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We numerically investigate the low-lying entanglement spectrum of the ground state of random
one-dimensional spin chains obtained after partition of the chain into two equal halves. We consider
two paradigmatic models: the spin-1/2 random transverse field Ising model, solved exactly, and
the spin-1 random Heisenberg model, simulated using the density matrix renormalization group.
In both cases we analyze the mean Schmidt gap, defined as the difference between the two largest
eigenvalues of the reduced density matrix of one of the two partitions, averaged over many disorder
realizations. We find that the Schmidt gap detects the critical point very well and scales with
universal critical exponents.

I. INTRODUCTION

The entanglement spectrum (ES) [1], the set of eigen-
values of the reduced density matrix of a quantum many-
body state, has now become a standard fingerprint that
reveals much more information on a state compared to
measures of bipartite entanglement, such as the von Neu-
mann entropy and the negativity (see Refs. [2] and [3] for
recent comprehensive reviews).

Originally introduced to study the transition to a topo-
logically ordered state in the quantum Hall effect [1], ES
has been used for the characterization of spin chains and
other one-dimensional (1D) models in real and momen-
tum space [4–13]. The distribution of the Schmidt eigen-
values in the middle of the spectrum has been studied
by means of conformal field theory [14]. The study of
the structure of the low-lying part of the ES in 1D mod-
els also reveals the Luttinger parameter [15, 16]. In 2D
systems the situation is somewhat less clear and the uni-
versality of the ES has been challenged [17].

The Schmidt gap, the difference of the two largest
Schmidt eigenvalues of the ES, originally introduced in
[18] and [19] was shown to scale according to universal
critical exponents in [20–24]. It was further employed in
the characterization of 2D spin models in a region close
to a topological spin liquid [25, 26]. The time evolution
of the Schmidt gap was analyzed in [27–29] for the dy-
namics after a quantum quench in homogeneous systems
and in [30] for a quench to a many-body localized Hamil-
tonian. Whether or not the Schmidt gap can be applied
as an instrument to detect criticality in random models
is still an open question.

The effect of randomness in spin models, whether in-
troduced via disorder in coupling constants or through
some random external field, has become an area of sig-
nificant interest since the early studies on the random
transverse field Ising model [31–33]. Randomness has
been shown to modify the characteristics of phase transi-
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tions [34,35], as well as transition a spin system from one
universality class to another [36,37] and is integral to the
emergence of interesting phases such as the Griffiths and
random singlet phases (RSPs) [38–40]. Recently a lot of
attention has been devoted to the mechanism of many-
body localisation in 1D and 2D systems [41–44]. While
these random models have usually been investigated us-
ing corresponding order parameters [36, 45] and entan-
glement entropy [46–49], a few works have analyzed nu-
merically the entanglement spectrum of the ground and
excited states of random spin chains [12, 50–52].

In this paper, we study the Schmidt gap of the ground
state of random spin-1/2 and spin-1 chains. We show
for both models that the closing of the Schmidt gap, av-
eraged over the disorder distribution, signals the occur-
rence of a quantum phase transition. Moreover, we are
able to observe universal scaling of the Schmidt gap with
critical exponents.

II. RANDOM TRANSVERSE-FIELD ISING
MODEL

We consider L spin- 1
2 arranged in a chain with open

boundary conditions and Hamiltonian

H = −
∑
i

Jiσ
x
i σ

x
i+1 −

∑
i

hiσ
z
i . (1)

The couplings Ji of the Ising interaction and the trans-
verse magnetic fields hi are independent random vari-
ables drawn from the distributions π(J)dJ and ρ(h)dh,
which can be gauged to be positive. In the following, we
consider the distributions π(J) and ρ(h) to be uniform
in the intervals J ∈ [0, 1] and h ∈ [0, hmax], respectively,
and 0 otherwise. This choice reduces the Hamiltonian
parameters to only one variable, hmax.

The physics underlying the ground state of this Hamil-
tonian is closely related to the finite-temperature behav-
ior of a 2D classical Ising model with quenched random-
ness correlated along one direction [53, 54]. The quan-
tum Hamiltonian in Eq. (1) is recovered by taking the
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continuum limit of the classical model, and it was first
investigated with transfer matrix methods by Shankar
and Murthy [55]. In particular, by a simple duality argu-
ment, it can be shown that a quantum phase transition
takes place when the two distributions π(J) and ρ(h)
are identical. By defining the magnetic-field parameter
∆h = [log h]D (where [ · ]D is the disorder average), the
quantum critical point is found at ∆c = [log J ]D, corre-
sponding to hmax

c = 1 for our choice of distributions. The
phase diagram features a paramagnetic phase (∆h > ∆c)
and a ferromagnetic phase (∆h < ∆c) with non-zero
spontaneous magnetization mx = [

∑
i〈σxi 〉]D 6= 0, where

〈·〉 denotes the ground-state average.

The magnetic properties, both at criticality and off
criticality, can be derived following a renormalization
group approach [31], where the short-wavelength modes
are cut off from the system by targeting the strongest
coupling Ω = max{Ji, hi}. In practice, via pertur-
bation theory, the excited states of the subspace for
the local Hamiltonian describing the degrees of freedom
connected to Ω are eliminated, leading to a new effec-
tive Hamiltonian with a lower energy scale Ω at each
step. This iterative procedure allows the estimation
of the correlation function and the various critical ex-
ponents [32]. In particular, the behavior of the typ-
ical correlation function C(r) =

∑
i〈σxi σxi+r〉 is found

to be very different from that of the average correla-
tion function [C(r)]D = [

∑
i〈σxi σxi+r〉]D. At critical-

ity, the typical correlation decays as C(r) ∼ exp(−
√
r)

while the average correlation follows a power-law decay
[C(r)]D ∼ 1/r2−φ, where φ = (1 +

√
5)/2 is the golden

mean. On the other hand, in the paramagnetic phase,
both correlation functions decay exponentially with cor-
relation length ξ ∼ (hmax − hmax

c )−ν . The critical expo-
nent ν differs for the two cases, with ν = 1 and ν = 2
for the typical and average correlation function, respec-
tively. The spontaneous magnetization in the ferromag-
netic phase is mx(hmax) ∼ (hmax

c − hmax)β with critical

exponent β = 2− φ = (3−
√

5)/2 ' 0.381.

The entanglement structure for the random transverse-
field Ising model can be calculated exactly by first map-
ping the spin degrees of freedom into a system of non
interacting fermions using the Jordan-Wigner transfor-
mation [56]. Within this representation, the reduced
density matrix for a subsystem S is simply given by
ρS = Z−1exp(−K), where K is called the entanglement
Hamiltonian and Z is the normalization constant [57].
Given the correlation matrices C = 〈c†c〉, F = 〈c†c†〉,
with (c†, c) the fermionic creation and annihilation oper-
ators, the eigenvalues εk of K can be calculated from the
matrix M = 2C− I−2F , where I is the identity matrix,
by singular value decomposition [58]. We can easily cal-
culate the ES {λi} directly from the full spectrum {εk}
of the entanglement Hamiltonian following the approach
explained in Ref. [58]. In all calculations we partition
the chain into two equal halves.

In Fig. 1 we show the entanglement properties as a
function of the upper bound hmax of the magnetic-field
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FIG. 1. Entanglement structure of the random transverse-
field Ising chain, for a system size of L = 128. (a) Largest
eigenvalues λi in the ES plotted versus the upper bound hmax

of the magnetic-field distribution ρ(h). (b) Schmidt gap ∆λ as
a function of hmax for different systems sizes. Each data point
was computed as the average over 104 realizations of disorder.
The dashed line represents the expected critical value of hmax

at which the phase transition occurs.

distribution ρ(h). In Fig. 1(a) we plot the six largest
eigenvalues of the ES for a system comprising L = 128
spins. Each data point is obtained by averaging the
eigenvalue over 104 realizations of disorder. Analogously
to the homogeneous case [20], in the ferromagnetic phase
the ES is characterized by doubly degenerate multiplets,
as a consequence of the unbroken Z2 symmetry. The dou-
blets are lifted at and beyond the quantum critical point
hmax
c = 1.
We now study the properties of the Schmidt gap

∆λ = λ1 − λ2, where λ1 and λ2 are the two largest
Schmidt eigenvalues. As shown in Fig. 1(b), for small
fields hmax < 1, ∆λ ∼ 0 as a consequence of the exis-
tence of the doublets in the ferromagnetic phase. But for
larger fields corresponding to the paramagnetic phase,
∆λ grows and eventually saturates to 1 for infinite mag-
netic field (all the spins are aligned along the magnetic
field and the state is a product state with a single Schmidt
eigenvalue). The behavior of the Schmidt gap in the
random Ising chain is similar to its behavior in the cor-
responding homogeneous Ising chain [20]. Therefore it
is quite intriguing to check whether the critical scaling
of the Schmidt gap can be observed also in the random
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FIG. 2. Collapse plot for the Schmidt gap ∆λ as a function
of hmax for different system sizes, L = 32, 64, 128, and 256,
obtained averaging over 3× 104 realizations of disorder using
Eq. (2). The critical exponent β∆λ = 0.39 ± 0.01 is obtained
from a fit with fixed parameters hmax = 1.0 and ν = 2.0.

model.
To this end we assume a finite-size scaling ansatz for

∆λ which is normally employed for order parameters [20,
59]:

Q(L, hmax) ' L−βQ/νfQ(|hmax
c − hmax|L1/ν) (2)

where Q is the order parameter under investigation and
βQ the corresponding critical exponent.

Using ansatz (2), in Fig. 2, we performed a fit with
system sizes L = 32, 64, 128, and 256 around the critical
point, where each point was averaged over 3 × 104 real-
izations of disorder. We observe the best data collapse
with an estimated critical exponent β∆λ = 0.39 ± 0.01
compatible (within statistical and finite-size error) with
the order parameter critical exponent β. In the fit we
fixed the correlation length critical exponent ν = 2.

This numerical evidence clearly demonstrates that
even for the random model, as for the homogeneous case,
the low-lying structure of the ES is universal and deter-
mined by universal critical exponents.

III. RANDOM SPIN-1 HEISENBERG CHAIN

In this section, we turn our investigation to the spin-1
random antiferromagnetic Heisenberg chain, defined by
the Hamiltonian [36, 60, 61],

H =
∑
i

JiSi · Si+1 (3)

where Si = (Sxi, Syi, Szi) are the ith-site angular mo-
mentum operators and Ji are positive couplings. For
Ji = J > 0, i.e., a homogeneous chain, the ground state
is in the gapped Haldane phase, characterized by the ab-
sence of any local order, a nonzero string order, which we
introduce later, and an evenly degenerate ES.

We introduce disorder in the model by choosing:

Ji = ζδi , (4)

where δ controls the strength of disorder and ζi is a ran-
dom variable distributed uniformly between 0 and 1. The
probability distribution of Ji is:

πδ(J) = δ−1J−1+1/δ. (5)

The gapped Haldane is stable for Jmin/Jmax > 0.6,
where Jmin and Jmax are the smallest and largest cou-
plings, respectively. For the power-law distribution, (5),
and for δ > 0, we have Jmin/Jmax = 0, and the gapped
Haldane phase is immediately destroyed for an infinites-
imal amount of this type of disorder. However, for small
δ the system enters the so-called gapless Haldane phase,
a type of Griffith phase with closed Haldane gap, but ex-
hibiting the hidden topological order characteristic of the
gapped phase [40, 60]. For very strong disorder δ � 1,
the ground state is in the random singlet phase, which
is a gapless phase consisting of pairs of spins in singlets
spanning arbitrarily long distances [61–64].

The phase diagram for the spin-1 random antiferro-
magnetic Heisenberg chain when using a power-law dis-
order distribution is the following [36,65,66]: gapped Hal-
dane at zero disorder (δ = 0), gapless Haldane (Griffiths)
at 0 < δ < 1, and, finally, RSP at δ ≥ 1. This power-law
distribution for the disorder is required in order to cross
the phase transition between the Haldane and the RSPs
[36,65]. The critical point at which this phase transition
takes place is known to be approximately δc = 1. A box-
like disorder distribution is only able to reach a disorder
distribution equivalent to that of δ = 1 and, thus, is un-
able to cross the quantum phase transition to the RSP
[67].

The results reported in this section of the paper
have been obtained using finite-size density matrix
renormalization-group (DMRG) calculations with open
boundary conditions [68,69]; between 2000 and 2500 ran-
dom realizations were used. In an attempt to reduce
issues in the calculations relating to degeneracy of the
ground state, a staggered magnetic field of magnitude
2.5× 10−3 was placed on the first two and last two spins.
Due to the spin chain having zero spontaneous magneti-
zation for all values of δ, we project over the total angular
momentumMz =

∑
i Szi = 0. In the DMRG calculations

100 states were kept during the renormalization process,
resulting in a maximum discarded weight of 10−6. We
remark that an alternative method to deal with random
spin chains is to employ a quantum parallel method in
which disorder is simulated by means of auxiliary sites
coupled to the physical sites [70]. However, within this
method the calculation of the entanglement spectrum for
each disorder realization would not be efficient.
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FIG. 3. (a) Average string order parameter, Oz, versus δ for varying chain length. (b) Average Schmidt gap, ∆λ, versus δ; the
color coding is the same as in panel (a). (c) Average string order parameter and Schmidt gap extrapolated to infinite length.
In all plots, lines connect points and are a guide for the eye. The dashed vertical line represents the approximate critical value
of δ at which the disorder-induced phase transition takes place.

A. String order and Schmidt gap

We wish to investigate the disorder induced phase tran-
sition from the Haldane gapless phase to the RSP. To this
end, we consider two disorder averaged quantities: the
string order parameter and the Schmidt gap, introduced
in Sec. II.

The string order parameter is defined as [71, 72]:

Oz = lim
|l−r|→∞

Oz(l, r), (6)

where the string correlation function Oz(l, r) is

Oz(l, r) = −

[〈
Szl exp

[
iπ

r−1∑
k=l+1

Szk

]
Szr

〉]
D

, (7)

and we take the distance |l − r| to be approximately L/2.
The Haldane gapless phase can be detected by the pres-
ence of a nonzero string order parameter, since this phase
retains long-range correlations from the gapped Haldane
phase. On the other hand, the string order vanishes in
the RSP, as each spin is only correlated with the spin it
is in a singlet with.

Conversely, the disorder-averaged Schmidt gap is ex-
pected to be nonzero in the RSP and 0 otherwise. In the
RSP there are 3N degenerate ground states, where N is
the number of singlets crossing the center of the chain.
Therefore, if no singlet crosses the center of the chain,
the central two spins are in a product state with cor-
responding ∆λ ≈ 1. For sufficiently large system sizes,
there is a nonzero probability of this product state occur-
ring and, in turn, a nonzero disorder-averaged Schmidt
gap. However, in the gapped and gapless Haldane phases
the ground state is evenly degenerate, corresponding to
a Schmidt gap of 0 for all cases of disorder.

Figure 3(a) shows the average string order parame-
ter and Fig. 3(b) shows the average Schmidt gap, for
the region of interest δ ∈ [0, 1.5]. While the RSP ex-
tends for any δ > 1, our DMRG calculations become
unstable for δ > 1.5. Therefore we restrict ourselves to
δ ≤ δmax = 1.5, since we are interested in the transi-
tion at δc ≈ 1. In Fig. 3(a) we see a crossing in the

string order parameter at δ ≈ 0.8 for the majority of
chain lengths, with the crossing occurring at a slightly
lower value of δ for the shorter lengths. It seems reason-
able to expect that this crossing would tend towards δc
as the chain length increases. While we do not observe a
crossing in the Schmidt gap [Fig. 3(b)], we do see strong
evidence of finite-size effects, as it is well known that in
the Haldane phase (δ = 0) the Schmidt gap is 0.

Figure 3(c) shows the results of a finite-size ex-
trapolation to infinite lengths for the two parameters.
This finite-size extrapolation is done by implementing a
method similar to that of Lajko et al. [36], in which a
value for the critical decay exponent η is extracted by
fitting an algebraic dependence A/Lη of the order param-
eter vs the chain length, where A is a fitting prefactor and
we fix δ = δc. While the extrapolation for the string or-
der seems to give reasonable results in the regions δ → 0
and δ ∼ 1, we observe a maximum around δ ∼ 0.5, which
is not observed in the data for fixed lengths. This might
be related to the closure of the second energy gap in this
region [36], leading to a lower quality of the extrapolation
for our samples.

It is known [36, 60, 61] that, for critical disor-
der, the correlation length diverges as ξ ∼ (δc − δ)−ν
with ν = (1 +

√
13)/2 ≈ 2.3028 and that the string

order parameter vanishes as Oz ∼ (δc − δ)2βst with

βst = 2(3−
√

5)/(
√

13− 1) ≈ 0.5864. Therefore, the
string order decays with length as Oz(L) ∼ L−ηst , where
ηst = 2βst/νst ≈ 0.5093. However, there is currently no
conjecture for the theoretical decay rate of the Schmidt
gap, thus we do not have a theoretical prediction for the
value of η∆λ. Due to the more conventional construction
of the order parameter the Schmidt gap is expected to
scale as ∆λ ∼ (δc − δ)β∆λ , therefore resulting in η∆λ be-
ing calculated by η∆λ = β∆λ/ν∆λ. The values we find
for the critical exponent η obtained for the string or-
der parameter and Schmidt gap are ηst = 0.20± 0.04 and
η∆λ = 0.37± 0.07 respectively. Note that the value of ηst

obtained is relatively far from the theoretical value. We
expect this discrepancy to be due to the limited sizes of
the chains we considered.

We then performed a finite-size scaling analysis [59]
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FIG. 4. (a) Finite size scaling analysis of string order pa-
rameter, Oz, close to the critical point, δc, for chain lengths
L = 48, 56, 64 and 72. (b) Same analysis for the Schmidt gap,
∆λ.

of our results for the string order parameter and the
Schmidt gap in order to obtain another approximation
of the critical decay exponent using Eq. (2). In this work
we fix δc = 1 and allow ν and βQ to vary until the best
collapse of the finite-size results is obtained. The string
order is known to scale, as above, with βQ = 2βst, due to
the construction of the order parameter.

Figure 4 (a) shows the collapse for the string or-
der parameter. The best finite-length collapse was ob-
tained for βst = 0.24± 0.05 and νst = 2.3± 0.4, corre-
sponding to a value of ηst = 0.21± 0.04. This, again,
is relatively far from the theoretical value of η but is in
close agreement with the value found previously using
the finite-size extrapolation. Figure 4 (b) shows the re-
sults when the same finite-size scaling is applied to the
Schmidt gap data, with the best collapse obtained at
β∆λ = 0.9± 0.1 and ν∆λ = 2.3± 0.4, corresponding to
η∆λ = 0.38± 0.08. This is significantly closer to the the-
oretical value of η while also being in good agreement
with the value found from the extrapolation. In both
cases, the critical exponent ν is found to be very close
to the theoretical value, thus validating the numerical
simulations.
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FIG. 5. ES, − log(λ), versus δ for L = 72. Ascending values
of λi with i = 1, 2, . . . 12 as the magnitude of − log(λ) in-
creases. Colors correspond to the expected eigenvalue group-
ing in the RSP. The dashed vertical line, as in Fig. 3, repre-
sents the approximate critical value, δc.

B. Entanglement spectrum and entropy

Finally, we investigate the disorder-averaged ES for
the first 12 eigenvalues of the reduced density matrix.
The Haldane phase has a known [18, 21] degeneracy se-
quence of [2, 4, 2, 4, . . . ] in the eigenvalues of the reduced
density matrix. In the RSP, the ES is dependent on
the number of singlets cut at the center of the chain,
with eigenvalues λ1 to λ3N having a value proportional
to 1/3N (with N being the number of spin-1 singlets
cut). This leads to an expected eigenvalue degeneracy
distribution of [1, 2, 6, 18, . . . ] which can also be written
as [30, 31 − 30, 32 − 31, 33 − 32, . . . ].

Figure 5 shows the disorder averaged ES for the first 12
eigenvalues of a chain of 72 spins. For this fixed length,
the the eigenvalues separate significantly for δ > 0.4. We
expect that in the thermodynamic limit this separation
would occur close to δc. We can observe quite clearly the
transition between the Haldane phase and the RSP in the
structure of the ES, shown in Fig. 5. In particular, we
expect that for larger values of δ, where all contributions
but those of singlets are almost eradicated, λ4 will group
closer with the eigenvalues λ5 and λ6.

Particularly interesting is also the probability distri-
bution P of the entanglement entropy, as it is directly
related to the distribution of the eigenvalues. We calcu-
late the von Neumann entropy:

E = −Trρ` log2 ρ` (8)

of the reduced density matrix

ρ` = TrL−`|ψG〉〈ψG|, (9)

where |ψG〉 is the ground state of Hamiltonian (3) and
` = L/2.

Figure 6 shows the probability distribution of the von
Neumann entropy for two values of disorder, one corre-
sponding to the Griffiths phase and one to the RSP. The
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FIG. 6. Probability distribution, P , of the von Neumann
entropy, E, for strength of disorder (a) δ = 0.5 and (b) δ = 1.5
for a spin chain of length 56.

distribution is plotted such that the horizontal axis rep-
resents the ratio E/ES , where ES = log2(3) ' 1.585 is
the entanglement of a spin-1 singlet. Therefore, peaks
at integer values represent an integer number of singlets
crossing the center of the chain. A significant change in
the distribution of entanglement is seen as we move from
the Griffiths phase to the RSP. Specifically, the distribu-
tion becomes much broader in the RSP but at the same
time we see a dominance of one entanglement value (and
thus ES), which is unseen in the Griffiths phase. Our
ability to only investigate smaller values of δ explains
the relatively rare occurrence of zero (∼ 5%) and more
than one (∼ 0.5%) spin-1 singlets being cut. As such, we
fully expect these peaks to become more prominent for
larger disorders and for larger lengths.

It is well understood [37, 73] that, further in the RSP
for large disorder, the smearing between contributions to
the von Neumann entropy from singlets decreases, and
the same would be seen in the distribution of the eigen-

values. We assume that, for strong enough disorder, the
ES will depend exclusively on the number of singlets be-
ing cut, and thus the disorder-averaged spectrum will de-
pend on the probability of cutting a number of singlets
N , with this probability varying as the disorder increases.

IV. CONCLUSIONS

In summary, we have numerically investigated the en-
tanglement spectrum of the ground state of random spin-
1/2 and spin-1 chains. The structure and degeneracy
of the low-lying levels of the entanglement spectrum re-
veal the emergence of a quantum phase transition even in
these disordered models. Remarkably, even for the two
inequivalent random models we studied, the Schmidt gap
detects the corresponding critical points and scales with
universal critical exponents. These results reinforce the
role of the Schmidt gap as a useful probe in quantum crit-
ical phenomena and open the way to possible extensions
to dynamics in the presence of disorder and noise.
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