally analyzed by agarose gel 

electrophoresis. Positive colonies were inoculated using the resuspended bacteria for 

further DNA extraction as in 6.1.3 . 
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6.1.14  Oligonucleotide synthesis and DNA sequencing 

Oligonucleotide design was performed using the Oligo 7.58 software (DBA Oligo, Inc., 

USA). Designed sequences were then synthesized by Sigma-Aldrich (Germany) and 

dissolved in ddH2O to a final concentration of 100 µM. If not stated otherwise, 

oligonucleotides were purchased as simple desalted material without any extra purification 

step.  

For the design of larger DNA fragments such as entire codon-optimized genes, Gene 

Designer 2.0 software (DNA2.0, USA) was used. Further DNA synthesis was carried out 

by GenScript (USA). 

Cloned plasmid and specific PCR products were sequenced using the appropriated primers 

at Seqlab (Germany). Sequencing results were analyzed using the SeqMan software 

(DNAStar, USA).  

 

6.2  Methods for Saccharomyces cerevisiae genetics 
6.2.1  Long-term storage of S. cerevisiae cells 

Glycerol stocks were prepared for the long-term storage of all yeast strains used in this 

study (Table 5.7). In order to prepare the stocks, 1 ml of over-grown yeast culture was 

mixed with 800 µl of sterile glycerol (80% v/v). The mixture was then frozen in liquid 

nitrogen and incubated at -80°C until further use. 

 

6.2.2   DNA transformation of S. cerevisiae cells 

Transformation of S. cerevisiae cells was performed as described in (Gietz & Schiestl 

2007; Schiestl & Gietz 1989). Normally, the strain to be transformed was storage in a 

glycerol stock at -80°C as indicated in 6.2.1 . A small piece of the frozen glycerol stock 

was used to inoculate a 10 ml pre-culture. Then, the culture was incubated at 30°C 

overnight or until stationary growth phase was reached (OD600≈3.0). On next day, the 

over-grown pre-culture was used to inoculate 25 ml of fresh medium to an OD600 of 0.1. 

The culture was then inoculated at 30°C with continuous shaking until the exponential 

phase growth was reached (OD600≈0.8). Cells were pelleted by centrifugation for 5 min at 

2,000 rpm and 4°C (swing-out rotor Multifuge 3L-R, Thermo Scientific). The supernatant 
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was discarded and cells were resuspended in 20 ml of ddH2O. Resuspended cells were 

centrifuged again and resuspended once more in 20 ml of ddH2O. Cells were then 

resuspended in 10 ml of LiAc/1x TE buffer and centrifuge for 5 min at 2,000 rpm and 4°C. 

Cells were finally resuspended in 500 µl of LiAc/1x TE buffer. Typically, 100 µl of 

resuspended cells were mixed with 1 µg of the plasmid to be transformed, 80 µg of heat-

denatured salmon sperm DNA and 500 µl of PEG/LiAc/1x TE buffer. The mixture was 

incubated for at least 1-3 h at 30°C while shaking. Cells were incubated for 20 min at 

42°C. Subsequently, cells were pelleted by centrifugation for 5 min at 2,000 rpm and 25°C 

using a tabletop centrifuge (Eppendorf, Germany). Cells were resuspended in 300 µl of 

sterile ddH2O and plated on selective agar. Plates were incubated overnight at 30°C. YPD 

medium was used for selection based on antibiotic resistance markers and SD-medium for 

auxotrophic markers. Finally, glycerol stocks of the transformed colonies were created as 

described in 6.2.1 .  

 

6.2.3   Gene deletion and genomic tagging in S. cerevisiae cells 

Yeast cells were transformed with linear double stranded DNA fragments to allow 

homologous recombination as described in (Baudin et al. 1993). This transformation 

method was used to delete a gene of interest or to introduce a C-terminal tag into a specific 

gene. For the deletion of a specific gene, an expression cassette that confers resistant to 

geneticin was introduced to replace the gene of interest (Janke et al. 2004). The 

replacement was using homologous sequences to the 5’-UTR and 3’-UTR of the targeted 

gene. In the case of C-terminal tagging of a gene, the yeast codon-optimized GFP tag 

(yeGFP) was introduced using homologous sequences to C-terminal part and to the 3’-

UTR of the targeted gene. In order to select for the integration of yeGFP, hygromycin B 

phosphotransferase was used as a selection marker (Janke et al. 2004). Hygromycin B 

phosphatase provides resistance to hygromycin B. PCR was used to amplify the linear 

DNA used for transformation of yeast cells (6.1.9 ). The homologous sequences to direct 

gene deletion or genomic tagging were introduced with the primers used during PCR. The 

amplified PCR product was purified via MSB Spin PCRapace Kit (Stratec, Germany). 

Transformation of cells with linear DNA was performed as described in 6.2.2 , except that 

2 µg of linear DNA were instead of a circular plasmid. Transformed cells were plated on 

YDP medium supplemented with geneticin (300 µg/ml) and/or hygromycin B (100 µg/ml). 



 

 95 

Plates were incubated for 48h at 30°C for the isolation of transformed colonies. PCR was 

used with in order to verify the deletion of a gene or the insertion of yeGFP. Finally, 

glycerol stocks of the selected colonies were created as described in 6.2.1 and storage at -

80°C for further use. 

 

6.2.4  Extraction of genomic DNA from S. cerevisiae cells 

Genomic DNA from yeast cells was prepared using repetitive freeze and thaw cycles as 

described in (Harju et al. 2004). For the extraction, a yeast colony was inoculated in 2 ml 

of selective liquid YPD or SD-medium overnight at 30°C with continuous shaking at 90 

rpm. 1.5 ml of the saturated yeast culture was centrifuged for 5 min at 2,000 rpm and 25°C 

using a tabletop centrifuge (Eppendorf, Germany). The cell pellet was resuspended in 200 

µl of lysis buffer (2% Triton X-100 (v/v), 1% SDS (w/v), 100 mM NaCl, 10 mM Tris/HCl 

pH 8.0, 1 mM EDTA, pH 8.0). Resuspended cells were frozen in liquid nitrogen for 2 min 

and then incubated at 95°C for 1min to thaw the sample quickly. This freeze and thaw 

cycle was repeated two more times. Cells were then vortexed thoroughly for 1 min. 

Subsequently, 200 µl of chloroform (100% v/v) were added and then the sample was 

mixed by vortexing for 2 min. Samples were then centrifuged for 3 min at 14,000 rpm and 

25°C. After centrifugation, the aqueous phase was placed into a new 1.5 ml tube 

containing 400 µl of ice-cold ethanol (100% v/v). Samples were incubated at -20°C for 1-3 

h to let the DNA precipitate. DNA was pelleted by centrifugation for 10 min at 14,000 rpm 

and 25°C. The supernatant was removed carefully by aspiration and the pellets were 

washed with 500 µl of ethanol (70% v/v). Samples were centrifuged once more for 5 min 

at 14,000 rpm and 25°C. The pellet was air-dried and resuspended in 20 µl of ddH2O.  

 

6.2.5   Confocal microscopy of living S. cerevisiae cells 

Confocal fluorescent laser scanning microscopy was used to study the intracellular 

localization of GFP-tagged proteins. The localization of fluorescent fusion proteins was 

analyzed in wild type yeast and in mutant cells lacking a specific gene. A yeast codon-

optimized GFP (yeGFP) tagged was introduced by homologues recombination as 

described in 6.2.3 . 
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Cells expressing the yeGFP-tagged proteins were inoculated in 10 ml YPD or SD-medium 

supplemented with antibiotic(s). The culture was incubated overnight at 30°C with 

permanent shaking at 90 rpm in order to obtain a confluent culture. On the next day, the 

pre-culture was used to inoculate 20 ml of fresh YPD or SD-medium with an initial 

concentration of OD600≈0.1. The yeast culture was then incubated at 30°C and 90 rpm until 

exponential growth phase was reached (OD600≈0.8-1.0). An aliquot of 2 ml of culture was 

centrifuged for 5 min at 3,000 rpm and 25°C using a tabletop centrifuge (Eppendorf, 

Germany). The supernatant was removed carefully by aspiration and the cell pellet was 

washed with 1 ml of SD-medium –URA. Cells were centrifuged again with the same 

conditions as before and the supernatant was also discarded. Centrifuged cells were 

resuspended with 100 µl of fresh SD-medium –URA. To image the cells, 7 µl of the 

resuspended cells were directly loaded onto a Superfrost UltraPlus microscope slides 

(Menzel GmbH, Braunschweig, Germany). Confocal images were acquired with a Leica 

SP5 confocal laser scanning microscope using a 63x immersion objective (Leica, 

Germany). 

 

6.3  Protein biochemistry methods 

6.3.1  Over-expression of recombinant proteins in E. coli 

E. coli strains detailed in table 5.6 were used for protein expression in large-scale. First, 

cells of the preferred E. coli strain were transformed by electroporation (6.1.2 ) with the 

plasmid encoding the protein of interest. Transformed cells were plated on a selective agar 

and incubated overnight at 37°C. After incubation, a single colony was picked and 

inoculated in of 50-100 ml 2YT medium supplemented with the appropriate antibiotic(s). 

This pre-culture was incubated overnight at 28°C with constant shaking. On the next day, 

pre-cultures were diluted five times using fresh 2YT or TB medium containing the 

respective antibiotic(s) and then incubated at 37°C for 1h before starting protein over-

expression. Recombinant protein expression was initiated after the addition of 0.05-0.1 

mM IPTG to the culture. Cells were then incubated at 18°C or 25°C with continuous 

agitation at 90 rpm and grown either for 6h or overnight depending on the expression level 

of the protein of interest. After incubation, 1 of mM PMSF and 10 mM of EDTA were 

added to prevent protein hydrolysis by unspecific bacterial proteases. Then, cells were 

harvested by centrifugation for 10 min at 5,000 rpm (RC6 plus centrifuge, F9 rotor; 
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Sorvall, USA). Supernatant was removed carefully by decantation and cells were 

resuspended using resuspension buffer (50 mM Tris/HCl pH 7.5, 150-500 mM NaCl, 2-

20 mM imidazole, 0-5 mM DTT). Normally, cells were resuspended to a final 

concentration of OD600 of 50-100/ml. Resuspended cells were frozen in liquid nitrogen and 

stored at -80°C until further used. Samples of 50-200 µl were taken before and after 

recombinant protein expression in order to be analyzed by SDS-PAGE as described in 

6.3.9 .  

 

6.3.2  Protein expression in S. cerevisiae 

The plasmid(s) encoding the protein(s) of interest were transformed using S. cerevisiae 

strain SFY123 (Table 5.7). Cells were transformed using PEG/LiAC solution as described 

in 6.2.2 . After selection of transformed cells on selective agar plates, a single colony was 

picked to inoculate a 50 ml of SD-medium 2% (w/v) of glucose. The pre-culture was 

incubated overnight at 30°C with constant shaking at 90 rpm. Then, cells were pelleted by 

centrifugation for 5 min at 2,000 rpm and 25°C and. After centrifugation, the supernatant 

was discarded and cells were resuspended in fresh medium supplemented with 2% (w/v) of 

glucose and 2% (w/v) of raffinose. Glucose and raffinose were added from solution stocks 

at 40% (w/v) and 20% (w/v), respectively. Centrifugation and subsequent resuspension of 

cells with fresh medium supplemented with 2% (w/v) of glucose and 2% (w/v) of raffinose 

were repeated two more times. Next, resuspended cells were used to inoculate 100-250 ml 

of YPD or SD-medium supplemented with antibiotics, glucose and raffinose to a initial 

concentration of OD600≈0.2. The culture was incubated at 30°C with constant shaking at 90 

rpm until exponential growth phase was reached (OD600≈0.8-1.0). In order to start protein 

over-expression, 2% (w/v) of galactose was added to the media. Galactose was added from 

a sterile solution stock at 20% (w/v). Protein expression was carried for 6-8h at 30°C while 

shaking the culture at 90 rpm. Cells were then pelleted by centrifugation for 10 min at 

2,000 rpm and 25°C (RC6 plus centrifuge, F10 rotor; Sorvall, USA). The yeast pellet was 

resuspended in resuspension buffer (50 mM Tris/HCl pH 7.5, 150-500 mM NaCl, 2-

20 mM imidazole, 0-5 mM DTT) to a final OD600 of 20-50/ml. A cocktail of different 

protease inhibitors was added to the resuspended cells to a final concentration of 1x. The 

stock (500x) of protease inhibitors contained the following compounds: 5 mg/ml aprotinin, 

5 mg/ml leupeptin, 2.5 mg/ml elastatinal, 2.5 mg/ml chymostatin and 0.5 mg/ml pepstatin 
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A. Cells were frozen in liquid nitrogen and storage at -80°C until further processing. 

Aliquots of 50-200 µl were taken before and after protein expression to analyze the 

expression of the protein of interest by SDS-PAGE as described in 6.3.9 . 

 

6.3.3  Sonication of E. coli cells  

After expression of the protein of interest, cells were resuspended and frozen as described 

in 6.3.1 . The frozen pellet was rapidly thawed by incubation of the sample in a hot water 

bath for 10-15 min. After thawing, samples were sonicated in an ice-water bath 4 times for 

1 min with 30 seconds of rest in between each sonication cycle. For this, a maximum 

output sonication power and 45% duty cycle were used (Sonifier 450, Branson, UK). In 

order to remove the bacterial debris and any insoluble material from the lysate, the sample 

was cleared by ultracentrifugation at 38,000 rpm and 4°C for 1.5 h (WX Ultracentrifuge, 

T647.5 rotor, Sorvall). For long-term storage of the cleared lysate at -80°C, sucrose at final 

concentration of 250 mM was added. Alternatively, the lysate was directly used after 

ultracentrifugation for protein purification by affinity chromatography (6.3.5 ). 

 

6.3.4  Disruption of Saccharomyces cerevisiae membrane 

As described in 6.3.2 , cells were storage at -80°C after the expression of the protein of 

interest. Afterwards, frozen cells were frozen in a hot water bath for 10-15 min. Glass 

beads (diameter of 500 µm) were mixed with the thaw sample in a 1:1 (v/v) ratio. Before 

use, glass beads were soaked in concentrated HCl for 16h, rinsed thoroughly with ddH2O 

and finally dried for 20 h at 185°C. In order to inhibit serine proteases, 10 µl of 0.1 mM 

PMSF were added to the samples. Afterwards, cells were vortexed 5 times for 1 min using 

the highest power setting of the vortex machine. One minute of resting time was kept in 

between each vortexing cycle. Yeast lysate was separated from the glass beads by simple 

decantation. Cell debris and insoluble material was removed from the lysed cells by 

ultracentrifugation at 38,000 rpm and 4°C for 1.5 h (WX Ultracentrifuge, T-1250 rotor, 

Sorvall). The cleared lysate was supplemented with 250 mM sucrose and stored at -80°C 

until further processing. 
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6.3.5  Protein purification using immobilized metal ion affinity 

chromatography 

If not stated otherwise, purification of recombinant proteins from yeast or bacterial lysates 

was carried out by Ni2+ chelate affinity chromatography. Nickel ions were immobilized on 

silica beads (prepared by D. Görlich) to isolate recombinant proteins from cellular lysates 

via a poly histidine tag (His-tag). All proteins expressed in this study contained a N- or C-

terminal poly histidine tag (His6-, His10- or His14-tag). Two different sizes of Ni2+ chelate 

silica beads with different substitution grade were used (6% substituted, 1000 Å and 20% 

substituted 500Å). The latter was used for the purification of monomeric proteins. In 

contrast, silica beads 6% substituted and 1000 Å in size were used for the isolation of large 

protein complexes.  

The bacterial and yeast lysates used for protein purification were prepared as indicated in 

6.3.1 and 6.3.2 , respectively. The volumen of beads used for the purification of a given 

protein depended on the amount of soluble protein found in the cleared lysate. An 

appropriate volume of nickel beads was placed in gravity flow column (Luer lock, Sigma, 

USA) and further equilibrated with 3 column volumes (CV) of resuspension buffer 

(45 mM Tris/HCl pH (7.5), 150-500 mM NaCl, 2-20 mM imidazole, 5% (v/v) glycerol, 

4.5 mM MgCl2, 0-5 mM DTT). Equilibrated beads were incubated with the lysate for 1 h 

at 4°C with constant mixing. After incubation, the beads were placed back on the gravity 

flow column. The flow-through was collected to check for the amount of unbound His-

tagged protein in the lysate. Beads were then washed with 1 CV of resuspension buffer and 

3 CV of washing buffer (45 mM Tris/HCl pH (7.5), 500-2000 mM NaCl, 4.5 mM MgCl2, 

2-20 mM imidazole, 0-5 mM DTT). Whenever needed, the washing buffer wash 

supplemented with either ATP (5 mM, pH 7.5) to remove bacterial chaperones bound to 

the recombinant protein or with a high concentration of NaCl (1-2 M) to remove bound 

nucleic acids. After washing the beads, the protein was eluted by competitive elution using 

a high concentration of imidazole. Elution of the protein was carried out in 0.5 or 1.0 ml 

fractions of elution buffer (50 mM Tris/HCl pH 7.5, 150-500 mM NaCl, 400 mM 

imidazole, 250 mM sucrose, 0-5 mM DTT) using a total volume of 3-4 CV. 1 µl of each 

collected fraction was soaked on a nitrocellulose membrane. The membrane was then 

stained with Amido Black Quick Staining solution to check the protein content in each 

fraction. Fractions with the highest protein content were pooled in a single sample. Protein 
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absorption at 280 nm was measured using the NanoDrop 2000C spectrophotometer 

(PeqLab, Germany) according to the manufacturer’s instructions. Protein concentration in 

final sample was calculated using the Beer-Lambert equation (Swinehart 1962). The 

protein-specific extinction coefficient at 280 nm (ε280) was obtained using the protean 

software (DNAStar, USA). For long-term storage of the protein, the sample was frozen in 

liquid nitrogen and placed in a -80°C freezer.  

In order to analyze the expression level and the purification efficiency of the protein, 

protein samples were taken as follows: non-induced cells, induced cells, soluble protein 

fraction (cleared lysate), insoluble fraction (cellular debris after ultracentrifugation), flow-

through and final purified protein. All samples were analyzed by SDS-PAGE and stained 

with coomassie brilliant blue as indicated in 6.3.9 . For normalization purposes, all samples 

analysis by SDS-PAGE corresponded to 35 mOD of cells or to 1/1000 of the total purified 

protein were for analysis.  

 

6.3.6  On-column cleavage protein purification using specific proteases 

Proteins expressed in this study often included a protease cleavage site in between the His-

tag and the protein of interest. If needed, the His-tag was removed from the recombinant 

protein by using specific proteases. Different proteases cleavage sites were used during this 

study such as bdSUMO, SUMOvera, SUMOstar, scSUMO, bdNEDD8, TEV site and 

many other (0). Removal of the His-tag was performed while the protein was bound to the 

Ni2+chealate beads (on-column protein cleavage). Therefore, the protein was eluted from 

the beads after adding resuspension buffer supplemented with the respective protease. 

Working concentrations of the proteases used in this study were as described in (Frey & 

Görlich 2014a). On-column protein elution was performed by placing inside the column, 2 

CV of resuspension buffer containing the respective protease at right concentration. The 

buffer was forced to pass carefully through the beads inside column with the help of a 

syringe. The column was then incubated for 1h at 4°C in order to achieve complete protein 

cleavage. After incubation, protein was retrieve from the column in 0.5 ml fractions of 

resuspension buffer containing 250 mM sucrose for a total volume of 1.5 CV. 

Determination of protein concentration was performed as indicated in 6.3.5 . Finally, the 

total protein sample was frozen in liquid nitrogen and stored at -80°C for further use.  
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6.3.7  Purification of binary protein complex in Saccharomyces cerevisiae 

Purification of binary protein complexes was performed as described in (Frey & Görlich 

2014b), except that the recombinant proteins were expressed in S. cerevisiae cells. Protein 

expression was carried out using S. cerevisiae strain SFY123 (S288C, Matα, H2B-

CFP::TRP1, his3Δ200, leu2Δ0, lys2Δ0, met15Δ0, ura3Δ0) as described in 6.3.2 . 

Specifically, the binary complex of Citrine�Enhancer was purified in this study 

(Kirchhofer et al. 2010) was. SFY123 cells were transformed with two plasmids as 

described in 6.2.2 . One plasmid codified for fusion protein H14-SUMOvera-Enhancer and 

the second for ZZ-SUMOstar-Citrine. Cells were grown in SD-medium -URA 

supplemented with 300 µg/ml of hygromycin B to express the recombinant complex as 

indicated in 6.3.2 . The cleared yeast lysate was incubated with Ni2+ chelate beads for 1h at 

4°C. Contaminant proteins were removed as indicated in 6.3.5 . Subsequently, the protein 

complex was eluted after incubation of elution buffer containing 200 nM of SUMOvera 

protease for 1h at 4°C as in 6.3.6 . For the second purification step, the complex was 

immobilized via the ZZ-tag (tandem repeat of the Z domain from staphylococcal protein 

A) using silica beads coupled to an anti Z-domain affibody. The sample was incubated 

with 2 ml of anti Z-domain beads for 1h at 4°C. After incubation, beads were washed with 

3 CV of washing buffer (45 mM Tris/HCl pH 7.5, 500 mM NaCl, 4.5 mM MgCl2, 5 mM 

DTT). For protein elution, silica beads were incubated with resuspension buffer 

supplemented with 100 nm of SUMOstar protease for 1 h at 4°C. After elution, samples 

were pooled and frozen in liquid nitrogen for storage at -80°. Protein samples were taken at 

different steps of the expression and purification of the complex and analyzed by SDS-

PAGE as indicated in 6.3.9 . 

 

6.3.8  Size exclusion chromatography 

After protein purification as described in 6.3.5 , the high amount imidazole in the protein 

preparation was removed by small-scale size exclusion chromatography. For this, Nap5 or 

PD-10 desalting columns (GE Healthcare, USA) were used according to the 

manufacturer’s instructions. If not stated otherwise, binding buffer (45 mM Tris/HCl 

pH 7.5, 100 mM NaCl, 2 mM MgCl2, 5 mM DTT) was used to replace the elution buffer 

(50 mM Tris/HCl pH 7.5, 150-500 mM NaCl, 400 mM imidazole, 250 mM sucrose, 0-

5 mM DTT). After buffer exchange, the protein concentration was measured using the 
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NanoDrop 2000C spectrophotometer (PeqLab, Germany) according to the manufacturer’s 

instructions. Samples were supplemented with 250 mM sucrose and stored at -80°C until 

further processing.  

Size exclusion chromatography was also used to further purify His-tagged proteins from 

nucleic acid or protein contaminants. For this purpose, Superdex 200 26/60 column 

(protein separation range 10-600 kDa) or Superdex 75 16/60 column (protein separation 

range 3-70 kDa) were used following supplier’s instructions. Gel filtration columns were 

connected to a ÄKTA Purifier or ÄKTA Explorer system (Pharmacia, Sweden) in order to 

perform and control the purification process. After buffer exchange as described above, the 

His-tagged protein sample was ultracentrifuged for 30 min at 38,000 rpm and 4°C 

(Discovery M120 SE ultracentrifuge, Sorvall, S45-A rotor) in order to pelleted any 

precipitated protein. Before loading the sample, the column was equilibrated with 1.5 CV 

of binding buffer (45 mM Tris/HCl pH 7.5, 100 mM NaCl, 2 mM MgCl2, 5 mM DTT). 

The protein was eluted from the column using 1.2 CV of the same buffer used during 

equilibration. Fractions of 0.5-1.0 ml were collected as soon as protein leaving the column 

was detected at 280 nm. All fractions in the elution peak were analyzed by SDS-PAGE as 

indicated in 6.3.9 . Pure protein samples were pooled and supplemented with 250 mM 

sucrose for long-term storage at -80°C.  

 

6.3.9  SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

The analysis of protein samples was performed using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). During this study, SDS-PAGE was 

based in the protocol described in (Laemmli 1970; Sambrook et al. 1989). Gradient SDS 

polyacrylamide gels (8-14% w/v) were prepared by Gabriele Hawlitschek and Jürgen 

Schünemann. All samples corresponding to 35 mOD of cells or 1-2 µg of purified protein 

were prepared using 5x SDS sample buffer (3 % SDS, 125 mM Tris/HCl (pH 6.8), 50 

mM DTT, 1 M sucrose and coomassie brilliant blue G250). Samples were heated for 5 min 

at 98°C before loading. The electrophoresis was performed using the following conditions: 

400 V, 50 mA for 70 min. After the run, the polyacrylamide gels were stained using 

coomassie staining solution (0.3% (w/v) coomassie brilliant blue G250 in 3% (v/v) acetic 

acid). Then, the staining solution was discarded and the gel was incubated with dH2O until 
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background staining disappeared. Finally, gels were scanned using the Epson Perfection 

V700 Photo scanner.  

 

6.3.10  Protein cleavage assays 

Cleavage reactions were carried out using cleavage buffer (45 mM Tris/HCl pH 7.5, 250 

mM NaCl, 2 mM MgCl2, 250 mM sucrose, 10 mM DTT) in a total volume of 20 µl. If not 

stated otherwise, 100 µM of tagged substrate were incubated with various amounts of a 

given protease for 1-2h at 4°C or 25°C. Prior to the reaction, substrates and proteases were 

diluted with cleavage buffer to 2-fold of the concentration required for the reaction. Equal 

volumes of diluted substrate and proteases were mixed in order to start the reaction. 

Cleavage reaction was then stopped by adding 180 µl of SDS sample buffer (3 % SDS, 125 

mM Tris/HCl (pH 6.8), 50 mM DTT, 1 M sucrose and coomassie brilliant blue G250). 

Samples corresponding to 2.5 µg of substrate were resolved by SDS-PAGE as described in 

6.3.9 . Control samples without protease were included in the assays. 

 

6.3.11  On-column protein cleavage assays 

On-column protein cleavage assays were performed in mini-spin columns were used 

(MobiTec, Germany). His-tagged substrates (12 µM) were immobilized onto 50 µl of Ni2+ 

chelate silica beads for 1h at 4°C. After immobilization of the substrate, beads were 

washed with 500 µl of cleavage buffer (45 mM Tris/HCl pH 7.5, 250 mM NaCl, 2 mM 

MgCl2, 250 mM sucrose, 10 mM DTT). The buffer was passed through the beads by mild 

centrifugation of the column for 1 min at 1,000 rpm and 4°C. Washing of the beads was 

carried out three times as just described. For elution of the protein, 50 µl cleavage buffer 

supplemented with a certain amount of a given protease were incubated with the pre-

loaded beads for 1h at 4°C. The eluted protein was collected by centrifugation of the 

column for 1 min at 1,000 rpm and 4°C. Next, another 50 µl of cleavage buffer were added 

to the beads and collected immediately by centrifugation. Elution and washing fractions 

were pooled before measuring the concentration of eGFP or mCherry at 488 nm and 585 

nm, respectively. Also, eluted samples were imaged while illuminated at 366 nm. Buffer 

sample controls lacking the protease were included in the assays. 
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6.3.12  Western blot 

Western blot was used in this study to analyze the stability of different SUMO-tagged 

proteins in various eukaryotic cellular extracts. All analyzed samples corresponded to 35 

mOD of cells expressing a SUMO fusion protein or to 1 µg of the SUMO-tagged protein. 

First, protein samples were treated and analyzed by SDS-PAGE as described in 6.3.9 . 

After SDS-PAGE, the SDS polyacrylamide gel, whatman paper (3.0 mm) and 

nitrocellulose membranes were equilibrated for 10 min in 1x blotting buffer (100 ml of 

10X SDS-PAGE running buffer, 200 ml MetOH, 0.03% w/v SDS). After equilibration, the 

gel was placed in direct contact with the nitrocellulose membrane followed by a whatman 

paper. On top of the other side of the gel, another pre-equilibrated piece of whatman paper 

was placed. The assembled gel was then pressed carefully in order to remove any air 

bubble formed in between the layers of paper. Proteins were then transfer from the gel to 

the nitrocellulose membrane using an electrophoretic chamber filled with 1x blotting 

buffer. Transfer was performed overnight at 4°C and 100 mA with gentile constant shaking 

of the blotting buffer. Next, the nitrocellulose membrane was removed from the chamber 

and incubated with blocking buffer (4 % w/v of powder milk in 1x PBS buffer) for 1h at 

25°C. The membrane was incubated again fresh blocking buffer supplemented with 0.1% 

(v/v) of tween-20 and the primary antibody in the appropriated dilution (1:5000) either for 

2h at 25°C or overnight at at 4°C. After incubation, the blocking buffer was discarded and 

the membrane was wash with 1x PBS buffer for 10 min. Washing of the membrane was 

repeated three times using each time fresh 1x PBS buffer. Subsequently, the membrane 

was incubated in blocking buffer containing the appropriated secondary antibody (Goat α-

rabbit IRdye; Goat α-mouse IRdye, Licor, USA) with the right dilution (1:10000) for 1h at 

25°C. Membrane was rinsed 3 times using fresh 1x PBS buffer for 10 min each washing 

step. Later, the membrane was air-dried before scanning at 700 nm or 800 nm using the 

Odyssey scanner (Licor, USA) following manufacturer’s instructions. 

 

6.3.13  Stability of SUMO-tagged proteins expressed in Saccharomyces 

cerevisiae 

Diverse SUMO-tagged proteins were expressed for 6h at 30°C in S. cerevisiae strain 

SFY123 as indicated in 6.3.2 . Proteins were expressed as citrine fusion proteins with a N-

terminal ZZ tag (Heikal et al. 2000). In order to analyze the stability of the fusion proteins, 
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cell lysates were generated by TCA/NaOH extraction as described in (Zuk 1998). Cell 

lysates corresponding to 35 mOD of cells expressing the citrine fusion proteins were 

resolved by SDS-PAGE and analyzed by western blot as described in 6.3.12 . An anti-GFP 

primary antibody was used to detect citrine by western blot. A cell lysate lacking a SUMO-

tagged citrine was used as negative control. 

 

6.3.14  Stability of SUMO-tagged substrates in eukaryotic extracts  

A eukaryotic cell lysate is a source of endogenous SUMO-specific proteases. Therefore, 

the stability of different SUMO-tagged MBP fusion proteins was tested in different 

eukaryotic extracts. 1 µM of SUMO-tagged substrate was incubated with 10 µl of the 

following extracts: wheat germ extract, Xenopus laevis egg extract, rabbit reticulocytes 

extract, HeLa cell extract, Drosophila S2 cell extract, LTE lexsy cell extract. The 

preparation of the lysates was performed as described in (Mureev et al. 2009; Kovtun et al. 

2010; Blow & Laskey 1986; Crevel & Cotterill 1991; Endo et al. 2010; Jackson & Hunt 

1983). The reactions were incubated for 2 h at 25°C in the presence and absence of a 

protease mix containing 1µM of different SUMO-specific proteases (Ulp1, SUMOstar, 

bdSENP1 and SUMOvera protease) in a total reaction volume of 12.5 µl. The protease mix 

was used to test for the presence of SUMO-specific protease inhibitory substances present 

in the lysates. The stability of the substrates was analyzed by western blot as described in 

6.3.12 using an anti-MBP primary antibody.  

 

6.3.15  Small-scale binding assays 

Recombinant purified proteins were used in this study to analyze protein-protein 

interactions. In general, binding reactions were performed using a ED-tagged bait protein 

(1-2 µM) and one or two different prey proteins (3-6 µM). Proteins were mixed in binding 

buffer (45 mM Tris/HCl pH 7.5, 100 mM NaCl, 2 mM MgCl2, 5 mM DTT) and incubated 

for 1-2 h at 4°C to let proteins to interact. Binding reactions were carried out in a total 

volume reaction of 200 µl. Next, binding reactions were incubated for 1 h at 4°C in mini-

spin columns (MobiTec, Germany) containing 25 µl of anti Z-domain affibody beads 

previously equilibrated with 2x 500 µl of binding buffer. The use of anti Z-domain 

affibody silica beads allowed the immobilization of ED-tagged bait (Lindborg et al. 2013). 
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After incubation of the proteins with the beads, the flow-through was collected by gentle 

centrifugation of the column for 1 min at 1,000 rpm and 4°C. Beads were then washed 

with 500 µl of binding buffer. The buffer was forced to pass through the beads by gently 

centrifugation of the column for 1 min at 1,000 rpm and 4°C. Washing of the beads was 

repeated one more time using again 500 µl of binding buffer. Elution of the interacting 

proteins was performed by on-column protein cleavage. To do so, 50 µl of binding buffer 

supplemented with bdSENP1 (50 nM), SUMOvera protease (200 nM) or bdNEDP1 

(500nM) were added to the beads and incubated for 1 h at 4°C with constant shaking. The 

elute was collected by centrifugation of the column for 1 min at 1,000 rpm and 4°C. Beads 

were washed with another 50 µl of binding buffer and collected again by centrifugation of 

the column for 1 min at 1,000 rpm and 4°C. The eluate and the washing fractions were 

combined in a single tube regarded as the protein bound fraction. For this study, protein-

protein interaction was performed in the presence and absence of untagged Gsp1Q71L-

GTP (3-6 µM). In addition, a sample control lacking the bait protein was included to 

account unspecific binding of the prey to the anti Z-domain beads. Samples from the input 

protein fraction, flow-through and the bound fraction corresponding to 1-2 µg of the bait 

protein were analyzed by SDS-PAGE and stained with coomassie brilliant blue as 

described in 6.3.9  

 

6.3.16  Nuclear transport receptors binding specificity assays 

The interaction between a transport cargo and different nuclear transport receptor (NTRs) 

from S. cerevisiae was analyzed in small-scale binding assays. For the binding reaction, a 

ED-bdNEDD8-tagged cargo was used as bait and different E. coli lysates containing an 

over-expressed eGFP-tagged NTR were used as preys. The cleared E. coli lysates 

containing the NTR were generated using binding buffer (45 mM Tris/HCl pH 7.5, 100 

mM NaCl, 2 mM MgCl2, 5 mM DTT) as described in 6.3.3 . The concentration of the 

eGFP-tagged NTRs in the lysates was determined at 488 nm in order to use equal amounts 

of NTR in all samples. In general, 2 µM of the cargo were incubated in binding buffer with 

6 µM of the eGFP-tagged NTR for 1 h at 4°C. Gsp1Q71L-GTP (6 µM) was included in the 

binding reaction only if the recognition of an export cargo by different NTRs was tested. 

The final volume of the binding reaction was 200 µl. Samples were then incubated for 1 h 

at 4°C in mini-spin columns (MobiTec, Germany) containing 25 µl of anti Z-domain 
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affibody beads previously equilibrated two times with 500 µl of binding buffer. The 

cargo�NTR complexes were immobilized to the Z-domain affibody matrix via the ED-

bdNEDD8-tagged cargo. After immobilization, the flow-though was collected by 

centrifugation of the column for 1 min at 1,000 rpm and 4°C using a tabletop centrifuge 

(Eppendorf, Germany). Beads were washed two times with 500 µl of binding buffer in 

order to remove unbound prey from the beads. Protein elution was performed with 50 µl of 

binding buffer supplemented with bdNEDP1 (500 nM) for 1h at 4°C. Eluted protein was 

collected by mild centrifugation of the mini-spin column for 1 min at 1,000 rpm and 4°C. 

Next, silica beads were washed with another 50 µl of binding buffer in order to retrieve 

protein left inside the column. Both 50 µl fractions were pooled and regarded as the bound 

fraction. Last, samples from the input material, flow-through and bound fractions were 

analyzed by SDS-PAGE as described in 6.3.9 . 

 

6.3.17  Tandem affinity purification 

Tandem affinity purification (TAP) was used to identify specific transport cargos for 

different nuclear transport receptors from S. cerevisiae. Purified nuclear transport receptors 

(Pdr6 and Lph2) with a N-terminal ED-SUMOvera-H12 tag were used as baits and S. 

cerevisiae cellular extract was used as source of transport cargos. The cell extract was 

prepared in GK75 buffer (20 mM HEPES-KOH pH 7.9, 1.5 mM MgCl2, 75 mM KCl, 5% 

glycerol, 0.01% NP40, 0.5 mM DTT) and kindly provided by R. Lührmann. First, 1 ml of 

the yeast lysate was incubated with 100 µl of low substituted Phenyl-Sheparose matrix (GE 

healthcare Life Sciences, USA) in order to deplete endogenous nuclear transport receptors. 

Pre-depleted extract was incubated in GK75 buffer supplemented with 0.5 µM of NTR in a 

final volume of 1.5 ml. TAP experiments were performed in the presence and absence of 

Gsp1Q71L-GTP (6 µM) to identify export and import cargos, respectively. Samples were 

centrifuged for 30 min at 65,000 rpm and 4°C (Discovery M120 SE ultracentrifuge, 

S100AT4 rotor; Sorvall, USA). Then, the supernatant was incubated for 1h at 4°C to allow 

the formation of specific protein complexes. Samples were then incubated for 1 h at 4°C 

with 25 µl of anti Z-domain affibody beads previously equilibrated with 2x 500 µl of 

GK75 buffer. Beads were pelleted carefully by centrifugation using a tabletop centrifuge 

for 2 min at 1,000 rpm and 4 °C. The supernatant was removed by aspiration and beads 

were placed into mini-spin columns (MobiTec, Germany). The flow-through was collected 
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by centrifugation of the column for 1 min at 4°C and 1,000 rpm. Anti Z-domain beads 

were then washed three times with 500 µl of GK75 buffer. Bound material was eluted by 

on-column protein cleavage for 1 h at 4°C with 120 µl of GK75 buffer supplemented with 

20 mM imidazole and 250 mM of SUMOvera protease. Elute was collected by 

centrifugation for 1 min at 1,000 rpm and 4°C. Subsequently, another 120 µl of GK75 

buffer supplemented with 20 mM imidazole were added to the beads to recover protein left 

inside the column. Both fractions were pooled and incubated for 1h at 4°C with 250 µl of 

Ni2+ chelate beads previously equilibrated with buffer GK75. After incubation, beads were 

centrifuged for 1 min at 1,000 rpm and 4 °C in order to collect the flow-through. Beads 

were washed twice with 500 µl of GK75 buffer supplement with 20 mM imidazole. For the 

specific elution of isolated yeast proteins from the nickel beads, 200 µl of Gdn-HCl elution 

buffer (3M guanidinium chloride, 50 mM Tris/HCl pH 8.0) were incubated with the beads 

for 5 min at 25°C. The eluate was collected by centrifugation of the samples for 1 min at 

1,000 rpm and 4°C. Subsequently, another 200 µl of Gdn-HCl elution buffer were added to 

the column. Both fractions were pooled and regarded as the protein bound fraction 

(transport cargos). Guanidinium hydrochloride-containing samples were analyzed by SDS-

PAGE for further protein identification by mass spectrometry as described in 6.3.19 . 

Nickel beads were then washed with 500 µl of GK75 buffer to remove the Gdn-HCl 

elution buffer left in the column. Last, His-tagged NTR and Gsp1Q17L were eluted from 

the nickel beads by adding 200 µl of SDS sample buffer supplemented with 400 mM of 

imidazole. Protein samples at different steps of the TAP assay were taken as follows: (1) 

Input fraction for the yeast lysate, (2) NTR and (3) Gsp1Q71L-GTP. (4) Elution fraction 

after on column protein cleavage. (5) Sample after Gdn-HCl buffer elution. (6) Samples 

after imidazole elution. A sample without NTR was included to analyze the background 

binding of yeast proteins in the lysate to the affinity matrixes used.  

 

6.3.18  Protein precipitation 

Guanidinium hydrochloride was removed from the eluted protein samples obtained during 

tandem affinity purification in order to analyze them by SDS-PAGE. To do so, selective 

protein precipitation from guanidinium hydrochloride-containing samples was performed. 

Typically, 200 µl of the sample were mixed with 1.8 ml of ice-cold propanol (100%, v/v) 

and incubated overnight at -20°C. Precipitated protein was pelleted by centrifugation for 
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10 min at 14,000 rpm and 25°C. Supernatant was carefully removed by aspiration without 

disturbing the small white pellet. Next, 1 ml of ice-cold 70% (v/v) isopropanol was added 

to wash the pellet. The sample was vortexed briefly and further centrifuged for 2 min at 

14,000 rpm and 25°. The washing step was repeated using the same amount of ice-cold 

70% (v/v) isopropanol. After centrifugation, the pellet was air-dried for 5 min to 1 h at 

25°C. Finally, the dried pellet was dissolved in 35 µl of SDS sample buffer (3 % SDS, 125 

mM Tris/HCl (pH 6.8), 50 mM DTT, 1 M sucrose and coomassie brilliant blue G250) in 

order to be analyzed by SDS-PAGE as described in 6.3.9 . 

  

6.3.19  Mass spectrometry analysis 

Protein identification in samples eluted with Gdn-HCl elution buffer was performed by 

liquid chromatography-mass spectrometry analysis (LS-MS). All experiments were carried 

out by Uwe Plessman. Prior LS-MS, guanidinium hydrochloride was removed from the 

samples as described in 6.3.18 . After dissolving the pellet in SDS sample buffer, samples 

were loaded into a 10% (w/v) polyacrylamide gel (NuPAGE, Life Technologies) and 

stained with colloidal coomassie blue staining solution. Specific protein bands were 

excised from the gel and washed with 30 µl of ddH2O during 15 min at 25°C. Water was 

then removed and the gel piece was incubated with 20 µl of 50% (v/v) acetonitrile for 15 

min at 25°C. The supernatant was discarded and 20 µl of 100% (v/v) acetonitrile for 15 

min at 25°C. Next, acetonitrile was removed and the sample was incubated with 20 µl of 

100 mM ammonium bicarbonate solution for 5 min at 25°C. Supernatant was removed and 

another 20 µl of 100% (v/v) acetonitrile were added. After removal of the supernatant, the 

gel piece was air-dried for 5 min to 1 h. The dried gel was then incubated with 50 µl of 100 

mM ammonium bicarbonate solution supplemented with 10 µM DTT and further 

incubated at 56°C for 45 min. Then, the supernatant was removed and 30 µl of 55 mM 

iodoacetamide were added to the gel. The iodoacetamide solution was kept in the dark for 

30 min at 37°C. Iodoacetamide was removed and 20 µl of 0.1% (w/v) RapiGest buffer 

(Waters, USA) complemented with 50mM ammonium bicarbonate solution were added to 

the sample. The resuspended gel was incubated at 37°C for 10 min. After incubation, 

RapiGest buffer was removed and trypsin (stock solution 0.1 mg/ml. Promega, USA) was 

added in a enzyme to protein ratio of 1:50. The sample was incubated overnight at 37°C 

for optimum enzymatic digestion. The peptide fragments were precipitated with 
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trifluoriacetic acid to a final concentration of 0.5% (v/v). Samples were incubated for 10 

min at 37°C. The pellet was then collected by centrifugation of the sample for 10 min at 

14,000 rpm at 25°C. The protein pellet was dissolved in a solvent system containing 2 % 

acetonitrile (v/v) and 0.05 % formic acid (v/v) to a final volume of 20 µl. For LS-MS 

analysis, a sample corresponding to 1µg of protein was injected into a nano liquid 

chromatographic system (UltiMateTM 3000 RSLCnano system; Thermo Scientific, USA). 

Salt was removed from the sample using a trapping column for 3 min at a flow rate of 

10 µl/min in 95 % of mobile phase A (0.1 % FA in H2O, v/v) and 5 % of mobile phase B 

(80 % ACN and 0.05 % FA in H2O, v/v). Elution of the samples from the trapping column 

was performed during 43 min with a linear gradient of 15-46 % mobile phase B at a flow 

rate of 300 nL/min. Eluted peptides were analyzed on a Orbitrap Fusion Lumos mass 

spectrometer (Thermo Scientific, USA). Resulting data was analyzed using MaxQuant 

1.5.5.1 and Perseus 1.5.2.6 software (Cox & Mann 2012; Tyanova et al. 2016). 

 

6.4  Methods for the selection of bdSUMO and bdSENP1 mutants 
6.4.1  In vivo selection system for proteases with orthogonal specifies.  

SUMO-specific protease 1 (bdSENP1) and bdSUMO protein from Brachypodium 

distachyon were used as model protease/substrate pair to test the functionality of the in 

vivo selection system. Wild type bdSUMO was used to account for efficient protein 

cleavage by bdSNEP1. In contrast, a cleavage resistant mutant of bdSUMO, named here as 

bdSUMO*, was engineered to account for the absence of substrate recognition by 

bdSENP1. bdSUMO* has two point mutations (G96A; G97A) in positions P2 and P1 of 

bdSUMO. To test the performance of the selection system, four different plasmids were 

produced by placing bdSUMO or bdSUMO* in different combinations at each terminus of 

hygromycin B phosphotransferase. These plasmids are under the control of the GAPDH 

promoter and the t1 terminator. To see more detailed information about the plasmid (Table 

6.1).  

Expression of bdSENP1 is under control of a T5 IPTG-inducible promoter and a lamda t0 

trx terminator. Additionally, the ribosomal binding site was modified from 

TAAAGAGGAGA to CAAAACAAGT to reduce bdSENP1 expression level as described 

in (Registry of Standard Biological Parts, www.partsregistry.org).  

 



 

 111 

Table 6.1 Plasmids used the performance of the in vivo selection system in E. coli 

Plasmid 
number Protein codified Promoter/terminato

r Selection marker(s) 

pAV0159 bdSUMO-degronNER-Hph-
bdSUMO-ssrA 

GAPDH promoter; 
lambda t1 terminator 

Spectinomycin; 
Hygromycin B 

pAV0160 bdSUMO*-degronNER-Hph-
bdSUMO-ssrA 

GAPDH promoter; 
lambda t1 terminator 

Spectinomycin; 
Hygromycin B 

pAV0161 bdSUMO-degronNER Hph-
bdSUMO*-ssrA 

GAPDH promoter; 
lambda t1 terminator 

Spectinomycin; 
Hygromycin B 

pAV0162 bdSUMO*-degronNER-Hph-
bdSUMO*-ssrA 

GAPDH promoter; 
lambda t1 terminator 

Spectinomycin; 
Hygromycin B 

pAV0076 bdSUMO-Hph-bdSUMO GAPDH promoter; 
lambda t1 terminator 

Spectinomycin; 
Hygromycin B 

pAV0031 bsSENP1 T5 IPTG inducible 
promoter Kanamycin 

 

E. coli NEB Express F’ cells (fhuA2 [lon] ompT gal sulA11 R(mcr-73::miniTn10--TetS)2 [dcm] 

R(zgb-210::Tn10--TetS) endA1 Δ(mcrC-mrr)114::IS10) were used to perform the in vivo 

selection system for proteases with orthogonal substrate specificities. Electro-competent 

cells containing plasmid pAV0031 were transformed by electroporation with plasmids 

pAV0159, pAV0160, pAV0161, and pAV0162. Cells were grown overnight at 37°C on 

plates supplemented with the appropriated antibiotics for selection of transformants (50 

µg/ml of kanamycin and 50 µg/ml of spectinomycin). Single colonies were picked and 

incubated in selective 2YT medium for 6h at 37°C. After incubation, a small aliquot of 

each bacterial culture was diluted to a final OD600 of ≈ 1.0 using fresh 2YT medium to 

achieve a final cellular concentration of ≈ 8.8x108 cells/ml (Vincke et al. 2012). The 

diluted aliquot was further subjected to a series of 10-fold dilutions (1:50 to 1:500,000) 

using fresh 2YT medium. Subsequently, 5 µl of each dilution were spotted onto 2YT agar 

plates supplemented with hygromycin B (600 µg/ml) in the presence and absence of 0.1 

mM IPTG. Plates were incubated for 18 h at 37°C. After incubation plates were scanned 

using an Epson Perfection V700 Photo scanner. Controls plates lacking hygromycin B 

were also included in the analysis. Also, a hygromycin B phosphotransferase fusion 

protein without protein degradation signals (plasmid pAV0076) was used during the test as 

a positive control. 
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6.4.2  Library construction and selection of bdSUMO mutants 

In order to create the library of bdSUMO mutants, three codons corresponding to positions 

T60, D67 and Q75 in bdSUMO were randomized. The library was generated by PCR using 

randomized 5’ phosphorylated primers AV0351 and AV0353 (Table 6.2). For the library 

construction, plasmid pAV0171 was used as DNA template for PCR. pAV0171 encodes 

for the fusion protein bdSUMO-degronNER-Hph-SUMOstar-ssrA. PCR yielded a single 

DNA product of 4024 bp checked by agarose gel electrophoresis as in 6.1.4 . The 

amplified library was purified using the MSB spin PCRapace kit (Stratatec, Germany) and 

eluted in 50 µl of ddH2O. Then, 10 µg of the purified library were treated with BsaI at 

37°C for 2 h in order to generate sticky ends for further ligation of the library. After 

digestion, the library was purified again using the MSB spin PCRapace kit (Stratatec, 

Germany) and eluted in 30 µl of ddH2O. Ligation of the library was performed as 

described in 6.1.8 using 2 µg (0.75 pmoles) of the bdSUMO library in a final reaction 

volume of 10 µl. 

In order to select bdSUMO mutants that were not recognized by SUMOstar protease, the 

ligated library was introduce into electro-competent E. coli NEB Express F’ cells 

previously transformed with plasmid pAV0031. Specifically, 50 µl of competent cells 

were transformed with 200 ng of the ligated library. Transformed cells were incubated in 1 

ml 2YT medium supplemented 0.5% (w/v) of glucose for 2 h and 37°C. After recovery, 

cells were inoculated on several 2YT medium plates supplemented with hygromycin B 

(400 µg/ml) and IPTG (0.1mM) for 16h at 37°C. Single colonies were picked and 

incubated for 16h at 37°C in fresh 2YT medium for the analysis of individual bdSUMO 

mutants as described in 6.4.1 . To do so, 5 µl of each dilution were pipetted onto 2YT agar 

plates supplemented with hygromycin B (750 µg/ml) in the presence and absence of 0.2 

mM IPTG. Plates were incubated for 18 h at 37°C and further scanned using an Epson 

Perfection V700 Photo scanner.  
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Table 6.2 Oligonucleotides used for bdSUMO and bdSENP1 mutant library construction 

Primer number Sequence (5’-3’) Mutation 
introduced 

AV0351 GATGGTCTCTCGCCTACGTGCGGAANNKA
CCCCGGATGAACTGGAAATGGAAGATGG 

Q75X 

AV353 
TCCGGTCTCAGGCGACGACCMNNAAAGA
GGAAAGCAATTGCMNNCATGTCTACAGAC
TGAC 

T60X ; 
D67X 

AV0359 AACGGTCTCAGTGCACGAAGCGTCANNKA
TTGTGATCACGCGCGA 

R269X 

AV0358 ACAGGTCTCACACGGACAGGGTTTCGGAM
NNTTTGCGGCCACCCAGTGC 

N280X 

AV0361 GAAGGTCTCATTACAAAAGCGTTCGTNNK
TGGACTACGNNKCGCAAACTGGGTTACA 

R346X ; 
K350X 

AV0360 GAAGGTCTCTGTAATCATAGCCGCCGTTA
ATCAGCTTTT 

none 

A = adenosine; G = guanosine; C = cytosine; T = thymine; N = A/G/C/T; K = G/T; M = C/C 
BsaI recognition site is underlined. Randomized codons in bdSUMO and SENP1 are highlighted in red. 

6.4.3  Library assembly and selection of bdSENP1 mutants 

Four different codons corresponding to positions R269, N280, R346 and K350 in the C-

terminal catalytic domain of bdSENP1 were randomized for the construction of the mutant 

library. Because the four randomized codons are spread over the entire coding sequence of 

bdSENP1, mutations were introduced using two different subsequent PCR reactions. 

Positions R269 and N280 were first randomized by an initial PCR reaction using 

degenerated primers AV0358 and AV0359 (Table 6.2). Plasmid pAV0031 encoding 

bdSENP1 was used as template for creation of the library. The amplified library was then 

purified using the MSB spin PCRapace kit (Stratatec, Germany) and eluted in 50 µl of 

ddH2O. Forward and reverse primers used for the creation of the library contained a 5’ 

BsaI site. Therefore, 15 µg of purified library were treated with BsaI at 37°C for 2 h in 

order to generate sticky ends for further ligation of the library. The restricted PCR product 

was then purified again using the MSB spin PCRapace kit (Stratatec, Germany) and eluted 

in 30 µl of ddH2O. 5 µg (1.9 pmol) of the library were ligated as in 6.1.8 Subsequently, 1 

µg of the ligated library was transformed in 100 µl of E. coli 5-alpha cells. Transformed 

cells were resuspended in 1ml of 2YT medium supplemented with 0.5% (w/v) of glucose 

and incubated for 1h and 37°C. After incubation, the whole 1 ml sample was inoculated in 

250 ml of selective 2YT medium for further large-scale DNA purification as in 6.1.3 . The 

purified library DNA was used for further randomization of positions R346 and K350 of 

bdSENP1by PCR using randomized primers AV0360 and AV0361 (Table 6.2). Again, a 

single DNA product of 4621 bp was amplified after PCR. The amplified library was 

purified using the MSB spin PCRapace kit (Stratatec, Germany) and eluted in 50 µl 
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ddH2O. Then, 10 µg of purified library were treated with BsaI at 37°C for 2 h. Next, the 

ligation of the library was performed as described in 6.1.8 using 2 µg (0.75 pmoles) of the 

digested library in a final volume of 10 µl.  

The assembled library was used to select for bdSENP1 that recognized SUMOvera as a 

cognate substrate. For this, NEB Express F’ cells expressing bdSUMOstar-degronNER-Hph-

SUMOvera-ssrA were transformed with 200 ng of the ligated library. The cells were 

resuspended in 1 ml of 2YT buffer supplemented with 0.5% (w/v) of glucose and 

incubated for 3 h at 37°C. Cells were inoculated on several 2YT agar plates supplemented 

with hygromycin B (400 µg/ml) and IPTG (0.1mM). Plates were incubated for 16 h at 

37°C. The resulting colonies were picked and inoculated in different in 5 ml of fresh 2YT 

for further analysis. The analysis of individual bdSENP1 mutants was performed as 

described in 6.4.3 . To do so, 5 µl of each diluted sample were placed onto 2YT agar plates 

supplemented with hygromycin B (750 µg/ml) in the presence and absence of 0.2 mM 

IPTG. Plates were incubated for 18 h at 37°C. Finally, plates were scanned using an Epson 

Perfection V700 Photo scanner. 
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7   ABBREVIATIONS 

 
aa    Amino acid  
Ac    Acetate 
Amp    Ampicillin 
ATP    Adenosine 5'-triphosphate 
bd    Brachypodium distachyon 
BSA    Bovine serum albumin 
bp    Base pairs 
C-terminus (CT)   Carboxy-terminus 
COOH    Carboxyl group 
DMSO    Dimethylsulfoxide  
DNA    Desoxyribonucleic acid 
DTT    Dithiothreitol 
E. coli    Escherichia coli 
EDTA    Ethylenediaminetetraacetic acid 
eEF2    Eukaryotic elongation factor 2 
eGFP    Enhanced green fluorescent protein 
eIF4A    Eukaryotic initiation factor 4 A 
eIF5A    Eukaryotic initiation factor 5 A 
FG    Phenylalanine-glycine dipeptide 
FW    Framework 
GA    Gibson assembly 
Gnd-HCl   Guanidinium hydrochloride 
GFP    Green fluorescent protein 
GTP    Guanosine 5’-triphosphate 
HEPES    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HygB    Hygromycin B 
Hph    Hygromycin B phosphotransferase  
IBB    Importin β-binding domain of Importin α 
IF2    E. coli translation initation factor 2 
Impβ    Importin β  
IPTG    Isopropyl-β-D-thiogalactopyranosid 
Kap    Karyopherin 
kDa    Kilodalton 
Lph2    Karyopherin 122 
LC    Liquid chromatography 
MBP    Maltose binding protein 
MDa    Megadalton 
mCherry    monomeric cherry protein 
mRNA    Messenger RNA 
MS    Mass spectrometry 
NEDD8    Neural precursor cell expressed, developmentally down-regulated 8 
NEDP1    NEDD8-specific protease 
NES    Nuclear export signal 
NLS    Nuclear localization signal 
NPC    Nuclear pore complex 
NH2    Amino group 
N-terminus (NT)   Amino-terminus 
NTR    Nuclear transport receptor 
Nup    Nucleoporin 
OD600    Optical density measured at a wavelength of 600 nm 
PBS    Phosphate-buffered saline 
PCR    Polymerase chain reaction 
Pdr6    Pleiotropic drug resistance protein 6 
PDB    Protein data bank 
PMSF    Phenylmethanesulfonylfluoride 
ProtA    Protein A from Staphylococcus aureus 
Ran    Ras-related nuclear protein 
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RanGAP   Ran GTPase-activating protein 
Ran-GTP   GTP-bound Ran 
RanBP2    Ran-binding protein 2 
RNA    Ribonucleic acid 
rRNA    Ribosomal RNA 
rpL12A    Ribosomal protein L12A 
rpm    Revolutions per minute 
RT    Room temperature 
sc    Saccharomyces cerevisiae 
ssDNA    Single-stranded desoxynucleic acid 
ssrA    10Sa RNA 
ssRNA    Single-stranded ribonucleic acid 
SDS-PAGE   Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SENP1    Sentrin-specific protease 1 / SUMO protease 
SUMO    Small ubiquitin-related modifier 
TAP    Tandem affinity purification 
TB    Terrific broth medium 
TCEP    Tris(2-carboxyethyl)phosphin 
tCherry    monomeric cherry protein 
TEV    Tobacco etch virus 
Tris    Tris(hydroxymethyl)aminomethane 
tRNA    Transfer RNA 
Ubc9    E2 SUMO conjugating enzyme 
Ulp1    Ubiquitin-like protease 
URA    Uracil 
v/v    Volume/volume 
w/v    Weight/volume 
yeGFP    Yeast codon-optimized green fluorescent protein  
YT    Yeast extract tryptone medium 
ZZ    IgG-binding domain of Staphylococcus protein A (in tandem) 
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