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Abstract 

Redox signaling in the colonic mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used 

by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through 

the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-

derived reactive oxygen species and can be detrimental, and thus, maintenance and restitution of a breached 

intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signaling have been studied for 

decades with a primary focus on contributions to disease processes. Within the past decade an upsurge of exciting 

findings have implicated sub-toxic levels of oxidative stress in processes such as, maintenance of mucosal 

homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut 

microbial communities have been shown to trigger redox signaling within the mucosa, which expresses similar but 

distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium and 

emerging evidence suggests that precise control of redox signaling by these barrier-forming cells may dictate the 

outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity 

pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the 

gastrointestinal tract.  
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Key points 

• Immune cells, microorganisms and the epithelium all generate and respond to redox signals in the colonic 

mucosa during homeostasis and in disease 

• Redox signals, particularly H2O2, are generated by the host and the gut microbiota to impede overgrowth of 

opportunistic pathogens; similarly, certain pathogens utilize these systems to subvert host defences 

• Host responses to reactive oxygen species (ROS) produced in situ and hypoxia act in concert and opposition to 

regulate homeostasis in the gut. 

• Host-immune and host-microbiota crosstalk can both contribute to excessive ROS production, participating in 

collateral damage at the tissue level. 

 
 

[H1] Introduction  
 
Mucosae are selectively permeable host surfaces, necessary for interaction with the environment and for facilitating 

crucial functions including gaseous exchange and nutrient absorption1. Protecting these surfaces from both 

pathogenic and commensal microorganisms while maintaining immune homeostasis requires the ability to rapidly 

and potently induce danger signals when appropriate and to promptly neutralize these signals to limit collateral 

damage to the mucosa. The colonic mucosa consists of a single layer of epithelia derived from the crypt stem cell 

niche. As crypt stem cells proliferate, daughter cells migrate along the crypt axis, differentiating into specialized 

epithelia of either secretory or absorptive lineages2. Absorptive enterocytes are responsible for water reabsorption, 

whereas secretory epithelia are tasked with mucus and antimicrobial peptide (AMP) secretion into the lumen of the 

gut 2,3. These secretions provide an essential carbon source for the microbial niche, in terms of glycosylated mucins, 

but they also maintain a sterile margin directly adjacent to the epithelial cells to prevent inappropriate responses to 

resident gut microbiota 4,5.  

 Immune and inflammatory responses within the gastrointestinal mucosae are characterized by profound 

shifts in tissue metabolism. These changes include the utilization of large amounts of energy and diminished 

availability of oxygen (hypoxia) 6.  Such shifts in tissue metabolism result, at least in part, from recruitment of 

inflammatory cells, particularly neutrophils (PMN) and monocytes7. A particularly prominent phenotype of acute 

inflammatory lesions within the intestine is localized accumulation of PMN, termed crypt abscesses.  Given the 



4 
 

large amounts of reactive oxygen species (ROS) that can be generated by activated PMN, the crypt abscess 

represents a major signaling node for reduction-oxidation (redox) signaling8.   Resident immune cells in the 

intestine, which include intra-epithelial lymphocytes and professional antigen presenting cells (dendritic cells and 

macrophages), are poised as sentinels to respond to host threats such as bacterial and viral infections but also 

contribute to homeostasis by immune surveillance and promoting a regulatory immune response 9-11. Most of these 

cell types – immune, epithelia and microorganism — are capable of eliciting and/or circumventing redox signaling 

with profound implications for mucosal homeostasis.     

A significant result of active inflammation in the intestinal mucosae is the localized conversion of 

molecular O2 to ROS and resultant hypoxia. At the tissue and cellular level, hypoxia induces an array of genes 

pivotal to adaptation to low O2 states. As a global regulator of O2 homeostasis, the αβ heterodimeric transcription 

factor hypoxia-inducible factor (HIF) facilitates both O2 delivery and adaptation to hypoxia12,13. HIF-1 and HIF-2 

(previously called EPAS) are members of the Per-ARNT-Sim (PAS) family of basic helix-loop-helix (bHLH) 

transcription factors. HIF activation is dependent upon stabilization of an O2-dependent degradation (ODD) domain 

of the α subunit and subsequent nuclear translocation to form a functional complex with HIF-1β and cofactors such 

as CBP and its ortholog p300.  When O2 supply exceeds demand, iron and O2 dependent hydoxylation of two 

prolines (Pro564 and Pro 402) within the ODD of HIF-1 or HIF-2α initiates the association with the von Hippel-

Lindau tumor suppressor protein (pVHL) and degradation via ubiquitin-E3 ligase proteasomal targeting 14,15. A 

second hypoxic switch operates in the carboxy terminal transactivation domain of HIF-1 or HIF-2α� Here, hypoxia 

blocks the hydroxylation of asparagine-803 so facilitating the recruitment of CBP/p300 16.  

A unique feature of the intestinal mucosa, particularly the colon, is the juxtaposition to large numbers of 

microorganisms, termed the gut microbiota. Indeed, the mammalian gastrointestinal tract is home to >1013 

microorganisms, which approximates the number of eukaryotic cells comprising the human body 17. The epithelium, 

a single layer of specialized absorptive and secretory cells, is all that separates this biomass from the host immune 

system 18. A finely regulated relationship exists within the intestinal mucosa, whereby microorganisms, essential for 

host health, can also initiate and perpetuate mucosal disease 19. Nutrient provision by microbes is one benefit to the 

host. In addition to aiding in digestion, microbes benefit the host through the local synthesis of short-chain fatty 

acids (SCFAs), including butyrate, propionate, and acetate. SCFAs can reach luminal concentrations of 130 mM in 

the proximal colon and function as the primary metabolic fuel for intestinal epithelial cells 20. Reduced production of 
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SCFA-producing microbial species has been associated with colonic disease, including inflammatory bowel disease  

(IBD)21-23. The low-O2 (anaerobic) conditions that enable SCFA production place unusual metabolic demands on the 

colonic epithelium24 and are enhanced during inflammation25 It is particularly notable that the microbiota is a key 

regulator of redox potential in the mucosa26.  

 Aside from homeostatic and regulatory functions, ROS are well characterized to be produced and 

contribute to disease processes – acutely during ischemic damage, tissue injury and repair and chronically in 

inflammatory conditions such as ulcerative colitis, Crohn’s disease and colorectal associated cancer. This Review 

will provide an overview of redox reactions in the gastrointestinal tract and describe how various sources of redox-

sensitive pathways contribute to the function of the healthy and diseased mammalian intestine. We will also discuss 

exciting new findings that highlight the contributions that different intensities of redox signaling in microbial-host 

crosstalk have towards maintaining homeostasis or facilitating disease processes within the gastrointestinal tract. 

  

[H1] Redox signaling in the gut  

[H2] Reactive oxygen species generation 
 
Reactive oxygen species (ROS) constitute a major group of potent antimicrobial mediators and redox signaling 

factors. Both the gastrointestinal mucosa and associated immune cells represent sources of free radicals, which are 

defined as chemical species with one or more unpaired electrons in the outermost orbital shell, making them 

chemically reactive 27. The reduction and oxidation (redox) state of the gastrointestinal tract is contingent on the 

balance of antioxidants (for example, heme oxygenase or glutathione, a tripeptide consisting of glutamate, cysteine 

and glycine) and oxidants (for example, free radicals, reactive oxygen and nitrogen species). When an imbalance in 

redox state occurs, owing either to increased oxidants or insufficient neutralizing antioxidants, the tissue experiences 

oxidative stress or nitrosative stress28. In the gastrointestinal tract, a variety of reactive oxygen radicals including 

superoxide (O2
.-) and hydroxyl (.OH) and non-radicals including hypochlorous acid (HOCl) and hydrogen peroxide 

(H2O2) are generated epithelia, endothelia and innate immune cells to implement mucosal defense 29 (Figure 1). 

Tissue homeostasis is influenced in a variety of ways by the redox state of the tissue, including modulation of 

signal-transduction pathways (e.g. HIF, NF-kB, Nrf2) 30 that elicit adaptive gene expression to minimize bystander 

tissue damage. Through reduction of disulfide bonds found in many gut peptides, redox state can also modulate the 
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activity of antimicrobial peptides involved in mucosal defense and cytokine secretion31. Of particular significance is 

the redox state of the ubiquitously-expressed human beta defensin-1 (hBD-1). In the oxidized state, hBD-1 exhibits 

a limited antimicrobial activity; however, following reduction of the disulfide bridges, hBD-1 alters conformation 

and displays an enhanced antimicrobial efficacy 32. Indeed findings from the Wehkamp group demonstrate that the 

reduced form of hBD-1 is capable of forming net-like structures around bacteria to limit bacteria invasion 33. 

 

[H2] Reactive nitrogen species 
  

Nitric oxide (NO) is a short-lived, lipophilic and freely diffusible signaling molecule synthesized by mammalian 

cells with a broad spectrum of activities including regulation of blood flow, immune reactions and smooth muscle 

contraction 34. NO is generated by the nitric oxide synthase (NOS) enzymes, which convert L-arginine to L-

citrulline, liberating NO as a by-product 35. In the gastrointestinal tract, NO functions as an inhibitory nonadrenergic 

noncholinerigic neurotransmitter and smooth muscle cell relaxant via activation of guanylate cyclase 36,37. To date, 

three isoforms of NOS have been cloned: neuronal NOS (nNOS; NOS1), endothelial NOS (eNOS; NOS3) and 

inducible NOS (iNOS; NOS2) 38-40. Interaction of O2
.- with nitric oxide (NO) leads to the formation of peroxynitrite 

(ONOO-) 41. Further reactivity of peroxynitrite leads to the generation of various other NO-derived mediators termed 

reactive nitrogen species (RNS), including the reactive radical compounds nitrogen dioxide (NO2
.) and hydroxyl 

radical (HO.), and nonradical dinitrogen trioxide (N2O3) 
41. ONOO- together with RNS are in turn responsible for 

nitrosylation of protein tyrosine residues, mitochondrial energy depletion, lipid peroxidation and induction of DNA 

strand breaks 42. Nitrosative and oxidative stress have been implicated in a plethora of disease states, including 

conditions that affect the gastrointestinal tract (namely ischemia reperfusion injury and inflammatory bowel 

diseases) 30.  

 [H2] Sources of reactive oxygen species 
 
Both exogenous and endogenous sources of ROS contribute to the overall redox state of the gastrointestinal tract. 

Endogenous sources contributing to ROS generation include the mitochondrial respiratory chain 43, enzymes within 

the mucosal epithelia and submucosal lamina propria fibroblasts and myofibroblasts such as NADPH oxidases, 

xanthine oxidase and immune-expressed cyclooxygenases, lipoxygenases and myeloperoxidase28. Exogenous or 

environmental sources of ROS can also trigger oxidative stress, such as ionizing and nonionizing radiation, 
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chemotherapeutics, xenobiotics, heavy metals and drugs 44,45. Generation of ROS by cancer chemotherapeutic agents 

is a major contributor to the toxic side effects associated with these compounds 45. Cigarette smoke comprises 

>7,000 chemical compounds and oxidative agents, containing >1014 free radicals per inhalation 46. Tobacco use is 

known to modulate gastrointestinal diseases and active smokers display an increased risk for colorectal cancer 47 and 

increased severity of Crohn’s disease 48. For reasons that are not completely clear, tobacco smoke appears to confer 

a somewhat protective influence to patients with ulcerative colitis  49. 

[H1] Mitochondrial metabolism and ROS  
 
 While mitochondrial ROS (mtROS) are renowned for causing cellular damage (for example, during ischemia-

reperfusion injury 50 ), mtROS are now thought to contribute to healthy cellular function in terms of oxygen sensing, 

as well as disease 51. Physiological production of mtROS occurs during oxidative phosphorylation and generation of 

high-energy adenosine triphosphate (ATP). The tricarboxylic acid cycle is tightly regulated; however, <2% of O2 

consumption results in conversion to O2
.-, whereby electrons leak out from the mitochondrial electron transport 

chain (ETC) and are aberrantly transferred to molecular oxygen 52. Mitochondrial ETC complexes are capable of 

generating ROS at various sites. Complex I and II release O2
.- into the mitochondrial matrix 53, whereas manganese 

superoxide dismutase converts it to H2O2. Complex III can produce O2
.- within the inner membrane, but it is ejected 

into the intermembrane space, due to a large transmembrane electrical gradient 54. If O2
.- generated by the 

mitochondrial ETC is not efficiently converted to H2O2, nitric oxide radicals  produce peroxynitrite (ONOO-), 

leading to subsequent irreversible nitration of proteins and enzyme inactivation42.  

 Cellular stressors such as ROS and hypoxia are hallmarks of pathogen invasion, but also reflect the local 

environmental fluctuations experienced by intestinal epithelial cells during active inflammation or infection 6. There 

is interest in autophagy as a substantial contributor to intestinal disease mechanisms, especially IBD55. Autophagy 

represents a primordial cellular degradation pathway that facilitates cell survival under conditions of metabolic 

stress, in which cytoplasmic targets are engulfed by a double-membrane vacuole <1 micrometer in diameter termed 

the autophagosome that is subsequently fused with lysosomes for hydrolase-mediated digestion56. Considerable 

overlap exists between cellular stimuli for selective autophagy of damaged organelles (self) and invading 

microorganisms (non-self)57. Mitophagy is a particular type of autophagy, whereby mitochondria are specifically 

targeted for autophagic lysosomal degradation 58. Mitophagy is a highly regulated event and some studies indicate 
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that the mitochondrial 18 kDa translocator protein (TSPO) is central to both regulation of mitochondrial ROS 

generation and the induction of mitophagy59. Interestingly, the overexpression of TSPO in animal models of IBD 

have revealed that TSPO localizes with epithelial mitochondria 60. Considering the Endosymbiotic Theory, which 

postulates the ancient common origin between mitochondria and proteobacteria 61, it is curious to speculate how a 

pathway such as autophagy evolved to ignore functionally competent mitochondria and their proteobacterial 

ancestors, but be triggered by invasive pathogenic organisms or damaged mitochondria.  

 

[H2] H2O2 as a signaling molecule 
 

Oxygen radicals have a limited range of effect due to their short-lived and highly reactive nature62 Specialized 

enzymes, such as superoxide dismutases, convert oxygen radicals to the more stable and readily diffusible H2O2 

(Figure 1). Due to its reduced reactivity, increased half-life and ability to induce reversible protein modification, 

H2O2 can act as a signaling molecule in its own right 62. H2O2 has been demonstrated to oxidize cysteinyl thiol, 

induce disulphide bond formation and mediate glutathionylation of cysteine or sulphoxidation of methionine 

residues in numerous proteins. Such modifications can alter protein activity (increased or decreased) but also 

represents an important antioxidant defense mechanism 63 . In this Review we shall focus primarily on the role of 

H2O2 in mucosal-microbiota crosstalk, but it is noteworthy that other redox signaling mechanisms (e.g. 

nitrosylation), provide important signaling cues during host-bacterial interactions64.  

 

[H2] Antioxidant pathways 
 
Regulators of the antioxidant response include enzymes that catalyze and neutralize ROS, ensuring their potent 

activity is short-lived to minimize collateral damage to the host tissue. Within the gastrointestinal mucosa 

antioxidant defense systems, superoxide dismutases and glutathione peroxidase enzymes act as detoxification 

pathways for ROS. Superoxide dismutases (SOD) are metal ion cofactor-requiring enzymes that catalyze the 

dismutation (i.e. partitioning) of superoxide anions to H2O2 and oxygen 65. In humans there are three SOD isoforms: 

mitochondrial SOD (manganese-requiring), cytosolic and extracellular SOD (both requiring copper and zinc). 

Mucosal injury mediated by H2O2 can be mitigated by SOD activity in the gastrointestinal tract 66. Indeed increased 
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SOD activity is associated with mucosal healing of human gastric ulcers, whereas reduced SOD correlates with 

increased ulcer severity 67.  

 Conversion of glutathione into oxidized glutathione is performed by the glutathione peroxidase (GPX) 

enzyme system. In the process, H2O2 is enzymatically reduced to H2O 68. Within the human gastrointestinal tract, 

expression of GPX1 is ubiquitous but GPX2 is expressed specifically in epithelial cells 69 and is postulated to protect 

the mucosa from transporting luminal-derived  lipid hydroperoxides 70. Deletion of either Gpx1 or Gpx2 in mice had 

no phenotypic effect, but double-knockout mice develop spontaneous colitis 71. Dismutation of H2O2 can also be 

achieved by the enzyme catalase, which converts to 2H2O2 to 2H2O and O2 
72. Peroxiredoxins represent another 

important family of thiol-specific antioxidant enzymes, designated PRDX1-6 and encoded by 6 different genes 

(reviewed extensively elsewhere 73). It is notable that there little redundancy exists within this family of proteins, 

where the loss of individual peroxiredoxin lead to numerous pathologies, including haematological disorders, tumors 

and increased susceptibility to diseases associated with oxidative stress 74. Somewhat surprisingly, mice deficient in 

PRDX2 and PRDX6 are protected from acute colitis  75,76.  While not completely clear, the mechanism of PRDX2-

mediated protection may involve ROS-dependent stability of FoxO1 and Foxp3 regulatory T cell development.  

 A crucial regulator of the antioxidant response is the NF-E2 related factor 2 (Nrf2) transcription factor. 

Nrf2 forms heterodimers with small Maf proteins and binds to antioxidant response elements in the regulatory 

region of promoters of cytoprotective and antioxidant enzymes, regulating de novo transcription. Kelch-like ECH-

associated protein 1 (Keap1), an adaptor subunit of Cullin 3 ubiquitin ligase, regulates the function of Nrf2 by acting 

as a redox sensor (reviewed 77). Thus, antioxidant pathways provide an equally important and significant balance to 

redox signaling responses in the gastrointestinal tract.  

[H1] Redox signaling in the immune system  
 
Active mucosal inflammation can rapidly deplete both nutrients and oxygen in the immediate environment. For 

example, when activated, PMN can increase their O2 demand by as much as 50-fold in the generation of ROS (the 

so called respiratory burst mediated by NADPH oxidase) necessary to kill microbes following phagocytosis 78. By 

contrast, proliferating T cells only moderately increase oxygen consumption during immune responses 79. Mucosal 

tissues possess both the ability to generate and attenuate redox signals; however, it is widely accepted that in the 

context of inflammation, the majority of radicals and reactive species are derived predominantly from the activity of 
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resident and infiltrating immune cells, in particular, professional phagocytes of the innate immune system, such as 

neutrophils, monocytes, macrophages, dendritic cells and mast cells.   

 

[H2] NADPH oxidases and ROS 
 
The plasma-membrane NADPH oxidase (NOX) family of enzymes are a group of paralogous enzymes, sharing 

common subunits. The complexes are made up of both membrane and cytosolic protein subunits that, upon 

activation, organize in the membrane to catalyze the conversion of molecular oxygen to superoxide anion80. The 

spectrum of NOX-mediated activity ranges from potent bactericidal capacity of professional phagocytes to critical 

intracellular signaling in numerous cell types.  

In terms of enzymatic capacity, the redox factors produced by phagocyte oxidases and peroxidases 

exemplify the extreme end of the redox spectrum. In addition to phagocytes expressing NOX2, fibroblasts, 

endothelial and epithelial cells all express enzymes that permit generation of ROS, including NOX1, NOX3, NOX4, 

NOX5, DUOX1 and DUOX2 81 (Figure 1). While DUOX2 and NOX4 are expressed throughout the human 

gastrointestinal tract, NOX1 expression is highest in the distal colon where it is restricted to the cytosol, presumably 

to transduce intracellular signaling 29. By comparison, DUOX2 is expressed on the apical surface of epithelia, 

ostensibly enabling luminal secretion of ROS 82. Others have examined the influence of NOX1or DUOX2-derived 

ROS on Campylobacter jejuni infection and discovered that ROS impaired bacterial capsule formation and virulence 

by altering C. jejuni gene expression 83. 

  

[H2] ROS and innate immunity  
 
Innate immune cells, including neutrophils, macrophages and dendritic cells represent the front-line of immune 

surveillance and defense and generation of ROS is a crucial microbicidal mechanism used by these cells. Activation 

of the NADPH oxidase complex in innate immune cells elicits a rapid and potent respiratory burst 84. Defects in 

phagocyte NADPH oxidase function, such as in patients with chronic granulomatous disease (CGD), lead to 

leukocytes capable of phagocytosing but with impaired bacterial clearance 85. The hallmark of CGD is recurrent 

bacterial and fungal infections. Typically ~40% of patients with CGD develop IBD-like symptoms 86.  
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Following their recruitment to sites of inflammation, monocytes can polarize into either ‘classically 

activated’ ( M1) or ‘alternatively activated’ (M2) macrophages, depending on the redox state and cytokine milieu of 

the mucosa87 (Figure 2). Typically, TNFα and IFNγ are accepted to elicit an M1 phenotype and T helper type 2 

cytokines result in M2 polarization; however, it is also apparent that macrophage phenotypes can display mixed 

phenotypes 88. These differentially polarized macrophages exhibit a spectrum of functionalities. The M1 phenotype 

is regarded as pro-inflammatory and characterized by expression of iNOS and, consequently, are an important 

source of RNS89. M2 macrophages are thought to demonstrate a range of activities ranging from wound healing 

(release of TGF-β) to suppressing T-cell function 11. Expression of the enzyme Arginase 1 by M2 macrophages 

depletes L-arginine, resulting in a down-regulation of the T cell receptor (TCR) ζ chain 90, impairing T lymphocyte 

function and resulting in immunosuppression. Aside from suppressing T cell function, ROS also contribute to 

regulatory T cell polarization and function91,92. The exact molecular mechanisms of how RSO influence regulatory T 

cell function have yet to be elucidated.  Taken together, the net influence of ROS in macrophage polarization might 

promote a state of immune tolerance as it relates to regulation of T cell function. 

 [H1] Host–microbial interactions and ROS  
 
The mammalian large intestine plays host to trillions of bacteria, viruses and fungi, collectively termed the 

microbiota. A finely balanced mutualism exists within the intestinal mucosa, in which microorganisms, essential for 

host health, might also initiate and perpetuate mucosal disease 93. The epithelium that lies juxtaposed to the mucosal 

immune system serves as a selective conduit between the host and microbial world. Recognizing that both the host 

and the gut microbiota (both commensals and pathogens) can generate a variety of ROS, the contribution of redox 

signaling to such interactions has emerged as a critical interface to host–microbe interactions in the gut.  

 

[H2] ROS and pathogen niche expansion 
 
Similar to resident gut microorganisms, opportunistic pathogens also use redox reactions to subvert host defenses 

and establish a niche. One of the most studied in this regard is the invasive enteric pathogen Salmonella enterica 

serovar Typhimurium (S. Typhimurium). This pathogen is associated with acute gastrointestinal inflammation and 

diarrhea, and elicits neutrophil chemotaxis into the mucosa94. Invasion is achieved through two type III secretion 
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systems that facilitate S. Typhimurium to enter and persist inside intestinal epithelial cells and mucosal 

macrophages94. Prior to invasion, S. Typhimurium must out-compete the resident gut microbiota. Some studies 

indicate that inflammation amplifies proliferation of luminal S. Typhimurium, enabling it to overgrow other 

microorganisms95. In one report, the Bäumler group demonstrated that inflammation-induced intestinal ROS reacted 

with luminal thiosulfate to form a new respiratory electron acceptor, tetrathionate 96. Moreover, S. Typhimurium 

express genes to enable utilization of tetrathionate as an electron acceptor that permits the pathogen to use 

respiration to outcompete fermenting microorganisms and establish a niche 96. The authors subsequently 

demonstrated that this tetrathionate-enabled respiration provided another growth advantage to S. Typhimurium, 

permitting the utilization of epithelial-derived ethanolamine under anaerobic conditions 97. 

 

[H2] ROS and pathogen niche restriction 
 
The role of H2O2 secretion into the lumen of the gut is poorly understood, but several roles have been proposed. 

Some studies suggest a pro-inflammatory function for DUOX-derived H2O2, acting as a chemotactic signal for 

neutrophils in a zebrafish wound-healing model 98 and a murine allergic airway model 99. Other findings suggest 

apical secretion of H2O2 into the lumen of the gut is implicated in restricting Helicobacter felis colonization in mice 

through increased bacterial oxidative stress 100. Another study examined the influence of NOX1 or DUOX2-derived 

ROS on Campylobacter jejuni infection and discovered that ROS impaired bacterial capsule formation and virulence 

by altering C. jejuni gene expression 83. During Citrobacter rodentium infection in wild type mice, the Knaus group 

discovered that NOX1 regulates DUOX2 expression in the mucosal epithelium, with a resultant decrease in both 

superoxide and H2O2 production 101. An unexpected but intriguing finding from this study was that ablation of 

epithelial-derived ROS, using an epithelial-restricted Cyba-deficient mouse (absence of the obligatory NOX 

dimerization partner), led to protection from C. rodentium-induced colitis. The authors attribute their findings to an 

altered gut microbiota with an expansion in H2O2-producing lactobacilli, which exert an antimicrobial effect by 

release of urease, lactic acid and H2O2 
102. Pircalabioru et al. demonstrated through the use of catalase to degrade  

H2O2 derived from lactobacilli was responsible for attenuating C. rodentium virulence factors 101. Other findings to 

support H2O2 exerting an antimicrobial function include disruption of microbial intracellular signaling, which affects 

antioxidant defense and polysaccharide biosynthesis 103. In the human body, L-amino acids are essential for protein 

synthesis; however, D-amino acids function in necessary non-ribosome-based roles 104. Bacteria synthesize and 



13 
 

secrete distinct D-amino acids into the lumen of the colon 105 and the Waldor group demonstrated that microbiota-

derived D-amino acids upregulate expression of the host epithelial-expressed enzyme, D-amino acid oxidase (DAO), 

which is secreted into lumen. Oxidative deamination of D-amino acids by DAO yields H2O2 as a by-product and 

protects from Vibrio cholerae pathogenicity 106. 

 

[H2] Resident gut microbiota and ROS  
 
A number of studies from the Neish group have highlighted a beneficial influence of probiotic and resident 

microorganisms in eliciting ROS generation from epithelial sources107 (Figure 1). In both Drosophila melanogaster 

and mouse models, Lactobacilli species were shown to induce epithelial-derived ROS via NOX1 activity, which 

stimulated epithelial proliferation 108. Subsequent studies by this group demonstrated dependence on the redox-

sensitive transcription factor NRF2 through mechanisms that involve cytoprotection and decreased epithelial 

apoptosis  109. Further studies from this group and others have elegantly implicated a role for epithelial-expressed 

formyl peptide receptor (FPR), responding to microbial N-formyl-methionine-leucine-phenylalanine (fMLF), in 

intestinal epithelial wound healing110,111. Further studies have revealed that this wound healing response occurs 

through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with associated  activation of 

focal adhesion kinase (FAK) and paxillin112. Central to such mucosal wound healing responses appears to be the 

regulation of epithelial cell migration. For example, redox sensitive tyrosine phosphatases (for example, SHP2 and 

LMW-PTP) that are expressed at the edge of wounded epithelial monolayers are critical to the organization of focal 

adhesions that organize epithelial migration and wound closure 113. Loss and gain of function studies have shown 

that both ANXA1 and NOX1-null mice show substantial deficits in mucosal wound healing responses and that 

ANXA1 delivery promotes would healing 112. These investigators have also demonstrated that FPR/NOX2-mediated 

ROS generation at local intestinal tissue sites select for mucus-resident microorganisms, including Akkermansia 

muciniphilia, that accelerate epithelial wound-healing, in an intestinal epithelial NOX1-dependent fashion 114  

[H1] Consequences of redox signaling  
 
Redox-sensitive signaling pathways are often limited by the availability of extracellular and intracellular oxygen 

115Despite this understanding, ROS generation can occur at surprisingly low oxygen tensions. The neutrophil 



14 
 

NADPH oxidase, for example, is fully functional at ambient oxygen concentrations as low as 1% 78. Such 

observations highlight the importance of discriminating oxygen and ROS diffusion within the tissue 

microenvironment, as well as the variability of oxygen availability within individual tissues. These differences often 

determine endpoint tissue function and define the adaptability of tissues to hypoxic stress 116.  

 

[H2] Colonic tissue oxygen metabolism  
 
The partial pressure of oxygen (pO2) at sea level is ~145 mmHg and the alveoli of healthy lungs experience a pO2 of 

~110 mmHg 117. The lumen of the colon is virtually anoxic, mainly due to the microbial biomass118, and colonic 

epithelia adjacent to the lumen experience and withstand a pO2 <10 mmHg119. Thus, it might be surprising to 

discover that epithelial stem cells at the crypt base are highly oxygenated (experiencing a partial pressure of 

~100mmHg) 93. Such differences are compounded by epithelial metabolism and the arrangement of the 

microvasculature network into counter-current blood flow dynamics within each villous structure 93. Epithelia 

adjacent to the lumen effectively exist in a state of ‘physiological hypoxia’ 120 and are uniquely susceptible to 

changes in redox state. Experimental use of oxygen-sensitive nitroimidazole compounds has enabled visualization of 

hypoxia in these tissues both basally and during inflammation 121. It is notable that these dyes are neither dependent 

on redox enzymes nor changed by the NADH and NADPH levels 122. This technology, coupled with 

immunostaining, has been used to visually reflect the oxygenation of larger solid tumors in mice  123 and might even 

be a more reliable marker than staining for HIF-1, as it is retained in chronically hypoxic cells 124 Such physiological 

hypoxia (Figure 1) is reversible by oxygenation of the colonic lumen (for example,  using oxygenated 

perfluorodecalin) 125.  

  Various factors aside from limited O2 availability influence the activity of the PHD enzymes and HIF 

stabilization. Among them, H2O2 has been demonstrated to stabilize HIF via inhibition of the PHD2 enzyme 126. 

Transcriptional activity of the HIF transcription factors regulates the genes involved in adaptive responses to 

hypoxia, the most widely acknowledged include angiogenesis- and glycolysis-related genes (e.g. VEGF, iNOS, 

GLUT1, PGK1). Less well characterized, but rapidly increasing in number, are genes with associated mucosal-

protective functions that enable colonic epithelial cells to restore impaired barrier function (e.g. ITF, MUC3, 

CLDN1, MDR1) 119. Original studies using genetic loss and gain of intestinal epithelial Hif1a expression in mice 

revealed a protective role for HIF in chemically-induced colitis models that corresponded to mucosal barrier 
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protection 121. Studies with cultured intestinal epithelial cells exposed to conditions that activate HIF have identified 

the regulation of a number of barrier-related protective genes 127 that have now been validated in animal models of 

colitis 121,128-132 and in human-derived colonic tissue 8,133-135. The intestinal epithelial barrier proteins encoded by HIF 

target genes include those that localize to the apical surface of polarized epithelia, including mucins and mucin 

modifiers (for example, intestinal trefoil factor), tight junction proteins (claudin-1), antimicrobial peptides and 

proteins important for xenobiotic clearance119. Each of these components are direct transcriptional targets of HIF and 

contribute fundamentally to the 3D intestinal tissue architecture that forms an intact barrier during homeostasis. 

 

[H2] Induction of epithelial HIF  
 
Following recruitment of immune cells to the mucosa, for instance following induction of experimental colitis, 

hypoxia extends deeper into tissue 121, a phenomenon termed inflammatory hypoxia 136 (Figure 1). One study by 

Campbell et al., 8 demonstrated that during experimental murine colitis, neutrophil influx was primarily responsible 

for inflammatory hypoxia. By use of a combination of neutrophil antibody depletion, hypoxia-reporter mice and 

NOX2 deficient (Gp91phox-/-) mice, the authors demonstrated that functional NOX2 not only disseminated mucosal 

hypoxia but stabilized HIF within the intestinal epithelium. This HIF-signature within the epithelium resulted in an 

adaptive transcriptional response, that the authors coined ‘transcriptional imprinting’ 8. Biopsy samples from 

patients with ulcerative colitis with evidence of crypt abscess formation – a pathological hallmark with 

transmigrated neutrophils within the lumen of the crypt – revealed induction of HIF (monitored by increases in the 

HIF-target gene GLUT1). However, it is unclear from these studies if HIF stabilization is due to depletion of oxygen 

or generation of superoxide or H2O2, as all are capable of inhibiting the PHD enzymes 25,137.  

 Another means to stabilize HIF by inhibition of PHD enzyme function is via depletion of another crucial 

cofactor, iron. Some findings indicate that certain microorganisms, such as Klebsiella pneumoniae and 

Pseudomonas aeruginosa can stabilize HIF in lung epithelia, via secretion of low-molecular-weight, high-affinity 

iron chelators, termed siderophores 138,139. Presumably, these factors function to chelate iron bound within the active 

site of the PHD enzymes, though this has not been shown conclusively. Fermenting microbiota have also been 

shown to stabilize HIF in the colon, via short chain fatty acid release, particularly via butyrate production 140. 

Butyrate is used as the preferred enterocyte fuel source, oxidizing butyrate to CO2 
141. The net effect is epithelial 

hypoxia due to increased oxygen consumption, likely resulting in PHD enzyme inhibition to facilitate HIF 
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stabilization 140. Indeed, a study from the Bäumler group in 2016 demonstrated that streptomycin-treated mice 

exhibited a decline in butyrate-producing Clostridia, which led to increased oxygenation of the mucosal epithelium, 

enabling enhanced Salmonella expansion 142.  

 

[H2] Inflammasome activation  
 
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular 

multiprotein complex involved in perceived cellular danger response 143. Pathogen-associated molecular patterns 

(PAMPs) and host-derived danger-associated molecular patterns (DAMPs) can trigger inflammasome activation 144. 

Stimulation of NLRP3 leads to assembly of this inflammasome complex and, ultimately, to caspase-1 activation and 

downstream cleavage of pro-inflammatory cytokines IL-1β and IL-18 145. The role of IL-1β is widely studied in 

autoimmune diseases; however, in gastrointestinal inflammation its involvement is not fully understood. Studies 

using chronic mouse models of colitis have demonstrated a role of IL-1β in accumulation of IL-17A secreting CD4+ 

T helper type 17 cells 146. One study in 2017 by Neudecker et al., implicated CCR2+ monocytes and NLRP3 activity 

leading to IL-1β production in the pathogenesis of acute colitis in mice147. Surprisingly, mice lacking NLRP3 are 

hypersensitive to experimental colitis, displaying exacerbated immune infiltration and epithelial damage, primarily 

due to a loss of IL-18 148. Despite the intense interest in the field, relatively little is known about how the NLRP3 

inflammasome is regulated at a molecular level. Some studies suggest that autophagy can negatively regulate the 

NLRP3 inflammasome 149. Conversely, activation of ROS, ostensibly by NADPH oxidases 150 has been shown to 

stimulate the NLRP3 inflammasome. However, patients with CGD with NADPH-deficient macrophages display 

normal inflammasome activation in several studies 151,152, implicating other stimuli aside from NADPH-oxidase-

derived ROS. Another abundant source of cellular ROS are mitochondria, which release ROS in response to 

elevated metabolism, hypoxia or membrane damage 153. The Tschopp group demonstrated that inhibition of 

mitophagy (encapsulation and degradation of old or damaged mitochondria via cellular autophagic machinery) 

results in the accumulation of damaged ROS-generating mitochondria, which leads to NLRP3 inflammasome 

activation 154. The authors subsequently demonstrated that both ROS generation and NLRP3 activation were 

suppressed when mitochondrial activity was disrupted by blockade of the voltage-dependent anion channel. These 

findings suggest that the NLRP3 inflammasome can perceive mitochondrial dysfunction 154. 
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[H2] Goblet cell mucus secretion  
 
Goblet cells are specialized epithelial cells that protect the barrier from microbial invasion by secretion of a mucus 

hydrogel 155. The principal components of mucus are large mucin peptides arranged in polymeric structures. 

Following translation, mucins undergo extensive N-linked and O-linked glycosylation modifications and are 

packaged into vesicles 4. Goblet cell-derived glycosylated mucins provide a major carbon source for the gut 

microbiota (reviewed elsewhere 5). Interest has centered on understanding the regulation of mucin packaging and 

secretion at baseline and in response to microorgansims detection 156, which has led to the suggestion that goblet 

cells actually represent an unappreciated and distinct innate immune cell 4,157. Another secretory epithelial lineage, 

Paneth cells — which are tasked with antimicrobial peptide secretion and defense of the intestinal stem cell niche — 

rely on autophagy to organize secretory granules 158. By contrast, autophagy compromised goblet cells displayed 

normal mucin packaging into granules 159. However, a combination of autophagy and NADPH oxidase-derived ROS 

were found to be essential for mucin release by goblet cells (Figure 2). Patel et al. demonstrated that amphisome-like 

vesicles form in goblet cells following autophagosome and endosome fusion and these specialized organelles 

regulate mucin secretion 159. It was subsequently demonstrated that the NLRP6 inflammasome is crucial for 

promoting goblet cell mucin release in response to proximity with microorganisms 160. In 2016, the Hansson group 

proposed the existence of a ‘sentinel’ goblet cell 161 based on proximity to the crypt entrance. This sentinel goblet 

cell non-specifically endocytoses and responds to TLR ligands, stimulating NOX1or DUOX2-dependent ROS 

production, through downstream activation of the NLRP6 inflammasome. Moreover, via intercellular gap junctions, 

signals are transduced down the crypt axis to elicit mucin secretion from neighboring goblet cells 161.  

 Secretion of additional mucins in response to detection of microbial proximity is obviously one approach to 

repel a microbial onslaught, but goblet cell hyperplasia represents an alternative mechanism. As mucus erosion and 

goblet cell depletion are pathological hallmarks of ulcerative colitis162, repletion of both goblet cells and their mucin 

granule contents is necessary for epithelial barrier restitution (Figure 3). As mentioned previously, IL-18 secretion is 

stimulated by ROS-mediated inflammasome activation145,  where some findings reveal distinct and opposing roles 

for IL-18 and IL-22 signaling in regulating goblet cell homeostasis. For example, Flavell and colleagues 

demonstrated using various intestinal epithelial-specific knockout mice to target IL-18 signaling, that excess IL-18 

promotes goblet cell depletion and colitis. Moreover, IL-18 appears to suppress goblet cell differentiation markers 
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163. Contrastingly, immune cell-derived IL-22 has well-recognized protective mucosal effects via promoting stem 

cell differentiation, mucin synthesis (mucin 2), antimicrobial peptide (RegIIIγ) and goblet cell function (Fut 2 

expression) 164-166. The recently characterized type-3 innate lymphoid cells (ILC3) are the major source of IL-22 

within the intestinal mucosa 167. In fact, during Toxoplasma gondii infection, ILCs and T cells required epithelial-

derived inflammasome-processed IL-18 in order to release IL-22 168. Thus, a combination of redox signaling, 

inflammasome activity and immune crosstalk might hold the key to homeostasis between IL-18 and IL-22 signaling 

and indeed mucosal-microbiota homeostasis. Moreover, IL-1β can both induce activation of ILC3 and contribute to 

plasticity (in concert with other factors, including retinoic acid) and reprograming of ILC1 and ex-ILC3 to ILC3s 169. 

 

[H1] Redox signaling in intestinal disorders 
  

 [H2] Ischemia–reperfusion injury 
 
Ischemia is defined as insufficient blood flow to tissues, resulting in disruption of cell function and ultimately 

necrosis. A variety of tissue insults can lead to intestinal ischemia, including trauma, stroke and atherosclerosis, and 

reperfusion (restitution of blood supply) following ischemia can result in aggravated tissue damage. The intestine is 

particularly sensitive to ischemia–reperfusion injury (I/RI) 170. Ischemia rapidly induces expression of 

cyclooxygenase (COX) and accumulation of cells expressing lipoxygenase enzymes, which are responsible for 

generating pro-inflammatory eicosanoids from membrane liberated arachidonic acid, such as prostaglandins and 

leukotrienes171. Constitutively expressed COX1 and the inducible isoform COX2 are responsible for catalyzing the 

conversion of arachidonic acid to prostaglandins 172. The primary prostaglandin studied in this context is 

prostaglandin E2 (PGE2) 
173, which elicits a bifunctional influence on the intestinal mucosa, promoting injury via 

vasodilatory influences on the endothelium but simultaneously conferring cytoprotection to the intestinal epithelium 

174. Infiltrating leukocytes expressing 5-lipoxygenase and 15-lipoxygenase leukotriene B4 (LTB4), produced by 

endothelial cells, a potent chemoattractant of neutrophils and facilitates neutrophil adhesion and degranulation 175. 

Following reperfusion, a necessary substrate (oxygen) becomes available to enable the de novo synthesis of an 

‘eicosanoid storm’, where is essence, bioactive lipids of the eicosanoid family become significantly amplified in 

their production 176. This combination of lipid-mediator and neutrophil accumulation in the tissue milieu results in 
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another consequence upon I/RI, namely lipid peroxidation177, the oxidative degradation of lipids that result in 

plasma membrane and organelle damage. ROS generated by reoxygenated neutrophils have long been recognized as 

instigators of lipid peroxidation in intestinal I/RI, resulting in barrier disruption50,135,170,177. Indeed, treatment with 

superoxide dismutase in a murine intestinal  I/RI model limits the contribution of ROS to both lipid peroxidation and 

mucosal permeability 177. Experimental strategies to circumvent the deleterious exaggerated inflammation and 

resultant tissue damage occurring in I/RI mostly hinge on reducing neutrophil recruitment signals and leukocyte 

activation 178. The anti-inflammatory influences of carbon monoxide, derived from endogenous heme oxygenase, 

might be a promising therapeutic strategy to attenuate damage from I/RI 179. Multiple lines of evidence have 

revealed that the activation of heme oxygenase effectively promotes cytoprotection and inhibits the pro-

inflammatory signatures elicited from multiple cell types during intestinal I/RI179. Strategies to induce heme 

oxygenase and carbon monoxide release are in development and include HO1 fusion proteins, small molecule heme 

oxygenase inducers, bilirubin, glutamine and inhaled carbon monoxide179.  

 

[H2] Ischemic preconditioning 
 
Aside from leukocyte-derived sources of ROS, the mucosa itself can contribute significantly to redox-mediated 

damage during intestinal ischemia. High concentrations of ATP are released extracellularly during ischemia, which 

are ultimately catabolized to hypoxanthine 180. Concomitantly, ischemic stress results in the conversion of xanthine 

dehydrogenase to xanthine oxide 181. Following tissue reperfusion, the combination of hypoxanthine, xanthine oxide 

and newly available molecular oxygen yields additional sources of tissue superoxide anion 182. Although some 

limited therapeutic success has arisen from scavenging ROS or targeting inflammatory mediators, one of the more 

promising strategies to reduce I/RI is ischemic preconditioning (or hypoxic preconditioning), whereby cells or 

tissues are exposed to brief and intermittent periods of non-lethal ischemia. Such treatments have been shown to 

protect organs that experience a major ischemic event, which is best studied in the heart.183. The mechanisms 

involved in ischaemic preconditioning are complex but ultimately result in reduced pro-inflammatory factors, 

decreased lipid peroxidation and elevated levels of natural antioxidants including glutathione, SOD and HO1184. 

Khoury et al. identified extracellular adenosine released by hypoxic preconditioned intestinal epithelia as the major 

anti-inflammatory factor responsible for hypoxic preconditioning 185. This protective role of adenosine in ischemic 

preconditioning corresponded with the inhibition of NF-kappaB via deneddylation (where NEDD8 is removed from 
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a conjugated protein) of cullin-1 (Cul1), a component of the proteasomal degradation pathway important in the 

activation of NF-kappaB186. It was shown that adenosine might regulate HIF through similar mechanisms; for 

example, a small molecule deneddylator of the cullin family proteins has become commercially available. This 

compound, MLN4924, is an adenosine monophosphate analog that functionally inhibits Nedd8 activating enzyme 

and results in the de-neddylation of Cul1 and Cul2187,188 and has proven to be a potent HIF stabilizer in cultured 

cells189. In this regard, HIF might function to promote tissue ischemic preconditioning, which has been shown in 

some studies13, and small molecule stabilizers of HIF (esp. PHD inhibitors) show promise in protection from 

damage associated with I/RI178.  

 Extracellular adenosine is derived from the enzymatic degradation of ATP via the action of surface 

apyrases (e.g. CD39) and ecto-5’-nucleotidase (CD73) 190. CD73 expression is increased on intestinal epithelia 

during hypoxia in a HIF-dependent manner, resulting in increased extracellular adenosine accumulation127. 

Moreover, HIF stabilization in hypoxia was also demonstrated to decrease expression of the equilibrative nucleoside 

transporter (ENT)1 and ENT2, resulting in reduced uptake of extracellular adenosine providing more available for 

extracellular signaling 191. Extracellular adenosine signals through activation of any of four surface G-protein 

coupled receptors. Activation of the A1AR or the A3AR results in decreased intracellular cAMP levels (Gαi-

coupled), whereas adenosine binding to the high affinity A2AAR or the low affinity A2BAR is associated with 

elevation of cAMP (Gαs-coupled) 192. The predominant receptor-mediated signaling associated with intestinal 

epithelial cells is A2BAR and the crystal structure of agonist and antagonist bound A2AAR has been resolved 193. 

The majority of evidence suggests that the induction of A2BAR by HIF translates to a strong anti-inflammatory 

phenotype in the intestinal mucosa, at least in part associated with barrier protection 194,195.  These studies have 

shown important protective roles for A2BAR in experimental colitis 194 and intestinal I/RI 196,197 that results in 

diminished inflammation 198. 

 A number of sources of nucleotides exist in inflamed and ischemic tissue. Many cell types actively release 

nucleotides, particularly in the form of ATP or ADP 192. Programmed cell death (apoptosis) is associated with the 

generation of large amounts of ATP during ischemia and inflammation. The ATP released by apoptotic cells has 

been demonstrated to function as a ‘find-me’ signal to promote phagocytic clearance during inflammatory resolution 

199. Other studies have shown that inflammatory cells, such as neutrophils, can release ATP in an active manner 

though connexin 43 hemichannels 200,201. Platelets release nucleotides at high concentration upon activation and are 
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also an important source of extracellular nucleotides during ischemia. In the intestinal mucosa, for example, platelets 

and neutrophils have been shown to co-migrate across the epithelium and into the lumen in the formation of crypt 

abscesses202. As originally described by Madara et al 203, this local generation of luminal nucleotides results in 

adenosine-mediated activation of electrogenic chloride secretion and associated water movement into the intestinal 

lumen. This fluid transport process provides an important flushing of the mucosal surface during ongoing 

inflammation.  

 

[H2] Role of ROS in IBD 
 
IBD includes ulcerative colitis and Crohn’s disease and is characterized as a chronic inflammatory condition of the 

gastrointestinal mucosae in susceptible individuals 55. Ulcerative colitis and Crohn’s disease exhibit distinct 

pathophysiology in terms of  effector immune functions. Common features of IBD include abdominal pain and 

diarrhoea, and that susceptibility to IBD is dictated by a combination of genetic, environmental and microbial risk 

factors 55. The microenvironment of active IBD lesions is considered to be strongly redox active, in which ROS are 

considered to play an important part in both inflammatory signaling and in bystander damage to surrounding 

tissue30.  

Does excessive ROS or insufficient ROS contribute to IBD? Evidence exists to support both excessive 

ROS or insufficient ROS as contributing to IBD. Considering the number and functional diversity of susceptibility 

genes in IBD identified by genome-wide association studies, it is likely that the answer to this question depends on 

the individual combination of etiological factors and not merely the diagnosis of ulcerative colitis versus Crohn’s 

disease. For instance, a study of 157 patients with CGD profiled IBD risk alleles among this cohort and concluded 

that defective superoxide generation in CGD is a major risk factor for IBD204.  

As alluded to earlier, the majority of patients with CGD develop IBD-like symptoms 86. A potentially 

confounding issue for research in this field is the mouse models used to address the roles of phagocyte-derived ROS 

versus mucosal sources. Campbell et al., 8 using a TNBS (2,4,6-trinitrobenzenesulfonic acid) model of colitis 

demonstrated that Nox2-/- mice develop substantially more severe colitis, reflected by increased weight loss, 

increased intestinal permeability and the failure to resolve ongoing inflammation compared to wild-type control 

mice. Conversely Bao et al., used the same mice in a dextran sulfate sodium (DSS) model of colitis and found no 

difference in weight loss or disease severity when compared to wild type controls 205. They concluded that less tissue 
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damage was associated with decreased oxidative burst, though no evidence was provided for increased ROS-

mediated damage. A possible explanation for the discrepancy between these studies is in the nature of the models 

used to ascertain the relative importance of phagocyte NOX. DSS models of colitis rely on denudation of epithelial 

cells, beginning with erosion of apical mucus, apoptosis of epithelia and resulting innate immune infiltrate206. Under 

such circumstances, it could be argued that phagocyte-derived ROS might not be contributing to denudation of 

colonic epithelia, therefore only genes or therapeutic intervention that influence epithelial viability or turnover will 

have an appreciable effect. By contrast, TNBS involves pre-sensitizing the host immune system to haptenized 

microbial antigens, with subsequent colonic exposure to the haptenizing agent206. DSS results in progressive tissue 

damage, extending proximally from the rectum, and incremental loss of body weight over the course of the 

experiment. TNBS-treated animals lose and regain weight rapidly over time and tend to exhibit skip lesions with 

relatively intact epithelia 206 Moreover, immune infiltrates and inflammatory mediators differ substantially between 

the models 206As such, DSS represents a wound model, whereas TNBS represents an acute-to-chronic inflammation 

and resolution model. Thus, it is conceivable that Nox2-/- mice do not exhibit enhanced mucosal wounding but 

rather, fail to resolve inflammatory insults. 

 Despite the dependence of IBD on genetic susceptibility and observed chronic adaptive immune responses, 

numerous aspects of disease progression are comparable between IBD and I/RI. For instance, proinflammatory 

mediators such as TNF-α and PGE2 are implicated in both I/RI and Crohn’s disease 50,207. Involvement of 

neutrophils, monocytes and leukocyte-derived ROS have been implicated in both ulcerative colitis and I/RI in the 

colon and intestine 50,208. Similarly, epithelial barrier disruption and enhanced microbial translocation are features of 

both IBD and I/RI 50,209. Studies have also suggested that shifts in the gut microbiome (dysbiosis) might contribute 

to both I/RI and IBD50,210. One important caveat to this understanding is the observation that antibody-mediated 

neutrophil depletion strategies in intestinal I/RI models do not appear to influence injury endpoints 211, whereas 

neutrophil depletion substantially enhances tissue damage in multiple colitis models 212. Another common feature 

between IBD and I/RI models, is accumulation of extracellular ATP in colitis models has been demonstrated to 

contribute to the inflammatory process, in part via stimulation of the P2X7 receptor 213. Also similar to ischemic 

preconditioning is that extracellular adenosine appears to confer mucosal protection during colitis, principally via 

A2BAR signaling. Indeed, murine models of whole body and conditional epithelial deletion of A2BAR results in 
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more severe DSS-induced colitis associated with decreased barrier function and diminished mucosal wound healing 

194,195. 

[H2] ROS-induced collateral tissue damage 
 
Substantial evidence exists that collateral tissue damage, the ‘bystander effect’, might result from increased 

oxidative stress associated with active intestinal inflammation 214. Implications of excessive ROS-mediated tissue 

damage in the gastrointestinal tract include alterations of absorptive function, barrier dysfunction and dysmotility 215. 

Numerous studies have, for example, indicated malabsorption of nutrients in the intestine following I/RI and in 

IBD216,217. Colonic epithelia, by contrast, are tasked predominantly with the reuptake of water from the faecal 

stream, so disruption to colonic absorption in IBD manifests as diarrhea 218. Extensive tissue damage from excessive 

ROS (for example, lipid peroxidation, protein chlorination of mucosal barrier proteins) and immune mediators such 

as TNF-α and IFN-γ increase mucosal permeability by modulating tight junction function 219 (Figure 3). One well-

documented mechanism of barrier disruption is via induction of so-called ‘leaky’ claudin tight junction proteins, 

such as claudin-2 and claudin-5 220. It is notable that increases in vascular permeability might precede increases in 

epithelial permeability during active mucosal inflammation (see Figure 3). Tolstanova, et al used four murine 

models of colitis to demonstrate that early endothelial damage resulted in perivascular edema and epithelial hypoxia, 

which contributed to the stabilization of HIF within the mucosa 221. Evidence for early ROS-mediated endothelial 

damage  were demonstrated at the level of electron microscopy and were consistent in genetic models of colitis, 

including IL-10-/- and Gα-i2 -/- 221. Finally, it is likely that gut motility is affected through redox-sensitive 

mechanisms. For example, Brown, et al showed that enteric neuron death during active colitis was mediated by 

nitric oxide derived from glial cells222 (Figure 3). Such neurotoxic activity was driven by nitric oxide influences on 

connexin-43 activity. Moreover, exposure of sub-mucosal smooth muscle cells to microbial lipopolysaccharide 

probably contributes to dysmotility through the generation of large amounts of ROS and RNS 223. Taken together, 

these studies implicate collateral tissue damage associated with oxidative stress in active intestinal inflammation. 
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[H1] Conclusions 
 
In conclusion, the gastrointestinal tract represents a particularly austere environment for redox-sensitive signaling. 

The combination of multiple sources of reactive oxygen or nitrogen species in the setting of trillions of 

microorganisms requires the presence of important gatekeeper mechanisms to avoid the potential chaos that could 

occur during active inflammation. Just as important is the need to maintain a well poised anti-microbial 

environment, in large part driven by epithelial and leukocyte-derived oxygen radicals. It is notable that the profound 

differences in local O2 tension within mucosal tissues and substantial increases in energy demand during 

inflammation provide a unique setting to understand tissue metabolism under stress. Of particular interest is the 

metabolic shift toward hypoxia and the associated stabilization of HIF-target pathways that associates with tissue 

barrier function, wound healing, autophagy and inflammation resolution. Redox signals derived from immune cells, 

parenchymal cells (epithelia, endothelial, fibroblasts) as well as the gut microbiota are coupled with the differing 

potencies, toxicities and halflives of the redox products produced locally that require tight control for tissue 

homeostasis. Studies in vitro and in vivo have provided new insights toward a better understanding of productive 

inflammatory responses and mechanisms that promote inflammatory resolution. Also relevant is the shift in tissue 

redox potential that mediate collateral tissue damage and endpoint organ function. A better understanding of the 

basic molecular signals, transcriptional programs and the environmental clues that regulate mucosal redox state (Box 

1) are likely to provide new insight toward the development of novel therapies for diseases such as IBD. 

 

[H1] Box 1: Knowledge gaps and future research directions 

- What host metabolic factors control to redox state threshold and under what conditions are they generated? 

- Could microbiota-derived factors that influence redox be enriched to benefit the host in health or during 

disease? 

- Does the low oxygen partial pressure environment of the gut provide an opportunity for drug targeting 

and/or drug delivery?  

- How does overall tissue redox state influence acute inflammatory resolution versus progression toward 

chronic inflammation?  

- Is innate immunity more amenable to therapeutic targeting than adaptive immunity, or vice versa?  
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- Is pharmacological stabilization of HIF (e.g., via PHD inhibition) a viable therapeutic option for mucosal 

disease?  

- What pharmacological approaches best mimic ischemic preconditioning and under what circumstances 

might this approach benefit the host? 

- For therapeutic targeting of redox pathways, how might we maximize the beneficial influence of redox 

signaling and minimize bystander tissue damage?  

  



26 
 

 

Figure 1: Host-microbial redox signaling during hypoxia.  

Enzymatic utilization of molecular oxygen within the intestinal mucosa facilitates redox signaling and results in both 

spatial and dynamic patterns of oxygen availability. a) In the healthy intestinal mucosa, a steep oxygen gradient 

exists between the highly vascularized mucosa and the anoxic lumen. Thus, cells within the crypt stem cell niche 

normally experience higher partial pressures of oxygen (~100mm Hg) compared with the luminal-effacing epithelia 

(<10mm Hg) which are known to normally experience hypoxia at homeostasis. This physiological hypoxia is 

experienced by epithelia adjacent to the lumen and results in stabilization of the HIF transcription factor. Gut 

microbiota secreting short chain fatty acids (SCFA), particularly butyrate, contribute to this physiological hypoxia 

through increased oxidative phosphorylation. Luminal redox signaling initiated by resident microorganisms 

releasing D-amino acids (D-aa) stimulates the epithelium to secrete D-amino acid oxidase (DAO) into the lumen, 

which is subsequently yields H2O2. Apical expression of epithelial DUOX2 probably results in luminal secretion of 

H2O2, which contributes to limiting opportunistic pathogen niche expansion. Probiotic Lactobacilli up-regulate 

epithelial NOX1 expression, which in turn induces DUOX2. Epithelial expressed NOX1 and DUOX2, utilizing 

microenvironmental oxygen, generate oxygen radicals to further contribute to luminal release of H2O2. b) During 

inflammatory hypoxia, infiltrating PMN and monocytes, expressing NOX2 generate superoxide (O2
.-), resulting in 

inhibition of PHD enzymes and stabilization of HIF deep into the crypt. HIF transcriptional activity induces 

expression of barrier protective factors – antimicrobial peptides (AMPs), Mucin 3 (Muc3) and intestinal trefoil 

factor (TFF3). Certain opportunistic pathogens release siderophores, sequestering iron and inhibiting PHD enzymes. 

Sulfur metabolism of the mucosa can be hijacked by opportunistic pathogens – H2S is routinely detoxified to 

thiosulfate (S2O3
2-); however, high levels of reactive oxygen species within the mucosa can result in tetrathionate 

(S4O6
2-) generation, which can be utilized by Salmonella serotypes to provide a competitive advantage. 

 

 

Figure 2: Host redox–hypoxia crosstalk in the gastrointestinal mucosa.   

The two major sources of endogenous reactive oxygen species (ROS) within the intestinal epithelium originate from 

mitochondria and NOX1 or NOX4. a. In response to pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs), epithelia recruit and activate the Nox1/4 complex, stimulating superoxide 
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and hydrogen peroxide generation (sources of ROS). Both enzymatic and mitochondrial-derived ROS can trigger the 

activity of epithelial inflammasomes. b. In colonic epithelia, ROS-stimulated NLRP3 inflammasome assembly leads 

to IL-18 (and IL-1β) production.  Whereas excessive mature secreted IL-18 is detrimental to epithelial integrity, 

presence of IL-18 is necessary for IL-22 release by type 3 innate lymphoid cells (ILC3s). c. ILC3-derived IL-22 

promotes mucosal barrier protection by inducing mucin synthesis and goblet cell function. d. In goblet cells, ROS 

triggers the NLRP6 inflammasome to elicit mucin granule secretion. e. Sentinel goblet cells responding to microbial 

triggers can signal to adjacent goblet cells to degranulate via GAP junctions. f. A combination of autophagic 

proteins, endosomes and NADPH oxidase-derived ROS are necessary for mucin granule formation in goblet cells. g. 

Both autophagy and mitophagy are induced by hypoxia. Mitophagy might decrease NLRP3 inflammasome activity, 

reducing processing of IL-1β and IL-18. h. Inhibition of PHD enzymes by ROS or hypoxia stabilizes HIF1α 

transcription factor, regulating barrier protective genes. i. Unimpeded or excessive ROS generation can lead to 

abundant maturation of IL-1β or IL-18 or even inflammasome-mediated cell death (necroptosis/pyroptosis). j. 

Inflammasome-activation of CCR2+ infiltrating monocytes contribute to active IL-1β. Mucosal IL-1β may lead to 

accumulation of IL-17A secreting immune cells.  

 

Figure 3: Reactive oxygen species collateral damage and gastrointestinal disease 

 During active inflammation, reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated within 

the local microenvironment affect collateral tissues to cause damage. Activated, transmigrating neutrophils (PMN) 

consume large amounts of O2 in the generation of amounts of ROS (O2-., OH. and H2O2) in the local milieu. Such O2 

consumption results in localized hypoxia and the stabilization of epithelial HIF.  Epithelial HIF stabilization 

activates a cascade of gene transcription that promotes expression of barrier protective function genes and mucins in 

goblet cells. Within the lamina propria, activation of glial cell inducible nitric oxide synthase and the generation of 

nitric oxide (NO.) results in enteric nerve cell death to result in dysmotility. Smooth muscle responses to oxidant 

stress include increased Ca2+ permeability that perpetuates intestinal dysmotility. An early event in acute mucosal 

inflammation within the gastrointestinal tract is increased vascular permeability and the generation of NO. to 

promote local tissue damage.   
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