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Abstract 21 

A historical phosphorus (P) budget was constructed for southern Lake of the Woods. Sediment 22 

cores from seven bays were radioisotopically dated and analyzed for loss-on-ignition, P, Si, 23 

diatoms, and pigments. Geochemical records for cores were combined using focusing factors for 24 

whole-basin estimates of sediment, total P, and P fraction accumulation. Although historical 25 

monitoring shows that external P loads decreased since the 1950s, sediment P continues to 26 

increase since the mid-20th century. Much sediment P is labile and may be mobile within the 27 

sediments and/or available for internal loading and resuspension. Two mass-balance models 28 

were used to explore historical P loading scenarios and in-lake dynamics, a static one-box model 29 

and a dynamic multi-box model. The one-box model predicts presettlement external loads were 30 

slightly less than modern loads. The dynamic model showed that water column P was higher in 31 

the 1950s–1970s than today, that the lake is sensitive to external loads because P losses from 32 

burial and outflow are high, and that the lake is moving to a new steady state with respect to 33 

water column P and size of the active sediment P pool. The active sediment pool built up in the 34 

mid-20th century has been depleted through outflow and burial, such that its legacy effects are 35 

now minimal. Comparison of historical nutrient dynamics and sediment records of algal 36 

production showed a counterintuitive increase in production after external P loads decreased, 37 

suggesting other drivers may now regulate modern limnoecology, including seasonality of P 38 

loading, shifting nutrient limitation, and climate warming. 39 

Key Words: cyanobacteria, internal phosphorus loading, large lakes, paleolimnology, shallow 40 

lakes 41 

 42 
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Control and mitigation of excess nutrients, particularly phosphorus (P), continues to dominate 43 

lake management efforts (Schindler 2012, Schindler et al. 2016). In the USA, over 40% of lakes 44 

are impaired for phosphorus (USEPA 2016) and nutrient triggered cyanobacterial blooms are a 45 

global problem (Paerl et al. 2011). Measurements and models for determining basin P loading 46 

and sediment P burial, resuspension, and aerobic and diffusive loading are critical for addressing 47 

nutrient management and recovery from eutrophication. Many methods and models have been 48 

developed to estimate whole basin and sediment fluxes (James and Barko 1993, Brenner et al. 49 

2006), P retention capacity of sediments (Kopáček et al. 2007, Wilson et al. 2010), and long-term 50 

and short-term P dynamics (Xie and Xie 2002, Norton et al. 2011, Wang et al. 2003). 51 

Importantly, these modeling exercises have been directed at nutrient-impaired waters throughout 52 

the world, although lake-specific models are often required (Havens et al. 2001). Resulting 53 

management efforts primarily target point and non-point P loadings; however, impaired lake 54 

conditions are often exacerbated by internal P loading through chemical release (especially under 55 

anoxic hypolimnetic conditions; Boström et al. 1982) and sediment resuspension. Internal 56 

loading may continue to determine lake condition even after significant reduction in external 57 

loads (Jeppesen et al. 2005, McCrackin et al. 2016).  58 

 Lake of the Woods (LoW) is a large, multibasin lake located along the borders of 59 

Minnesota (USA), Ontario and Manitoba (Canada). The lake extends about 100 km on both 60 

longitudinal and latitudinal axes, with the largest surface area in Big Traverse Bay, which 61 

connects to several secondary basins including Buffalo and Muskeg bays to the south and west, 62 

and Sabaskong Bay to the east. Water flows northward through Little Traverse Bay before 63 

passing through Big Narrows to join outflow from several deeper Canadian basins, bays, and 64 

outflows before discharging into the Winnipeg River at Kenora, Ontario. Overall, mean 65 
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residence time is 1.71 yr (2000–2010; Zhang et al. 2013). Its major inflow is the Rainy River, 66 

which enters the southeast end of the lake near Baudette, Minnesota (Anderson et al. 2017). 67 

 With the publication of the Lake of the Woods State of the Basin Report (DeSellas et al. 68 

2009; updated 2nd Ed., Clark et al. 2014) and the Minnesota Pollution Control Agency's 69 

placement of the lake in 2008 on the state's list of waters impaired for nutrients and 70 

eutrophication indicators, the future of the lake became a high profile concern for Canada, 71 

Minnesota, First Nations and tribal governments, as well as the lake's stakeholders. The Basin 72 

Report highlighted nutrients and their biological impacts – primarily cyanobacterial blooms and 73 

a perceived increase in the frequency and extent of these nuisance blooms – as a primary 74 

resource concern for the lake. 75 

Lake of the Woods has elevated concentrations of P in comparison to other lakes on the 76 

Precambrian Shield, a strong N–S gradient of water quality (Pla et al. 2005), and extensive 77 

cyanobacterial blooms (Binding et al. 2011). Although these characteristics have some historical 78 

precedence (Anderson et al. 2017), recent trends in lake ecology have been at odds with known 79 

effects of resource management. For example, monitored P loads from the Rainy River, the 80 

primary external source of P, have decreased over the last 40 years, mainly due to improved 81 

management of point sources (Hargan et al. 2011). Following nutrient abatement programs, 82 

Rainy River water quality between the 1990s and 2000s shows little change in nutrient content 83 

(Hargan et al. 2011), which is further reflected in minimal change in in-lake nutrient 84 

concentrations based on the limited monitoring data available. Furthermore, paleoecological 85 

evidence from Canadian waters of northern LoW demonstrates little change in diatom-inferred P 86 

values (Rühland et al. 2008, 2010, Hyatt et al. 2011, Paterson et al. 2017), whereas fossil 87 

reconstructions from a small bay in the south basin shows increasingly eutrophic conditions 88 
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(Reavie and Baratono 2007). Cyanobacterial blooms are perceived to be more frequent and of 89 

greater spatial coverage than in previous decades, particularly in the southern basin, although 90 

evidence from monitoring, including satellite imagery, is equivocal (Chen et al. 2007, 2009, 91 

Binding et al. 2011). 92 

Weak relationships between documented declines in nutrient influx and observed water 93 

quality may reflect either a strong legacy effect of sedimentary nutrients or establishment of 94 

alternative mechanisms regulating limnological conditions, such as climate induced reduction in 95 

water-column mixing and reduced thermal structure (Paerl and Huisman 2008). In response to 96 

these challenges, management initiatives include an increase in the spatial and temporal 97 

resolution of monitoring, evaluation of satellite imagery, tests for cyanobacterial toxins, and 98 

development of a comprehensive P mass budget for the lake (Clark et al. 2014).  To complement 99 

these initiatives, managers also need a detailed historical evaluation of nutrient dynamics of LoW 100 

to quantify the magnitude and timing of disconnect between changes in nutrient loading and lake 101 

response.  In particular, sediments record changes in sedimentary P accumulation, as well as the 102 

chemical nature of P fractions, and often reveal how these factors vary in response to external 103 

loading, land use, climate and other factors (Anderson et al. 1993, Ginn et al. 2012). 104 

Historical and paleoecological techniques for estimating past P influx and temporal 105 

dynamics have proven useful in developing cooperative management strategies in other nutrient-106 

enriched transboundary waters such as Lake Pepin and Lake St. Croix, smaller basins within the 107 

Upper Mississippi River (Edlund et al. 2009, Engstrom et al. 2009; Triplett et al. 2009). In those 108 

lakes, historical phosphorus mass balances, which estimated inputs based on the sum of whole 109 

basin burial estimates and diatom-based estimates of P loss in outflows, indicated that P loading 110 

to each lake had increased rapidly after World War II in response to growing populations and 111 
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increased point and nonpoint source loadings.  Concomitantly, diatoms showed dramatic 112 

ecological changes in the last 200 years, while diatom-inferred P concentrations increased after 113 

Euro-American settlement and the mid 20th century.  In contrast, recent analysis of sedimentary 114 

P, diatoms and fossil pigments from phytoplankton in larger prairie basins (e.g., Lake Winnipeg, 115 

L. Manitoba) suggest that lake production can be disconnected from estimates of P influx, 116 

particularly in poorly stratified waters (Bunting et al. 2016).  Given the size and depth of 117 

southern LoW, it may be difficult to predict how production may have responded to nutrient 118 

management. 119 

This project uses a combination of sedimentary P analysis, multi-proxy fossil analysis of 120 

phytoplankton (diatoms, pigments) and dynamic nutrient modeling to reconstruct historical 121 

changes in nutrient fluxes and conditions in southern LoW. In conjuction with a coupled 122 

paleolimnology effort (Reavie et al. 2017), we address these research questions: 123 

1. Does the sediment P record accurately reflect the lake’s P loading history? 124 

2. How have P loadings to LoW changed over the last 150 years? 125 

3. Can in-lake P dynamics be modeled to understand historical, legacy, and future nutrient 126 

dynamics? 127 

4. Do trends in core biogeochemistry and biological indicators reflect historical nutrient 128 

dynamics? 129 

 130 

Materials and Methods 131 

Coring 132 

Sediment cores were recovered from deep, flat depositional zones in seven basins in LoW (Table 133 

1, see also Reavie et al. 2017). Most cores were recovered with a piston corer consisting of a 6.5 134 
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cm diameter polycarbonate tube outfitted with a piston and operated with rigid drive rods from 135 

the ice surface (Wright 1991). A follow-up core was recovered the following summer from 136 

Buffalo Bay using a gravity corer (Renberg and Hansson 2008). Piston cores ranged in length 137 

from 90 to 98 cm, and the gravity core from Buffalo Bay was 9.5 cm long. All cores were 138 

stabilized with Zorbitrol (Tomkins et al. 2008) or sectioned immediately in the field in 0.5-cm 139 

increments to 10 cm depth using a vertical extrusion system. For piston cores, unextruded core 140 

material was sealed in its polycarbonate tube and transported horizontally back to the laboratory 141 

for further sectioning in 1-cm increments from 10 cm to 35 cm (to 60 cm for Sabaskong and Big 142 

Narrows cores).  143 

Isotopic Dating, Biogeochemistry, and Whole-Basin Deposition 144 

Sediment cores were analyzed for 210Pb activity to determine age and sediment accumulation 145 

rates over the past 150 to 200 years. Lead-210 activity was measured from its daughter product, 146 

210Po, which is considered to be in secular equilibrium with the parent isotope. Aliquots of 147 

freeze-dried sediment were spiked with a known quantity of 209Po as an internal yield tracer and 148 

the isotopes distilled at 550°C after treatment with concentrated HCl. Polonium isotopes were 149 

then directly plated onto silver planchets from a 0.5 N HCl solution. Activity was measured for 150 

1–3 x 105 s using an Ortec alpha spectrometry system. Supported 210Pb was estimated by mean 151 

activity in the lowest core samples and subtracted from upcore activity to calculate unsupported 152 

210Pb. Core dates and sedimentation rates were calculated using the constant rate of supply model 153 

(Appleby and Oldfield 1978, Appleby 2001). Dating and sedimentation errors represented first-154 

order propagation of counting uncertainty (Binford 1990). For cores with problematic activity 155 

profiles, gamma spectrometry was used to measure supported 210Pb (as 214Pb) and identify the 156 

1963 dating marker associated with the peak in 137Cs activity. The short-lived isotope 7Be (half 157 
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life 53.2 d) was also measured in the uppermost intervals of select cores using gamma 158 

spectrometry to determine the extent of sediment mixing from bioturbation and resuspension. 159 

To understand whole basin depositional rates for various constituents including dry bulk 160 

sediment and P fractions, a "focusing factor" was calculated for each core using the method of 161 

Engstrom and Rose (2013) and Hobbs et al. (2013) to normalize for downcore fluxes among 162 

basins. Focus factors estimate the degree to which each core site integrates sediment within a 163 

basin by comparing atmospheric flux to unsupported 210Pb inventory at the core site. 164 

Atmospheric flux of 210Pb in northern Minnesota is estimated at 0.45 pCi/cm2yr (Lamborg et al. 165 

2013). Sedimentation rates for individual basins were corrected for sediment focusing, the data 166 

for all cores pooled, and averaged among time intervals represented by approximately equal 167 

numbers of observations (5-year window back to 1990, decadal intervals to 1940, 20-year 168 

intervals to 1900, and pre-1900 samples grouped) to estimate whole lake sedimentation rates. 169 

Bulk-density (dry mass per volume of fresh sediment), organic, carbonate, and mineral 170 

content, and biogenic silica (BSi) concentrations and accumulation rates were determined for all 171 

cores. Details of these geochemical procedures are provided by Reavie et al. (2017). Sediment P 172 

was analyzed following the sequential extraction procedures in Engstrom (2005) and Engstrom 173 

and Wright (1984). Extracts were measured colorimetrically on a Lachat QuikChem 8000 flow 174 

injection autoanalyzer. Sediment P concentrations were also converted to flux using bulk 175 

sedimentation rates in each core. In addition to total P, sediment fractions include the refractory 176 

forms HCl-P and Organic-P and labile forms NaOH-P and exchangeable P (Ex-P). 177 

Biological constituents measured in all cores included diatom and chrysophyte 178 

microfossils and fossil algal pigments; analytical procedures and results are presented by Reavie 179 

et al. (2017). To estimate historical water column total P, or diatom-inferred total P (DI-TP), a 180 
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diatom calibration set constructed by Hyatt et al. (2011) was applied to relative abundance data 181 

of downcore diatom assemblages using weighted averaging regression with inverse deshrinking. 182 

Calibration model performance and reconstruction statistics are presented in Reavie et al. (2017).  183 

Modeling Historical Phosphorus Dynamics 184 

Two modeling approaches were developed and applied to downcore data to understand historical 185 

nutrient dynamics, historical P loads, and current nutrient trajectories. Model 1 is a simple one 186 

box whole-lake mass balance, whereas Model 2 is a three-box dynamic model run from 1850 to 187 

present. Each model is presented below with its conceptual basis, assumptions, input data, and a 188 

discussion of its results, trends, potential shortcomings, and key findings. Model 2 was 189 

assembled and run using the software Stella 9.0 (isee systems inc., Lebanon, NH, 190 

www.iseesystems.com). 191 

Supporting data for modeling of historical P budgets came from several sources. For 192 

Model 1, historical water column P was estimated using diatom-inferred total P (DI-TP) 193 

reconstructions from all cores (Table 2; Reavie et al. 2017). Lake area was calculated from 194 

polygons digitized from aerial photography using the software QGIS (QGIS Development Team 195 

2015) and lake volume by basin was taken from Zhang et al. (2013). Outflow rates to the 196 

Winnipeg River at Kenora were available from 1927–2008 and provided by the Lake of the 197 

Woods Water Control Board (lwcb.ca). Outflow at the Big Narrows was scaled based on 198 

supplemental data provided in Zhang et al. (2013) by comparing daily step outflow from 2000–199 

2010 at the Big Narrows to Kenora. Phosphorus loadings from the Rainy River were assembled 200 

from available records from 1954–present, including compilations by Beak Consultants Ltd 201 

(1990) and Hargan et al. (2011), and recent monitoring coordinated by the Minnesota Pollution 202 

Control Agency (Table 3). Data were summarized using decadal average flows and arithmetic 203 
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means of measured TP. Other sources of P loads to the lake including atmospheric deposition, 204 

minor tributaries, and shoreline erosion were taken from Hargan et al. (2011) and HEI (2013).  205 

 206 

Results 207 

Sediment core records 208 

Most cores from LoW showed monotonic exponential declines in 210Pb inventories to depths 209 

with background (supported) activities (Fig. 1). Cores generally reached supported levels of 210 

210Pb around 25 to 35 cm depth, except for Buffalo Bay, where supported levels were reached at 211 

7–8 cm. Supported 210Pb activities ranged from 0.85 pCi/g (Muskeg Bay) to 1.28 pCi/g (Big 212 

Narrows). Sediments dated to 1900 correspond to the approximate period of European settlement 213 

and damming of the lake at Kenora (Clark et al. 2014) and were found between 17 cm (Little 214 

Traverse) and 34 cm (Sabaskong Bay) downcore, except for Buffalo Bay (~7.5 cm). Buffalo Bay 215 

began to accumulate lacustrine sediments at ca. 1900, likely in response to damming at Kenora, 216 

which raised LoW water levels by ~1 m (Clark et al. 2014). Sediment focusing factors varied 217 

among the core sites from 0.41 at Buffalo Bay to 1.87 in Sabaskong Bay (Table 1). The short-218 

lived isotope 7Be (half-life 53.2 d) was measured in select cores and detected to depth of 1 to 4 219 

cm; if 7Be can be detected in sediments dated by 210Pb at 6–10 years old, sediment mixing must 220 

be occurring in LoW at least to some degree (data not shown). 221 

Most cores showed increasing sedimentation rates in more recent deposits with modern 222 

rates typically two-fold greater than those before 1900 (Fig. 1). Some cores had slightly greater 223 

increases in sedimentation rates including the Big Traverse Bay and Little Traverse Bay cores, 224 

with recent sedimentation nearly three times pre-1900 rates. Little Traverse and Muskeg bays 225 

had secondary increases in sedimentation rates since the 1970s and 1980s, respectively. Modern 226 
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sedimentation rates varied from 0.6 (Big Traverse 4) to 1.2 kg/m2 yr (Sabaskong Bay), whereas 227 

presettlement rates ranged from less than 0.1 (Big Traverse 3) to 0.6 kg/m2 yr in Muskeg Bay. 228 

Following correction for sediment focusing in each basin and pooling of all cores based on 229 

averaged time intervals, estimates of whole-lake sedimentation rates increased from a pre 230 

settlement rate of 0.27 kg/m2 yr to a peak in the 1970s of 0.69 kg/m2 yr. Whole-basin 231 

sedimentation rates declined slightly in the 1980s but have risen to approximately 0.7 kg/m2 yr 232 

since the 1980s (Fig. 2a). 233 

Total P in LoW sediment ranged from 0.4 to over 1.0 mg P/g dry mass (Fig. 3). The 234 

organic-P and NaOH-P fractions were most abundant in Big Traverse 4, Little Traverse Bay, 235 

Sabaskong Bay, and Big Narrows. In contrast, HCl-P was a predominant P fraction in Big 236 

Traverse 3, Buffalo Bay, and deeper sediments of Little Traverse and Muskeg bays. In all cores 237 

the accumulation rates of sediment P and fractions increased 2- to 3-fold over the 20th century, 238 

with to highest levels at the core surface. Based on historical estimates of P loading from the 239 

Rainy River, there have been significant declines in P loading since the mid-1970s to present day 240 

that are 2- to 3-fold less than loading estimates derived from 1950s–1970s. However, there is no 241 

clear indication of decreased accumulation of P in the sediments in response to decreased 242 

external loads, possibly because upward mobility of P within the sediments obscures the trend of 243 

P inputs to the sediments (James et al. 2015).  244 

Whole lake P accumulation rates were estimated from the time-averaged sum of P 245 

accumulation estimates from all sites, each independently corrected for sediment focusing (Fig. 246 

4a). The P fractions were also treated separately as refractory (HCl-P, Org-P) or labile 247 

(potentially exchangeable) fractions (Ex-P, NaOH-P; Fig. 4a). Labile fractions are prevalent in 248 
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all levels of LoW sediments with the amount increasing upcore, consistent with the expectation 249 

that these P fractions are potentially mobile within the sediment profile.  250 

Because burial of P is often the primary mechanism that removes P from a lake, we 251 

developed a conceptual model that considers the historically or permanently buried P and the 252 

active pool of P (Fig. 4b). We recognize that a significant proportion of the P in upper sediment 253 

layers represents an active pool of P that can be exchanged with the overlying waters or within 254 

the cores via mobility and bioturbation. In addition, the active pool is not restricted to the labile 255 

fractions because of resuspension (James 2017) and because labile P fractions are present in deep 256 

sediments (Fig. 4a). We also recognize from the 7Be inventory that sediments may be rapidly 257 

mixed in LoW down to 5 cm. Because of these factors (mixing, resuspension, within-core 258 

mobility) we do not know at the time of coring and at a given sediment depth what proportion of 259 

P is actually buried. Therefore, for modelling purposes our conceptual basis recognizes that there 260 

is a pool of P available for exchange (“Active”; Fig. 4b) and a pool of P that is truly buried and 261 

no longer available for exchange with the lake (“Buried”; Fig. 4b). Model 2 explores the 262 

behavior of these pools, particularly the net flux of P from the active pool via diffusion and 263 

resuspension to estimate water column TP concentration, and uses the whole-basin inventory of 264 

sediment P (active plus buried) in sediments deposited from 1860–2011 as a modelling target 265 

(see Model 2 below). 266 

Among the seven cores analyzed for diatoms, most show continuous upcore increases in 267 

DI-TP (Fig. 3, see also Reavie et al. 2017). Analysis of all cores, except Buffalo Bay (no 19th 268 

century sediments), suggested that background (pre-Euroamerican settlement) TP concentrations 269 

in the water column to be approximately 10 µg P/L throughout the southern LoW. Cores from 270 

Muskeg, Big Narrows, and Big Traverse 4 showed increasing DI-TP upcore after 1900, whereas 271 



  13 

Big Traverse 3, Sabaskong, and Little Traverse had more marked increases in DI-TP after 1950. 272 

Overall, Buffalo Bay had the highest DI-TP values than all other cores from LoW with recent 273 

values exceeding 30 µg P/L. Values of DI-TP from the most recent sediments of other cores 274 

were typically between 20 and 30 µg P/L with several cores exceeding 30 µg P/L in the 275 

uppermost sections (Big Narrows, Muskeg, Buffalo Bay).  276 

The DI-TP reconstructions of six cores were combined (Buffalo Bay omitted in pre-1900 277 

as it did not preserve a predamming record) by time increment to estimate whole-lake historical 278 

water column TP (Fig. 2b). Whole-lake DI-TP trends suggest TP concentration was about 10 µg 279 

P/L, which steadily increased to a peak of ~18 µg P/L in the 1970s. The DI-TP estimates appear 280 

to be low compared to available monitoring data from the late 1960s, which indicate south basin 281 

TP concentrations of 30–100 µg P/L (Reavie et al. 2017). After the 1970s, DI-TP values 282 

remained between 15 and 17 µg P/L until the most recent period (2005–2011) when whole-lake 283 

DI-TP increased to over 24 µg P/L. Comparison of DI-TP with monitored TP values from within 284 

the cored basins suggest that average TP from 2005–2011 was 38 µg P/L and 31 µg/L in 1999 285 

based on roughly monthly late spring–summer sampling during focused monitoring efforts by 286 

US and Canadian agencies. It is also apparent from the monitoring data that in the southern 287 

basins there were distinctly higher TP readings in the late summer months (>40 µg P/L) 288 

compared to spring (20–32 µg P/L) values (Lake of the Woods Water Sustainability Foundation 289 

2011, Reavie et al. 2017). Whole lake DI-TP (or for Model 2, calculated P concentration) was 290 

multiplied by discharge at Big Narrows, which was estimated from 1900–2011 based on scaling 291 

daily step outflows taken at both Kenora and Big Narrows from 2000–2010 (Fig. 5a; Zhang et al. 292 

2013).  293 
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Modeling historical P dynamics 294 

Two, whole basin, modeling approaches were used to explore historical P loading scenarios to 295 

LoW and in-lake nutrient dynamics.  296 

Model 1) Simple whole-lake mass balance 297 

We first applied a commonly used one-box whole-lake mass flux model to estimate historical P 298 

loading in LoW (Rippey and Anderson 1996, Engstrom et al. 2009, Triplett et al. 2009, 299 

Engstrom and Rose 2013):  300 

I = B + O  (1) 301 

where all external inputs (I) of P to a are either permanently buried in sediments (B), or removed 302 

from the lake via outflow (O). The sum of burial and outflow at any time is a first order estimate 303 

of historical P loading to the lake. Modelled outflow (O) is estimated using the whole-lake 304 

historical diatom-inferred concentrations of TP (DI-TP; Fig. 2b) multiplied by the outflow at Big 305 

Narrows (Fig. 5). Whole-lake burial (B) of P was calculated from focus-corrected flux rates of 306 

total sediment P for each sub-basin as above (Fig. 4a). Burial of P is assumed to be permanent 307 

with only minor internal loading and no mobility within sediments, i.e., observed sediment flux 308 

reflects actual burial rate at each dated interval. 309 

Model 1 P loading estimates for LoW are estimated to be approximately 559 t P/yr before 310 

settlement (Table 2). Modern whole-lake load estimates (based on monitoring) are only slightly 311 

higher and range from 582 t P/yr (2005–2014; RESPEC, unpublished) to 687 t P/yr (2005–2011; 312 

Hargan et al. 2011). After settlement, model results suggest P loadings increase continuously to 313 

modern rates of 1326 t P/yr (Table 2). Based on monitored loading estimates (see Hargan et al. 314 

2011, Anderson et al. 2013, Zhang et al. 2013), this model clearly overestimates modern 315 

loadings to the lake. Importantly we also do not see any modeled decrease in loadings to the lake 316 
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since the 1980s that would reflect well-documented decreases in P inputs from the Rainy River 317 

(Hargan et al. 2011). A large over-estimate of modern P loads to the lake and no indication of 318 

decreased loading after 1980 (Fig. 4a) reflect shortcomings of this model and limit its 319 

applicability to sediment records deposited during steady state conditions during presettlement 320 

times. The assumption that LoW rapidly and permanently removes external P from the lake via 321 

burial is likely violated due to the within-core P mobility, high rates of resuspension, and slow 322 

sedimentation rates. 323 

Model 2) Dynamic 3-box model with annual time step, 1860–2011 324 

To better estimate temporal changes in TP influx and in-lake fluxes, a three-box dynamic model 325 

was constructed and run from 1860 to present (Fig. 6). In this case, modeled pools (inventories) 326 

of P include buried sediment P (Cumulative buried P, Fig. 4b), an active sediment pool of P 327 

(Cumulative P in active layer, Fig. 4b) available for exchange with the water column or burial, 328 

and P in the water column (Lake P) from external and internal loading that are estimated using: 329 

Cumulative P in active layer = Ext Load x % to Sed - Burial - InLoad (2) 330 

Cumulative buried P = (Cum. P in active layer / MS) x Sed Rate  (3) 331 

Lake P = Ext Load x (1 - % to Sed) + InLoad – Out (4) 332 

Input data for Model 2 are the external P loads (Ext Load) from the Rainy River, which were 333 

estimated annually for 1950s–2011 (Table 3), and other sources of P (other tributaries, shoreline 334 

erosion, atmospheric deposition), which were held constant from 1850–2011 at 232 t P/yr (Table 335 

3). Initial external load conditions (1850–1900) were set at 300 t P/yr from the Rainy River plus 336 

232 t P/yr from other sources (total external load 532 t P/yr), similar to Model 1 presettlement 337 

loading estimates (Table 3). From 1900 to 1950, P loads were increased incrementally to 1950s 338 

monitoring estimates (Table 3). The model also incorporated a 10-year lag in burial; P that 339 
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reached the sediments could not be permanently buried for 10 years, but remained available for 340 

exchange with the water column as supported by the depth of mixing of 7Be and data from other 341 

large lakes (Nürnberg and LaZerte 2016). 342 

 Model variables that were manipulated included the percent of external load that goes 343 

directly to sediment (% to Sed), which ranged from range 0–50%, based on our knowledge that 344 

much of the P load from the Rainy River is in dissolved forms and readily available for in-lake 345 

production. The mass of sediment in the active layer (MS), or the mass of sediment in the top 0–346 

10 cm depth increment; range 8.03 to 19.23 kg/m2. MS represents the amount of sediment in the 347 

layer that can exchange P with the lake before becoming buried. The mass of sediment and P in 348 

this active layer determines the concentration of P at the time of permanent burial. The internal 349 

loading rate (InLoad) was also manipulated and represents a net annual flux calculated as the % 350 

of P in the active layer that enters the lake through resuspension and/or redox cycling and 351 

diffusion; range 0–2.5%. 352 

 Model variables were manipulated through trial and error to best meet model target 353 

criteria (Table 3).  First, the model was evaluated against known or modeled in-lake 354 

concentration of TP with targets set at 10 µg P/L presettlement based on whole basin DI-TP 355 

(Reavie et al. 2017), 1960s TP monitored at approximately 70 µg P/L, and 2005–2011 TP values 356 

using whole basin DI-TP of 25 µg P/L (Reavie et al. 2017). The second model target was the 357 

whole-basin inventory of P measured in sediments of southern LoW deposited in sediments from 358 

1860–2011 (106,620 t P) and 1940–2011 (67,746 t P). 359 

Target criteria were best satisfied when: a) % to Sed was set at 75%, a reasonable number 360 

given that at least a quarter of TP entering LoW from the Rainy River is dissolved P, b) the 361 

InLoad was set at 2.5% of the Active Pool of P, and c) the active layer was defined as the top 0–362 
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5 cm of the core with a corresponding sediment mass (MS) of 8.03 kg/m2. Model 2 results are 363 

presented from 1860 to 2011 (the model was run from 1850–1860 to reach initial steady state 364 

conditions, and extended to 2050 using current loading rates) and are best interpreted by 365 

examining model estimates of water column TP and the size of the active pool of P (Fig. 7).  366 

Dynamic modeling of LoW P fluxes appeared to overestimate background TP levels (~20 367 

µg P/L) known from fossil diatom inferences but documented a rapid increase to a maximum of 368 

~75 µg P/L in the 1950s, before decreasing to modern levels of ~25 µg P/L. The active pool of P 369 

also increased rapidly after 1900 to maximum levels in the 1960s before declining to modern 370 

levels by the 2010s.  Preliminary analyses suggested that model output was sensitive to estimates 371 

of external P influx.  For example, if external loads are reduced to 232 tons P/yr (value of other 372 

sources of P; Table 3) from 1850–1900 model output more closely matches our presettlement 373 

DI-TP estimate of ~10 µg P/L and the increase in water-column TP is delayed until about 1900, 374 

concomitant with Euroamerican settlement, land use changes, and damming (Reavie and 375 

Baratono 2007).  Similarly, if the model is run through 2050 by holding P influx via the Rainy 376 

River constant at current estimates of 350 tons P/yr, the lake reaches a steady state in the 2010s 377 

with water column TP of 25 µg P/L and an active pool of 12000 tons P. 378 

 Model 2A overestimates initial water column TP in LoW at just over 20 µg P/L, shows a 379 

rapid increase to peak levels of 77 µg P/L in the 1950s, and then depicts slowly decreasing TP to 380 

modern levels of 26 µg P/L. The active pool of P increases rapidly after 1900 to maximum levels 381 

in the 1960s before declining to modern levels by the 2010s. Two modifications were made to 382 

better understand model performance and future water quality trends. The model is highly 383 

sensitive to external loads. Hence, if external loads are reduced to 232 t P/yr from 1850–1900 384 

(equivalent to current sources of P other than the Rainy River), Model 2B output more closely 385 
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matches our presettlement DI-TP estimate of ~10 µg P/L. Importantly, the increase in water 386 

column TP is delayed until about 1900, which aligns with the timing of settlement, land use 387 

changes, and damming. If the model is run through 2050 holding external loads from the Rainy 388 

River at current estimates of 350 t P/yr, the lake reaches a steady state by 2020 with TP of 25 µg 389 

P/L and an active pool of 12,000 t P.  390 

 Overall, Model 2 shows water column TP concentrations were 2X to 3X greater in the 391 

1950s–1970s than today, and that decreased external loading after the 1970s resulted in 392 

significant decreases of P concentration in the lake compared to the mid-20th century. The lake is 393 

responsive to external loads because P burial and outflow are large net annual losses in LoW. 394 

Similarly, the active pool of sediment P was largest in the 1960s and that legacy pool of P has 395 

been rapidly depleted through burial or outflow to its current size of 10,000 t P. As such, the lake 396 

will approach a new steady state with regard to water column TP and its active pool of P if 397 

current loading trends continue. 398 

Discussion 399 

Paleolimnological analysis of sediment cores is widely used in lake management to determine 400 

background or reference lake condition, periods and direction of lake change, an understanding 401 

of potential drivers of change, and current ecosystem trajectories (Smol 2009). In LoW, the 402 

paleolimnological approach was extended from a historical account of lake water quality and 403 

ecological consequences (Reavie et al. 2017) to a whole-lake interpretation of the stratigraphy of 404 

sediment P to more fully understand historical patterns of nutrient loading, quantify temporal 405 

variability in lake-sediment P dynamics, and evaluate current trends in lake conditions using 406 

traditional and dynamic modeling techniques. We organize our discussion of core records and 407 
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modeling results based on our initial research questions followed by the limitations and 408 

management implications of this approach.  409 

Does the sediment P record accurately reflect the lake’s P loading history? 410 

Historical observations suggest that TP influx to LoW has declined from maxima during 411 

the mid- 20th century. For example, estimates of TP influx compiled by Beak Consultants 412 

Ltd (1990) and Hargan et al. (2011) rigorously account for monitored TP loads from the 413 

Rainy River as well as other tributary loads and sources during 1954–2011 (Table 3). These 414 

data suggest that Rainy River P influx was greatest during the 1950s (~1700 t P/yr) but 415 

dropped by the 1970s, with a steady decline to modern loadings that range from 237 to 559 416 

t P/yr (Table 3; Zhang et al. 2013). At the same time, P from smaller tributaries, 417 

atmospheric deposition, and shoreline erosion accounts for an additional 232 t P/yr and 418 

include inputs (Hargan et al. 2011, HEI 2013). 419 

Sediment P profiles in LoW do not directly record the dynamic nature of P influxes 420 

since ca. 1950. Instead geochemical analyses show the burden of P retained in the sediment 421 

is mobile. Its gradual upcore diffusion increases the amount of P observed in the upper 422 

sections of all cores and obscures the historical loading peak of the 1950s–1970s. This 423 

phenomenon is not uncommon in lake sediment cores from eutrophic lakes, especially 424 

those with relatively low sedimentation rates and with a higher propensity for recycling of 425 

sedimentary P into the water column (Carey and Rydin 2011, Ginn et al. 2012). In contrast, 426 

lakes with high sedimentation rates and rapid P burial can preserve known temporal 427 

patterns of historical P influx (Engstrom et al. 2009, Triplett et al. 2009), and cores will 428 

maintain that record based on repeat coring efforts separated by decades (Søndergaard et al. 429 

2003, Blumentritt et al. 2013). 430 
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How have P loadings to LoW changed over the last 150 years? 431 

In LoW, a combination of paleolimnology, modeling, and monitoring was required to understand 432 

that P loadings were estimated to have increased rapidly following settlement to peak levels in 433 

the 1950s–1970s, after which loadings decreased rapidly following nutrient abatement 434 

regulations. Past changes in P influx in the absence of monitoring data have been estimated using 435 

a combination of whole-lake estimates of P burial and diatom-inferred estimates of water-column 436 

TP. For example, this approach has proven successful in developing nutrient and sediment 437 

reduction strategies in large transboundary lakes such as the Upper Mississippi River's Lake 438 

Pepin and Lake St. Croix (Edlund et al. 2009, Engstrom et al. 2009; Triplett et al. 2009). In these 439 

lakes, relatively high sedimentation rates provide rapid and efficient burial of P and a sediment 440 

record that reflects trends in P loading. However, because LoW sediments do not preserve a 441 

direct record of P loading, we cautiously applied a simple whole-lake mass balance model to 442 

estimate presettlement loadings to LoW. If we assume that the presettlement sediment record in 443 

LoW represents a long-term steady state, our Model 1 predicts presettlement P loading at 559 t 444 

P/yr. Because of upcore mobility of P in the sediments, Model 1 is limited in its application to 445 

presettlement (steady state) conditions. For other historical loading estimates we must rely on 446 

monitoring data, which suggest peak loading from the Rainy River in the 1950s, slight declines 447 

through the 1970s, and a rapid decrease in loadings from the 1980s to present. Other modern 448 

sources of P are estimated at 232 t P/yr and include inputs from minor tributaries, atmospheric 449 

deposition, and shoreline erosion (Hargan et al. 2011, HEI 2013).  450 

Can in-lake P dynamics be modeled to understand historical, legacy, and 451 

future nutrient dynamics? 452 
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Model 2 explored the historical behavior of P in LoW that led to the modern distribution of 453 

sediment P. This model was necessary because the abundance and distribution of P fractions in 454 

LoW sediment cores indicate there is a pool of readily exchangeable P, and that pool of P 455 

increases at the top of the core. This pattern was clearly identified in all cores in this study and 456 

by James (2017) from sites in Big Traverse and Muskeg bays. Because sediment P is potentially 457 

mobile, the amount of P at a particular depth (and therefore time) is transient. If a core is 458 

collected from LoW today, the downcore abundance of P is only a snapshot of current sediment 459 

P distribution, and that distribution is a reflection of historical loading and in-lake processes that 460 

control P loading (internal and external), deposition, mobility, and burial. Likewise, a core taken 461 

in 1970 would have a different profile than today’s core, and the interval dated from 1970 in 462 

today’s core will not look like it did in 1970 in geochemical terms.  463 

Whereas many modeling efforts strive to disentangle P dynamics at the sediment water interface 464 

and within the oxic/anoxic sediment boundary (e.g. Wang et al. 2003), our model uniquely 465 

considered P dynamics at annual time steps on time frames greater than a century.  466 

Model 2 results yield new insights on historical nutrient dynamics in LoW and 467 

provide perspective on current and future water quality trends in the lake. First, water 468 

column P was significantly higher in the past, particularly in the 1950s–1970s than it is 469 

today. Second, the lake is very responsive to changes in external loads. Model results show 470 

the lake quickly became more eutrophic as nutrient loading ramped up following 471 

settlement, but also show that water column P levels quickly fell as external loads were 472 

reduced after the 1970s. No long-term trend in outflow volume and P loss at Kenora was 473 

noted that might account for this drop in water column P (Table 3). Third, the 474 

responsiveness of the lake is a consequence of rapid and large burial and outflow fluxes 475 
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that remove P from the lake. Last, with rapid reduction of external loads after the 1970s 476 

and current external loads remaining relatively constant for the last decade, LoW has both 477 

rapidly depleted any legacy pool of sediment P and has or will soon reach a new steady 478 

state with respect to water column P and the size of its active pool of sediment P. 479 

Do trends in core biogeochemistry and biological indicators reflect 480 

historical nutrient dynamics? 481 

Biological remains preserved in the sediments of LoW record how ecological conditions 482 

changed in the lake over the last 150 years in response to changing nutrient dynamics; 483 

however, the indicators of historical algal productivity in LoW sediments offer somewhat 484 

conflicting scenarios that need to be reconciled with our model reconstructions of historical 485 

P loading and dynamics. Community changes in the diatoms are presented in detail 486 

elsewhere (Reavie et al. 2017) and in conjunction with biogenic silica and fossil algal 487 

pigments provide a record of historical diatom productivity. Historical changes in 488 

cyanobacteria communities and productivity are similarly recorded by their fossilized 489 

pigments.  490 

Pigment profiles, particularly those of general algal indicators (e.g., lutein-491 

zeoxanthin) and diatom specific pigments (e.g., diatoxanthin) suggest two periods of high 492 

productivity in the recent history of LoW. The first period occurred from the 1950s through 493 

1970s, during the peak of nutrient influx to LoW, and was followed by a decline in 494 

productivity in the 1980s followed by a second period of increased diatom productivity 495 

since the 1990s. There are significant changes in diatom communities in the most recent 496 

decades, particularly a greater abundance of species with higher TP optima including 497 

Cyclostephanos dubius, several small Stephanodiscus species, and Aulacoseira granulata 498 
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(Reavie et al. 2017). This most recent diatom community represents a species assemblage 499 

not previously seen in the lake. Despite evidence from pigment proxies that suggest greater 500 

diatom productivity in the 1950s–1970s there is no indication that the most recent high-P 501 

indicator taxa were common in the 1950s–1970s. As such the DI-TP does not effectively 502 

predict elevated P levels that were measured in the 1950s–1970s in LoW (Reavie et al. 503 

2017, see Supplement C). Similarly, biogenic silica records, whether treated as a 504 

concentration or flux, do not show increased diatom productivity during the 1950s to 505 

1970s, even though external P loading to the lake was higher and diatom pigment 506 

indicators suggest higher productivity at that time (Reavie et al. 2017). Biogenic silica is 507 

normally treated as a proxy for historical diatom productivity, but in LoW produces a 508 

confounded record that is difficult to reconcile with sediment pigments and historical P 509 

loading.  510 

Fossil pigments also indicate two periods of elevated cyanobacterial production in 511 

LoW. The first period is from the 1950s–1970s and is characterized by high concentrations 512 

of cyanobacterial (e.g., echinone and canthaxanthin) and general algal indicators (e.g., 513 

lutein-zeoxanthin) (Reavie et al. 2017). The same pigment groups show a second increase 514 

since the 1990s in most cores. However, there is also an increase since the 1990s of an 515 

additional pigment, myxoxanthophyll, an indicator of filamentous and colonial 516 

cyanobacteria including several of the potentially toxic forms (e.g., Microcystis), further 517 

suggesting that the biological communities present in the most recent decades are unique in 518 

the recent history of LoW.  519 

Recent biological changes in LoW seem paradoxical in relation to the simple 520 

reduction of external P loads and depletion of the active pool of P as indicated by P 521 
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monitoring and our modeling exercise. This incongruity suggests other factors must be 522 

driving changes in the algal communities. One potential driver is a shift in nutrient 523 

limitation. The few historical monitoring data on open-water nutrient stoichiometry suggest 524 

that the lake was P-limited in the 1960s and that reduction of point-source inputs has 525 

reduced N in a disproportionate ratio (relative to the Redfield ratio) to P leading to N-526 

limitation (Pla et al. 2005, Reavie et al. 2017), an environmental factor linked to enhanced 527 

cyanobacterial production (Ferber et al. 2004, Orihel et al. 2012). Second, nutrient 528 

abatement efforts targeted point source loads (principally the pulp/paper industry and 529 

wastewater treatment plants), which has changed the seasonality of external loading to the 530 

lake from the Rainy River from more constant loading to maximum loading occurring 531 

April–June (J. Anderson, pers. comm.), likely affecting algal seasonality in the lake. Third, 532 

climate warming may have exacerbated gains in water quality made through nutrient 533 

abatement. Climate trends show minimal change in ice free season in the southern basin, 534 

but warmer winters, and slightly warmer and calmer summers (Reavie et al. 2017). These 535 

are factors that affect lake thermal conditions, internal loading, and algal seasonality and 536 

productivity.  537 

Model Limitations  538 

With any modeling effort we must consider its limitations, future iterations, and potential 539 

application to other lake management problems. The first key to this model’s success is a 540 

nearly 60-year record of P loading that exists for the the Rainy River, which contributes 541 

70% of the P load to LoW (Beak Consultants Ltd 1990, Hargan et al. 2011). Although there 542 

are few lakes that have loading data with this level of historical detail (e.g., Nürnberg and 543 

LaZerte 2016), the model could be adapted to test alternative loading scenarios. We also 544 
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recognize the limitations of historical monitoring data. For example, in our model we held 545 

other external P sources constant from 1850–2011 at 232 t P/yr (Hargan et al. 2011, HEI 546 

2013). However, other sources include other tributary inputs, atmospheric deposition, 547 

shoreline erosion, and septic inputs, which were likely lower in presettlement times. Load 548 

monitoring of the Rainy River deserves similar scrutiny, as monitoring data from the 549 

1950s–1970s were spotty, and we may be underestimating loads that were missed during 550 

periods of high runoff (J. Anderson, pers. comm.). Similarly we must reconcile spotty 551 

monitoring data from the lake proper, which often recorded levels greater than 70 µg P/L in 552 

the 1960s, against low DI-TP estimates, which may be more indicative of spring TP values, 553 

during this period of peak loading (see also below). Other model components that could be 554 

refined include our model variables related to internal loading. We fix our internal loading 555 

at 2.5% of the active pool of P annually. However, if lake conditions were significantly 556 

different during the period of highest P loading (e.g. summer or winter hypolimnetic 557 

anoxia), internal loading may have historically had a greater role in nutrient dynamics. We 558 

further assume that P first entering the sediments was not buried for 10 years, consistent 559 

with results from Lake Winnipeg sediments (Matisoff et al. 2017). Despite such model 560 

limitations and uncertainties, all combinations of variables show unequivocally that P 561 

concentrations in LoW were much higher in the past, and that the active pool of P declined 562 

over the past several decades.  Most critically, we cannot create a scenario in which legacy 563 

P is a major driver of current conditions, providing a robust mechanistic argument against 564 

this hypothesis. 565 

Management implications 566 
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Downcore profiles and model results have several important management implications for 567 

LoW and for other large shallow lake systems. First, we show that water-column 568 

concentrations of P in southern LoW declined markedly since the 1970s through nutrient 569 

abatement programs that reduced external P loading. Analysis with dynamic modeling 570 

indicates that the active pool of P was rapidly depleted from its mid-20th century maximum 571 

via burial and outflow, and the lake has recently or should soon reach a new steady state in 572 

the absence of future stressors. The combined losses of P through outflow and burial are 573 

substantial in LoW, making the lake responsive to future reductions in external P inputs, if 574 

further loading reductions are possible. In contrast, lakes with long residence times and/or 575 

slow sedimentation rates are hampered in their ability to remove P through outflow or 576 

burial and will remain management challenges (Jeppesen et al. 2005, McCrackin et al. 577 

2016).  578 

Second, from a biological standpoint, we cannot say that the frequency and extent 579 

of cyanobacterial blooms is greater today than in the past in LoW. Fossil pigment records 580 

indicate that cyanobacterial blooms were also a large part of the ecology of LoW in the 581 

1950s–1970s (Reavie et al. 2017). However, we know from fossil pigments (increase in 582 

myxoxanthophyll) that the modern cyanobacterial community is different than what was 583 

present earlier. The diatoms similarly suggest a historically unique modern scenario as 584 

communities have shifted toward more eutrophic indicators in recent decades, similar to the 585 

northern LoW “disturbed” sites studied by Rühland et al. (2010), and that diatom 586 

productivity based on biogenic silica is currently at its highest recorded levels. There is no 587 

evidence of selective downcore dissolution in the cores to suggest the upcore record is 588 

biased (Reavie et al. 2017). 589 
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It is the cause of recent algal community shifts and potential limnological shifts that 590 

must concern lake managers. Could the algal communities be responding to drivers other 591 

than P in light of the well documented decreases in P loading and depletion of the legacy 592 

sediment P pool? Three potential drivers should be explored. Nutrient loading from the 593 

Rainy River has shifted from continuous loading to pulsed (seasonal) loading following 594 

nutrient abatement efforts that targeted sanitary and industry sources (J. Anderson, pers. 595 

comm.). Modern loadings are now highest in April–June and may have changed algal 596 

ecology where large and heavily silicified diatoms are favored in spring whereas 597 

cyanobacteria and smaller centric diatoms are favored later in the season. This response 598 

may be exacerbated by the second driver, a shift from P-limitation in the main body of 599 

LoW in the 1960s to N-limitation or co-limitation since the 1990s (Reavie et al. 2017) 600 

based on DIN:TP (Bërgstrom 2010). Although not a perfect predictor of cyanobacterial 601 

dominance (Downing et al. 2001), N-limitation has been linked to bloom formation (Ferber 602 

et al. 2004, Orihel et al. 2012).  603 

Last, climate changes are already evident in LoW. In its northern basins, the ice-604 

free season has been extended by nearly four weeks since the 1960s (Rühland et al. 2010) 605 

with winter and summer temperatures at Kenora (Ontario) 2.3°C and 1.2°C warmer since 606 

1900, respectively. This has resulted in increases in algal production (Paterson et al. 2017) 607 

and changes in diatom and chironomid assemblages (Rühland et al. 2008, 2010, Hyatt et al. 608 

2011, Summers et al. 2012) that are consistent with changes in lake physical properties and 609 

water column nutrient cycling (e.g., internal loading). In contrast, the southern basin shows 610 

no discernable trend in ice-out date (MNDNR-SCO 2016). Nevertheless, climate drivers 611 

will affect the physical, chemical, and biological limnology of the lake through longer 612 
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growing seasons, seasonality of external loads, and increased potential for short-term 613 

stratification. Understanding the links between these drivers, water quality, and algal 614 

ecology should be the focus of research, monitoring, and modeling on Lake of the Woods. 615 
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Tables 810 
 811 
Table 1. Lake of the Woods core names, dates, coring locations, depth at core site, and core 812 

recovery. Focusing factors are estimated by the flux of unsupported 210Pb to the core site 813 
relative to known atmospheric depositional rates in the region (~0.45 pCi/cm2 yr). 814 

 815 
Core	Name	 Date		 Lat	(N)	 Long	(W)	 State/Prov	 type	 Depth	 Recovery	 Focus	

	
yyyymmdd	 °N	 °W	

	 	
(m)	 (m)	 factor	

LoW_BigNarrows		 20120228	 49.39472°	 94.79395°	 Ontario	 Piston	 8.53	 0.98	 1.68	
LoW_LittleTrav	 20120228	 49.24643°	 94.67145°	 Ontario	 Piston	 9.18	 0.98	 1.37	
LoW_Sabaskong	 20120229	 49.10064°	 94.42108°	 Ontario	 Piston	 6.85	 0.98	 1.87	
LoW_BigTrav3	 20120229	 49.01931°	 94.75391°	 Minnesota	 Piston	 10.2	 0.9	 1.21	
LoW_BigTrav4	 20120301	 49.08941°	 94.99497°	 Minnesota	 Piston	 10.13	 0.96	 1.44	
LoW_Muskeg	 20120301	 48.97849°	 95.17970°	 Minnesota	 Piston	 8.08	 0.95	 1.59	
LoW_BB2H	 20120818	 49.10960°	 95.22796°	 Manitoba	 HTH	 5.52	 0.095	 0.41	

 816 
 817 
 818 
 819 
Table 2. Model 1 output where I = B + O, P Inputs (I), P Burial (B), and P Outflow (O) are in 820 

tonnes P/yr. P Outflow is estimated from diatom-inferred TP (Reavie et al. 2017) 821 
multiplied by outflow volume (see Table 3). 822 

 823 
Time	Interval	 P	Input	 P	Outflow	 P	Burial	
		(years)	 	(t	P/yr)	 	(t	P/yr)	 	(t	P/yr)	
2005–2011	 1326	 361.0	 965	
2000–2004	 1080	 270.4	 809	
1995–1999	 1000	 278.5	 721	
1990–1994	 908	 243.7	 664	
1980–1989	 806	 219.7	 586	
1970–1979	 753	 286.1	 467	
1960–1969	 701	 279.6	 422	
1950–1959	 935	 221.2	 714	
1940–1949	 859	 215.1	 644	
1920–1939	 712	 147.2	 564	
1900–1919	 676	 153.0	 523	
pre-1900	 559	 128.2	 431	

 824 
  825 
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Table 3. Model 2 input data, parameters, and data sources. 826 
Parameter	 Value	 Units	 Source*	

Surface	Area	of	Lake	 2.83	x	109	 m2	 GIS	

Volume	of	Lake	 18.48	x	109	 m3	 1	
Outflow	at	Big	Narrows	

	   1850–1930	 10.7	x	109		 m3/yr	 1,	4	
1940	 13.7	x	109		 m3/yr	 1,	4	

1950	 12.9	x	109		 m3/yr	 1,	4	

1960	 15.8	x	109		 m3/yr	 1,	4	
1970	 15.6	x	109		 m3/yr	 1,	4	

1980	 12.8	x	109		 m3/yr	 1,	4	

1990	 14.4	x	109		 m3/yr	 1,	4	
2000–2050	 14.9	x	109		 m3/yr	 1,	4	

Phosphorus	Load	from	Rainy	River	
	  1850–1900		 300	 t/yr	 5	

1900	 400	 t/yr	 5	
1910	 500	 t/yr	 5	
1920	 600	 t/yr	 5	
1930	 800	 t/yr	 5	
1940	 1000	 t/yr	 5	
1950	 1176	 t/yr	 3	
1960	 1319	 t/yr	 2,	3	
1970	 830	 t/yr	 2,	3	
1980	 546	 t/yr	 2,	3	
1990	 519	 t/yr	 2,	3	
2000	 377	 t/yr	 2,	3	

2000–2050	 350	 t/yr	 2,	3	
Phosphorus	load	from	other	sources	

	  1850–2050	 232	 t/yr	 2,	6	
Whole	basin	sediment	accumulation	rate	(areal)	

	1850–1900	 0.238	 kg/m2/yr	 5	
1900–1919	 0.288	 kg/m2/yr	 5	

1920–1939	 0.335	 kg/m2/yr	 5	

1940–1949	 0.318	 kg/m2/yr	 5	
1950–1959	 0.341	 kg/m2/yr	 5	

1960–1969	 0.353	 kg/m2/yr	 5	

1970–1979	 0.384	 kg/m2/yr	 5	
1980–1989	 0.417	 kg/m2/yr	 5	

1990–1999	 0.469	 kg/m2/yr	 5	
2000–2050	 0.506	 kg/m2/yr	 5	

*Supporting	data:	1)	Zhang	et	al.	2013;	2)	Hargan	et	al.	2011;	3)	Beak	Consultants	Ltd	1990;	4)	Matt	DeWolfe	827 
(lwcb.ca);	5)	this	study;	6)	HEI	2013	 	828 
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Figures 829 
 830 
Figure 1. Downcore profiles for seven Lake of the Woods cores for total 210Pb activity, date-831 
depth relationship, and sedimentation rate plotted against core depth (cm). Dashed line in 210Pb 832 
inventory represents level of supported 210Pb. 833 
 834 
Figure 2. Whole basin estimates of focus corrected sediment accumulation and diatom-inferred 835 
historical water column total P plotted against time period. Fig. 2a. Whole basin estimates of 836 
focus corrected sediment accumulation (kg/m2 yr). Fig. 2b. Whole basin estimates of water 837 
column diatom-inferred total P (DI-TP; µg/L). 838 
 839 
Figure 3. Geochemistry of seven Lake of the Woods cores including concentration (mg P/g 840 
sediment) and flux (mg P/cm2 yr) of total sediment phosphorus and phosphorus fractions 841 
including HCl-P, NaOH-P, Organic-P, and Exchangeable-P, and water column diatom-inferred 842 
total phosphorus (DI-TP; µg/L) estimates from Reavie et al. (2017) plotted against core date. 843 
 844 
Figure 4. Whole basin estimates of historical accumulation of phosphorus (P) and P fractions in 845 
Lake of the Woods sediments by time period.  Fig. 4a. Accumulation of P differentiated into 846 
refractory components (HCl-P and Organic-P; green bars) and labile components (NaOH-P and 847 
Exchangeable-P; yellow bars); minimum burial estimates of refractory fractions were used in 848 
Model 2. Fig. 4b. Conceptual model of the Active and Buried inventory of P present in 2011 (see 849 
text for details). 850 
 851 
Figure 5. Outflow and P loss at Big Narrows.  Fig. 5a. Historical flows at Big Narrows for each 852 
time period, km3yr-1.  Fig. 5b. Estimates of historical loss of phosphorus through outflow at Big 853 
Narrows by time period (lower panel).  P loss represents the whole-lake historical diatom-854 
inferred total phosphorus multiplied by historical flows at Big Narrows for each time period. 855 
 856 
Figure 6. Model 2 is a three-box dynamic model run from 1850–2050. Three inventories of P are 857 
estimated including P in the lake (Lake P), Cumulative P in the Active Layer, and Cumulative P 858 
in the Buried Layer by adjusting the percent of external P load (EX) that goes to the sediment (% 859 
to Sed), the internal load rate (InLoad), and the mass of sediment (MS) that is in the Active 860 
Layer.  861 
 862 
Figure 7. Output of Model 2, 1860-2050. Model 2B (blue line) is based on lower external inputs 863 
in presettlement times compared to Model 2A (red line; see text). Fig. 7a. Modeled water column 864 
TP (µg/L) peaks in 1950–60s with rapid water quality improvement after 1960s (blue line). 865 
Model 2B delays the rise of TP until 1900 (red line) but has no effect post-1960s. Stable TP 866 
levels are reached by 2015–2020 if modern external loads remain constant. Fig. 7b. Modeled P in 867 
the active layer of Lake of the Woods sediments. The active pool of P was greatest in the 1960s 868 
regardless of presettlement external load scenarios, and legacy P has been rapidly reduced since 869 
the 1960s. Model output suggests the active pool of sediment P is reaching a stable condition. 870 


